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Preface

Warning

A full draft of this book will be available as soon as possible.
This Preface, and Chapters 1-12 and the Appendix materials are in a sufficiently final
form to justify reading them. I’m actively revising Chapters 13-23 and new versions will
appear before I declare a complete draft to be available.
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This Book

1. This book is broken down into multiple chapters. Use the table of contents on the left
side of the screen to navigate between chapters, or use the right side to navigate within
the current chapter.

2. You can also search the book, using an automated index.
3. Any of the code provided can be copied to the clipboard using the Copy icon at the top

right of the code block.
4. If, for some awful reason, you want to print or save this document, we recommend waiting

until mid-January of 2025, when a “final” version will be available. That final version
will remain available until 2025-06-01.

What You’ll Find Here

This book provides a series of examples using R to work through issues that are likely to come
up in PQHS/CRSP/MPHP 431. The main purpose is to give 431 students a set of common
materials on which to draw during the course. In class, we will sometimes:

• reiterate points made in this document,
• amplify what is here,
• simplify the presentation of things done here,
• use new examples to show some of the same techniques,
• refer to issues not mentioned in this document.

We assume that you will read the materials as you need them, just as you will attend classes
and try to learn from them. We welcome feedback of all kinds on this document or anything
else.

The 431 Course online

The online home for Dr. Love’s 431 course in Fall 2024 is

https://thomaselove.github.io/431-2024

Go there for all information related to the course.
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All of the code and text in this book is posted online as HTML, and it is also possible to
download a PDF version of the document from the down arrow next to the title at the top
left of this screen.

All data and R code related to this book are available to you through our course web site.
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Part I

Getting Started
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1 Introduction

The definition of data science can be a little slippery. One fairly modern view of data science
is exemplified by Steven Geringer’s 2014 Venn diagram.

• The field encompasses ideas from mathematics and statistics and from computer science,
but with a heavy reliance on subject-matter knowledge. In our case, this includes clinical,
health-related, medical or biological knowledge.

• As Gelman and Nolan (2017) suggest, the experience and intuition necessary for good
statistical practice are hard to obtain, and teaching data science provides an excellent
opportunity to reinforce statistical thinking skills across the full cycle of a data analysis
project.

• The principal form in which computer science (coding/programming) play a role in this
course is to provide a form of communication. You’ll need to learn how to express your
ideas not just orally and in writing, but also through your code.
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Data Science is a team activity. Everyone working in data science brings some part of the
necessary skill set, but no one person can cover all three areas alone for excellent projects.

[The individual who is truly expert in all three key areas (mathematics/statistics,
computer science and subject-matter knowledge) is] a mythical beast with magical
powers who’s rumored to exist but is never actually seen in the wild.

http://www.kdnuggets.com/2016/10/battle-data-science-venn-diagrams.html

1.1 Data Science Project Cycle

A typical data science project can be modeled as follows, which comes from the introduction
to the amazing book R for Data Science, which is a key text for this course (Wickham,
Çetinkaya-Rundel, and Grolemund 2024).

Figure 1.1: Source: R for Data Science: Introduction

This diagram is sometimes referred to as the Krebs Cycle of Data Science. For more on
the steps of a data science project, we encourage you to read the Introduction of Wickham,
Çetinkaya-Rundel, and Grolemund (2024).

As Gelman, Hill, and Vehtari (2021) suggest, statistical analysis itself cycles through a series
of steps:

• Model building, starting with simple linear models of the form 𝑦 = 𝑎 + 𝑏𝑥 +
error, and expanding through additional predictors, interactions and trans-
formations.

• Model fitting, which includes data manipulation, programming, and the use
of algorithms to estimate regression coefficients and their uncertainties and to
make probabilistic predictions.
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• Understanding model fits, which involves graphics, more programming, and
an active investigation of the (imperfect) connections between measurements,
parameters, and the underlying objects of study.

• Criticism, which is not just about finding flaws and identifying questionable
assumptions, but is also about considering directions for improvement of mod-
els. Or, if nothing else, limiting the claims that might be made by a naive
reading of a fitted model.

The next step is to return to model building, possibly including new data.

1.2 Data Science and the 431 Course

We’ll discuss each of these elements in the 431 course, focusing at the start on understanding
our data through transformation, modeling and (especially in the early stages) visualization.
In 431, we learn how to get things done.

• We get people working with R and R Studio and Quarto, even if they are completely
new to coding. A gentle introduction is provided at Ismay and Kim (2024)

• We learn how to use the tidyverse (see http://www.tidyverse.org/), an array of tools in
R (mostly developed by Hadley Wickham and his colleagues at R Studio) which share an
underlying philosophy to make data science faster, easier, more reproducible and more
fun. A critical text for understanding the tidyverse is Wickham, Çetinkaya-Rundel, and
Grolemund (2024). Tidyverse tools facilitate:

– importing data into R, which can be the source of intense pain for some things,
but is really quite easy 95% of the time with the right tool.

– tidying data, that is, storing it in a format that includes one row per observation
and one column per variable. This is harder, and more important, than you might
think.

– transforming data, perhaps by identifying specific subgroups of interest, creating
new variables based on existing ones, or calculating summaries.

– visualizing data to generate actual knowledge and identify questions about the
data - this is an area where R really shines, and we’ll start with it in class.

– modeling data, taking the approach that modeling is complementary to visualiza-
tion, and allows us to answer questions that visualization helps us identify.

– and last, but definitely not least, communicating results, models and visualiza-
tions to others, in a way that is reproducible and effective.

• We also use the easystats collection of R packages (Lüdecke et al. 2022) (see https:
//easystats.github.io/easystats/) to help us with modeling and reporting key elements
of our statistical work. This framework builds on what the tidyverse does to help us in
the final stages of preparing an analysis, as we’ll see.

20

http://www.tidyverse.org/
https://easystats.github.io/easystats/
https://easystats.github.io/easystats/


• Some programming/coding is an inevitable requirement to accomplish all of these aims.
If you are leery of coding, you’ll need to get past that, with the help of this course and
our stellar teaching assistants. Getting started is always the most challenging part, but
our experience is that most of the pain of developing these new skills evaporates by early
October.

1.3 What The Course Is and Isn’t

The 431 course is about getting things done. In developing this course, we adopt a modern
approach that places data at the center of our work. Our goal is to teach you how to do truly
reproducible research with modern tools. We want you to be able to collect and use data
effectively to address questions of interest.

The curriculum includes more on several topics than you might expect from a standard grad-
uate introduction to biostatistics.

• data gathering
• data wrangling
• exploratory data analysis and visualization
• multivariate modeling
• communication
• both Bayesian and frequentist approaches to regression models

It also nearly completely avoids formalism and is extremely applied - this is absolutely not a
course in theoretical or mathematical statistics, and this book reflects that approach.

Our work does not require highly advanced mathematics. There’s very little of the mathemat-
ical underpinnings here:

𝑓(𝑥) = 𝑒−(𝑥−𝜇)2/(2𝜎2)

𝜎
√

2𝜋

Instead, this book (and the course) focus on how we get R to do the things we want to do,
and how we interpret the results of our work. Prior programming knowledge is desirable in
some ways, but by no means required.

In 431 (and its follow-up, 432), we hope to provide you with the tools you need to work
effectively with regression models. This includes understanding, using and assessing the fit of
linear models (in 431) and generalized linear models (in 432) incorporating a wide range of
ideas. We want you to understand what regression can and cannot do, and we want you to
have a deeper sense of how to get started (and when to stop) with a regression analysis. Note
that some of our motivation for the revisions found in this book as compared to prior versions
of 431 comes from Gelman, Hill, and Vehtari (2021).
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I should also mention that this isn’t a book about big data, by which I mean data that can’t
fit easily into a single analytic file residing on a laptop computer. We work with small and
medium-sized data files here, and will do so throughout 431 and its follow-up course, 432.
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2 Graphical Summaries

2.1 R setup for this chapter

Note

This section loads all needed R packages for this chapter. Appendix A lists all R packages
used in this book, and also provides R session information.

library(ggdist)
library(ggpubr)
library(glue)
library(janitor)
library(knitr)
library(naniar)
library(palmerpenguins)
library(patchwork)

library(easystats)
library(tidyverse)

2.2 Data from an R package: The Palmer Penguins

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

The data in the palmerpenguins package includes several measurements of interest for adult
foraging penguins observed on islands in the Palmer Archipelago near Palmer Station, Antarc-
tica. Dr. Kristen Gorman and the Palmer Station Long Term Ecological Research (LTER)
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Program collected the data and made them available1. The data describe three species of
penguins, called Adelie, Chinstrap and Gentoo. See Horst, Hill, and Gorman (2020) for more
details on the palmerpenguins package and data.

Once we’ve used the library() function to load in the palmerpenguins package, a data set
will become available called penguins. To view it, we can simply type in the name.

penguins

# A tibble: 344 x 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>

1 Adelie Torgersen 39.1 18.7 181 3750
2 Adelie Torgersen 39.5 17.4 186 3800
3 Adelie Torgersen 40.3 18 195 3250
4 Adelie Torgersen NA NA NA NA
5 Adelie Torgersen 36.7 19.3 193 3450
6 Adelie Torgersen 39.3 20.6 190 3650
7 Adelie Torgersen 38.9 17.8 181 3625
8 Adelie Torgersen 39.2 19.6 195 4675
9 Adelie Torgersen 34.1 18.1 193 3475
10 Adelie Torgersen 42 20.2 190 4250
# i 334 more rows
# i 2 more variables: sex <fct>, year <int>

For example, the first row describes a penguin of the Adelie species, from the island of Torgeson,
with a bill length of 39.1 mm, and so forth.

The penguins data are represented in R using a tibble, a special type of R data frame that
prints only the first ten rows of our data, and has some other attractive features, as compared
to regular R data frames.

Within the penguins tibble, we see 344 rows, each representing a different penguins and 8
columns, each representing a different variable which helps characterize the penguins. In all,
the data contain eight variables (columns) which describe each penguin’s:

• species (Adelie, Chinstrap or Gentoo)
• island (Biscoe, Dream or Torgerson)
• bill length, in mm
• bill depth, in mm
• flipper length, in mm

1Two fun facts: (1) Male Gentoo and Adelie penguins “propose” to females by giving them a pebble. (2) The
Adelie penguin was named for his wife by Jules Dumont d’Urville, who also rediscovered the Venus de Milo.
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• body mass, in g
• sex (either female or male, although we’ll see that some of the rows are missing this

information)
• year of observation (either 2007, 2008 or 2009)

There are also some rows which contain indicators of missing data - these are the NA values
we see, for example, in the data for the fourth penguin. It will turn out that missingness in
the penguins tibble is confined to the variables describing the size and sex of the penguins.

2.3 What is in our tibble?

How many rows and columns are there in the penguins tibble?

dim(penguins)

[1] 344 8

nrow(penguins)

[1] 344

ncol(penguins)

[1] 8

There are many ways to get a quick understanding of what’s contained in the penguins tibble,
including glimpse() (shown below) as well as str() and data_peek(). Each of these provides
similar information on the types of variables (factors, integers, numbers) and some of their
values in the tibble.

str(penguins)

tibble [344 x 8] (S3: tbl_df/tbl/data.frame)
$ species : Factor w/ 3 levels "Adelie","Chinstrap",..: 1 1 1 1 1 1 1 1 1 1 ...
$ island : Factor w/ 3 levels "Biscoe","Dream",..: 3 3 3 3 3 3 3 3 3 3 ...
$ bill_length_mm : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
$ bill_depth_mm : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
$ flipper_length_mm: int [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
$ body_mass_g : int [1:344] 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
$ sex : Factor w/ 2 levels "female","male": 2 1 1 NA 1 2 1 2 NA NA ...
$ year : int [1:344] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...
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The naniar package provides us with several ways to identify and count missing values in the
data. For instance, the penguins tibble contains 19 missing values.

n_miss(penguins)

[1] 19

Which variables contain missing values?

miss_var_summary(penguins)

# A tibble: 8 x 3
variable n_miss pct_miss
<chr> <int> <num>

1 sex 11 3.20
2 bill_length_mm 2 0.581
3 bill_depth_mm 2 0.581
4 flipper_length_mm 2 0.581
5 body_mass_g 2 0.581
6 species 0 0
7 island 0 0
8 year 0 0

We can also break down missing values within each observation (or case) in the data.

miss_case_table(penguins)

# A tibble: 3 x 3
n_miss_in_case n_cases pct_cases

<int> <int> <dbl>
1 0 333 96.8
2 1 9 2.62
3 5 2 0.581

Here, for instance, we see 2 rows (penguins) each missing five values, 9 missing just 1, and the
remaining 333 are complete.
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2.4 Visualizing A Quantity

There is no single best way to display a data set. Looking at data in unexpected
ways can lead to discovery. – Gelman, Hill, and Vehtari (2021)

Let’s look at some fundamental ways of plotting data describing the distribution of one of
our variables. We’ll start with the flipper length, measured in mm. We will make use of the
ggplot2 package, which is part of the tidyverse meta-package, to construct our plots.

2.4.1 Histogram

Here, for example, is a histogram of the flipper lengths for our penguins. Note that we first
specify the tibble (data frame = penguins, here), and then the x axis (flipper lengths), before
creating the histogram with navy blue fill in each bar, and yellow lines around the bar.

ggplot(data = penguins, aes(x = flipper_length_mm)) +
geom_histogram(fill = "navy", col = "yellow")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 2 rows containing non-finite outside the scale range
(`stat_bin()`).
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This code produces both a message (which we might ignore) and a warning (which is more
worrisome.)

• The warning alerts us that two rows have not been plotted, and this is because we have
missing values for flipper length for two of our penguins. So, perhaps we should filter
our data down to only those penguins with complete information on flipper length.

• The message suggests that we ought to specify the number of bins (bars) in which we
divide the flipper lengths. We can do so by either specifying a bin width or the number
of bins.

We address each of these concerns (and adjust a few other things) in the revised histogram
shown below.

penguins |>
filter(complete.cases(flipper_length_mm)) |>
ggplot(aes(x = flipper_length_mm)) +
geom_histogram(bins = 20, fill = "#003071", color = "#ACD2E6") +
labs(

x = "Flipper Length, in mm",
title = "Revised Histogram of Flipper Length"

) +
theme_lucid()
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• To eliminate the penguins with missing information on flipper length, we filtered the data
to only contain the cases (rows) with complete information on the flipper_length_mm
variable. We’ll use complete case approaches to deal with missingness for a while, until
Section 17.7.

• The new color scheme follows CWRU’s branding (visual identity) found at https://
case.edu/brand/visual-identity/color. Specifically, we’ve used hexadecimal notation to
identify CWRU Blue (HEX 003071) and CWRU Light Blue (HEX A6D2E6) as our
desired fill and color, respectively.

• We’ve used a different theme than the default ggplot2 choice, called theme_lucid()
which happens to be a favorite of mine. (My other favorite, used in most of this book,
is theme_bw() which is very similar.) This results in a change in the background color
from gray to white, among other things.

• We’ve also adjusted the x-axis label and added a main title to the plot.

2.4.2 Histogram with Normal Curve

Sometimes we might want to build a histogram with a curve superimposed to show what a
Normal (or Gaussian) distribution with the same mean and standard deviation might be. My
favorite way to do this is shown below.

bw = 4 # specify width of bins in histogram

ggplot(penguins, aes(flipper_length_mm)) +
geom_histogram(binwidth = bw,

fill = "black", col = "yellow") +
stat_function(fun = function(x)

dnorm(x, mean = mean(penguins$flipper_length_mm,
na.rm = TRUE),

sd = sd(penguins$flipper_length_mm,
na.rm = TRUE)) *

length(penguins$flipper_length_mm) * bw,
geom = "area", alpha = 0.5,
fill = "lightblue", col = "blue") +

theme_lucid()

Warning: Removed 2 rows containing non-finite outside the scale range
(`stat_bin()`).
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2.4.3 An alternative approach

Another way to do this produces a histogram using some tools from the easystats family of
R packages, but the underlying plot is still a ggplot2 plot, which can be adjusted in the same
way as another such plot.

result <- describe_distribution(penguins$flipper_length_mm)

plot(result, centrality = "mean", dispersion = TRUE,
dispersion_style = "curve"

) +
labs(x = "Flipper Length in mm") +
theme_lucid()
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Note

On the good side, the plot() function used here already (by default) removes any missing
values of flipper length before plotting.
On the bad side, I don’t know of a way to adjust the binwidths in this plot, which is
something I prefer to be able to control. Hence, I generally use my approach.

2.4.4 Boxplot

penguins |>
filter(complete.cases(flipper_length_mm)) |>
ggplot(aes(x = flipper_length_mm, y = "")) +
geom_boxplot(fill = "royalblue", color = "black") +
stat_summary(

fun = mean, geom = "point",
shape = 16, size = 3, col = "white"

) +
labs(

x = "Flipper Length, in mm", y = "",
title = "Boxplot of Penguin Flipper Lengths",
subtitle = "White dot is the sample mean"
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) +
theme_bw()
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Boxplot of Penguin Flipper Lengths

This boxplot shows the middle 50% of the data (from the 25th percentile to the 75th percentile)
as a box, with a vertical line in the middle indicating the median of the data (the 50th
percentile.) The “whiskers” extend from the box out to the most extreme values seen in the
data which do not qualify as potential outliers (unusual values) using a method due to Tukey
(1977) and described in this book as part of Section 3.5.

I like to add an indication of the location of the sample mean of the data to my boxplots, so
I have done so here.

The values plotted by this boxplot can be identified using the following R code:

fivenum(penguins$flipper_length_mm)

[1] 172 190 197 213 231

mean(penguins$flipper_length_mm, na.rm = TRUE)

[1] 200.9152
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There are many ways to extend the fundamental idea of a boxplot. Here, for example, is a
somewhat fancier option, now looking at the body mass (in g) of the penguins.

penguins |>
filter(complete.cases(body_mass_g)) |>
ggplot(aes(x = body_mass_g, y = "")) +
geom_violin(fill = "royalblue") +
geom_boxplot(width = 0.3, color = "black") +
stat_summary(

fun = mean, geom = "point",
shape = 16, size = 3, col = "red"

) +
geom_rug() +
labs(

x = "Body Mass, in g", y = "",
title = "Penguin Body Mass, in grams",
subtitle = "Boxplot with Violin and Rug",
caption = "Palmer Penguins, with 2 missing observations excluded."

) +
theme_bw()

3000 4000 5000 6000
Body Mass, in g

Boxplot with Violin and Rug

Penguin Body Mass, in grams

Palmer Penguins, with 2 missing observations excluded.
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2.4.5 Normal Q-Q Plot

As it turns out, it will often be useful for us to consider whether or not a data set is well fit
by a Normal distribution (sometimes called a Gaussian distribution.) One important tool for
doing this is called a Normal probability plot or Normal Q-Q plot.

Note

The Central Limit Theorem from probability tells us that the sum of many small, in-
dependent random variables will produce a variable which approximated the Normal
distribution. As a result, data that can be thought of as sums of many smaller additive
factors often approximate a Normal distribution.
A major appeal of the Normal distribution is that data that are Normally distributed
can be well summarized by the mean and standard deviation of the sample.

A Normal Q-Q plot will follow a straight line when the data are (approximately) Normally
distributed. When the data have a different shape, the plot will reflect that. The purpose of
a Normal Q-Q plot is to help point out distinctions from a Normal distribution. A Normal
distribution is symmetric and has certain expectations regarding its tails. The Normal Q-Q
plot can help us identify data as well approximated by a Normal distribution, or not, because
of:

• skew (including distinguishing between right skew and left skew) which is indicated by
monotonic curves away from a straight line in the Normal Q-Q plot

• behavior in the tails (which could be heavy-tailed [more outliers than expected, shown
as reverse “s” shapes] or light-tailed [shown as “s” shapes in the plot.])

penguins_cc <- penguins |>
drop_na()

ggplot(penguins_cc, aes(sample = body_mass_g)) +
geom_qq() +
geom_qq_line(col = "red") +
labs(

y = "Body Mass in grams",
x = "Standard Normal Distribution",
title = "Palmer Penguins: Body Mass"

) +
theme_lucid()
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Here we see the points at the left of the plot curve above the red line, and the points at the
right curve below the red line. This is the “s” shape I mentioned earlier, which indicates data
that are somewhat more light-tailed than we’d expect from a Normal distribution.

Below are a couple of additional examples of Normal Q-Q plots in the penguins data, next to
histograms to help us better understand the shape of a distribution.

dat1 <- penguins_cc |>
filter(species == "Adelie")

p1 <- ggplot(dat1, aes(sample = bill_length_mm)) +
geom_qq(col = "navy") +
geom_qq_line(col = "red") +
labs(

y = "Bill Length in mm",
x = "Standard Normal Distribution"

) +
theme_bw()

p2 <- ggplot(dat1, aes(x = bill_length_mm)) +
geom_histogram(bins = 10, col = "yellow", fill = "navy") +
theme_bw()
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p1 + p2 +
plot_annotation(title = "Approximately Normal Distribution")
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Approximately Normal Distribution

While the Normal distribution isn’t a perfect fit to these data, the points are generally quite
close to the red line in the Normal Q-Q plot, and we see a mostly symmetric histogram to
back up this finding.

dat2 <- penguins_cc |>
filter(island == "Biscoe")

p3 <- ggplot(dat2, aes(sample = bill_depth_mm)) +
geom_qq(col = "forestgreen") +
geom_qq_line(col = "red") +
labs(

y = "Bill Depth in mm",
x = "Standard Normal Distribution"

) +
theme_bw()

p4 <- ggplot(dat2, aes(x = body_mass_g)) +
geom_histogram(bins = 10, col = "white", fill = "forestgreen") +
theme_bw()
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p3 + p4 +
plot_annotation(title = "Left Skewed Distribution")
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Here, note that the points at the left and right side of the Normal Q-Q plot bend up away
from the curve (more so at the bottom of the distribution) and this indicates skew.

2.4.6 Three Plots at Once

Seeing more than one representation of the data at a time can help us use each to say something
about the center, spread and shape of the distribution. The patchwork package allows us to
place multiple plots into a single figure, as follows:

bw = 4 # specify width of bins in histogram

p1 <- ggplot(penguins, aes(x=flipper_length_mm)) +
geom_histogram(binwidth = bw,

fill = "black", col = "yellow") +
stat_function(fun = function(x)

dnorm(x, mean = mean(penguins$flipper_length_mm,
na.rm = TRUE),

sd = sd(penguins$flipper_length_mm,
na.rm = TRUE)) *
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length(penguins$flipper_length_mm) * bw,
geom = "area", alpha = 0.5,
fill = "lightblue", col = "blue"
) +

labs(
x = "Bill Length in mm",
title = "Histogram & Normal Curve"

) +
theme_bw()

p2 <- ggplot(penguins_cc, aes(sample = bill_length_mm)) +
geom_qq() +
geom_qq_line(col = "red") +
labs(

y = "Bill Length in mm",
x = "Standard Normal Distribution",
title = "Normal Q-Q plot"

) +
theme_bw()

p3 <- ggplot(penguins_cc, aes(x = bill_length_mm, y = "")) +
geom_violin(fill = "cornsilk") +
geom_boxplot(width = 0.2) +
stat_summary(

fun = mean, geom = "point",
shape = 16, col = "red"

) +
labs(

y = "", x = "Bill Length in mm",
title = "Boxplot with Violin"

) +
theme_bw()

p1 + (p2 / p3 + plot_layout(heights = c(2, 1))) +
plot_annotation(

title = "Palmer Penguins: Bill Length in mm"
)

Warning: Removed 2 rows containing non-finite outside the scale range
(`stat_bin()`).
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Here, we have a histogram with a superimposed Normal distribution curve, a Normal Q-Q
plot, and a boxplot with violin to choose from, each describing the bill lengths in mm for all
of the penguins with data on this measure.

• The histogram shows fewer observations near the mean of the data, but more (on both
sides) as we move towards the tails. The edges of the distribution appear to have lighter
tails than we’d expect if these data were Normally distributed.

• The S shape in the Normal Q-Q plot suggests symmetric but light-tailed data as com-
pared to a Normal distribution.

• We see a lack of outliers in the boxplot, with the mean and median fairly close to one
another, which indicates some symmetry but light-tailed shape.

2.4.7 Stem-and-Leaf Display

Prior to computers, a stem-and-leaf display was a useful tool for sorting through a batch of
data by hand in a way that left you with an approximate histogram of the data values. I
include it here out of nostalgia, primarily.

stem(penguins_cc$bill_depth_mm)

The decimal point is at the |
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13 | 1234
13 | 5567777778889999
14 | 001112222223334444
14 | 5555555566666778889
15 | 00000000001112222333344
15 | 5566677777888899999
16 | 0000111111222333344
16 | 555566666677888899
17 | 0000000000001111111222222333333334
17 | 5555556666778888888889999999999
18 | 000001111111122222333344444
18 | 55555555556666666666777777888888899999999
19 | 0000000001111122223344444
19 | 55555566677888999
20 | 0000001333
20 | 567778
21 | 11122
21 | 5

We see that the minimum bill depth is 13.1 and the maximum is 21.5.

Here’s another stem-and-leaf display. Note the change in the location of the decimal point.

stem(penguins_cc$flipper_length_mm)

The decimal point is 1 digit(s) to the right of the |

17 | 24
17 | 68888
18 | 00001111111222334444444
18 | 55555555566666677777777777777778888889999999
19 | 000000000000000000000111111111111122222223333333333333344444
19 | 555555555555555556666666666777777777788888888999999
20 | 0000111111222233333
20 | 5556778888888899999
21 | 0000000000000011222222233333344444
21 | 555555555555666666777778888899999
22 | 000000001111122222233444
22 | 55556888899
23 | 00000001
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The minimum flipper_length is 172 mm and the maximum is 231.

2.5 Comparing Multiple Quantities

2.5.1 Faceted Histograms

ggplot(data = penguins_cc, aes(x = bill_depth_mm)) +
geom_histogram(bins = 20, fill = "#003071", color = "#ACD2E6") +
facet_grid(island ~ .) +
labs(

x = "Bill Depth, in mm",
title = "Bill Depth of Palmer Penguins, by Island"

) +
theme_bw()
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2.5.2 Overlapping Histograms
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gghistogram(penguins_cc,
x = "bill_depth_mm",
add = "mean", rug = TRUE, bins = 20,
color = "sex", fill = "sex",
palette = c("#00AFBB", "#E7B800")

)
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The gghistogram() function comes from the ggpubr package. Read more about its approaches
to plotting distributions at https://rpkgs.datanovia.com/ggpubr/#distribution.

2.5.3 Comparison Boxplot, by Island

ggplot(
data = penguins_cc,
aes(x = bill_length_mm, y = island)

) +
geom_boxplot() +
stat_summary(

fun = mean, geom = "point",
shape = 16, size = 3, col = "red"
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) +
theme_bw()
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The penguins coming from Torgeson island appear to have shorter bill lengths than do the
penguins from the other two islands. Note also that there is a dot (indicating a potential
outlier) in the Biscoe data, outside the whiskers for that plot. More on outliers in Section 3.5.

2.5.4 Adding Summary Statistics

ggsummarystats(
penguins_cc,
x = "species", y = "bill_length_mm",
ggfunc = ggboxplot, add = "jitter",
color = "species", palette = "npg"

)
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Adelie penguins appear smaller, on average, than do the penguins of the other two species.

The ggsummarystats() tool is part of the ggpubr package, and more details on this tool are
available here.

2.5.5 Box and Violin Plot, by Species

ggplot(
data = penguins_cc,
aes(y = body_mass_g, x = species)

) +
geom_violin(aes(fill = species)) +
geom_boxplot(width = 0.2, notch = TRUE) +
stat_summary(

fun = mean, geom = "point",
shape = 16, size = 3, col = "red"

) +
scale_fill_viridis_d(

option = "turbo", begin = 0.3,
alpha = 0.5

) +
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guides(fill = "none") +
theme_bw()
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We have included a notch in each boxplot here to help compare the groups. The idea is that if
the notches of two boxes do not overlap, this suggests a fairly large difference in the medians of
the two groups. Here, this just provides a little more information to suggest that the Gentoo
penguins have larger body mass than either of the other two species.

2.5.6 Rain Cloud Plot, by Species

A rain cloud plot is another way of visualizing the distributions of several groups on the same
outcome simultaneously.

ggplot(
data = penguins_cc,
aes(

y = species, x = bill_length_mm,
fill = species

)
) +
stat_slab(aes(thickness = after_stat(pdf * n)), scale = 0.7) +
stat_dotsinterval(side = "bottom", scale = 0.7, slab_linewidth = NA) +
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scale_fill_brewer(palette = "Set2") +
guides(fill = "none") +
theme_bw()
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At the top of the plot is a half-violin plot, which displays a smoothed estimate of the values in
the data. On the bottom, a dot chart shows the individual values grouped into small bins. In
between, we show a dot at the group median, surrounded by a set of quantile intervals. The
broader line shows an interval covering the middle 66% of the data, while the finer line shows
an interval covering the middle 95% of the data.

This implementation of rain cloud plots comes to us from the ggdist package, which contains
several tools to help plot distributions and uncertainty. More information from that site on
rain cloud plots and related options is available here.

2.6 Scatterplots of Associations

When reporting data and analysis, you should always imagine yourself in the po-
sition of the reader of the report. – Gelman, Hill, and Vehtari (2021)
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2.6.1 Building a basic scattterplot

ggplot(
data = penguins_cc,
aes(x = flipper_length_mm, y = body_mass_g)

) +
geom_point()
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We see here a generally increasing relationship between these variables. On average, penguins
with larger flipper lengths tend to have larger body mass.

2.6.2 Adding a straight line fit

The method of least squares (among other approaches) can be used to identify the intercept
(value of y when x = 0) and slope (amount that y increases when x increases by 1) of a fitted
line. In building a scatterplot, we can add this line by adding a call to geom_smooth() asking
for a linear model (fit with lm), as follows:

ggplot(
data = penguins_cc,
aes(x = flipper_length_mm, y = body_mass_g)
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) +
geom_point() +
geom_smooth(

method = "lm",
formula = y ~ x, se = TRUE,
col = "red"

) +
theme_bw()
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The straight line fit through the data here uses the method of least squares. The line is selected
to minimize the sum of the squared vertical distance (on the y-axis) from the data points to
the regression line. For now, it’s important to realize that this least squares line always goes
through the point at the mean of our x variable (here, flipper length) and the mean of our y
variable (here, body mass.)

The positive slope of this association again indicates that, in general, penguins with larger
flipper lengths also have larger body masses.

If you’re interested, the equation for the slope and intercept of a least squares line fit to a
scatter plot like this is found in Appendix E.
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se Ribbon

In the R code above, we’re including a request that a ribbon be plotted (with se =
TRUE) around the regression line, to give us some idea of how much uncertainty we
should perceive around the positioning of that line.

2.6.3 Adding the fitted equation

ggplot(
data = penguins_cc,
aes(x = flipper_length_mm, y = body_mass_g)

) +
geom_point() +
geom_smooth(

method = "lm",
formula = y ~ x, se = TRUE,
col = "red"

) +
stat_regline_equation() +
stat_cor(aes(label = after_stat(rr.label)),

label.x = 172, label.y = 5800
) +
theme_bw()
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y = − 5900 + 50 x

R2 = 0.76
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Also, our model’s 𝑅2 value is 76%, or 0.76.

Tip

The stat_regline_equation() and stat_cor() functions which place these results in
the plot come from the ggpubr package. Additional details are available at the ggpubr
website.

2.6.4 Interpreting the model’s 𝑅2 value

The 𝑅2 value above is the square of the Pearson correlation coefficient (see Appendix E for
formulas), which we’ll return to when we study association in Chapter 11. For now, the
𝑅2 value can range from 0 to 1, with larger values indicating a stronger fit of the model
to the data. We can interpret this 𝑅2 value as indicating that our linear regression model
using flipper_length_mm as a predictor accounts for 76% of the variation in our outcome,
body_mass_g.

The correlation coefficient, 𝑟𝑥𝑦 can be determined here by recognizing that it is the square
root of 𝑅2 with the same sign as the slope of the regression line.

Here our regression line has a positive slope (in fact the slope is 50) and so the correlation
coefficient 𝑟𝑥𝑦 =

√
0.76 = +0.87 will also be positive.
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cor(
penguins_cc$flipper_length_mm,
penguins_cc$body_mass_g

)

[1] 0.8729789

2.6.5 Interpreting the Regression Equation

We have seen that our least squares regression estimate for these data is:

• body mass = -5900 + 50 flipper length + error.

The intercept here is not especially interesting. The value of -5900 estimates the average
body mass of a penguin with a flipper length of 0 mm, and this is well beyond the range of
our data2

The slope of the equation, on the other hand, is quite interesting. The safest and most sensible
approach to describing a slope involves a comparison, for example:

“When comparing any two penguins who differ by 1 mm in flipper length, we observe a body
mass that is, on average, 50 grams larger for the penguin with larger flipper length.”

or

“Under our fitted model, the average difference in body mass, comparing two penguins with a
one mm difference in flipper length, is 50 grams.”

or

“If a penguin named Jack’s flipper length is one mm larger than a penguin named Harry, then
on average, Jack’s body mass will be 50 grams larger than Harry’s, according to our model.”

Note

It may be tempting to report that the estimated effect of one mm of flipper length on a
penguin’s body mass is 50 grams, but we cannot justify that without many assumptions
(related to causality) that don’t hold in this case.
The idea of an effect is really reserved for a change associated with some sort of treatment
or intervention. But we don’t have the ability to intervene on penguins to make their
flippers longer.

2For instance, all penguins in our data have flipper lengths between 172 and 231 mm.
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2.6.6 Add loess smooth

ggplot(
data = penguins_cc,
aes(x = flipper_length_mm, y = body_mass_g)

) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, se = TRUE, col = "red") +
geom_smooth(method = "loess", formula = y ~ x, se = FALSE, col = "blue") +
theme_lucid()
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2.6.7 Smooths within each island

ggplot(
data = penguins_cc,
aes(

x = flipper_length_mm, y = body_mass_g,
col = island

)
) +
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geom_point() +
geom_smooth(

method = "loess", formula = y ~ x, se = FALSE
) +
scale_color_metro_d() +
theme_bw()
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One thing we spot here is that we have a much broader range of flipper lengths in the penguins
from Biscoe than in those from Dream or Torgeson, each of which seem to only have penguins
with flippers between about 180 and 210 mm long.

For all three islands, we have a generally positive association between body mass and flipper
length, especially in the Biscoe and Dream island groups.

2.6.8 Linear Model faceted by species

ggplot(
data = penguins_cc,
aes(

x = flipper_length_mm, y = body_mass_g,
col = species
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)
) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, se = FALSE) +
scale_color_metro_d() +
facet_wrap(~species) +
guides(color = "none") +
theme_bw()
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Here, we use the facet_wrap() function to produce what are often referred to as small multi-
ples - a series of closely related graphs. It is very clear that the slopes of the flipper length and
body mass association are all similar here, but also that the Gentoo penguins are generally
much larger (in terms of each variable) than the other two species.

2.7 A Few Key Points

These comments are highly motivated by Gelman, Hill, and Vehtari (2021), Chapter 2, which
is available to you online (pdf).

Never display a graph you can’t talk about.

The goal of any graph is communication to self or others.
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Gelman, Hill, and Vehtari (2021) describe three common uses of graphics:

• Exploratory analyses of raw data
• Graphs of fitted models
• Graphs presenting final results

R (and ggplot tools in particular) makes it relatively easy to make attractive plots in all three
of these settings.

Finally, it’s almost always useful to think about a graph in terms of what comparison it makes,
and to design the graph so that the comparison you want to make is shown accurately and
helpfully.

2.8 For More Information

1. An introduction to ggplot2 at the ggplot2 web site.

2. Relevant sections of R for Data Science include:

• Data Visualization
• The Visualization unit, which includes sections on Layers, Exploratory Data Analysis,

and Communication that are worth your time.

3. Relevant sections of the R Graphics Cookbook include:

• Summarized Data Distributions, which introduces some key code for building histograms
and related items like density curves, frequency polygons, box plots, violin plots and dot
plots.

• Scatter Plots which introduces several useful code blocks to improve and augment your
scatterplots.

4. Relevant sections of OpenIntro Stats (pdf) include:

• Section 2 on Summarizing Data
• Section 4.1 on the Normal distribution

5. For an introductory example covering some key aspects of data, consider reviewing Chap-
ters 1-3 of Introduction to Modern Statistics, 2nd Edition (Çetinkaya-Rundel and Hardin
2024) which discuss an interesting case study on using stents to prevent strokes. We’ll
reference this again at the end of our next Chapter.

6. Another great resource on data and measurement issues is Chapter 2 of Gelman, Hill,
and Vehtari (2021), available in PDF at this link. We’ll reference this again at the end
of our next Chapter.
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3 Numerical Summaries

3.1 R setup for this chapter

Note

This section loads all needed R packages for this chapter. Appendix A lists all R packages
used in this book, and also provides R session information. Appendix B describes the
431-Love.R script, and demonstrates its use.

library(janitor)
library(knitr)
library(naniar)
library(palmerpenguins)

library(easystats)
library(tidyverse)

source("data/Love-431.R")

3.2 Data require structure and context

Descriptive statistics are concerned with the presentation, organization and summary of
data, as suggested in Norman and Streiner (2014). This includes various methods of organizing
and graphing data to get an idea of what those data can tell us.

As Vittinghoff et al. (2012) suggest, the nature of the measurement determines how best
to describe it statistically, and the main distinction is between numerical and categorical
variables. Even this is a little tricky - plenty of data can have values that look like numerical
values, but are just numerals serving as labels.

As Bock, Velleman, and De Veaux (2004) point out, the truly critical notion, of course, is
that data values, no matter what kind, are useless without their contexts. The Five W’s
(Who, What [and in what units], When, Where, Why, and often How) are just as useful for
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establishing the context of data as they are in journalism. If you can’t answer Who and What,
in particular, you don’t have any useful information.

In general, each row of a data frame corresponds to an individual (respondent, experimental
unit, record, or observation) about whom some characteristics are gathered in columns (and
these characteristics may be called variables, factors or data elements.) Every column / variable
should have a name that indicates what it is measuring, and every row / observation should
have a name that indicates who is being measured.

3.3 Data Source: The Palmer Penguins, again

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

Again, we’ll use the penguins tibble from the palmerpenguins package, as we did in Chap-
ter 2.

penguins

# A tibble: 344 x 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>

1 Adelie Torgersen 39.1 18.7 181 3750
2 Adelie Torgersen 39.5 17.4 186 3800
3 Adelie Torgersen 40.3 18 195 3250
4 Adelie Torgersen NA NA NA NA
5 Adelie Torgersen 36.7 19.3 193 3450
6 Adelie Torgersen 39.3 20.6 190 3650
7 Adelie Torgersen 38.9 17.8 181 3625
8 Adelie Torgersen 39.2 19.6 195 4675
9 Adelie Torgersen 34.1 18.1 193 3475
10 Adelie Torgersen 42 20.2 190 4250
# i 334 more rows
# i 2 more variables: sex <fct>, year <int>

n_miss(penguins)

[1] 19
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Almost all serious statistical analyses have to deal with missing data. Data values that are
missing are indicated in R, and to R, by the symbol NA.

To simplify our work in this chapter, we’ll focus on a version of the penguins data which
includes only complete observations, with known values for all 8 variables in the tibble. To
create such a version, which filters the observations down to those penguins without any
missing data on any variables, we use the drop_na() function, like this:

penguins_cc <- penguins |> drop_na()

dim(penguins_cc)

[1] 333 8

n_miss(penguins_cc)

[1] 0

We will filter to complete cases by dropping missing values for much of this book, postponing
the use of imputation-based approaches to dealing with missing data until Section 17.7.

Until that time, we will make the formal assumption that all missing data are missing com-
pletely at random, a term we’ll define more carefully in Section 17.7. If that MCAR assumption
holds, then a complete case analysis is appropriate.

3.4 Numerical Summaries

Visit Appendix E as you like for additional information about statistical formulas relevant to
this chapter and the book more generally.

3.4.1 Quantitative Variables

Variables recorded in numbers that we use as numbers are called quantitative. Familiar
examples include incomes, heights, weights, ages, distances, times, and counts. All quanti-
tative variables have measurement units, which tell you how the quantitative variable was
measured. Without units (like miles per hour, angstroms, yen or degrees Celsius) the values
of a quantitative variable have no meaning.

• It does little good to be told the price of something if you don’t know the currency being
used.
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• You might be surprised to see someone whose age is 72 listed in a database on childhood
diseases until you find out that age is measured in months.

• Often just seeking the units can reveal a variable whose definition is challenging - just
how do we measure “friendliness”, or “success,” for example.

• Quantitative variables may also be classified by whether they are continuous or can
only take on a discrete set of values. Continuous data may take on any value, within a
defined range. Suppose we are measuring height. While height is really continuous, our
measuring stick usually only lets us measure with a certain degree of precision. If our
measurements are only trustworthy to the nearest centimeter with the ruler we have,
we might describe them as discrete measures. But we could always get a more precise
ruler. The measurement divisions we make in moving from a continuous concept to a
discrete measurement are usually fairly arbitrary. Another way to think of this, if you
enjoy music, is that, as suggested in Norman and Streiner (2014), a piano is a discrete
instrument, but a violin is a continuous one, enabling finer distinctions between notes
than the piano is capable of making. Sometimes the distinction between continuous and
discrete is important, but usually, it’s not.

3.4.2 summary() for a data frame / tibble

summary(penguins)

species island bill_length_mm bill_depth_mm
Adelie :152 Biscoe :168 Min. :32.10 Min. :13.10
Chinstrap: 68 Dream :124 1st Qu.:39.23 1st Qu.:15.60
Gentoo :124 Torgersen: 52 Median :44.45 Median :17.30

Mean :43.92 Mean :17.15
3rd Qu.:48.50 3rd Qu.:18.70
Max. :59.60 Max. :21.50
NA's :2 NA's :2

flipper_length_mm body_mass_g sex year
Min. :172.0 Min. :2700 female:165 Min. :2007
1st Qu.:190.0 1st Qu.:3550 male :168 1st Qu.:2007
Median :197.0 Median :4050 NA's : 11 Median :2008
Mean :200.9 Mean :4202 Mean :2008
3rd Qu.:213.0 3rd Qu.:4750 3rd Qu.:2009
Max. :231.0 Max. :6300 Max. :2009
NA's :2 NA's :2
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As we can see, the summary() function, when applied to a tibble or data frame provides
counts of each level for factor (categorical) variables like species, sex and island. If values
are missing, as in the sex variable, they are indicated with counts of NA’s (NA stands for Not
Available.)

For quantities like bill_length_mm, bill_depth_mm, flipper_length_mm, and body_mass_g,
we also see counts of missing values gathered as NA’s. In addition, we get a Mean of the sample,
and a five-number summary of its distribution.

Summary Statistic Description
Min or Minimum Smallest non-missing value in data.
1st Quartile or Q1 25th percentile (median of lower half of data.)

Median or Q2 Middle value when data are sorted in order.
3rd Quartile or Q3 75th percentile (median of upper half of data.)
Max or Maximum Largest non-missing value in data.

Mean Sum of the values divided by the number of values.

3.4.3 fivenum() for a five-number summmary

Note that we can use the fivenum() function to obtain these first five values.

penguins |>
select(bill_length_mm) |>
fivenum()

[1] 32.10 39.20 44.45 48.50 59.60

As noted in Chapter 2, these are the summaries indicated by an ordinary boxplot.

Another, perhaps simpler, way to obtain this information is:

fivenum(penguins$bill_length_mm)

[1] 32.10 39.20 44.45 48.50 59.60

We could, for instance, summarize any distribution using uncertainty intervals built from these
quantiles. For example, 39.2 to 48.5 is a central 50% interval for these data.
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3.4.4 More summaries with lovedist()

We can obtain some additional summaries for any particular variable using a function called
lovedist() from the Love-431.R script which is described in Appendix B.

penguins |>
reframe(lovedist(bill_length_mm))

# A tibble: 1 x 10
n miss mean sd med mad min q25 q75 max

<int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 344 2 43.9 5.46 44.4 7.04 32.1 39.2 48.5 59.6

This approach adds four new summaries to the mean and five-number summary available from
summary(). Formulas are available in Appendix E.

Summary Statistic Description
n or count number of values contained in the variable (including missing)

miss number of missing values
sd standard deviation, a measure of variation

mad median absolute deviation, also a measure of variation

We often summarize the center and spread (variation) in our data with a two-part summary.

• Should the data approximate a Normal distribution (bell-shaped curve,) the mean and
standard deviation are commonly used to describe the variation.

• The median and mad are generally better options when a Normal distribution isn’t a
good fit to our data.

We can also use lovedist() to look at stratified summaries within groups defined by a factor.
Here, we also show the use of the kable() function (from the knitr package) to tidy up the
table and reduce the number of decimal places shown.

penguins |>
reframe(lovedist(bill_length_mm), .by = species) |>
kable(digits = 2)

species n miss mean sd med mad min q25 q75 max
Adelie 152 1 38.79 2.66 38.80 2.97 32.1 36.75 40.75 46.0
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species n miss mean sd med mad min q25 q75 max
Gentoo 124 1 47.50 3.08 47.30 3.11 40.9 45.30 49.55 59.6
Chinstrap 68 0 48.83 3.34 49.55 3.63 40.9 46.35 51.08 58.0

3.4.5 Mean and SD, Median and MAD

As mentioned, one natural option (especially appropriate when the data follow a Normal
distribution) is to use the sample mean and standard deviation.

mean_sd(penguins$bill_length_mm)

-SD Mean +SD
38.46235 43.92193 49.38151

The mean_sd function shows us the sample mean ± the standard deviation. Should the data
follow a Normal distribution,

• the sample mean ± 1 standard deviation forms an interval which covers approximately
68% of the data.

• The sample mean ± 2 standard deviations will cover 95% of data which follow a Normal
distribution.

• The sample mean ± 3 standard deviations covers approximately 99.7% of the data for a
Normal distribution.

Note

The standard deviation is also defined as the square root of the variance, which is
another important measure of variation.

var(penguins$bill_length_mm, na.rm = TRUE)

[1] 29.80705

sd(penguins$bill_length_mm, na.rm = TRUE)

[1] 5.459584

sd(penguins$bill_length_mm, na.rm = TRUE)^2

[1] 29.80705
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As Gelman, Hill, and Vehtari (2021) point out, the variance is interpretable as the mean
of the squared difference from the mean.
The standard deviation is more often used to measure variation than the variance because
the standard deviation has the same units of measurement as the mean.

When we don’t have much data, or when we’re unwilling to conclude that the data match
up well with a Normal distribution, a more robust pair of estimates is the median and the
MAD.

median_mad(penguins$bill_length_mm)

-MAD Median +MAD
37.40765 44.45000 51.49235

As noted in Appendix E, the mad is scaled by R to take the same value as the standard
deviation if the data are really Normally distributed, much as a Normal distribution’s mean
is equal to its median.

We can often interpret a median/mad combination in an analogous way to our interpretation
of the mean and standard deviation, as a set of building blocks for intervals which describe
the center and spread of our data, even when the data show skew or other non-Normality. As
Gelman, Hill, and Vehtari (2021) point out,

… median-based summaries are also frequently more computationally stable (than
means and standard deviations,) and more robust against outlying values.

3.4.6 Coefficient of Variation

The coefficient of variation is the sample standard deviation divided by the mean. It quantifies
the variation in the data related to the mean, and is useful only when describing quantities
that have a meaningful zero value.

penguins_cc |> summarise(mean = mean(flipper_length_mm),
var = var(flipper_length_mm),
sd = sd(flipper_length_mm),
cv = sd / mean)

# A tibble: 1 x 4
mean var sd cv
<dbl> <dbl> <dbl> <dbl>

1 201. 196. 14.0 0.0697
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We can use the coef_var() function from the datawizard package in the easystats family
to compute this value.

coef_var(penguins$flipper_length_mm)

[1] NA

Since we have some missing data, this summary needs to be told to remove it.

coef_var(penguins$flipper_length_mm, remove_na = TRUE)

[1] 0.0699883

coef_var(penguins_cc$flipper_length_mm)

[1] 0.06974164

Notice that penguins_cc contains only the 333 observations with complete data on all 8
variables included in the penguins data, while removing the NA in the second function below
only removes the 2 penguins witth missing values of flipper_length_mm from the original set
of 344 penguins.

3.4.7 Standard Error of the Sample Mean

The standard error of the sample mean is the final summary we’ll discuss here for a quantitative
variable like bill_depth_mm. It is the sample standard deviation divided by the square root
of the sample size.

penguins_cc |> summarise(n = n(),
mean = mean(bill_depth_mm),
sd = sd(bill_depth_mm),
se_mean = sd / sqrt(n))

# A tibble: 1 x 4
n mean sd se_mean

<int> <dbl> <dbl> <dbl>
1 333 17.2 1.97 0.108

Generally, a standard error is the estimated standard deviation of an estimate, and is a good
way of tellinng us about uncertainty in our estimate.
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3.4.8 describe_distribution()

Another approach, from the datawizard package within the easystats family, is
describe_distribution(), which provides some additional summaries for quantities
within our data frame.

describe_distribution(penguins) |> kable(digits = 2)

Variable Mean SD IQR Min Max Skewness Kurtosis n n_Missing
bill_length_mm 43.92 5.46 9.30 32.1 59.6 0.05 -0.88 342 2
bill_depth_mm 17.15 1.97 3.12 13.1 21.5 -0.14 -0.91 342 2
flipper_length_mm200.92 14.06 23.25 172.0 231.0 0.35 -0.98 342 2
body_mass_g 4201.75 801.95 1206.25 2700.0 6300.0 0.47 -0.72 342 2
year 2008.03 0.82 2.00 2007.0 2009.0 -0.05 -1.50 344 0

This approach adds four new summaries to those we’ve seen before, specifically:

Summary Statistic Description
IQR inter-quartile range = 75th - 25th percentile

Range combination of minimum and maximum, or the difference between
the maximum and minimum values

Skewness a measure of the asymmetry in the distribution of our data (positive
values indicate right skew, negative values indicate left skew)

Kurtosis a measure of tail behavior in the distribution of our data (positive
values indicate fatter tails than a Normal distribution, while
negative values indicate thinner tails)

See Appendix E for more on the measures for skew and kurtosis used by describe_distribution().
In practice, I very rarely look at those two summaries, preferring to use visualizations to build
my understanding of the shape of a distribution.

3.4.9 Augmenting a describe_distribution()

set.seed(431)
penguins |>
select(bill_depth_mm, body_mass_g) |>
describe_distribution(ci = 0.95, iterations = 500,

quartiles = FALSE) |>
kable(digits = 2)
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Variable Mean SD IQR CI_lowCI_highMin Max SkewnessKurtosis n n_Missing
bill_depth_mm17.15 1.97 3.12 16.95 17.35 13.1 21.5 -0.14 -0.91 342 2
body_mass_g4201.75801.95 1206.254119.364283.312700.0 6300.0 0.47 -0.72 342 2

• In estimating the mean of bill depth, our sample yields a point estimate of 17.15 mm
and a 95% bootstrap confidence interval which extends from 16.95 to 17.35 mm.

Here, we augment the describe_description() results by adding a bootstrap confidence
interval for the mean of the quantities of interest, and make room for that in the table by
dropping the information about the individual quartiles. The bootstrap approach (which we’ll
discuss later in some detail) requires us to set a random seed to help with replication, and to
specify which level of confidence we want to use (here, I used 95%.)

Another approach we can take is to find a bootstrap confidence interval for the median of
the data, as follows. Note that the median and MAD become the focus of this table, rather
than the mean and standard deviation.

penguins |>
select(bill_depth_mm, body_mass_g) |>
describe_distribution(centrality = "median",

ci = 0.95, iterations = 500,
quartiles = FALSE) |>

kable(digits = 2)

Variable MedianMAD IQR CI_lowCI_highMin Max SkewnessKurtosis n n_Missing
bill_depth_mm17.3 2.22 3.12 17.02 17.80 13.1 21.5 -0.14 -0.91 342 2
body_mass_g4050.0 889.56 1206.25 3900.00 4188.12 2700.0 6300.0 0.47 -0.72 342 2

• In estimating the median of bill depth, our sample yields a point estimate of 17.3 mm
and a 95% bootstrap confidence interval which extends from 17.02 to 17.80 mm.

Other options for using describe_distribution() can be found on its web page.

3.4.10 Finding the most common value (mode)

penguins |>
select(flipper_length_mm) |>
table()
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flipper_length_mm
172 174 176 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
1 1 1 4 1 5 7 3 2 7 9 7 16 6 7 22 13 7 15 5

195 196 197 198 199 200 201 202 203 205 206 207 208 209 210 211 212 213 214 215
17 10 10 8 6 4 6 4 5 3 1 2 8 5 14 2 7 6 6 12
216 217 218 219 220 221 222 223 224 225 226 228 229 230 231
8 6 5 5 8 5 6 2 3 4 1 4 2 7 1

It appears that 190, which happens 22 times in our data, is the most common value. We can ob-
tain this directly using distribution_mode() from the datawizard package in easystats.

distribution_mode(penguins$flipper_length_mm)

[1] 190

Another related estimate to the mode is the highest maximum a posteriori (or MAP) estimate
(which indicates the “peak” of a posterior distribution in a Bayesian analysis, as we’ll see.)

To obtain a MAP estimate of the mode, we can use the map_estimate() function from the
datawizard package in easystats.

map_estimate(penguins$flipper_length_mm)

MAP Estimate

Parameter | MAP_Estimate
------------------------
x | 191.15

3.5 What makes an outlier?

An outlier is a value far away from the center of a distribution, that is deserving of additional
attention, in part to ensure that the value is valid and was reliably measured and captured,
but also because such outliers can substantially influence our models and summaries.

One approach, used, for instance, in the development of boxplots, comes from Tukey (1977),
and uses the data’s 25th and 75th percentiles, plus the difference between the two: the inter-
quartile range:

• Mark as outliers any values which are outside the range of Q25 - 1.5 (IQR) to Q75 +
1.5 (IQR)
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• Mark as serious outliers (or “far out”) any values outside the range of Q25 - 3 IQR to
Q75 + 3 IQR.

For example, consider this boxplot of bill length for penguins coming from the Biscoe island.

penguins |>
filter(complete.cases(island, bill_length_mm)) |>
filter(island == "Biscoe") |>
ggplot( aes(x = bill_length_mm, y = "Biscoe") ) +
geom_boxplot() +
theme_bw() + labs(y = "", title = "Boxplot for Biscoe island")

Biscoe

35 40 45 50 55 60
bill_length_mm

Boxplot for Biscoe island

Note that one value (near 60) is identified by a dot outside of the plot’s whiskers. This suggests
the point is an outlier (by Tukey’s standards.)

Here’s the five-number summary for these penguins:

dat1 <- penguins |>
filter(complete.cases(island, bill_length_mm)) |>
filter(island == "Biscoe")

fivenum(dat1$bill_length_mm)

[1] 34.5 42.0 45.8 48.7 59.6
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IQR(dat1$bill_length_mm)

[1] 6.7

We see that the minimum value in this cut of our data is 34.5 and the maximum is 59.6.

Our Q25 is 42 and our Q75 is 48.7, so the IQR = 6.7. So, the bounds for outliers extend to
all points which are either:

• below Q25 - 1.5 IQR = 42 - 1.5(6.7) = 31.95, or
• above Q75 + 1.5 IQR = 48.7 + 1.5(6.7) = 58.05

And the bounds for serious outliers extend to points:

• below Q25 - 3.0 IQR = 42 - 3(6.7) = 21.9, or
• above Q75 + 3.0 IQR = 48.7 + 3(6.7) = 68.8

Our maximum value is identified by the boxplot as an outlier because it meets the standard
Tukey established for being an outlier.

Note

• The values of (Q25 - 1.5 IQR) and (Q75 + 1.5 IQR) are sometimes referred to as
the inner fences of the data.

• (Q25 - 3 IQR) and (Q75 + 3 IQR) are then referred to as the outer fences.

3.6 Describing Categories

3.6.1 Qualitative (Categorical) Variables

Qualitative or categorical variables consist of names of categories. These names may be
numerical, but the numbers (or names) are simply codes to identify the groups or categories
into which the individuals are divided. Categorical variables with two categories, like yes or
no, up or down, or, more generally, 1 and 0, are called binary variables. Those with more
than two-categories are sometimes called multi-categorical variables.
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3.6.2 Nominal vs. Ordinal Categories

• When the categories included in a variable are merely names, and come in no particular
order, we sometimes call them nominal variables. The most important summary of
such a variable is usually a table of frequencies, and the mode becomes an important
single summary, while the mean and median are essentially useless.

In the penguins data, species is a nominal variable with multiple unordered categories. So
is island.

• The alternative categorical variable (where order matters) is called ordinal, and includes
variables that are sometimes thought of as falling right in between quantitative and
qualitative variables. An example in the penguins data is the year variable.

• Answers to questions like “How is your overall physical health?” with available responses
Excellent, Very Good, Good, Fair or Poor, which are often coded as 1-5, certainly provide
a perceived order, but a group of people with average health status 4 (Very Good) is not
necessarily twice as healthy as a group with average health status of 2 (Fair).

• Sometimes we treat the values from ordinal variables as sufficiently scaled to permit us to
use quantitative approaches like means, quantiles, and standard deviations to summarize
and model the results, and at other times, we’ll treat ordinal variables as if they were
nominal, with tables and percentages our primary tools.

• Note that all binary variables (like sex in the penguins data) may be treated as either
ordinal, or nominal.

Lots of variables may be treated as either quantitative or qualitative, depending on how we
use them. For instance, we usually think of age as a quantitative variable, but if we simply
use age to make the distinction between “child” and “adult” then we are using it to describe
categorical information. Just because your variable’s values are numbers, don’t assume that
the information provided is quantitative.

3.6.3 Counting Categories

One of the most important things we can do with any categorical variable, like species, sex
or island in our penguins data, is to count it.

penguins |> count(species)

# A tibble: 3 x 2
species n
<fct> <int>

1 Adelie 152
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2 Chinstrap 68
3 Gentoo 124

We see we have more Adelie penguins than Gentoo, and fewer Chinstrap than either of the
other species. Of our total of 152 + 68 + 124 = 344 penguins in this sample, 152 (44.2%)
are Adelie penguins, for example. We also see that each penguin fits into one of these three
species.

3.6.4 Species and Island

Do the counts vary meaningfully by island on which they were spotted?

penguins |> count(species, island)

# A tibble: 5 x 3
species island n
<fct> <fct> <int>

1 Adelie Biscoe 44
2 Adelie Dream 56
3 Adelie Torgersen 52
4 Chinstrap Dream 68
5 Gentoo Biscoe 124

Yes. Only Adelie penguins are found on all three islands. The Dream island has only Adelie
and Chinstrap penguins, while the Biscoe island has only Adelie and Gentoo, with the Torgeson
island home to only the Adelie.

3.6.5 Creating a small table

Can we build a table to show the association of, say, species and sex?

table(penguins$species, penguins$sex, useNA = "ifany")

female male <NA>
Adelie 73 73 6
Chinstrap 34 34 0
Gentoo 58 61 5

Since there are some missing values in sex, the table() function requires us to indicate what
we want to do about those missing values.
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3.6.6 Using tabyl()

A related function that I use frequently for building contingency tables like this is called
tabyl() which comes from the janitor package.

penguins |> tabyl(species, island)

species Biscoe Dream Torgersen
Adelie 44 56 52

Chinstrap 0 68 0
Gentoo 124 0 0

The tabyl() package generates tabyls in a way that lets us pull them directly into a tibble,
which will be useful down the road. We also can add in a large array of “adorning” features
to the result.

Here, we add row and column totals and a title to our tabyl.

penguins |>
tabyl(species, island) |>
adorn_totals(where = c("row", "col")) |>
adorn_title() |>
kable()

island
species Biscoe Dream Torgersen Total
Adelie 44 56 52 152
Chinstrap 0 68 0 68
Gentoo 124 0 0 124
Total 168 124 52 344

Next, we create a tabyl which includes both counts and row-wise percentages.

penguins |>
tabyl(species, island) |>
adorn_percentages(denominator = "row") |>
adorn_pct_formatting() |>
adorn_ns(position = "front")
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species Biscoe Dream Torgersen
Adelie 44 (28.9%) 56 (36.8%) 52 (34.2%)

Chinstrap 0 (0.0%) 68 (100.0%) 0 (0.0%)
Gentoo 124 (100.0%) 0 (0.0%) 0 (0.0%)

Tip

More on tabyl() can be found in this article and the janitor webpage.

3.6.7 Using data_tabulate()

The datawizard package provides a function called data_tabulate() which produces similar
kinds of tables.

data_tabulate(penguins$species, penguins$island)

penguins$species | Biscoe | Dream | Torgersen | <NA> | Total
-----------------+--------+-------+-----------+------+------
Adelie | 44 | 56 | 52 | 0 | 152
Chinstrap | 0 | 68 | 0 | 0 | 68
Gentoo | 124 | 0 | 0 | 0 | 124
<NA> | 0 | 0 | 0 | 0 | 0
-----------------+--------+-------+-----------+------+------
Total | 168 | 124 | 52 | 0 | 344

Here, we add some column percentages, and drop the column of NA results.

data_tabulate(penguins$species, penguins$island,
remove_na = TRUE, proportions = "col"

)

penguins$species | Biscoe | Dream | Torgersen | Total
-----------------+-------------+------------+-------------+------
Adelie | 44 (26.2%) | 56 (45.2%) | 52 (100.0%) | 152
Chinstrap | 0 (0.0%) | 68 (54.8%) | 0 (0.0%) | 68
Gentoo | 124 (73.8%) | 0 (0.0%) | 0 (0.0%) | 124
-----------------+-------------+------------+-------------+------
Total | 168 | 124 | 52 | 344
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Tip

More on data_tabulate() can be found on its web page.

3.6.8 Plotting Counts

The ggplot approach to plotting cross-tabular data usually makes use of the geom_count()
or geom_jitter() functions, as follows:

ggplot(penguins, aes(x = species, y = island)) +
geom_count() +
theme_bw()
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ggplot(penguins, aes(x = species, y = island)) +
geom_jitter() +
theme_bw()
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3.7 For More Information

1. For an introductory example covering some key aspects of data, consider reviewing Chap-
ters 1-3 of Introduction to Modern Statistics, 2nd Edition (Çetinkaya-Rundel and Hardin
2024) which discuss an interesting case study on using stents to prevent strokes.

2. Another great resource on data and measurement issues is Chapter 2 of Gelman, Hill,
and Vehtari (2021), available in PDF at this link.

3. Relevant sections of OpenIntro Stats (pdf) include:

• Section 2 on Summarizing Data
• Section 4.3 on the Binomial distribution

4. Visit Appendix E as you like for additional information about statistical formulas relevant
to this chapter and the book more generally.

5. Wikipedia on Descriptive Statistics and on Summary Statistics and on Outliers.
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4 Data Wrangling

4.1 R setup for this chapter

Note

This section loads all needed R packages for this chapter. Appendix A lists all R packages
used in this book, and also provides R session information. Appendix B describes the
431-Love.R script, and demonstrates its use.

library(janitor)
library(knitr)
library(naniar)

library(easystats)
library(tidyverse)

source("data/Love-431.R")

4.2 Data from a .csv file: Cleveland Neighborhoods

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

We will demonstrate ideas in this chapter using a tibble containing information on neighbor-
hoods within the city of Cleveland, Ohio. Here, we ingest the data from a .csv (comma-
separated version) file called cle_nbd.csv into an R tibble we’ll call cle_neigh, then print
the result.
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cle_neigh <- read_csv("data/cle_nbd.csv",
show_col_types = FALSE

)

cle_neigh

# A tibble: 34 x 9
nbhd_id nbhd_name pop20 pop10 pop_grow location age65plus income22 unemp22

<dbl> <chr> <dbl> <dbl> <chr> <chr> <dbl> <dbl> <chr>
1 1 BELLAIRE-PU~ 13823 13380 Rise West 13.8 41324 Middle
2 2 BROADWAY-SL~ 18854 22331 Fall Central 11.8 32896 Middle
3 3 BROOKLYN CE~ 8315 8948 Fall Central 11.8 32308 Middle
4 4 BUCKEYE SHA~ 11419 12470 Fall East 22.5 35402 Middle
5 5 CENTRAL 11955 12306 Fall Central 7.41 16258 High
6 6 CLARK FULTON 7625 8509 Fall Central 10.6 33006 Middle
7 7 COLLINWOOD ~ 9616 11542 Fall East 13.5 30580 Middle
8 8 CUDELL 9125 9287 Fall West 10.3 29417 High
9 9 CUYAHOGA VA~ 1404 1371 Rise Central 1.54 20266 High
10 10 DETROIT-SHO~ 11285 11577 Fall Central 12.0 45235 Low
# i 24 more rows

n_miss(cle_neigh)

[1] 0

Key sources for these data were U.S. Census Bureau (2020) and NEOCANDO (2024). The
data in the cle_neigh tibble describe each of the 34 neighborhoods (technically statistical
planning areas) of the City of Cleveland. For each neighborhood, the cle_neigh tibble contains
9 variables, described in the table below.

Variable Description
nbhd_id alphabetical order (1-34) of Cleveland neighborhoods

nbhd_name name of neighborhood
pop20 Total Population, from Decennial Census 2020
pop10 Total Population, from Decennial Census 2010

pop_grow Rise if Total population increased from 2010 to 2020, else Fall
location neighborhood’s geographic location (East, Central or West)

age65plus % of residents ages 65 and higher, from ACS
income22 Median household income, from ACS
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Variable Description
unemp22 Unemployment rate as Low (< 10%), Middle (10-15%), High (above 15%),

from ACS

Note

• ACS refers to 5-year estimates from the American Community Survey, covering
2018-2022.

4.3 Key Functions for Managing Data

The dplyr package, part of the tidyverse, provides a set of functions (verbs) which we will
use frequently in this course to manage data.

4.3.1 The pipe

There are two main pipes used in R. They are tools for clearer coding that is easier to read,
when you are putting multiple steps together into chain.

For example, the code below uses the |> pipe:

cle_neigh |> head()

# A tibble: 6 x 9
nbhd_id nbhd_name pop20 pop10 pop_grow location age65plus income22 unemp22

<dbl> <chr> <dbl> <dbl> <chr> <chr> <dbl> <dbl> <chr>
1 1 BELLAIRE-PUR~ 13823 13380 Rise West 13.8 41324 Middle
2 2 BROADWAY-SLA~ 18854 22331 Fall Central 11.8 32896 Middle
3 3 BROOKLYN CEN~ 8315 8948 Fall Central 11.8 32308 Middle
4 4 BUCKEYE SHAK~ 11419 12470 Fall East 22.5 35402 Middle
5 5 CENTRAL 11955 12306 Fall Central 7.41 16258 High
6 6 CLARK FULTON 7625 8509 Fall Central 10.6 33006 Middle

applies the head() function to the cle_neigh data. Specifically, the |> pipes the information
from the cle_neigh data into the function head(). As we’ll see, we can string a series of pipes
together to apply a chain of actions to our data.

The head() function simply shows the first 6 rows of the data, while the tail() function
shows the last 6 rows.
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Another, similar, pipe is %>%, which does almost the same thing as |> and is read the same
way. Here, we pipe the cle_neigh data into the tail() function, and also ask to show the
last 8 rows of the data, instead of the default six.

cle_neigh %>% tail(8)

# A tibble: 8 x 9
nbhd_id nbhd_name pop20 pop10 pop_grow location age65plus income22 unemp22

<dbl> <chr> <dbl> <dbl> <chr> <chr> <dbl> <dbl> <chr>
1 27 OLD BROOKLYN 32315 32009 Rise Central 13.3 48061 Middle
2 28 SAINT CLAIR-~ 5139 6876 Fall East 16.7 29612 Middle
3 29 STOCKYARDS 9522 10411 Fall Central 12.3 33553 Middle
4 30 TREMONT 7699 7975 Fall Central 9.44 58716 Low
5 31 UNION-MILES ~ 15625 19004 Fall East 20.1 32788 High
6 32 UNIVERSITY C~ 9558 7939 Rise East 14.9 24780 Low
7 33 WEST BOULEVA~ 18971 18888 Rise West 9.75 37973 Middle
8 34 WOODLAND HIL~ 5625 6678 Fall East 19.0 25696 Middle

Wickham, Çetinkaya-Rundel, and Grolemund (2024) has much more on the pipe in its Pipes
section.

4.3.2 select()

We use the select() function to choose specific variables (columns) from our tibble.

cle_neigh |>
select(nbhd_name, pop_grow)

# A tibble: 34 x 2
nbhd_name pop_grow
<chr> <chr>

1 BELLAIRE-PURITAS Rise
2 BROADWAY-SLAVIC VILLAGE Fall
3 BROOKLYN CENTRE Fall
4 BUCKEYE SHAKER Fall
5 CENTRAL Fall
6 CLARK FULTON Fall
7 COLLINWOOD NOTTINGHAM Fall
8 CUDELL Fall
9 CUYAHOGA VALLEY Rise
10 DETROIT-SHOREWAY Fall
# i 24 more rows
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As you can see, this version of the data includes only the two variables we selected.

4.3.3 filter()

In contrast, we use the filter() function to choose specific subjects (rows) from our tibble.

cle_neigh |>
filter(pop_grow == "Rise" & location == "West")

# A tibble: 5 x 9
nbhd_id nbhd_name pop20 pop10 pop_grow location age65plus income22 unemp22

<dbl> <chr> <dbl> <dbl> <chr> <chr> <dbl> <dbl> <chr>
1 1 BELLAIRE-PUR~ 13823 13380 Rise West 13.8 41324 Middle
2 12 EDGEWATER 6000 5851 Rise West 13.5 52709 Low
3 17 HOPKINS 366 215 Rise West 14.5 29497 Middle
4 19 JEFFERSON 17351 16548 Rise West 11.3 49908 Low
5 33 WEST BOULEVA~ 18971 18888 Rise West 9.75 37973 Middle

Here, we’ve selected only those rows that have rising population growth and are located in the
West.

We can combine filter() and select() to choose both specific rows (here, those with in-
comes over 50,000) and columns (neighborhood ID code, name, income, unemployment and
location.)

cle_neigh |>
filter(income22 > 50000) |>
select(nbhd_id, nbhd_name, income22, unemp22, location)

# A tibble: 6 x 5
nbhd_id nbhd_name income22 unemp22 location

<dbl> <chr> <dbl> <chr> <chr>
1 11 DOWNTOWN 61467 Low Central
2 12 EDGEWATER 52709 Low West
3 20 KAMMS CORNERS 63280 Low West
4 22 LEE-HARVARD 53278 Middle East
5 26 OHIO CITY 62890 Low Central
6 30 TREMONT 58716 Low Central
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4.3.4 mutate()

We use the mutate() function to create new variables that are combinations of the old ones.
For instance, here we create a pop_chg variable which is the percentage change in population
from pop10 to pop20.

cle_neigh |>
mutate(pop_chg = 100 * (pop20 - pop10) / pop20) |>
select(nbhd_name, pop20, pop10, pop_grow, pop_chg) |>
tail(4)

# A tibble: 4 x 5
nbhd_name pop20 pop10 pop_grow pop_chg
<chr> <dbl> <dbl> <chr> <dbl>

1 UNION-MILES PARK 15625 19004 Fall -21.6
2 UNIVERSITY CIRCLE 9558 7939 Rise 16.9
3 WEST BOULEVARD 18971 18888 Rise 0.438
4 WOODLAND HILLS 5625 6678 Fall -18.7

Here, we use the tail(4) function to show the last four rows in this new set of data.

Another common use of mutate() is to create transformations of our data, using functions
like the square root, inverse or logarithm.

cle_neigh |>
mutate(loginc = log(income22)) |>
ggplot(aes(x = income22, y = loginc, col = location)) +
geom_point(size = 3) +
theme_bw()
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Note that log() is the natural logarithm in R, which we prefer to log10() (the base 10
logarithm) for most of our work because coefficients on the natural log scale will be more
easily interpreted, as we’ll see later.

4.3.5 Creating Factors with mutate()

Sometimes we will want to change all of the character variables in a data set into factor
variables in R. Factors are used for categorical variables, variables that have a fixed and
known set of possible values. They are also useful when you want to display character vectors
in a non-alphabetical order. To do so, my favorite approach is:

cle_neigh |>
mutate(across(where(is.character), as_factor))

# A tibble: 34 x 9
nbhd_id nbhd_name pop20 pop10 pop_grow location age65plus income22 unemp22

<dbl> <fct> <dbl> <dbl> <fct> <fct> <dbl> <dbl> <fct>
1 1 BELLAIRE-PU~ 13823 13380 Rise West 13.8 41324 Middle
2 2 BROADWAY-SL~ 18854 22331 Fall Central 11.8 32896 Middle
3 3 BROOKLYN CE~ 8315 8948 Fall Central 11.8 32308 Middle
4 4 BUCKEYE SHA~ 11419 12470 Fall East 22.5 35402 Middle
5 5 CENTRAL 11955 12306 Fall Central 7.41 16258 High
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6 6 CLARK FULTON 7625 8509 Fall Central 10.6 33006 Middle
7 7 COLLINWOOD ~ 9616 11542 Fall East 13.5 30580 Middle
8 8 CUDELL 9125 9287 Fall West 10.3 29417 High
9 9 CUYAHOGA VA~ 1404 1371 Rise Central 1.54 20266 High
10 10 DETROIT-SHO~ 11285 11577 Fall Central 12.0 45235 Low
# i 24 more rows

Note that the nbhd_name, pop_grow and unemp22 variables are all now factors in R. We’ll
discuss factors in more detail as the semester moves along.

4.3.6 arrange()

cle_neigh |>
mutate(pop_chg = 100 * (pop20 - pop10) / pop20) |>
select(nbhd_name, pop20, pop10, pop_grow, pop_chg) |>
arrange(pop_chg) |>
head()

# A tibble: 6 x 5
nbhd_name pop20 pop10 pop_grow pop_chg
<chr> <dbl> <dbl> <chr> <dbl>

1 SAINT CLAIR-SUPERIOR 5139 6876 Fall -33.8
2 GLENVILLE 21137 27394 Fall -29.6
3 MOUNT PLEASANT 14015 17320 Fall -23.6
4 UNION-MILES PARK 15625 19004 Fall -21.6
5 FAIRFAX 5167 6239 Fall -20.7
6 COLLINWOOD NOTTINGHAM 9616 11542 Fall -20.0

By default, the arrangement here is sorted from lowest (here, most negative) to highest. To
sort from highest to lowest, we could substitute

arrange(desc(pop_chg))

into the code above.

4.3.7 summarise() and group_by()
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cle_neigh |>
group_by(location) |>
summarise(

n = n(), mean = mean(income22), sd = sd(income22),
med = median(income22), mad = mad(income22)

) |>
kable(digits = 2)

location n mean sd med mad
Central 12 39628.58 15556.57 33279.5 18509.52
East 15 31038.13 7954.50 30023.0 6415.21
West 7 43444.00 12561.80 41324.0 16879.40

4.4 Describing the Data

Consider the differences between the population in 2020 and the population in 2010 across
these neighborhoods.

cle_neigh |>
reframe(lovedist(pop20 - pop10))

# A tibble: 1 x 10
n miss mean sd med mad min q25 q75 max

<int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 34 0 -719. 1684. -519 819. -6257 -1052. 70.5 3838

4.4.1 Are population changes associated with location?

cle_neigh |>
reframe(lovedist(pop20 - pop10), .by = location)

# A tibble: 3 x 11
location n miss mean sd med mad min q25 q75 max
<chr> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 West 7 0 101. 487. 149 436. -758 -39.5 297 803
2 Central 12 0 -171. 1641. -288. 696. -3477 -696. 101. 3838
3 East 15 0 -1540. 1774. -1053 1014. -6257 -1857 -698 1619
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4.4.2 Re-ordering the levels of a factor

cle_neigh |>
tabyl(unemp22)

unemp22 n percent
High 9 0.2647059
Low 11 0.3235294

Middle 14 0.4117647

That’s not so helpful. We really want to show these categories in a natural order (either
High then Middle then Low, or the opposite.) We can use the forcats package and the
fct_relevel() function to help.

cle_neigh <- cle_neigh |>
mutate(

unemp22 =
fct_relevel(unemp22, "Low", "Middle", "High")

)

cle_neigh |>
tabyl(unemp22)

unemp22 n percent
Low 11 0.3235294

Middle 14 0.4117647
High 9 0.2647059

4.4.3 Plotting three groups

cle_neigh <- cle_neigh |>
mutate(pop_diff = pop20 - pop10)

ggplot(data = cle_neigh, aes(
x = unemp22, y = pop_diff,
fill = unemp22

)) +
geom_violin() +
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geom_boxplot(fill = "white", width = 0.3) +
stat_summary(fun = "mean", geom = "point", col = "red") +
geom_hline(

yintercept = 0, col = "blue",
linetype = "dashed"

) +
scale_fill_viridis_d(

option = "turbo",
begin = 0.3, alpha = 0.5

) +
guides(fill = "none") +
labs(

title = "Changes in Population and Unemployment",
y = "2010 to 2020 change in Population",
x = "Unemployment Rate, 2022",
subtitle = "Cleveland neighborhoods"

)
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4.4.4 Association of Population Change and % 65+

ggplot(cle_neigh, aes(x = age65plus, y = pop_diff)) +
geom_point() +
geom_smooth(

method = "lm", formula = y ~ x,
se = TRUE, col = "red"

) +
geom_smooth(

method = "loess", formula = y ~ x,
se = FALSE, col = "blue"

) +
geom_text(

data = cle_neigh |>
filter(pop_diff > 3000 | pop_diff < -6000),

aes(label = nbhd_name),
nudge_x = 2.5, col = "magenta"

) +
geom_point(

data = cle_neigh |>
filter(pop_diff > 3000 | pop_diff < -6000),

col = "magenta"
) +
labs(

y = "Change in Population from 2010 to 2020",
x = "% of residents 65 and over, from ACS 2018-22"

)
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4.5 Working with Factors

The forcats package is an important piece of the tidyverse, containing many functions which
solve common problems with factors. This PDF cheat sheet is available to help you decide
which of the forcats functions might be most useful to help you solve your current problem

Examples of forcats functions that we will use in this course include:

• fct_recode(), which lets us change factor levels by hand
• fct_relevel(), which lets us reorder factor levels by hand
• fct_infreq(), which lets us reorder factor levels by their frequency
• fct_collapse(), which lets us collapse factor levels into manually defined groups
• fct_lump(), which lets us lump uncommon factor levels together into an “other” level

The best place to learn more about factors is the chapter on factors in Wickham, Çetinkaya-
Rundel, and Grolemund (2024).

The best place to start learning more about forcats functions is this Introduction to forcats.
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4.6 For More Information

1. The dplyr page is a comprehensive source of descriptions for the tools in the dplyr
package.

2. The R Graphics Cookbook has an excellent chapter on Getting Your Data into Shape
which is well worth your time.

3. R for Data Science (see Wickham, Çetinkaya-Rundel, and Grolemund (2024)) provides
an excellent chapter on Data Transformation which goes into further detail on many of
the issues discussed here. Other key chapters with something to say about these issues
include:

• Workflow: basics
• Code Style and also Data tidying at https://r4ds.hadley.nz/data-tidy
• Factors

4. The datawizard package within the easystats eco-system (see Lüdecke et al. (2022))
has many useful functions.

• In particular, the Coming from Tidyverse page provides a nice vignette describing many
of the easystats approaches for wrangling data.

5. The styler package helps to format code according to the tidyverse style guide, which
has some appealing features. I try to use this style throughout this book, to improve
readability of the work, and I do so by applying a special add-in within R Studio.
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Part II

Comparing Quantities
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5 Comparing Paired Samples

5.1 R setup for this chapter

Note

This section loads all needed R packages for this chapter. Appendix A lists all R packages
used in this book, and also provides R session information. Appendix B describes the
431-Love.R script, and demonstrates its use.

library(infer)
library(knitr)
library(naniar)
library(patchwork)
library(rstanarm)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())

5.2 Data: Lead in the Blood of Children

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

Morton et al. (1982) studied the absorption of lead into the blood of children in a matched-
sample study. The “exposed” subjects were 33 children whose parents worked in a battery
manufacturing factory (where lead was used) in Oklahoma. Each child with a lead-exposed
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parent was then matched to another child of the same age with similar exposure to traffic who
lived in the same neighborhood, but whose parents did not work in lead-related industries.

The complete study thus contains 66 children, arranged into 33 matched pairs. A sample of
whole blood from each child provides the outcome of interest, which is lead content, measured
in mg/dl.

Mainly, we want to estimate the difference in lead content between the exposed and con-
trol children, and then use that sample estimate to make inferences about the difference in
lead content between the population of all children like those in the exposed group and the
population of all children like those in the control group.

The data are available in several places, including the PairedData package in R and Pruzek
and Helmreich (2009), but here we ingest the bloodlead.csv file from our website. A table
of the first few pairs of observations (blood lead levels for one child exposed to lead and the
matched control) is shown below.

bloodlead <- read_csv("data/bloodlead.csv", show_col_types = FALSE)

bloodlead

# A tibble: 33 x 3
pair exposed control
<chr> <dbl> <dbl>

1 P01 38 16
2 P02 23 18
3 P03 41 18
4 P04 18 24
5 P05 37 19
6 P06 36 11
7 P07 23 10
8 P08 62 15
9 P09 31 16
10 P10 34 18
# i 23 more rows

So, for instance, the first pair includes an exposed child whose blood lead level was 38 mg/dl
and an unexposed (control) child whose blood lead level was 16 mg/dl. Using the n_miss()
function from the naniar package, we see complete data in all 33 rows.

n_miss(bloodlead)

[1] 0
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5.3 Paired Differences

Since we are interested in comparing the differences between the exposed and control children,
we first create a column of these paired differences.

bloodlead <- bloodlead |>
mutate(difference = exposed - control)

bloodlead |> head()

# A tibble: 6 x 4
pair exposed control difference
<chr> <dbl> <dbl> <dbl>

1 P01 38 16 22
2 P02 23 18 5
3 P03 41 18 23
4 P04 18 24 -6
5 P05 37 19 18
6 P06 36 11 25

Again, the first pair includes an exposed child with blood lead level of 38 mg/dl and an
unexposed (control) child measured at 16 mg/dl. So that paired difference is 38 - 16 = 22
mg/dl.

5.3.1 Visualizing the sample

To help our understanding of the distribution of our paired differences, we might, for instance,
prepare a histogram, a boxplot (with violin) or a Normal Q-Q plot. Below, we show all
three summaries, using the patchwork package to bind together the three individual ggplot2
plots.

bw <- 8 # specify width of bins in histogram

p1 <- ggplot(bloodlead, aes(difference)) +
geom_histogram(binwidth = bw, fill = "black", col = "yellow" ) +
stat_function(fun = function(x) {

dnorm(x, mean = mean(bloodlead$difference, na.rm = TRUE),
sd = sd(bloodlead$difference, na.rm = TRUE) ) *

length(bloodlead$difference) * bw},
geom = "area", alpha = 0.5, fill = "lightblue", col = "blue") +

labs(x = "Exposed - Control lead (mg/dl)",
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title = "Histogram & Normal Curve")

p2 <- ggplot(bloodlead, aes(sample = difference)) +
geom_qq() +
geom_qq_line(col = "red") +
labs(y = "Exposed - Control", x = "Standard Normal Distribution",

title = "Normal Q-Q plot")

p3 <- ggplot(bloodlead, aes(x = difference, y = "")) +
geom_violin(fill = "cornsilk") +
geom_boxplot(width = 0.2) +
stat_summary(fun = mean, geom = "point", shape = 16, col = "red") +
labs(y = "", x = "Exposed - Control", title = "Boxplot with Violin")

p1 + (p2 / p3 + plot_layout(heights = c(2, 1))) +
plot_annotation(title = "Exposed - Control Differences in Blood Lead Content, mg/dl")
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The center of the distribution appears to be around 15 mg/dl according to these plots. The
data range from below 0 (around -10) to 60 mg/dl. In terms of shape, each of these plots
seems to suggest an approximately Normal distribution. There’s a single candidate outlier out
to the right of the distribution (at 60 mg/dl), but that doesn’t seem to be a major concern at
this stage.
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5.3.2 Numerical Summaries

Here are a few of the more useful numerical summaries we might consider in developing our
understanding of the paired Exposed - Control differences in blood lead levels.

bloodlead |>
reframe(lovedist(difference)) |>
kable(digits = 2)

n miss mean sd med mad min q25 q75 max
33 0 15.97 15.86 15 14.83 -9 4 25 60

Across these 33 paired differences, the mean and median are within one mg/dl of each other.
The standard deviation is near 16 mg/dl and the mad just a bit less than 15 mg/dl. The
quartiles match our expectations from the plots.

5.4 Estimating the Mean Difference

Next, we will provide a point estimate and confidence interval for the average difference. Of
course, we might consider the average to be the mean or the median (or even something else.)
To start, we’ll focus on obtaining an estimate and sense of uncertainty around that estimate
for the mean of the paired differences.

We saw previously that the sample mean of those 33 differences is about 16 mg/dl, and that
the distribution of those paired differences in blood lead content are approximately Normally
distributed. In light of those findings, how can we put an interval around that estimate that
expresses our uncertainty in a reasonable way?

5.4.1 Using a linear model

The most general approach is to fit a linear model to the data. When working with one sample,
like these paired differences contained in the difference column in the bloodlead tibble, we
will start by running this model:

fit1 <- lm(difference ~ 1, data = bloodlead)

Here, the use of the number one indicates to R that we wish to fit a model for difference
using only an intercept term. What does this model produce?
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fit1

Call:
lm(formula = difference ~ 1, data = bloodlead)

Coefficients:
(Intercept)

15.97

The fit here provides an estimate, which turns out to be the sample mean of the paired
differences, or 15.97 mg/dl.

To obtain a confidence interval around this estimate, we might consider the confint() func-
tion.

confint(fit1, level = 0.95)

2.5 % 97.5 %
(Intercept) 10.34469 21.5947

This provides a 95% confidence interval for the mean of the paired differences. We might state
this combination of results as follows:

• Our sample of 33 pairs of exposed and control children shows an average difference in
blood lead levels of 15.97 mg/dl with a 95% confidence interval ranging from (10.34,
21.59) mg/dl.

• Suppose Harry receives the exposure and Ron does not, but in all other ways they are
similar, in the same way that our matched pairs were formed. Then our model suggests
that Harry’s blood level will be 15.97 mg/dl larger than Ron’s.

Note

We might further describe this point and interval estimate combination as a result from
a paired-samples comparison, via an intercept-only linear model. The result we have
obtained here, as it turns out, is identical that obtained by building a paired t-test for
the mean difference.

What if we instead wanted to see a 90% confidence interval for the mean?
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confint(fit1, level = 0.9)

5 % 95 %
(Intercept) 11.29201 20.64738

• Now, our sample of 33 pairs of exposed and control children shows an average difference
in blood lead levels of 15.97 mg/dl with a 90% confidence interval ranging from (11.29,
20.65) mg/dl.

Note

• Note that the 90% confidence interval is thinner than the 95% confidence interval.
Why do you think that is true?

For more details on our linear model, we might use the summary() function in R, as follows:

summary(fit1)

Call:
lm(formula = difference ~ 1, data = bloodlead)

Residuals:
Min 1Q Median 3Q Max

-24.97 -11.97 -0.97 9.03 44.03

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.970 2.762 5.783 2.04e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.86 on 32 degrees of freedom

Here’s what we find in this summary:

1. A restatement of the fitted model.
2. A five-number summary (minimum, 25th percentile, median, 75th percentile and max-

imum) of the model residuals (which are the observed - predicted errors made by the
model.)
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• So the median of the errors we made in using this model to predict a difference
appears to be that our prediction was 0.97 mg/dl too high.

3. Some information about the coefficient of the model, specifically its point estimate (15.97)
and its standard error (2.76).

• Remember we can obtain an approximate 95% confidence interval for this estimate
by adding and subtracting two times its standard error.

• We also see a t statistic, p value (that’s the Pr(>|t|) piece) and some codes related
to statistical significance. I’ll ignore all of that, at least until Chapter 15.

4. Finally we see an estimated residual standard error, which is an estimate of an important
quality called 𝜎, or sigma.

The summary() function after a model is a very common approach in R, and it provides lots
of useful information.

However, in this book, we will make heavy use of a few alternative approaches avail-
able in the easystats ecosystem of packages, specifically model_parameters() and
model_performance(), to obtain and amplify the information we get from summary().

First, let’s look at what model_parameters() provides…

fit1 |>
model_parameters(ci = 0.95) |>
kable(digits = 2)

Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 15.97 2.76 0.95 10.34 21.59 5.78 32 0

This adds the 95% confidence interval for our estimate, which remains (10.34, 21.59) rounded
to two decimal places.

What if we wanted to see a 90% confidence interval, instead of 95%?

fit1 |>
model_parameters(ci = 0.9) |>
kable(digits = 2)

Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 15.97 2.76 0.9 11.29 20.65 5.78 32 0
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5.4.2 Using t.test()

The one-sample t-test on the paired differences produces the same confidence interval and
other summaries as the paired-samples test comparing the exposed to the control directly, as
we see below.

fit2 <- t.test(bloodlead$difference, conf.level = 0.95)

fit2

One Sample t-test

data: bloodlead$difference
t = 5.783, df = 32, p-value = 2.036e-06
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
10.34469 21.59470
sample estimates:
mean of x
15.9697

Again, we estimate the mean of the paired differences to be 15.97 mg/dl, with 95% confidence
interval (10.34, 21.59) mg/dl, just as we did in our regression model.

We can use model_parameters() again here to get this information.

fit2 |>
model_parameters() |>
kable(digits = 2)

Parameter Mean mu DifferenceCI CI_lowCI_high t df_errorp Method Alternative
bloodlead$difference15.97 0 15.97 0.95 10.34 21.59 5.78 32 0 One

Sample
t-test

two.sided

We’ll ignore the mu, t, df_error and p values shown here for now.

Another identical approach includes both the exposed and control variables, but specifies a
paired samples comparison, like this:

99



fit3 <- t.test(bloodlead$exposed, bloodlead$control,
paired = TRUE, conf.level = 0.95

)

fit3

Paired t-test

data: bloodlead$exposed and bloodlead$control
t = 5.783, df = 32, p-value = 2.036e-06
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
10.34469 21.59470
sample estimates:
mean difference

15.9697

Again, we see the same results.

fit3 |>
model_parameters()

Paired t-test

Parameter | Group | Difference | t(32) | p | 95% CI
------------------------------------------------------------------------------------
bloodlead$exposed | bloodlead$control | 15.97 | 5.78 | < .001 | [10.34, 21.59]

Alternative hypothesis: true mean difference is not equal to 0

Note that the paired t-test is also equivalent to the result from our linear model.

What if we wanted to see a 90% confidence interval, instead of 95%? Unfortunately, we need
to rerun the t test specifying this confidence level in order to get that result.

fit3_90 <- t.test(bloodlead$exposed, bloodlead$control,
paired = TRUE, conf.level = 0.90

)

fit3_90 |>
model_parameters(ci = 0.90)
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Paired t-test

Parameter | Group | Difference | t(32) | p | 90% CI
------------------------------------------------------------------------------------
bloodlead$exposed | bloodlead$control | 15.97 | 5.78 | < .001 | [11.29, 20.65]

Alternative hypothesis: true mean difference is not equal to 0

Again, our point estimate remains 15.97 mg/dl but our 90% confidence interval for the mean
ranges from 11.29 to 20.65 mg/dl.

So our linear regression model, and our paired t test each produce the same point estimate
and 95% confidence interval for the true mean of the paired differences, specifically:

Method Estimate 95% CI
lm: difference ~ 1 15.97 (10.34, 21.59)

paired t test 15.97 (10.34, 21.59)

5.4.3 Estimating Cohen’s d statistic

Now, let’s consider the value of an effect size measurement, Cohen’s d, in this situation.

cohens_d(difference ~ 1, data = bloodlead, ci = 0.95)

Cohen's d | 95% CI
------------------------
1.01 | [0.58, 1.42]

The Cohen’s d calculation for a single sample mean is just the size of that mean, divided by
its standard deviation.

Here, we have a sample mean of 15.97, and a sample standard deviation of 15.86, which
produces Cohen’s d = 15.97/15.86 which is approximately 1.01. The cohens_d function also
provides a 95% confidence interval for this estimate.

So here, Cohen’s d indicates that the paired differences are approximately the same size (on
average) as their standard deviation. That’s a pretty large gap from 0, as it turns out. The
general guidelines for interpreting this effect size suggested by Cohen (1988) are:

• 0.2 indicates a small effect
• 0.5 indicates a moderate effect
• 0.8 indicates a large effect
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So our value of 1.01 indicates a large difference from 0, by Cohen’s standard.

The easystats package enables us to produce a series of effect size indices. Some alternatives
and discussion are available on this web page. See Cohen (1988) for further details.

5.5 Bootstrap confidence intervals

5.5.1 Bootstrap CI for the mean

This approach comes from the infer package.

set.seed(431)

x_bar <- bloodlead |>
observe(response = difference, stat = "mean")

res4 <- bloodlead |>
specify(response = difference) |>
generate(reps = 1000, type = "bootstrap") |>
calculate(stat = "mean") |>
get_confidence_interval(level = 0.95, type = "percentile")

res4 <- res4 |>
mutate(pt_est = x_bar$stat) |>
relocate(pt_est)

res4 |> kable(digits = 2)

pt_est lower_ci upper_ci
15.97 10.79 21.34

Note that changing the seed changes the result:

set.seed(12345)

x_bar <- bloodlead |>
observe(response = difference, stat = "mean")

res4_new1 <- bloodlead |>
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specify(response = difference) |>
generate(reps = 1000, type = "bootstrap") |>
calculate(stat = "mean") |>
get_confidence_interval(level = 0.95, type = "percentile")

res4_new1 <- res4_new1 |>
mutate(pt_est = x_bar$stat) |>
relocate(pt_est)

res4_new1 |> kable(digits = 2)

pt_est lower_ci upper_ci
15.97 10.85 21.12

Our answer will also change if we change the number of repetitions through the bootstrap
process.

set.seed(431)

x_bar <- bloodlead |>
observe(response = difference, stat = "mean")

res4_new2 <- bloodlead |>
specify(response = difference) |>
generate(reps = 2000, type = "bootstrap") |>
calculate(stat = "mean") |>
get_confidence_interval(level = 0.95, type = "percentile")

res4_new2 <- res4_new2 |>
mutate(pt_est = x_bar$stat) |>
relocate(pt_est)

res4_new2 |> kable(digits = 2)

pt_est lower_ci upper_ci
15.97 10.67 21.27
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5.5.2 Bootstrap CI for the median

set.seed(431)

x_med <- bloodlead |>
observe(response = difference, stat = "median")

res5 <- bloodlead |>
specify(response = difference) |>
generate(reps = 1000, type = "bootstrap") |>
calculate(stat = "median") |>
get_confidence_interval(level = 0.95, type = "percentile")

res5 <- res5 |>
mutate(pt_est = x_med$stat) |>
relocate(pt_est)

res5 |> kable(digits = 2)

pt_est lower_ci upper_ci
15 6.98 23

5.6 Bayesian linear model

Bayesian inference is an excellent choice for virtually every regression model, even when using
weakly informative default priors (as we will do), because it yields estimates which are stable,
and because it helps us present the uncertainty associated with our estimates in useful ways.

Once the rstanarm package is loaded in R, we can run any linear model fit with lm as a
Bayesian model using stan_glm() with no other changes required, except to set a random
seed before running the model. Here’s an example.

set.seed(431)
fit6 <- stan_glm(difference ~ 1, data = bloodlead, refresh = 0)

fit6

stan_glm
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family: gaussian [identity]
formula: difference ~ 1
observations: 33
predictors: 1
------

Median MAD_SD
(Intercept) 15.9 2.8

Auxiliary parameter(s):
Median MAD_SD

sigma 16.0 2.0

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

post6 <- describe_posterior(fit6, ci = 0.95)
print_md(post6, digits = 2)

Table 5.10: Summary of Posterior Distribution

Parameter Median 95% CI pd ROPE
% in

ROPE Rhat ESS
(Intercept) 15.91 [10.20, 21.88] 100% [-1.59, 1.59] 0% 1.000 2481.00

plot(fit6, plotfun = "areas", prob = 0.95)

105



sigma

(Intercept)

10 20 30

fit6 |>
model_parameters() |>
kable(digits = 2)

ParameterMedian CI CI_lowCI_highpd Rhat ESS Prior_DistributionPrior_LocationPrior_Scale
(Intercept)15.91 0.95 10.2 21.88 1 1 2481.47 normal 15.97 39.66

5.7 Wilcoxon signed rank test

A rank-based procedure called the Wilcoxon signed rank test can also be used to yield a con-
fidence interval statement about the population pseudo-median, a measure of the population
distribution’s center (but not the population’s mean).

Sometimes, a non-parametric alternative is desirable if the data are symmetric (in the sense
that the mean and median are close) but show substantial differences in tail behavior from a
Normal distribution. In that case, you will often see a report of a Wilcoxon signed rank test,
as shown below:

wilcox.test(difference ~ 1, data = bloodlead,
conf.int = TRUE, conf.level = 0.95, exact = FALSE)
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Wilcoxon signed rank test with continuity correction

data: difference
V = 499, p-value = 1.155e-05
alternative hypothesis: true location is not equal to 0
95 percent confidence interval:
9.999943 21.499970

sample estimates:
(pseudo)median

15.49996

As it turns out, if you’re willing to assume the population is symmetric (but not necessarily
Normally distributed) then the population pseudo-median is actually equal to the population
median.

Note that the pseudo-median here (15.5) is actually slightly closer here to the sample mean
(15.97) than it is to the sample median (15).

There are two problems with the Wilcoxon signed-rank approach which make it something I
use very rarely in practical work.

1. Converting the data to ranks is a strong transformation that loses a lot of the granular
information in the data.

2. The parameter estimated here, called the pseudo-median is not the same as either the
sample mean or sample median, and is thus a challenge to interpret.

As a result, bootstrap approaches, though more computationally intricate, are usually better
choices for my work.

Note

The pseudo-median of a particular distribution G is the median of the distribution of (u
+ v)/2, where both u and v have the same distribution (G).

• If the distribution G is symmetric, then the pseudomedian is equal to the median.
• If the distribution is skewed, then the pseudomedian is not the same as the median.
• For any sample, the pseudomedian is defined as the median of all of the midpoints

of pairs of observations in the sample.
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5.8 Sign test

We can also answer the question: How many of the paired differences (out of the 33 pairs) are
positive?

bloodlead |> count(exposed > control)

# A tibble: 2 x 2
`exposed > control` n
<lgl> <int>

1 FALSE 5
2 TRUE 28

and here is a reasonably appropriate 95% confidence interval for this proportion.

binom.test(x = 28, n = 33, conf.level = 0.95)

Exact binomial test

data: 28 and 33
number of successes = 28, number of trials = 33, p-value = 6.619e-05
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.6810102 0.9489113
sample estimates:
probability of success

0.8484848

The confidence interval provided doesn’t relate back to our original population means. It’s
just showing the confidence interval around the probability of the exposed mean being greater
than the control mean for a pair of children. We’ll return to studying confidence intervals for
proportions in Chapter 13.

5.9 Comparing the Results
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Method Point Estimate 95% Uncertainty Interval
Linear fit (lm) ̄𝑥 = 15.97 (10.34, 21.59)

t test ̄𝑥 = 15.97 (10.34, 21.59)
Bootstrap mean ̄𝑥 = 15.97 (10.79, 21.34)
Bootstrap median median(x) = 15 (6.98, 23)

Bayesian fit ̄𝑥 = 15.91 (10.20, 21.88)
Signed Rank pseudo-med(x) = 15.5 (10, 21.5)

Do you see large differences here? Is it surprising that the Bayesian fit’s estimates are closer
to 0 than the linear fit?

5.9.1 Assumptions

1. All approaches assume that the data are independent samples from a distribution of
paired differences in blood lead levels.

2. All approaches work better with larger samples.
3. All approaches assume that the paired differences are a random sample from a population

or process with a fixed distribution of such differences.
4. The linear fit assumes the distribution of differences can be modeled well by a Normal

distribution, as does the equivalent t-test.
5. The Wilcoxon signed rank test assumes a symmetric distribution, but not necessarily a

Normal one.
6. The bootstrap has even more minor distributional requirements, essentially requiring

only that the mean (or median) be an appropriate choice of summary for the center of
the distribution.

7. The Bayesian assumptions also include a set of weakly informative prior distributions
for the parameters in the model.

None of the methods dominates all of the rest. We will focus most of our effort in this book on
least squares linear models fit with lm() and on Bayesian alternatives fit with stan_glm().

5.9.2 General Advice

We have described several approaches to estimating a confidence interval for the center of a
distribution of quantitative data.

1. The most commonly used approach uses the t distribution to estimate a confidence
interval for a population/process mean. This requires some extra assumptions, most
particularly that the underlying distribution of the population values is at least approxi-
mately Normally distributed. This is identical to the result we get from an intercept-only
linear regression model.
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2. A more modern and very general approach uses the idea of the bootstrap to estimate
a confidence for a population/process parameter, which could be a mean, median or
other summary statistic. The bootstrap, and the underlying notion of resampling is an
important idea that lets us avoid some of the assumptions (in particular Normality) that
are required by other methods. Bootstrap confidence intervals involve random sampling,
so that the actual values obtained will differ a bit across replications.

3. A Bayesian linear model can be used to fit credible intervals, and has some advantages
and disadvantages as compared to the intercept-only least squares fit.

4. The Wilcoxon signed-rank method is one of a number of inferential tools which trans-
form the data to their ranks before estimating a confidence interval. This avoids some
assumptions, but yields inferences about a less-familiar parameter - the pseudo-median.

Most of the time, the bootstrap provides a reasonably adequate confidence interval estimate
of the population value of a parameter (mean or median, most commonly) from a distribution
when our data consists of a single sample of quantitative information.

5.10 For More Information

1. The infer package has a nice place to get started at Getting to know infer.

2. Relevant sections of OpenIntro Stats (pdf) include:

• Section 7 - inference for numerical data (except we postpone most of the ideas in section
7.4 until 432.)
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6 Comparing Two Groups

6.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion. Appendix B describes the 431-Love.R script, and demonstrates its use.

library(ggdist)
library(infer)
library(knitr)
library(MKinfer)
library(patchwork)
library(readxl)
library(rstanarm)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())

6.2 Comparing Two Groups

In making a choice between two alternatives, questions such as the following become
paramount.

• Is there a status quo?
• Is there a standard approach?
• What are the costs of incorrect decisions?
• Are such costs balanced?
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The process of comparing the means/medians/proportions/rates of the populations repre-
sented by two independently obtained samples can be challenging, and such an approach is
not always the best choice. Often, specially designed experiments can be more informative
at lower cost (i.e. smaller sample size). As one might expect, using these more sophisticated
procedures introduces trade-offs, but the costs are typically small relative to the gain in infor-
mation.

When faced with such a comparison of two alternatives, a test based on paired data is often
much better than a test based on two distinct, independent samples. Why? If we have done
our experiment properly, the pairing lets us eliminate background variation that otherwise
hides meaningful differences.

6.3 Data from an Excel (.xlsx) file: Parkinson’s Disease Trial

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

We will demonstrate ideas in this chapter using a tibble containing information on a simulated
trial assessing the effect of lixisenatide (as compared to a placebo) on the progression of motor
disability in persons with Parkinson’s disease. This example is motivated by Meissner et al.
(2024), but simplifies the study considerably, and uses fake data.

The information we have is gathered in an Excel file called park_rct.xlsx within our data
folder. We will use a function from the readxl package in R to help us ingest this information
into a tibble called park_rct, using the code below.

park_rct <- read_xlsx("data/park_rct.xlsx") |>
mutate(across(where(is.character), as_factor)) |>
mutate(Person = as.character(Person))

park_rct

# A tibble: 152 x 5
Person Treatment MDS3_base MDS3_12m MDS3_delta
<chr> <fct> <dbl> <dbl> <dbl>

1 SUB001 Placebo 18 19 1
2 SUB002 Placebo 21 25 4
3 SUB003 Lixisenatide 0 0 0
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4 SUB004 Placebo 25 43 18
5 SUB005 Placebo 22 9 -13
6 SUB006 Lixisenatide 15 5 -10
7 SUB007 Lixisenatide 20 30 10
8 SUB008 Lixisenatide 2 0 -2
9 SUB009 Placebo 23 32 9
10 SUB010 Lixisenatide 16 16 0
# i 142 more rows

Variables in the park_rct tibble are described below. A reminder that these are fake (simu-
lated) data.

Variable Description
Person participant code: ranges from SUB001 to SUB152

Treatment Placebo or Lixisenatide
MDS3_base Baseline MDS-UPDRS part III score
MDS3_12m MDS-UPDRS part III score after 12 months

MDS3_delta Change (MDS3_12m minus MDS3_base)

The study aims to assess the effect of lixisenatide (vs. placebo) on the progression of motor
disability in persons with early (diagnosed less than 3 years) Parkinson’s disease. The primary
outcome (end point) of interest for us is the change from baseline in scores on the Movement
Disorder Society–Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) part III (range, 0
to 132, with higher scores indicating greater motor disability), which was assessed in patients
in the on-medication state at 12 months. More details on the MDS-UPDRS are available at
Goetz, Christopher G., et al. (2008).

6.4 Key Questions for Comparing with Independent Samples

Can you answer these questions for our study?

1. What is the population under study?
2. What is the sample? Is it representative of the population?
3. Who are the subjects / individuals within the sample?
4. What data are available on each individual?
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6.4.1 RCT Caveats

The placebo-controlled, double-blind randomized clinical trial, especially if pre-registered, is
often considered the best feasible study for assessing the effectiveness of a treatment. While
that’s not always true, it is a very solid design. The primary caveat is that the patients who
are included in such trials are rarely excellent representations of the population of potentially
affected patients as a whole.

6.5 Exploratory Data Analysis

We have two independent samples here, where the placebo patients aren’t matched in any way
to the Lixisenatide patients. The Lixisenatide group has two more subjects, so the design isn’t
(quite) balanced (which would require equal sample sizes in each sample) although it’s close.

6.5.1 Visualizing Two Independent Samples

A common choice for visualizing the distributions of two independent samples is to fit a
comparison boxplot. Here, we’ll augment the plot with a violin to show the shape of the
distribution, and a red point to indicate the means in each group. We’ll also fill in the colors
of the violins with two distinct colors from the “Set2” palette in R1.

ggplot(park_rct, aes(y = Treatment, x = MDS3_delta, fill = Treatment)) +
geom_violin() +
geom_boxplot(width = 0.3, fill = "cornsilk", notch = TRUE) +
stat_summary(fun = mean, geom = "point", size = 2, col = "red") +
scale_fill_brewer(palette = "Set2") +
guides(fill = "none")

1Emil Hvitfeldt provides a nearly comprehensive list of palettes in R here if you’re interested.
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Another approach we might consider is the use of stat_slab() and slat_dotsinterval()
from the ggdist package to simultaneously display:

• a smoothed histogram of the data’s distribution,
• a rain cloud plot showing the distribution in a dotplot, and
• a line with a point showing the median of the data along with (by default) changes in

line size which indicate 66% and 95% intervals for the data.

ggplot(park_rct, aes(y = Treatment, x = MDS3_delta, fill = Treatment)) +
stat_slab(aes(thickness = after_stat(pdf * n)), scale = 0.7) +
stat_dotsinterval(side = "bottom", scale = 0.7, slab_linewidth = NA) +
scale_fill_brewer(palette = "Set2") +
guides(fill = "none") +
theme_bw()
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Finally, we show separate Normal Q-Q plots of each of the two treatment groups, joined
together using the patchwork package into a single figure. Most of the points in each treatment
group track with the expectations of a Normal distribution, as indicated by the red line being
a reasonably good fit to the data.

p1 <- park_rct |>
filter(Treatment == "Lixisenatide") |>
ggplot(aes(sample = MDS3_delta)) +
geom_qq() +
geom_qq_line(col = "red") +
labs(y = "Lixisenatide", x = "Standard Normal")

p2 <- park_rct |>
filter(Treatment == "Placebo") |>
ggplot(aes(sample = MDS3_delta)) +
geom_qq() +
geom_qq_line(col = "red") +
labs(y = "Placebo", x = "Standard Normal")

p1 + p2 +
plot_annotation(title = "Normal Q-Q plots of MDS3_delta")

116



−10

0

10

20

−2 −1 0 1 2
Standard Normal

Li
xi

se
na

tid
e

−10

0

10

20

−2 −1 0 1 2
Standard Normal

P
la

ce
bo

Normal Q−Q plots of MDS3_delta

6.5.2 Numerical Summaries

park_rct |>
reframe(lovedist(MDS3_delta), .by = Treatment) |>
kable(digits = 2)

Treatment n miss mean sd med mad min q25 q75 max
Placebo 75 0 3.04 6.84 2 5.93 -15 -1 8 18
Lixisenatide 77 0 -0.04 6.93 -1 5.93 -15 -4 4 20

We see that the mean change in the placebo group is about 3 points on the scale, indicating
somewhat higher motor disability at 12 months than at baseline for those subjects. In the
Lixisenatide group, we have a slightly negative mean change very close to zero (the median is
-1) indicating that the subjects in that group have (very) slightly lower disability at 12 months
than they did at baseline. So the direction of the effect we’re seeing appears to be somewhat
favorable for Lixisenatide as compared to placebo, at least in terms of the point estimate of
the difference in means.

How much uncertainty do we have in those estimates? One way to start thinking about that is
to think about the variation within each group. Our measures of spread shown above appear
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fairly similar across the two treatment groups, in terms of standard deviations (6.8 vs. 6.9),
MAD (both 5.9) and even the interquartile range (IQR).

6.6 Using a linear model

To start, we’ll build a 95% confidence interval for the difference in treatment means using a
linear model, with the outcome MDS3_delta being predicted by the Treatment group.

fit1 <- lm(MDS3_delta ~ Treatment, data = park_rct)

fit1

Call:
lm(formula = MDS3_delta ~ Treatment, data = park_rct)

Coefficients:
(Intercept) TreatmentLixisenatide

3.040 -3.079

The model equation is MDS3_delta = 3.04 - 3.08 (Treatment = Lixisenatide), which implies
that the model estimates that:

• subjects on placebo will have MDS3_delta of 3.04, on average.
• subjects on Lixisenatide will have MDS3_delta of 3.04 - 3.08 = -0.04, on average.

and of course, these are just the sample means in each group.

Here’s one more detailed summary of this fit.

summary(fit1)

Call:
lm(formula = MDS3_delta ~ Treatment, data = park_rct)

Residuals:
Min 1Q Median 3Q Max

-18.040 -4.040 -0.961 4.039 20.039

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0400 0.7951 3.824 0.000192 ***
TreatmentLixisenatide -3.0790 1.1171 -2.756 0.006573 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.886 on 150 degrees of freedom
Multiple R-squared: 0.0482, Adjusted R-squared: 0.04186
F-statistic: 7.597 on 1 and 150 DF, p-value: 0.006573

We’ll note that the Multiple R-squared statistic indicates that the predictors in this model
(here we have only Treatment as a predictor) account for about 4.8% of the variation in our
outcome (MDS3_delta) using this linear model.

6.6.1 Obtaining t-based confidence intervals

One way to obtain confidence intervals for the coefficients in our fit1 model is to use the
confint() function to obtain confidence intervals using the t distribution.

confint(fit1, level = 0.95)

2.5 % 97.5 %
(Intercept) 1.468992 4.6110084
TreatmentLixisenatide -5.286228 -0.8716937

The point estimate of the (Lixisenatide - Placebo) treatment effect is -3.08, with 95% CI (-5.29,
-0.87).

Another way (and this is my usual approach nowadays) to obtain these results is to use
model_parameters() as applied to our fitted model, fit1.

fit1 |>
model_parameters(ci = 0.95) |>
kable(digits = 2)

Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 3.04 0.80 0.95 1.47 4.61 3.82 150 0.00
TreatmentLixisenatide -3.08 1.12 0.95 -5.29 -0.87 -2.76 150 0.01

If we like, we can also obtain and present contrasts from the model as follows. In this relatively
simple case, all of these approaches give the same conclusions.
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cons <- estimate_contrasts(fit1, contrast = "Treatment", ci = 0.95)
cons |> kable(digits = 2)

Level1 Level2 Difference CI_low CI_high SE df t p
Placebo Lixisenatide 3.08 0.87 5.29 1.12 150 2.76 0.01

6.6.2 Obtaining bootstrapped confidence intervals

So far, we have produced t-based confidence intervals for the coefficients in model fit1. We
could also bootstrap the confidence interval for the difference in means shown by our linear
model with the following augmentations to the model_parameters() command.

set.seed(43123)

model_parameters(fit1, bootstrap = TRUE, iterations = 2000,
ci = 0.95, centrality = "median", ci_method = "quantile")

Parameter | Coefficient | 95% CI | p
----------------------------------------------------------------
(Intercept) | 3.03 | [ 1.42, 4.55] | < .001
Treatment [Lixisenatide] | -3.07 | [-5.21, -0.82] | 0.009

Uncertainty intervals (equal-tailed) are naıve bootstrap intervals.

The resulting estimate still describes a difference in means, but it shows the median result
of that difference across 2000 bootstrapped samples. We see now that our estimated effect
of Lixisenatide as compared to Placebo is -3.07 points on the MDS3_delta scale, with a 95%
confidence interval stretching from (-5.21, -0.82). Note, too, that we set a random seed here
to allow us to replicate the results.

6.7 t test for Two Independent Samples

6.7.1 Assuming equal population variances

If we assume equal population variances, a t test produces identical results to our linear model
fit1, as demonstrated below.
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fit2 <- t.test(MDS3_delta ~ Treatment,
data = park_rct, var.equal = TRUE)

fit2 |>
model_parameters(ci = 0.95) |>
kable(digits = 2)

ParameterGroup Mean_Group1Mean_Group2DifferenceCI CI_lowCI_hight df_errorp Method Alternative
MDS3_deltaTreatment3.04 -0.04 3.08 0.95 0.87 5.29 2.76 150 0.01 Two

Sample
t-test

two.sided

6.7.2 Cohen’s d assuming equal population variances

We can also produce an estimate of Cohen’s d statistic while assuming equal variances (i.e. mak-
ing use of a pooled t test.)

cohens_d(MDS3_delta ~ Treatment, data = park_rct, pooled_sd = TRUE)

Cohen's d | 95% CI
------------------------
0.45 | [0.12, 0.77]

- Estimated using pooled SD.

Cohen’s d estimates the standardized difference between the mean MDS3_delta scores across
the two Treatment groups. Here, we have a value of 0.45 with a 95% CI of (0.12, 0.77).

This Cohen’s d indicates that the differences between the means are approximately 45% of the
size (on average) as their pooled standard deviation. As we’ve seen, the general guidelines for
interpreting this effect size suggested by Cohen (1988) are:

• 0.2 indicates a small effect
• 0.5 indicates a moderate effect
• 0.8 indicates a large effect

So our observed d = 0.45 indicates a small to moderate difference from 0.
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6.7.3 Estimated without pooling the standard deviation

We can also estimate the confidence interval without assuming equal population variances
(i.e. without pooling the standard deviation) across our two Treatments. This is actually the
default t.test() approach in R, and the code looks like this:

fit3 <- t.test(MDS3_delta ~ Treatment, data = park_rct)

fit3 |>
model_parameters(ci = 0.95) |>
kable(digits = 2)

ParameterGroup Mean_Group1Mean_Group2DifferenceCI CI_lowCI_hight df_errorp Method Alternative
MDS3_deltaTreatment3.04 -0.04 3.08 0.95 0.87 5.29 2.76 149.97 0.01 Welch Two

Sample
t-test

two.sided

Our new 95% confidence interval using this Welch two-sample t test procedure is (0.87, 5.29)
for the size of the Placebo - Lixisenatide difference. The Cohen’s d estimate of the standardized
difference in means can also be obtained while not assuming a pooled standard deviation using
the following code.

cohens_d(MDS3_delta ~ Treatment, data = park_rct, pooled_sd = FALSE)

Cohen's d | 95% CI
------------------------
0.45 | [0.12, 0.77]

- Estimated using un-pooled SD.

Note that this result doesn’t change materially as compared to the Cohen’s d when assuming
equal variances in the two Treatment groups and this is because:

1. The sample sizes in the two Treatment groups are quite close, and
2. The sample standard deviations in the two Treatment groups are also quite similar.
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6.8 Bayesian linear regression

Let’s now fit a linear model to describe the difference in MDS3_delta between the two Treat-
ment groups, using a Bayesian approach with the default choice of prior, which is weakly
informative.

set.seed(431)
fit4 <- stan_glm(MDS3_delta ~ Treatment, data = park_rct, refresh = 0)

## refresh = 0 avoids printing the iteration updates

post4 <- describe_posterior(fit4, ci = 0.95)

print_md(post4, digits = 2)

Table 6.7: Summary of Posterior Distribution

Parameter Median 95% CI pd ROPE
% in

ROPE Rhat ESS
(Intercept) 3.03 [ 1.48, 4.54] 100% [-0.70, 0.70] 0% 0.999 4143.00
TreatmentLixisenatide-3.08 [-5.30, -0.85] 99.72% [-0.70, 0.70] 0% 1.000 4181.00

Our estimate of the difference in means between the two treatment groups is -3.08 with a 95%
credible interval ranging between (-5.30, -0.85). We note again that this is essentially the same
conclusion that we drew from the t test approach.

The difference here is that the model produces a credible interval rather than a confidence
interval, which changes (a bit) the nature of what we can conclude about that interval.

Specifically, we could now conclude that there is a 95% chance that the true value of the
difference in means between the Treatment groups is in the range (-5.30, -0.85), but only if we
were willing to assume that the prior distribution we established for the difference
in means was appropriate.

Moreover, from the pd result, we estimate a 99.72% chance that the true difference in means is
in the direction we have observed in this model (that Lixisenatide does better than Placebo),
and that with a default choice of minimal practical effect size (as shown by the ROPE and %
in ROPE materials) that there is almost no chance that the effects is ignorably small.

We can show some graphs of the simulated results from our posterior distribution of our
model’s coefficients, for example…
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plot(fit4, plotfun = "areas", prob = 0.95,
pars = c("(Intercept)", "TreatmentLixisenatide"))

TreatmentLixisenatide

(Intercept)

−5 0 5

And we can summarize the Bayesian fit with the model_parameters() command as follows:

fit4 |>
model_parameters() |>
kable(digits = 2)

Parameter MedianCI CI_lowCI_highpd Rhat ESS Prior_DistributionPrior_LocationPrior_Scale
(Intercept) 3.03 0.95 1.48 4.54 1 1 4143.11normal 1.48 17.59
TreatmentLixisenatide-

3.08
0.95 -

5.30
-0.85 1 1 4180.84normal 0.00 35.06

The nice part of this last bit of output is that it displays the actual prior distributions assumed
for each coefficient (both the intercept and the treatment effect.)
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6.9 Using the Bootstrap

6.9.1 Bootstrap CI for Means

We can use the approach available in the infer package demonstrated below to obtain a 95%
percentile bootstrap confidence interval for the difference in means between the two Treatment
groups as follows. Note the need to set a random seed for replicability.

set.seed(431)
park_rct |>
specify(MDS3_delta ~ Treatment) |>
generate(reps = 1000, type = "bootstrap") |>
calculate(stat = "diff in means",

order = c("Placebo", "Lixisenatide") ) |>
get_confidence_interval(level = 0.95, type = "percentile")

# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 0.809 5.36

Again, we have a fairly similar estimated confidence interval (0.81, 5.36) to the ones we saw
previously.

Another approach to doing essentially the same thing is available through the boot.t.test()
function in the MKinfer package, as follows:

set.seed(431)
boot.t.test(MDS3_delta ~ Treatment, var.equal = TRUE, R = 2000,
data = park_rct, conf.level = 0.95)

Bootstrap Two Sample t-test

data: MDS3_delta by Treatment
number of bootstrap samples: 2000
bootstrap p-value = 0.008
bootstrap difference of means (SE) = 3.102324 (1.134524)
95 percent bootstrap percentile confidence interval:
0.9155498 5.2608788
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Results without bootstrap:
t = 2.7562, df = 150, p-value = 0.006573
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.8716937 5.2862284
sample estimates:

mean in group Placebo mean in group Lixisenatide
3.04000000 -0.03896104

If we want to run the bootstrapped t test without assuming equal population variances, we
can adapt the boot.t.test() function accordingly, like this:

set.seed(431)
boot.t.test(MDS3_delta ~ Treatment, var.equal = FALSE, R = 4000,
data = park_rct, conf.level = 0.95)

Bootstrap Welch Two Sample t-test

data: MDS3_delta by Treatment
number of bootstrap samples: 4000
bootstrap p-value = 0.009
bootstrap difference of means (SE) = 3.074508 (1.107546)
95 percent bootstrap percentile confidence interval:
0.8585108 5.2140563

Results without bootstrap:
t = 2.7567, df = 149.97, p-value = 0.006564
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.872082 5.285840
sample estimates:

mean in group Placebo mean in group Lixisenatide
3.04000000 -0.03896104

Again, our results stay similar to what we’ve seen in the past.

6.9.2 Bootstrap CI for Medians

We might also want to find a bootstrap confidence interval for the difference in medians rather
than means across the two Treatment groups. We saw earlier that the median MDS3_delta in

126



the Placebo group was +2 and the median in the Lixisenatide group was -1, a difference of 3
points on the MDS3_delta scale. The following code from the infer package is a reasonable
choice to obtain a bootstrap for this difference in medians.

set.seed(431)
park_rct |>
specify(MDS3_delta ~ Treatment) |>
generate(reps = 2500, type = "bootstrap") |>
calculate(stat = "diff in medians",

order = c("Placebo", "Lixisenatide") ) |>
get_ci(level = 0.95, type = "percentile")

# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 2 6.5

All of our previous estimates have focused on a difference in means, while this instead finds a
difference in medians - and this explains some of the difference we observe.

6.10 Wilcoxon Rank Sum Test

Finally, you may wish to run a Wilcoxon rank sum test. This test compares the locations
without using either the mean or the median of the original differences, but instead first ranks
the observed MDS3_delta values regardless of Treatment group, and then compares the centers
(locations) of those distributions. Here’s how you could obtain this test (and 95% confidence
interval) in R.

wilcox.test(MDS3_delta ~ Treatment, data = park_rct, exact = FALSE,
conf.int = TRUE, conf.level = 0.95)

Wilcoxon rank sum test with continuity correction

data: MDS3_delta by Treatment
W = 3789.5, p-value = 0.0008758
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
1.999936 5.999975
sample estimates:
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difference in location
3.999955

Of course, these results aren’t describing either the difference in means or the difference in
medians of the treatment groups on our outcome, so they’re meaningfully harder to think
about.

6.11 Our Results

In this study, we compared the MDS3_delta levels across two Treatment groups (Lixisenatide
and Placebo), obtaining a series of 95% uncertainty intervals. Specifically, we found the
following results (in each case using “Lixisenatide - Placebo” as the order for our difference, so
that negative values (which indicate less motor disability) are good news for the Lixisenatide
drug.

Method Point Est.
95% Uncertainty

Interval What do we estimate?
linear fit
with lm()

-3.08 (-5.29, -0.87) diff. in means

bootstrap
CI after
lm() fit

-3.07 (-5.21, -0.82) diff. in means

pooled t
test

-3.08 (-5.29, -0.87) diff. in means, same as lm()

Welch test -3.08 (-5.29, -0.87) diff. in means, unpooled std. dev.
Bayesian fit -3.08 (-5.30, -0.85) diff. in means, credible interval
percentile
bootstrap

-3.08 (-5.36, -0.81) diff. in means

bootstrap,
pooled sd

-3.10 (-5.26, -0.92) diff. in means

bootstrap,
unpooled sd

-3.07 (-5.21, -0.86) diff. in means

bootstrap,
medians

-3 (-6.5, -2) diff. in medians

None of these look wildly different from any of the others, and this is mostly because of the
following four reasons:

• the sample size is similar in each Treatment group,
• the sample variance is similar in each Treatment group,

128



• the difference in means across the two Treatment groups is similar to the difference in
medians we observe here,

• the distribution of MDS3_delta is fairly similar in each Treatment group, and in both
cases is fairly well approximated by a Normal distribution, and

• we used a weakly informative prior distribution in our Bayesian models.

6.12 Paired vs. Independent Samples

One area that consistently trips students up in this course is the thought process involved in
distinguishing studies comparing means that should be analyzed using dependent (i.e. paired
or matched) samples (as we discussed in Chapter 5) and those which should be analyzed using
independent samples (as we discussed in this chapter.)

A paired samples analysis uses additional information about the sample to pair/match subjects
receiving the various exposures. That additional information is not part of an independent
samples analysis (unpaired testing situation.) The reasons to do this are to (a) increase
statistical power, and/or (b) reduce the effect of confounding.

1. In the design of experiments, blocking is the term often used for the process of arranging
subjects into groups (blocks) that are similar to one another. Typically, a blocking factor
is a source of variability that is not of primary interest to the researcher An example
of a blocking factor might be the sex of a patient; by blocking on sex, this source of
variability is controlled for, thus leading to greater accuracy.

2. If the sample sizes are not balanced (not equal), the samples must be treated as inde-
pendent, since there would be no way to precisely link all subjects. So, if we have 10
subjects receiving exposure A and 12 subjects receiving exposure B, a paired samples
analysis (such as a paired t test) is not correct.

3. The key element is a meaningful link between each observation in one exposure group
and a specific observation in the other exposure group. Given a balanced design, the
most common strategy indicating paired samples involves two or more repeated measures
on the same subjects. For example, if we are comparing outcomes before and after the
application of an exposure, and we have, say, 20 subjects who provide us data both
before and after the exposure, then the comparison of results before and after exposure
should use a paired samples analysis. The link between the subjects is the subject itself
- each exposed subject serves as its own control.

4. The second most common strategy indicating paired samples involves deliberate match-
ing of subjects receiving the two exposures. A matched set of observations (often a pair,
but it could be a trio or quartet, etc.) is determined using baseline information and then
(if a pair is involved) one subject receives exposure A while the other member of the
pair receives exposure B, so that by calculating the paired difference, we learn about the
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effect of the exposure, while controlling for the variables made similar across the two
subjects by the matching process.

5. In order for a paired samples analysis to be used, we need (a) a link between each
observation across the exposure groups based on the way the data were collected, and
(b) a consistent measure (with the same units of measurement) so that paired differences
can be calculated and interpreted sensibly.

If the samples are collected to facilitate a dependent samples analysis, the correlation of the
outcome measurements across the groups will often be moderately strong and positive. If
that’s the case, then the use of a dependent samples analysis will reduce the effect of baseline
differences between the exposure groups, and thus provide a more precise estimate. But even
if the correlation is quite small, a dependent samples analysis should provide a more powerful
estimate of the impact of the exposure on the outcome than would an independent samples
analysis with the same number of observations.

6.13 Summary: Specifying A Two-Sample Study Design

These questions will help specify the details of the study design involved in any comparison of
two populations on a quantitative outcome, perhaps with means.

1. What is the outcome under study?
2. What are the (in this case, two) treatment/exposure groups?
3. Were the data collected using matched / paired samples or independent samples?
4. Are the data a random sample from the population(s) of interest? Or is there at least a

reasonable argument for generalizing from the sample to the population(s)?
5. What is the confidence level we require here?
6. Are we doing one-sided or two-sided testing/confidence interval generation?
7. If we have paired samples, did pairing help reduce nuisance variation?

• Also, if we have paired samples, what does the distribution of sample paired differ-
ences tell us about which inferential procedure to use?

8. If we have independent samples, what does the distribution of each individual sample
tell us about which inferential procedure to use?

6.14 For More Information

1. Chapter 20 of Introduction to Modern Statistics (Çetinkaya-Rundel and Hardin 2024)
does a great job discussing the application of point estimates and confidence intervals
in the case of two independent samples, using a randomization test, as well as the t-test
and bootstrap approaches shown in this chapter.
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2. The infer package website has a lot more on methods for performing statistical inference
of the type we discuss here, especially the bootstrap approaches.

3. Should you need the formula for the t test comparing two independent samples, I en-
courage you to look at Wikipedia’s page on Student’s t test in the two-sample t-tests
section.

4. Similarly, you could consider the Wikipedia page on the Wilcoxon signed rank test for
an example or two and relevant formulas.

5. The Factors chapter and the Spreadsheets chapter in (Wickham, Çetinkaya-Rundel, and
Grolemund 2024) can be helpful in extending your understanding of some of the things
I’ve done in this chapter.

6. The Get Started with Bayesian Analysis vignette from the easystats family of packages
(Makowski, Ben-Shachar, and Lüdecke 2019) is extremely helpful and includes some nice
examples.
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7 Transformation

7.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion. Appendix B describes the 431-Love.R script, and demonstrates its use.

library(car)
library(ggdist)
library(infer)
library(janitor)
library(knitr)
library(MKinfer)
library(naniar)
library(patchwork)
library(rstanarm)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())

7.2 Data from an .Rds file: DARWIN data

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.
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The DARWIN dataset (Diagnosis AlzheimeR WIth haNdwriting) includes handwriting data
specifically designed for the early detection of Alzheimer’s disease (AD). These data are found
in the UC Irvine Machine Learning Repository and are derived from Cilia et al. (2022).
Gathered into our darwin.Rds file are times to complete three handwriting tasks sampled
from the original protocol of 25 such tasks:

• task 1 (a signature),
• task 3 (joining points with a vertical line four times) and
• task 25 (copying a 110-character paragraph)

The .Rds file we have is an R data set, which we can ingest directly with read_rds().

darwin <- read_rds("data/darwin.Rds")

darwin

# A tibble: 174 x 5
subject status time01 time03 time25
<chr> <fct> <dbl> <dbl> <dbl>

1 S_001 HC 5870 10845 61885
2 S_002 AD 7840 12260 41990
3 S_003 AD 156085 20205 159395
4 S_004 AD 4160 3190 77170
5 S_005 HC 6870 10400 124760
6 S_006 AD 5685 5455 252180
7 S_007 HC 5790 2195 36845
8 S_008 AD 8445 10735 106760
9 S_009 AD 9450 24140 72085
10 S_010 AD 17625 8790 122115
# i 164 more rows

n_miss(darwin)

[1] 0

Our data describe 5 characteristics, including a subject ID (subject) for each of 174 study
participants. While the units of time are not clearly specified, they seem to be milliseconds,
so, for example, the first subject completed task 1 in 5.87 seconds (5870 ms.) We see also that
there are no missing values in the darwin data.

Note that the status variable takes two values:
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• HC for Healthy Control
• AD for subject with Alzheimer’s Disease.

darwin |> count(status)

# A tibble: 2 x 2
status n
<fct> <int>

1 HC 85
2 AD 89

In the rest of this chapter, we will explore the comparison of each of the three task times
(gathered in time01, time03 and time 25) between the subjects with Alzheimer’s Disease
and the Healthy Controls.

7.3 Visualizing the data for Task 3

In looking at the data for Task 3, we have two independent samples of an outcome (time03)
split into two groups by status.

darwin |>
reframe(lovedist(time03), .by = status)

# A tibble: 2 x 11
status n miss mean sd med mad min q25 q75 max
<fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 HC 85 0 7477. 4297. 6585 3306. 460 4830 9390 32795
2 AD 89 0 13589. 8183. 12070 7502. 895 7180 17605 39545

A plot of the data, like the one below, shows some right skew within each group, specifically
a few times that are much longer than the rest. Does a comparison of sample means (shown
as gold dots) seem particularly appropriate in this setting?

ggplot(darwin, aes(y = status, x = time03, fill = status)) +
stat_slab(aes(thickness = after_stat(pdf * n)), scale = 0.7) +
stat_dotsinterval(side = "bottom", scale = 0.7, slab_linewidth = NA) +
stat_summary(fun = mean, geom = "point", size = 3, col = "gold") +
scale_fill_metro_d() +
guides(fill = "none") +
labs(x = "Time to complete Task 3 (in ms)")
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Our approaches for inference about two independent samples mostly anticipate a more sym-
metric distribution (with less substantial outliers and with the mean closer to the median)
in each sample. Could we transform the data on time to complete Task 3 so as to obtain a
comparison which might fit those assumptions?

7.4 Some Linear Transformations

Some commonly used transformations in statistics do not change the shape of our distribution
in any meaningful way. These are linear transformations, where our transformed data is just
a linear function of the original data.

Examples include:

• centering the data, by subtracting away its mean, so that the mean value of our trans-
formed data becomes zero, which can be accomplished with the center() function from
the datawizard package in easystats.

dat1 <- darwin |> mutate(ctime03 = center(time03))

dat1 |>
reframe(lovedist(time03)) |>
kable(digits = 2)
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n miss mean sd med mad min q25 q75 max
174 0 10603.36 7239.98 8585 4866.63 460 5568.75 13443.75 39545

dat1 |>
reframe(lovedist(ctime03)) |>
kable(digits = 2)

n miss mean sd med mad min q25 q75 max
174 0 0 7239.98 -2018.36 4866.63 -10143.36 -5034.61 2840.39 28941.64

• rescaling the data to a new range, through division by a constant value, which can be
accomplished by setting the desired minimum and maximum values with the rescale()
function from the datawizard package in easystats.

dat1 <- dat1 |> mutate(rstime03 = rescale(time03, to = c(0, 100)))

dat1 |>
reframe(lovedist(rstime03)) |>
kable(digits = 2)

n miss mean sd med mad min q25 q75 max
174 0 25.95 18.52 20.79 12.45 0 13.07 33.22 100

• standardizing the data, which involves both subtracting the mean and dividing by the
standard deviation, to produce new data with a mean of 0 and a standard deviation
of 1 (this is sometimes referred to as Z-scoring or normalization.) Here, we’ll use the
standardize() function from the datawizard package in easystats.

dat1 <- dat1 |> mutate(ztime03 = standardize(time03))

dat1 |>
reframe(lovedist(ztime03)) |>
kable(digits = 2)

n miss mean sd med mad min q25 q75 max
174 0 0 1 -0.28 0.67 -1.4 -0.7 0.39 4
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Note, however, that none of these linear transformations fix our problem with the shape of our
distribution.

p1 <- ggplot(dat1, aes(x = time03, y = status)) +
geom_boxplot() +
labs(title = "Original Time03 data")

p2 <- ggplot(dat1, aes(x = ctime03, y = status)) +
geom_boxplot() +
labs(title = "Centered Time03 data")

p3 <- ggplot(dat1, aes(x = rstime03, y = status)) +
geom_boxplot() +
labs(title = "Rescaled Time03 data")

p4 <- ggplot(dat1, aes(x = ztime03, y = status)) +
geom_boxplot() +
labs(title = "Standardized Time03 data")

(p1 + p2) / (p3 + p4) +
plot_annotation(title = "Linear Transformations don't change the shape of a distribution.")
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Linear Transformations don't change the shape of a distribution.

So these linear transformations may slide the distribution back-and-forth along the x axis, and
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may expand or contract the range of that distribution, but they don’t address the problems
we’ve had with the shape of the data.

We need to think about some potential transformations that don’t just add/subtract or mul-
tiply/divide by a constant. We need something non-linear.

7.5 The Logarithmic Transformation

The logarithm is one of the more useful non-linear transformations, when our data (as in this
case) are entirely positive and show signs of right skew. In R (and in this class), the log()
function refers to the natural logarithm, with base 𝑒, rather than log10(), which produces
the base 10 logarithm. Either can be used to accomplish the same sort of reshaping of our
data.

p1 <- ggplot(darwin, aes(x = time03, y = status)) +
geom_boxplot() +
stat_summary(geom = "point", fun = "mean", size = 2, col = "red") +
labs(title = "Original Time03 data")

p2 <- ggplot(darwin, aes(x = log(time03), y = status)) +
geom_boxplot() +
stat_summary(geom = "point", fun = "mean", size = 2, col = "red") +
labs(title = "Natural log of Time03")

p3 <- ggplot(darwin, aes(x = log10(time03), y = status)) +
geom_boxplot() +
stat_summary(geom = "point", fun = "mean", size = 2, col = "red") +
labs(title = "Base 10 log of Time03")

p1 / p2 / p3 +
plot_annotation(title = "Logarithmic transformations affect the shape of a distribution.")
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Logarithmic transformations affect the shape of a distribution.

Note

1. Each of the logged time distributions are more symmetric (much less right-skewed,
with the mean closer to the median) than our original data.

2. The two logarithmic bases, though they produce different scales, produce the same
distributional shapes as each other.

darwin |>
reframe(lovedist(time03), .by = status) |>
kable(digits = 2)

status n miss mean sd med mad min q25 q75 max
HC 85 0 7476.88 4297.36 6585 3306.20 460 4830 9390 32795
AD 89 0 13589.33 8182.96 12070 7501.96 895 7180 17605 39545

darwin |>
reframe(lovedist(log(time03)), .by = status) |>
kable(digits = 2)
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status n miss mean sd med mad min q25 q75 max
HC 85 0 8.78 0.55 8.79 0.52 6.13 8.48 9.15 10.40
AD 89 0 9.33 0.66 9.40 0.66 6.80 8.88 9.78 10.59

darwin |>
reframe(lovedist(log10(time03)), .by = status) |>
kable(digits = 2)

status n miss mean sd med mad min q25 q75 max
HC 85 0 3.81 0.24 3.82 0.22 2.66 3.68 3.97 4.52
AD 89 0 4.05 0.29 4.08 0.28 2.95 3.86 4.25 4.60

7.5.1 Importance of the Log Transformation

— from Gelman, Hill, and Vehtari (2021)

The line y = a + bx can be used to express a more general class of relationships
by allowing logarithmic transformations. The formula log y = a + bx represents
exponential growth (if b > 0) or decline (if b < 0*): y = A exp(bx) where A
= exp(a). The parameter A is the value of y when x = 0 and the parameters b
determines the rate of growth or decline. A one-unit difference in x corresponds to
an additive difference of b in log y and thus a multiplicative factor of exp(b) in y.

It is often helpful to model all-positive random variables on the logarithmic scale
because it does not allow for values that are 0 or negative. The logarithmic trans-
formation is non-linear and it pulls in the values at the high end, compressing the
scale of the distribution.

7.6 Box-Cox to suggest Power Transformations

There are several other non-linear transformations we might consider in this situation, includ-
ing an entire family of power distributions. Tukey’s ladder of power transformations can guide
our exploration.

Power (𝜆) -2 -1 -1/2 0 1/2 1 2
Transformation 1/y2 1/y 1/√𝑦 log y √𝑦 y y2
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The Box-Cox plot, sifts through the ladder of options to suggest a transformation (for our
outcome) to achieve a more Normal distribution within each group, and linearize the outcome-
predictor(s) relationship.

Here’s how we might fit a Box-Cox plot to our data on Task 3.

fit3 <- lm(time03 ~ status, data = darwin)
boxCox(fit3, main = "Transformations of time03")
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summary(powerTransform(fit3))$result

Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
Y1 0.1836012 0.33 0.03146328 0.3357392

The power transformations which the Box-Cox plots suggests here has a power of 0.33, in other
words, the cube root of our outcome. But note that the logarithm (power = 0) and square
root (power = 0.5) surround this option, and in the interests of simplicity, I’d like to stick to
one of those two options. First, I’ll show the log transformation…

p1 <- ggplot(darwin, aes(x = log(time03), y = status)) +
geom_boxplot() +
stat_summary(geom = "point", fun = "mean", size = 2, col = "red") +
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labs(title = "Log of Time for Task 3")

p2 <- ggplot(darwin, aes(y = status, x = log(time03), fill = status)) +
stat_slab(aes(thickness = after_stat(pdf * n)), scale = 0.7) +
stat_dotsinterval(side = "bottom", scale = 0.7, slab_linewidth = NA) +
stat_summary(fun = mean, geom = "point", size = 3, col = "gold") +
scale_fill_metro_d() +
guides(fill = "none") +
labs(x = "Log of Time for Task 3")

p1 / p2 +
plot_annotation(title = "Log of Time for Task 3")
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Now, let’s look at the square root transformation instead of the logarithm. Is this a meaningful
improvement in terms of adherence to the assumptions required for making a comparison about
the means?

p3 <- ggplot(darwin, aes(x = sqrt(time03), y = status)) +
geom_boxplot() +
stat_summary(geom = "point", fun = "mean", size = 2, col = "red") +
labs(title = "Square root of Time for Task 3")

142



p4 <- ggplot(darwin, aes(y = status, x = sqrt(time03), fill = status)) +
stat_slab(aes(thickness = after_stat(pdf * n)), scale = 0.7) +
stat_dotsinterval(side = "bottom", scale = 0.7, slab_linewidth = NA) +
stat_summary(fun = mean, geom = "point", size = 3, col = "gold") +
scale_fill_metro_d() +
guides(fill = "none") +
labs(x = "Square root of Time for Task 3")

p3 / p4 +
plot_annotation(title = "Square root of Time for Task 3")
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It seems that either transformation (the square root or the logarithm) can do a pretty good
job of generating distributions for the two status groups (AD and HC) which are less skewed,
and have fewer outliers. I’ll opt to use the logarithm here, because it is such a common choice
for transformations in regression, but the square root would also work well in this specific
instance.

7.6.1 A Few Caveats

1. Some of these transformations (like the logarithm) require the data to be positive. We
can rescale the Y data by adding a constant to every observation in a data set without
changing shape.
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2. We can use a natural logarithm (log in R), a base 10 logarithm (log10) or even some-
times a base 2 logarithm (log2) to good effect in Tukey’s ladder. All affect the associa-
tion’s shape in the same way, so we’ll stick with log (base e).

3. Some re-expressions don’t lead to easily interpretable results. Not many things that
make sense in their original units also make sense in inverse square roots. There are
times when we won’t care, but often, we will.

4. If our primary interest is in making predictions, we’ll generally be more interested in
getting good predictions back on the original scale, and we can back-transform the point
and interval estimates to accomplish this.

7.7 Making Inferences about Task 3

So, we’ll transform our Task 3 times by taking their logarithms.

darwin <- darwin |> mutate(logtime03 = log(time03))

This produces means in the two exposure groups which are 8.8 and 9.3 for the HC and AD
groups, respectively, with standard deviations of 0.55 and 0.66, respectively. It’s appealing to
be comparing transformed values which are between 0 and 100 in practice, and so we’ll look
to build transformations which accomplish this aim.

darwin |> group_by(status) |> reframe(lovedist(logtime03))

# A tibble: 2 x 11
status n miss mean sd med mad min q25 q75 max
<fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 HC 85 0 8.78 0.551 8.79 0.516 6.13 8.48 9.15 10.4
2 AD 89 0 9.33 0.656 9.40 0.656 6.80 8.88 9.78 10.6

7.8 Linear Model and Ordinary Least Squares

To start, we’ll use ordinary least squares and a model fit with lm() to compare the logged
times to complete Task 3 across the two status groups.

fit3 <- lm(logtime03 ~ status, data = darwin)

fit3 |> model_parameters(ci = 0.95) |>
kable(digits = 2)
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Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 8.78 0.07 0.95 8.65 8.91 133.37 172 0
statusAD 0.55 0.09 0.95 0.36 0.73 5.92 172 0

estimate_contrasts(fit3, ci = 0.95, contrast = "status")

Marginal Contrasts Analysis

Level1 | Level2 | Difference | 95% CI | SE | t(172) | p
----------------------------------------------------------------------
HC | AD | -0.55 | [-0.73, -0.36] | 0.09 | -5.92 | < .001

Marginal contrasts estimated at status
p-value adjustment method: Holm (1979)

The AD group has a higher (log time) by about 0.55 with a 95% uncertainty interval of (0.36,
0.73). This transformed time value is no longer expressed in milliseconds, of course, since we’re
now talking about a logarithm of time, rather than our original Task 3 time.

7.8.1 Back-transforming the model’s predictions

Your model holds in the “transformed data” world. We cannot back-transform the regression
coefficients in a rational way.

After fitting a model, it is useful to generate model-based estimates of the outcomes for different
combinations of predictor values, and we can back-transform these predictions to get back to
our original scale, as follows.

7.8.1.1 Predictions for The Average Across Many Subjects

If we consider the entire HC group, we would predict that the average log(time03) would be
what, exactly?

estimate_expectation(fit3, data = "grid", ci = 0.95)

Model-based Expectation

status | Predicted | SE | 95% CI
----------------------------------------
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HC | 8.78 | 0.07 | [8.65, 8.91]
AD | 9.33 | 0.06 | [9.20, 9.46]

Variable predicted: logtime03
Predictors modulated: status

The model fit3 and the estimate_expectation() function can be used to generate expec-
tations for logtime03, which we can then exponentiate to obtain…

• our expectation in terms of the average time to complete Task 3 in milliseconds across all
HC subjects, which is 6502 ms (exp(8.78)), with 95% uncertainty interval (5710, 7406)
(from exp(8.65), exp(8.91).)

Using R as a calculator

Here, we use R as a calculator…

round_half_up(exp(c(8.78, 8.65, 8.91)),0)

[1] 6503 5710 7406

Note that the round_half_up() function comes from the janitor package and is an
effective way of rounding results for presentation. More on this function is available on
the janitor reference page.

• our expectation in terms of the average time to complete Task 3 in milliseconds across
all AD subjects turns out to be 11271 ms, with 95% uncertainty interval (9897, 12836).

Again, using R as a calculator

round_half_up(exp(c(9.33, 9.20, 9.46)),0)

[1] 11271 9897 12836

7.8.1.2 Predictions for Individual Subjects

We can also make predictions for individual subjects with HC or AD, using the
estimate_prediction() function applied to our regression model fit3.
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estimate_prediction(fit3, data = "grid", ci = 0.95)

Model-based Prediction

status | Predicted | SE | 95% CI
-----------------------------------------
HC | 8.78 | 0.61 | [7.58, 9.99]
AD | 9.33 | 0.61 | [8.12, 10.53]

Variable predicted: logtime03
Predictors modulated: status

• our prediction of the time an individual HC subject would need to complete Task 3 (in
milliseconds) turns out to be 6503 ms, with 95% uncertainty interval (1959, 21807).

round_half_up(exp(c(8.78, 7.58, 9.99)),0)

[1] 6503 1959 21807

• our prediction of the time an individual AD subject would need to complete Task 3 (in
milliseconds) turns out to be 11271 ms, with 95% uncertainty interval (3361, 37421).

round_half_up(exp(c(9.33, 8.12, 10.53)),0)

[1] 11271 3361 37421

Note how much wider the uncertainty intervals are for individual subjects than for the average
across all subjects with a certain status (HC or AD.)

7.8.2 Bootstrap CI for Linear Model Coefficients

Rather than using an OLS fit to obtain the t-distribution based confidence interval for our
linear model, we could also bootstrap the confidence intervals in this model with …

model_parameters(fit3, bootstrap = TRUE, iterations = 2000,
ci = 0.95, centrality = "median", ci_method = "quantile")

147



Parameter | Coefficient | 95% CI | p
-------------------------------------------------
(Intercept) | 8.78 | [8.66, 8.89] | < .001
status [AD] | 0.55 | [0.37, 0.73] | < .001

Uncertainty intervals (equal-tailed) are naıve bootstrap intervals.

7.9 Other approaches

7.9.1 t test (Welch - not pooling SD)

If we run R’s default t test, without assuming equal population variances, on our logged times,
we obtain the following, and we’ll also add a calculation of a standardized difference (Cohen’s
d) for the effect size (difference in means on the log scale).

fit3a <- t.test(logtime03 ~ status, data = darwin)

fit3a |> model_parameters(ci = 0.95)

Welch Two Sample t-test

Parameter | Group | status = HC | status = AD | Difference | 95% CI | t(169.24) | p
-------------------------------------------------------------------------------------------------
logtime03 | status | 8.78 | 9.33 | -0.55 | [-0.73, -0.36] | -5.94 | < .001

Alternative hypothesis: true difference in means between group HC and group AD is not equal to 0

cohens_d(logtime03 ~ status, data = darwin, pooled_sd = FALSE)

Cohen's d | 95% CI
--------------------------
-0.90 | [-1.21, -0.59]

- Estimated using un-pooled SD.
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7.9.2 t test (with pooled SD)

The t test on our logged times assuming equal variances in the two groups produces the same
result as our linear model fit with lm(), of course. Here, though, we can also add a calculation
of a standardized difference for the effect size on the log scale.

fit3b <- t.test(logtime03 ~ status, data = darwin, var.equal = TRUE)

fit3b |> model_parameters(ci = 0.95)

Two Sample t-test

Parameter | Group | status = HC | status = AD | Difference | 95% CI | t(172) | p
----------------------------------------------------------------------------------------------
logtime03 | status | 8.78 | 9.33 | -0.55 | [-0.73, -0.36] | -5.92 | < .001

Alternative hypothesis: true difference in means between group HC and group AD is not equal to 0

cohens_d(logtime03 ~ status, data = darwin, pooled_sd = TRUE)

Cohen's d | 95% CI
--------------------------
-0.90 | [-1.21, -0.58]

- Estimated using pooled SD.

Because the two groups (HC and AD) have very similar sample sizes and, after transformation,
similar standard deviations (and thus similar variances, since the variance is just the square
of the standard deviation), it really doesn’t matter whether or not we assume equal variances
for these data.

7.9.3 Wilcoxon Signed Rank

We could, instead of transforming the data with the logarithm, use a non-parametric approach
to compare the distributions (although this doesn’t compare the means) such as a Wilcoxon
signed rank test.

wilcox.test(time03 ~ status, data = darwin,
conf.int = TRUE, conf.level = 0.95)
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Wilcoxon rank sum test with continuity correction

data: time03 by status
W = 1829, p-value = 4.105e-09
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-6730 -3190
sample estimates:
difference in location

-4950

7.9.4 Bayesian linear model

We could also fit a Bayesian linear model to our logged times for Task 3, as follows:

set.seed(431)
fit3c <- stan_glm(logtime03 ~ status, data = darwin, refresh = 0)

post3c <- describe_posterior(fit3c, ci = 0.95)

print_md(post3c, digits = 2)

Table 7.10: Summary of Posterior Distribution

Parameter Median 95% CI pd ROPE
% in

ROPE Rhat ESS
(Intercept) 8.78 [8.66, 8.91] 100% [-0.07, 0.07] 0% 1.000 3621.00
statusAD 0.55 [0.36, 0.72] 100% [-0.07, 0.07] 0% 0.999 3435.00

plot(fit3c, plotfun = "areas", prob = 0.95,
pars = c("(Intercept)", "statusAD"))
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statusAD

(Intercept)

0.0 2.5 5.0 7.5

fit3c |> model_parameters() |> kable(digits = 2)

ParameterMedian CI CI_lowCI_highpd Rhat ESS Prior_DistributionPrior_LocationPrior_Scale
(Intercept) 8.78 0.95 8.66 8.91 1 1 3620.57 normal 9.06 1.66
statusAD 0.55 0.95 0.36 0.72 1 1 3435.02 normal 0.00 3.31

As with an OLS model fit with lm(), we can back-transform expectations or predictions from
this model, but not the coefficients themselves.

estimate_expectation(fit3c, data = "grid", ci = 0.95)

Model-based Expectation

status | Predicted | SE | 95% CI
----------------------------------------
HC | 8.78 | 0.07 | [8.66, 8.91]
AD | 9.33 | 0.07 | [9.20, 9.46]

Variable predicted: logtime03
Predictors modulated: status
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round_half_up(exp(c(8.78, 8.66, 8.91)),0) # for the mean across HC subjects

[1] 6503 5768 7406

round_half_up(exp(c(9.33, 9.20, 9.46)),0) # for the mean across AD subjects

[1] 11271 9897 12836

estimate_prediction(fit3c, data = "grid", ci = 0.95)

Model-based Prediction

status | Predicted | SE | 95% CI
-----------------------------------------
HC | 8.79 | 0.60 | [7.58, 9.97]
AD | 9.33 | 0.61 | [8.13, 10.52]

Variable predicted: logtime03
Predictors modulated: status

round_half_up(exp(c(8.79, 7.58, 10.03)),0) # for an individual HC subject

[1] 6568 1959 22697

round_half_up(exp(c(9.32, 8.12, 10.56)),0) # for an individual AD subject

[1] 11159 3361 38561

7.9.5 Bootstrap CI for mean (time03) without transformation

Finally, we could use the bootstrap directly to build a confidence interval around the difference
in means, without using a transformation. The first way I’ll do this uses the tools from the
infer package.

set.seed(431)
darwin |>
specify(time03 ~ status) |>
generate(reps = 1000, type = "bootstrap") |>
calculate( stat = "diff in means", order = c("AD", "HC") ) |>
get_confidence_interval( level = 0.95, type = "percentile" )
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# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 4270. 8048.

Or we could use the boot.t.test() approach from the MKinfer package.

set.seed(431)
boot.t.test(time03 ~ status, var.equal = TRUE, R = 2000,
data = darwin, conf.level = 0.95)

Bootstrap Two Sample t-test

data: time03 by status
number of bootstrap samples: 2000
bootstrap p-value < 5e-04
bootstrap difference of means (SE) = -6115.905 (1087.369)
95 percent bootstrap percentile confidence interval:
-8236.120 -3963.146

Results without bootstrap:
t = -6.1265, df = 172, p-value = 5.94e-09
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-8081.771 -4143.116
sample estimates:
mean in group HC mean in group AD

7476.882 13589.326

Note the difference between the raw t test result (results without bootstrap) and the bootstrap
in this setting.

We can run this without assuming equal population variances, as well.

set.seed(431)
boot.t.test(time03 ~ status, var.equal = FALSE, R = 2000,
data = darwin, conf.level = 0.95 )

Bootstrap Welch Two Sample t-test
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data: time03 by status
number of bootstrap samples: 2000
bootstrap p-value < 5e-04
bootstrap difference of means (SE) = -6130.079 (977.7301)
95 percent bootstrap percentile confidence interval:
-8147.991 -4226.181

Results without bootstrap:
t = -6.2074, df = 134.42, p-value = 6.245e-09
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-8059.950 -4164.937
sample estimates:
mean in group HC mean in group AD

7476.882 13589.326

7.9.6 Bootstrap CI for Medians

Instead of comparing mean times to complete Task 3, we could use the bootstrap to compare
the medians directly.

set.seed(431)
darwin |>
specify(time03 ~ status) |>
generate(reps = 2500, type = "bootstrap") |>
calculate(

stat = "diff in medians",
order = c("AD", "HC")

) |>
get_ci(level = 0.95, type = "percentile")

# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 3275 7522.
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7.10 What about Task 1?

ggplot(darwin, aes(x = status, y = time01)) +
geom_boxplot()
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fit1 <- lm(time01 ~ status, data = darwin)
boxCox(fit1, main = "Transformations of time01")
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summary(powerTransform(fit1))$result

Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
Y1 -0.5110717 -0.5 -0.6849666 -0.3371769

ggplot(darwin, aes(x = status, y = (time01^-0.5))) +
geom_boxplot()
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darwin <- darwin |>
mutate(trans_t01 = 1000 * time01^(-0.5))

darwin |>
reframe(lovedist(trans_t01), .by = status)

# A tibble: 2 x 11
status n miss mean sd med mad min q25 q75 max
<fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 HC 85 0 12.0 2.81 12.1 2.37 3.17 10.4 13.6 20.0
2 AD 89 0 10.5 3.05 10.2 2.02 2.53 8.97 12.1 19.7

7.10.1 Linear Model

fit1 <- lm(trans_t01 ~ status, data = darwin)

fit1 |>
model_parameters(ci = 0.95) |>
kable(digits = 2)
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Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 11.98 0.32 0.95 11.36 12.61 37.64 172 0
statusAD -1.45 0.45 0.95 -2.33 -0.57 -3.25 172 0

estimate_contrasts(fit1, ci = 0.95, contrast = "status")

Marginal Contrasts Analysis

Level1 | Level2 | Difference | 95% CI | SE | t(172) | p
-------------------------------------------------------------------
HC | AD | 1.45 | [0.57, 2.33] | 0.45 | 3.25 | 0.001

Marginal contrasts estimated at status
p-value adjustment method: Holm (1979)

7.10.2 Back-transformation of predictions and expectations…

Here our transformation is trans_t01 = 1000 * time01^(-0.5). To back out of this trans-
formation, we need to do a little algebra…

𝑡𝑟𝑎𝑛𝑠𝑡01 = 1000∗𝑡𝑖𝑚𝑒01−0.5𝑡𝑟𝑎𝑛𝑠𝑡01 = 1000∗( 1√
𝑡𝑖𝑚𝑒01) 𝑡𝑟𝑎𝑛𝑠𝑡01

1000 = ( 1√
𝑡𝑖𝑚𝑒01) 1000

𝑡𝑟𝑎𝑛𝑠𝑡01
=

√
𝑡𝑖𝑚𝑒01 ( 1000

𝑡𝑟𝑎𝑛𝑠𝑡01
)

2
= 𝑡𝑖𝑚𝑒01

We can obtain an expectation for trans_t01 from estimate_expectation() and then apply
this transformation in order to describe the result in terms of the time to complete Task 1 in
milliseconds, as follows…

estimate_expectation(fit1, data = "grid", ci = 0.95)

Model-based Expectation

status | Predicted | SE | 95% CI
------------------------------------------
HC | 11.98 | 0.32 | [11.36, 12.61]
AD | 10.54 | 0.31 | [ 9.92, 11.15]

Variable predicted: trans_t01
Predictors modulated: status
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So, for example, our expectation for the average across all HC subjects is 11.98 after our trans-
formation. Backing out of this transformation, we have an estimate of 6968 milliseconds.

round_half_up((1000 / 11.98)^2, 0)

[1] 6968

To obtain the uncertainty interval for the expectation across all HC subjects, we apply the
back-transformation to the endpoints of the interval, and then round the results to no decimal
places as follows:

round_half_up(c((1000 / 10.54)^2, (1000 / 9.92)^2, (1000 / 11.15)^2), 0)

[1] 9002 10162 8044

and so our model’s estimate for the time spent on Task 1 for HC subjects on average is 6968
milliseconds, with a 95% uncertainty interval of (6289, 7749) milliseconds.

For the average across AD subjects, we have a point estimate for the time spent on Task 1 of
9002 ms, and a 95% uncertainty interval of (8044, 10162) ms.

round_half_up(c((1000 / 11.36)^2, (1000 / 12.61)^2), 0)

[1] 7749 6289

We can obtain analogous results for individual predictions for HC and AD subjects, respec-
tively, according to this model for transformed Task 1 times, with the following code:

estimate_prediction(fit1, data = "grid", ci = 0.95)

Model-based Prediction

status | Predicted | SE | 95% CI
-----------------------------------------
HC | 11.98 | 2.95 | [6.16, 17.81]
AD | 10.54 | 2.95 | [4.71, 16.36]

Variable predicted: trans_t01
Predictors modulated: status
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round_half_up(c((1000 / 11.98)^2, (1000 / 6.16)^2, (1000 / 17.81)^2), 0) ## HC subjects

[1] 6968 26354 3153

round_half_up(c((1000 / 10.54)^2, (1000 / 4.71)^2, (1000 / 16.36)^2), 0) ## AD subjects

[1] 9002 45077 3736

All of our other approaches used for Task 3 would also work for Task 1, certainly.

7.11 What about Task 25?

Finally, let’s consider Task 25.

ggplot(darwin, aes(x = status, y = time25)) +
geom_boxplot()
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fit25 <- lm(time25 ~ status, data = darwin)
boxCox(fit25, main = "Transformations of time25")
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summary(powerTransform(fit25))$result

Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
Y1 -0.7965846 -1 -1.002999 -0.5901699

Now, we’ll use an inverse transformation and also multiply the values by 1,000,000 in order to
get coefficients which fall between 1 and 100.

ggplot(darwin, aes(x = status, y = (1000000 / time25))) +
geom_boxplot()
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darwin <- darwin |>
mutate(trans_t25 = 1000000 / time25)

darwin |>
reframe(lovedist(trans_t25), .by = status)

# A tibble: 2 x 11
status n miss mean sd med mad min q25 q75 max
<fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 HC 85 0 15.3 6.84 15.8 5.74 1.52 12.0 20.0 33.4
2 AD 89 0 11.0 5.68 10.9 7.19 0.175 6.27 16.8 24.8

7.11.1 Linear Model

fit25 <- lm(trans_t25 ~ status, data = darwin)

fit25 |> model_parameters(ci = 0.95) |> kable(digits = 2)

162



Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 15.25 0.68 0.95 13.91 16.59 22.41 172 0
statusAD -4.27 0.95 0.95 -6.15 -2.40 -4.49 172 0

estimate_contrasts(fit25, ci = 0.95, contrast = "status")

Marginal Contrasts Analysis

Level1 | Level2 | Difference | 95% CI | SE | t(172) | p
--------------------------------------------------------------------
HC | AD | 4.27 | [2.40, 6.15] | 0.95 | 4.49 | < .001

Marginal contrasts estimated at status
p-value adjustment method: Holm (1979)

We could also bootstrap the confidence intervals in this model with …

model_parameters(fit25, bootstrap = TRUE, iterations = 2000,
ci = 0.95, centrality = "median", ci_method = "quantile")

Parameter | Coefficient | 95% CI | p
---------------------------------------------------
(Intercept) | 15.26 | [13.79, 16.68] | < .001
status [AD] | -4.28 | [-6.16, -2.31] | < .001

Uncertainty intervals (equal-tailed) are naıve bootstrap intervals.

Working with the original lm() fit, we can obtain predictions or expectations and back-
transform them as before. I’ll show the average expectations here…

estimate_expectation(fit25, data = "grid", ci = 0.95)

Model-based Expectation

status | Predicted | SE | 95% CI
------------------------------------------
HC | 15.25 | 0.68 | [13.91, 16.59]
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AD | 10.98 | 0.67 | [ 9.67, 12.29]

Variable predicted: trans_t25
Predictors modulated: status

Here are the back-transformed point estimate and 95% uncertainty interval for an individual
prediction for a subject with status AD to complete Task 25, in milliseconds…

round_half_up(c((1000000 / 10.98), (1000000 / 9.67), (1000000 / 12.29)),0)

[1] 91075 103413 81367

so the point estimate is 91075 ms, with 95% uncertainty interval (81367, 103413).

However, we run into a challenge when we look at transforming out of the uncertainty interval
for individual predictions.

estimate_prediction(fit25, data = "grid", ci = 0.95)

Model-based Prediction

status | Predicted | SE | 95% CI
------------------------------------------
HC | 15.25 | 6.31 | [ 2.80, 27.71]
AD | 10.98 | 6.31 | [-1.48, 23.43]

Variable predicted: trans_t25
Predictors modulated: status

For an individual AD subject, we have:

round_half_up(c((1000000 / 10.98), (1000000 / -1.48), (1000000 / 23.43)),0)

[1] 91075 -675676 42680

Our 95% uncertainty interval now includes negative times, and the uncertainty interval no
longer includes the point estimate, and this causes multiple problems. This suggests that
transforming our way out of a problem when making a comparison of this sort is not always
going to produce useful results.
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7.12 For More Information

1. Transformation is discussed in some detail as part of this vignette for the modelbased
package vignette from the easystats meta-package.

2. You can learn more about model-based response estimates and uncertainty at this link
which describes both the estimate_expection() and estimate_prediction() func-
tions.

3. More on the Box-Cox family of power transformations and how they are used in R is
available in this post from 2022 at Data Science Tutorials. A more general discussion of
power transforms, including Box-Cox is available through Wikipedia.

4. Another nice introduction to transformations (using Stata, rather than R, but the ideas
are still relevant) is available here.

5. This overview of functions in the janitor package includes explanations for several useful
tools, including the round_half_up() function.
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8 Weighting

8.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion. Appendix B describes the 431-Love.R script, and demonstrates its use.

library(haven)
library(knitr)
library(naniar)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())

8.2 Data from a SAS file: NHANES 2015-16

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

In this chapter, we’ll be using data from the 2015-16 administration of the NHANES (Na-
tional Health and Nutrition Examination Survey.) See https://wwwn.cdc.gov/nchs/nhanes/
continuousnhanes/overview.aspx?BeginYear=2015 for an overview of NHANES 2015-16.

Course Project B also uses NHANES data, and there we will use the nhanesA (see https://
cran.r-project.org/web/packages/nhanesA/vignettes/Introducing_nhanesA.html) R package
to pull in publicly available data.
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Here, though, we’ll use two SAS files (called DEMO_I.xpt and BPX_I.xpt) downloaded from
the NHANES 2015-16 data repository to pull in the data we need. The files are known as SAS
Transport files, and carry the extension .xpt. The haven package provides the read_xpt()
function to ingest such files.

demo_i_raw <- read_xpt("data/DEMO_I.xpt")
bpx_i_raw <- read_xpt("data/BPX_I.xpt")

Now, we’ll reduce the size of each raw file to include only the variables we plan to use.

demo_i <- demo_i_raw |>
select(SEQN, RIDSTATR, RIAGENDR, RIDAGEYR, SIALANG,

WTINT2YR, WTMEC2YR)

bpx_i <- bpx_i_raw |> select(SEQN, BPXSY1, BPXDI1)

Next, we’ll merge the two files together (each contains an ID variable called SEQN which allows
us to do this) using the left_join() function from the dplyr package within the tidyverse
family.

nh1516 <- left_join(demo_i, bpx_i, by = "SEQN")

Several of the variables in nh1516 are in fact categorical, and we’ll account for that as follows.

nh1516 <- nh1516 |>
mutate(RIDSTATR = factor(RIDSTATR),

RIAGENDR = factor(RIAGENDR),
SIALANG = factor(SIALANG),
SEQN = as.character(SEQN))

8.3 What’s in the Data?

We now have a tibble containing 9971 rows and 9 columns.

nh1516

# A tibble: 9,971 x 9
SEQN RIDSTATR RIAGENDR RIDAGEYR SIALANG WTINT2YR WTMEC2YR BPXSY1 BPXDI1
<chr> <fct> <fct> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>

167

https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2015


1 83732 2 1 62 1 134671. 135630. 128 70
2 83733 2 1 53 1 24329. 25282. 146 88
3 83734 2 1 78 1 12400. 12576. 138 46
4 83735 2 2 56 1 102718. 102079. 132 72
5 83736 2 2 42 1 17628. 18235. 100 70
6 83737 2 2 72 2 11252. 10879. 116 58
7 83738 2 2 11 1 9965. 9861. 102 36
8 83739 2 1 4 1 44750. 46173. NA NA
9 83740 2 1 1 1 9892. 10963. NA NA
10 83741 2 1 22 1 37043. 39353. 110 70
# i 9,961 more rows

From the About NHANES page…

The NHANES interview includes demographic, socioeconomic, dietary, and health-
related questions. The examination component consists of medical, dental, and
physiological measurements, as well as laboratory tests administered by highly
trained medical personnel.

The 9 variables included in nh1516 are:

Variable Description Source
SEQN respondent sequence number (code) DEMO_I

BPX_I
RIDSTATR interview/examination status (1 = Interview only, 2 =

Interview + MEC Exam)
DEMO_I

RIAGENDR sex1 (1 = Male, 2 = Female) DEMO_I
RIDAGEYR age in years at screening DEMO_I
SIALANG language used2 in interview (1 = English, 2 = Spanish) DEMO_I
WTINT2YR full sample 2 year interview weight DEMO_I
WTMEC2YR full sample 2 year MEC3 exam weight DEMO_I

BPXSY1 first systolic blood pressure, in mm Hg BPX_I
BPXDI1 first diastolic blood pressure, in mm Hg BPX_I

1The name RIAGENDR is somewhat unfortunate, as this variable describes biological sex, rather than gender.
2Persons 16 years and older and emancipated minors were interviewed directly. A proxy provided informa-

tion for survey participants who were under 16 and for participants who could not answer the questions
themselves.

3MEC = Mobile Examination Center
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8.3.1 Renaming factor levels

nh1516 |> count(RIAGENDR, SIALANG)

# A tibble: 4 x 3
RIAGENDR SIALANG n
<fct> <fct> <int>

1 1 1 4239
2 1 2 653
3 2 1 4345
4 2 2 734

It would help to rename the factor levels from 1 and 2 to something more meaningful.

nh1516 <- nh1516 |>
mutate(RIAGENDR =

fct_recode(RIAGENDR, "Male" = "1", "Female" = "2"),
SIALANG =

fct_recode(SIALANG, "English" = "1", "Spanish" = "2"),
RIDSTATR =

fct_recode(RIDSTATR, "Int only" = "1",
"Exam and Int" = "2")

)

nh1516 |> count(RIAGENDR, SIALANG)

# A tibble: 4 x 3
RIAGENDR SIALANG n
<fct> <fct> <int>

1 Male English 4239
2 Male Spanish 653
3 Female English 4345
4 Female Spanish 734

8.3.2 Missing data?

The only missing values in our data are blood pressures. This is because not all subjects
completed the MEC examination (where the blood pressures were recorded) as well as the
interview.
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miss_var_summary(nh1516)

# A tibble: 9 x 3
variable n_miss pct_miss
<chr> <int> <num>

1 BPXSY1 2826 28.3
2 BPXDI1 2826 28.3
3 SEQN 0 0
4 RIDSTATR 0 0
5 RIAGENDR 0 0
6 RIDAGEYR 0 0
7 SIALANG 0 0
8 WTINT2YR 0 0
9 WTMEC2YR 0 0

8.4 What is the average age?

8.4.1 Unweighted

Here’s a summary of the age information in our sample.

nh1516 |>
reframe(lovedist(RIDAGEYR)) |>
kable(digits = 2)

n miss mean sd med mad min q25 q75 max
9971 0 31.9 24.77 27 29.65 0 9 53 80

That’s an accurate description of the ages shown in our sample, but each subject in NHANES
is assigned a different sampling weight (called WTINT2YR) which allows this sample to represent
the NHANES Target Population, which is…

The NHANES (target) population is the non-institutionalized U.S. civilian popula-
tion of all ages residing in all 50 states and Washington, D.C. The survey exmaines
a nationally representative sample of about 5,000 persons per year.

• Source: CMS.gov on NHANES.

170

https://www.cms.gov/About-CMS/Agency-Information/OMH/resource-center/hcps-and-researchers/data-tools/sgm-clearinghouse/nhanes


8.4.2 Weighting is important here

In statistics it is common to reweight data or inferences so as to adapt to a target
population. – Gelman, Hill, and Vehtari (2021)

From the description of the DEMO_I file:

The 2-year sample weights (WTINT2YR, WTMEC2YR) should be used for all
NHANES 2015-2016 analyses.

For a variable (like AGE) gathered through the interview process, we will use the WTINT2YR
weight.

nh1516 |> select(SEQN, RIDAGEYR, WTINT2YR) |> head()

# A tibble: 6 x 3
SEQN RIDAGEYR WTINT2YR
<chr> <dbl> <dbl>

1 83732 62 134671.
2 83733 53 24329.
3 83734 78 12400.
4 83735 56 102718.
5 83736 42 17628.
6 83737 72 11252.

So, for example, subject 83732 is 62 years old, and has a sampling weight of more than 134,600
people, while subject 83733 (aged 53) has a much smaller sampling weight of just over 24,300
people. In order to describe the NHANES target population, we must apply these weights
in calculating summaries like the mean, median, standard deviation or MAD of age. So how
might we do this?

8.4.3 Using weighted_mean(), etc.

A series of functions, called weighted_mean(), weighted_median() and so forth, are available
from the datawizard package in the easystats family.

weighted_mean(nh1516$RIDAGEYR, weights = nh1516$WTINT2YR)

[1] 37.98659
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weighted_sd(nh1516$RIDAGEYR, weights = nh1516$WTINT2YR)

[1] 22.60222

weighted_median(nh1516$RIDAGEYR, weights = nh1516$WTINT2YR)

[1] 37

weighted_mad(nh1516$RIDAGEYR, weights = nh1516$WTINT2YR)

[1] 28.1694

Compare these to the unweighted results (repeated below) and we see that the weighting makes
a big difference - after weighting the sample appears to describe a much older population.

nh1516 |> summarise(
mean = mean(RIDAGEYR), sd = sd(RIDAGEYR),
median = median(RIDAGEYR), mad = mad(RIDAGEYR)

)

# A tibble: 1 x 4
mean sd median mad
<dbl> <dbl> <dbl> <dbl>

1 31.9 24.8 27 29.7

8.5 Variation in age by preferred language?

Can we compare the ages we see by the language used in the interview?

8.5.1 Ignoring the weighting

means_by_group(nh1516$RIDAGEYR, by = nh1516$SIALANG)
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# Mean of Age in years at screening by nh1516$SIALANG

Category | Mean | N | SD | 95% CI | p
---------------------------------------------------------
English | 31.45 | 8584 | 24.73 | [30.93, 31.97] | < .001
Spanish | 34.67 | 1387 | 24.85 | [33.37, 35.98] | < .001
Total | 31.90 | 9971 | 24.77 | |

Anova: R2=0.002; adj.R2=0.002; F=20.258; p<.001

fit1 <- lm(RIDAGEYR ~ SIALANG, data = nh1516)

fit1 |> model_parameters(ci = 0.95) |> kable(digits = 2)

Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 31.45 0.27 0.95 30.93 31.97 117.76 9969 0
SIALANGSpanish 3.22 0.72 0.95 1.82 4.63 4.50 9969 0

Ignoring the weighting, we see that the mean age of subjects for whom the interview is in
Spanish is about 3.2 years older than those who were interviewed in English, with 95% CI
(1.8, 4.6) years.

8.5.2 Weighted means within subgroups

Let’s look at the mean age after weighting within each SIALANG group.

nh1516_ENG <- nh1516 |> filter(SIALANG == "English")

weighted_mean(nh1516_ENG$RIDAGEYR, weights = nh1516_ENG$WTINT2YR)

[1] 38.28088

weighted_sd(nh1516_ENG$RIDAGEYR, weights = nh1516_ENG$WTINT2YR)

[1] 22.68499
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nh1516_ESP <- nh1516 |> filter(SIALANG == "Spanish")

weighted_mean(nh1516_ESP$RIDAGEYR, weights = nh1516_ESP$WTINT2YR)

[1] 34.21842

weighted_sd(nh1516_ESP$RIDAGEYR, weights = nh1516_ESP$WTINT2YR)

[1] 21.16711

8.5.3 Using means_by_group()

Another approach is available through the means_by_group() function.

means_by_group(nh1516$RIDAGEYR,
by = nh1516$SIALANG,
weights = nh1516$WTINT2YR)

# Mean of Age in years at screening by nh1516$SIALANG

Category | Mean | N | SD | 95% CI | p
----------------------------------------------------------
English | 38.28 | 3e+08 | 22.68 | [37.82, 38.74] | < .001
Spanish | 34.22 | 2e+07 | 21.17 | [32.57, 35.87] | < .001
Total | 37.99 | 9971 | 22.60 | |

Anova: R2=0.002; adj.R2=0.002; F=21.691; p<.001

8.5.4 Comparing Weighted Means: Linear Model

fit1w <- lm(RIDAGEYR ~ SIALANG,
weights = WTINT2YR, data = nh1516)

fit1w |> model_parameters(ci = 0.95) |> kable(digits = 2)
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Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 38.28 0.23 0.95 37.82 38.74 163.06 9969 0
SIALANGSpanish -4.06 0.87 0.95 -5.77 -2.35 -4.66 9969 0

However, after incorporating the weighting, we see that the weighted mean age of subjects
for whom the interview is in Spanish is almost 4.1 years YOUNGER than those who were
interviewed in English, with 95% CI (2.4, 5.8) years.

So the weighting in fact alters the direction of our estimate. This is deliberate, as primary
language is one of the strata on which the NHANES weights are based to match the sample
to the target population.

8.6 What is the average systolic blood pressure (SBP)?

8.6.1 Unweighted SBP summaries

nh1516 |> reframe(lovedist(BPXSY1)) |> kable(digits = 2)

n miss mean sd med mad min q25 q75 max
9971 2826 120.54 18.62 118 17.79 72 108 130 236

8.6.2 Weighted mean and SD

For the blood pressure readings, which are obtained through the MEC exam, rather than
through the interview, we will need to use the MEC weights gathered in WTMEC2YR instead of
the interview weights we used previously.

weighted_mean(nh1516$BPXSY1, weights = nh1516$WTMEC2YR)

Warning: Some `weights` were negative. Weighting not carried out.

[1] 120.5394

Whoops - we have some negative weights?
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summary(nh1516$WTMEC2YR)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 12551 20281 31740 33708 242387

Actually, it looks like we have some zeros.

Are all of these coming from the people who were not examined?

nh1516 |>
reframe(lovedist(WTMEC2YR), .by = RIDSTATR)

# A tibble: 2 x 11
RIDSTATR n miss mean sd med mad min q25 q75 max
<fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Exam and I~ 9544 0 33160. 34178. 21034. 13256. 3419. 13395. 34969. 2.42e5
2 Int only 427 0 0 0 0 0 0 0 0 0

OK. So in order to apply the weights, we need to restrict ourselves to only those subjects who
completed the MEC Examination.

nh1516_exam <- nh1516 |>
filter(RIDSTATR == "Exam and Int")

nh1516_exam |> select(WTMEC2YR) |> summary()

WTMEC2YR
Min. : 3419
1st Qu.: 13395
Median : 21034
Mean : 33160
3rd Qu.: 34969
Max. :242387

OK. Now we shouldn’t have any non-positive weights…

weighted_mean(nh1516_exam$BPXSY1, weights = nh1516_exam$WTMEC2YR)

[1] 120.6674
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weighted_sd(nh1516_exam$BPXSY1, weights = nh1516_exam$WTMEC2YR)

[1] 17.45271

After weighting, the mean SBP is a little larger, and the standard deviation of SBP is a little
smaller.

8.7 Variation in SBP by sex?

8.7.1 Ignoring the weighting

means_by_group(nh1516$BPXSY1, by = nh1516$RIAGENDR)

# Mean of Systolic: Blood pres (1st rdg) mm Hg by nh1516$RIAGENDR

Category | Mean | N | SD | 95% CI | p
------------------------------------------------------------
Male | 122.18 | 3498 | 18.15 | [121.56, 122.79] | < .001
Female | 118.97 | 3647 | 18.93 | [118.37, 119.57] | < .001
Total | 120.54 | 7145 | 18.62 | |

Anova: R2=0.007; adj.R2=0.007; F=53.393; p<.001

fit2 <- lm(BPXSY1 ~ RIAGENDR, data = nh1516)

fit2 |> model_parameters(ci = 0.95) |> kable(digits = 2)

Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 122.18 0.31 0.95 121.56 122.79 389.56 7143 0
RIAGENDRFemale -3.21 0.44 0.95 -4.07 -2.35 -7.31 7143 0

Ignoring the weighting, we see that the mean SBP for female subjects is about 3.2 mm Hg
smaller than male subjects, with 95% CI for the difference of (2.4, 4.1) mm Hg.
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8.7.2 Weighted Means by sex

Again, we’ll restrict ourselves to those completing both the Exam and the interview.

means_by_group(nh1516_exam$BPXSY1,
by = nh1516_exam$RIAGENDR,
weights = nh1516_exam$WTMEC2YR)

# Mean of Systolic: Blood pres (1st rdg) mm Hg by nh1516_exam$RIAGENDR

Category | Mean | N | SD | 95% CI | p
-------------------------------------------------------------
Male | 122.08 | 1e+08 | 16.42 | [121.50, 122.66] | < .001
Female | 119.33 | 1e+08 | 18.28 | [118.77, 119.90] | < .001
Total | 120.67 | 7145 | 17.45 | |

Anova: R2=0.006; adj.R2=0.006; F=44.449; p<.001

8.7.3 Comparing Weighted Means: Linear Model

fit2w <- lm(BPXSY1 ~ RIAGENDR,
weights = WTMEC2YR, data = nh1516_exam)

fit2w |> model_parameters(ci = 0.95) |> kable(digits = 2)

Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 122.08 0.30 0.95 121.50 122.66 413.58 7143 0
RIAGENDRFemale -2.75 0.41 0.95 -3.55 -1.94 -6.67 7143 0

After weighting, the SBP difference is more like 2.75 mm Hg (95% CI: 1.9, 3.6) which is a bit
smaller than what we saw without weighting.

8.8 For More Information

1. The National Center for Health Statistics, as part of its materials on the NHANES
(National Health and Nutrition Examination Survey) publishes modules found here on
why weights are calculated, how they are calculated, the importance of weights in making
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estimates that are representative of the U.S. civilian non-institutionalized population,
how to select the appropriate weight to use in your analysis, and other issues.

2. Thomas Lumley on Weights in Statistics from 2020 is a nice way of learning more about
the various uses of the terms weights and weighting in statistics and data science.

3. Max Kuhn on Using case weights with tidymodels in R may be helpful to you for a
general overview. Case weights are non-negative numbers used to specify how much
each observation influences the estimation of a model.

4. Within R for Data Science, the Joins chapter provides more information about joining
and merging R data frames.
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9 Comparing Multiple Groups

9.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion. Appendix B describes the 431-Love.R script, and demonstrates its use.

library(ggdist)
library(janitor)
library(knitr)
library(naniar)
library(rstanarm)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())

9.2 Data from a tab-separated file: Contrast Baths and Carpal
Tunnel Syndrome

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

Study participants were randomly assigned to one of three treatment group protocols–contrast
baths with exercise, contrast baths without exercise, and an exercise-only control treatment
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group. Study participants were evaluated with hand volumetry, before and after treatment at
two different data collection periods-pre- and postoperatively.

The original article is A randomized controlled study of contrast baths on patients with carpal
tunnel syndrome by Robert G. Janssen, Deborah A. Schwartz, and Paul F Velleman. I sourced
these data from the Data and Story Library.

Data were gathered on 76 participants (59 had complete data on our outcome) before Carpal
Tunnel Release surgery. The changes in hand volume (the after treatment volume minus the
before treatment volume) are the outcome of interest.

cbaths <- read_tsv("data/cbaths.txt",
show_col_types = FALSE) |>

janitor::clean_names() |>
mutate(treatment = factor(treatment))

miss_var_summary(cbaths)

# A tibble: 2 x 3
variable n_miss pct_miss
<chr> <int> <num>

1 hand_vol_chg 17 22.4
2 treatment 0 0

## drop the rows with missing values

cbaths <- cbaths |>
drop_na()

cbaths

# A tibble: 59 x 2
treatment hand_vol_chg
<fct> <dbl>

1 Bath 10
2 Exercise 0
3 Bath 10
4 Bath 5
5 Exercise 4
6 Bath+Exercise 4
7 Exercise 2
8 Bath -4
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9 Bath 8
10 Bath+Exercise 0
# i 49 more rows

9.2.1 Summarizing Hand Volume Change by Treatment Group

Our data shows hand volume change (hand_vol_chg) for each subject, as well as which of the
three treatments they received. Suppose we want to compare the means of these outcomes
across the three treatment groups.

cbaths |>
reframe(lovedist(hand_vol_chg), .by = treatment) |>
kable(digits = 2)

treatment n miss mean sd med mad min q25 q75 max
Bath 22 0 4.55 7.76 5.5 8.15 -9 -2.25 10.0 20
Exercise 14 0 -1.07 5.18 0.0 2.22 -12 -1.00 1.5 5
Bath+Exercise 23 0 8.00 7.04 7.0 10.38 -2 2.00 12.5 21

Our sample sizes are fairly small in each group, so we’ll keep that in mind as we plot the data,
thinking about center, spread and shape.

9.2.2 Rain Cloud Plot

ggplot(cbaths, aes(y = treatment, x = hand_vol_chg, fill = treatment)) +
stat_slab(aes(thickness = after_stat(pdf * n)), scale = 0.7) +
stat_dotsinterval(side = "bottom", scale = 0.7, slab_linewidth = NA) +
scale_fill_brewer(palette = "Set2") +
guides(fill = "none")
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With smaller sample sizes, it’s a bit hard to make strong conclusions about the shape of the
data in each group from these plots, or from the boxplots below.

9.2.3 Boxplot and Violin with Means

ggplot(cbaths, aes(x = treatment, y = hand_vol_chg)) +
geom_violin(aes(fill = treatment)) +
geom_boxplot(width = 0.15) +
stat_summary(geom = "point", fun = "mean", col = "red") +
scale_fill_brewer(palette = "Set2") +
guides(fill = "none")
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The data in the Bath and Bath+Exercise groups are highly spread out, I think, with the means
and medians fairly close to each other. In the Exercise group, we see a few candidate outliers
on the low end, and the mean is below even the 25th percentile as a result.

It’s not really clear how willing we should be to assume that the data from each of the samples
came from a Normal distribution here, as is often the case with small sample sizes. A linear
model does make this assumption when comparing three (or more) group means, but happily
is pretty robust to modest violations of that assumption. Let’s run the OLS model and see
what we get.

9.3 Comparing Means with a Linear Model

9.3.1 Linear Model Comparing 3 treatment means

Here we build an ordinary least squares (OLS) fit using lm() to predict the outcome based on
which of the three treatment groups each subject is in. The predictions made turn out to just
be the sample mean of the outcome (hand volume change) in each treatment group. Since
we have a small sample size, let’s use a 90% confidence interval here, rather than the default
choice of 95%.
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fit1 <- lm(hand_vol_chg ~ treatment, data = cbaths)

model_parameters(fit1, ci = 0.90) |> kable(digits = 2)

Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 4.55 1.48 0.9 2.07 7.02 3.07 56 0.00
treatmentBath+Exercise 3.45 2.07 0.9 -0.01 6.92 1.67 56 0.10
treatmentExercise -5.62 2.38 0.9 -9.59 -1.64 -2.36 56 0.02

9.3.2 Estimate means at each level from model

means1 <- estimate_means(fit1, ci = 0.90)

We selected `by = c("treatment")`.

means1

Estimated Marginal Means

treatment | Mean | SE | 90% CI
---------------------------------------------
Bath | 4.55 | 1.48 | [ 2.07, 7.02]
Bath+Exercise | 8.00 | 1.45 | [ 5.58, 10.42]
Exercise | -1.07 | 1.86 | [-4.18, 2.03]

Marginal means estimated at treatment

It looks like, for example, the Bath+Exercise group has a 90% CI which is completely above
the Bath group, which is in turn completely above the Exercise group.

Here is a violin plot of each group, on which we’ve included the sample means and the 90%
confidence intervals.

plot(visualisation_recipe(means1,
show_data = "violin"))
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For more on using this approach to visualization when modeling a group of means, you might
be interested in this modelbased package vignette.

9.3.3 Assessing Normality

One way to assess whether we have a meaningful problem is to look at some diagnostic plots
for our linear model, which we’ll see more of in Chapter 11. But for now, let’s consider a
Normal Q-Q plot of the regression residuals for our model fit1 as a way of assessing whether
non-Normality in our samples is a serious problem for our fit.

plot(fit1, which = 2)
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With the possible exception of observation 30 (which may be an outlier), our Normal Q-Q
plot of residuals looks pretty good. There’s no evidence of strong violations of the Normality
assumption within our fit. So we’ll proceed.

9.3.4 Analysis of Variance Tables

To compare means of two or more independently sampled groups, we can use an analysis of
variance (ANOVA) table, which can be generated in at least the following two ways:

anova(fit1)

Analysis of Variance Table

Response: hand_vol_chg
Df Sum Sq Mean Sq F value Pr(>F)

treatment 2 716.16 358.08 7.4148 0.001391 **
Residuals 56 2704.38 48.29
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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summary(aov(fit1))

Df Sum Sq Mean Sq F value Pr(>F)
treatment 2 716.2 358.1 7.415 0.00139 **
Residuals 56 2704.4 48.3
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Either one of these ANOVA tables can be used to estimate “eta-squared” (𝜂2), the proportion
of variation explained by the model (which is the sum of squares attributed to the treatment
groups - here, 716.16), divided by the total sum of squares (which is 716.16 + 2704.4 =
3420.56.)

We can also obtain an estimate for “eta-squared” (𝜂2), which is the proportion of variation
in our outcome accounted for by the model, i.e. the proportion of variation captured by the
means of the treatment groups. Here, the value of 𝜂2 is estimated to be 21%.

eta_squared(fit1, ci = 0.90)

# Effect Size for ANOVA

Parameter | Eta2 | 90% CI
-------------------------------
treatment | 0.21 | [0.09, 1.00]

- One-sided CIs: upper bound fixed at [1.00].

What if we want to directly compare each combination of means (Bath + Exercise to Bath,
Exercise to Bath, and Bath + Exercise to Exercise) with 90% confidence intervals? We have
two main approaches that we discuss here: Holm’s method (which is a bit superior to the
Bonferroni approach in that it’s more powerful) and Tukey’s method (which is appropriate if
we pre-planned a set of pairwise comparisons.)

9.3.5 Pairwise Comparisons using Holm method

con1 <- estimate_contrasts(fit1, contrast = "treatment",
ci = 0.90, p.adjust = "holm")

con1 |> kable(digits = 2)
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Level1 Level2 Difference CI_low CI_high SE df t p
(Bath+Exercise) Exercise 9.07 3.93 14.21 2.36 56 3.85 0.00
Bath (Bath+Exercise) -3.45 -7.98 1.07 2.07 56 -1.67 0.10
Bath Exercise 5.62 0.43 10.80 2.38 56 2.36 0.04

We see that, for example, the comparison of (Bath+Exercise) - Exercise has an estimated
mean difference of 9.07, with a 90% confidence interval of (3.93, 14.21). It appears that the
combination treatment led to larger hand volume changes, on average.

We can draw similar conclusions about the other two paired comparisons. It’s often helpful to
plot these comparisons, and we can do this as follows.

con1_tib <- tibble(con1) |>
mutate(contr = str_c(Level1, " - ", Level2))

ggplot(con1_tib, aes(x = contr, y = Difference)) +
geom_point() +
geom_errorbar(aes(ymin = CI_low, ymax = CI_high)) +
geom_hline(yintercept = 0, col = "red", lty = "dashed") +
labs(title = "Holm 90% HSD Intervals for Hand Volume Change",

x = "Contrast",
y = "Difference in Hand Volume Change")
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Note that only the Bath - (Bath + Exercise) comparison has a negative point estimate, and
it also is the only comparison which has a 90% confidence interval which includes zero. Why
might that be interesting?

9.3.6 Pairwise Comparisons using Tukey’s HSD method

Another approach (more powerful than Holm’s approach if we pre-plan our pairwise compar-
isons) is Tukey’s Honestly Significant Differences method.

con1a <- estimate_contrasts(fit1,
contrast = "treatment", p_adjust = "tukey", ci = 0.90

)

con1a |> kable(digits = 2)

Level1 Level2 Difference CI_low CI_high SE df t p
(Bath+Exercise) Exercise 9.07 4.14 14.01 2.36 56 3.85 0.00
Bath (Bath+Exercise) -3.45 -7.80 0.89 2.07 56 -1.67 0.23
Bath Exercise 5.62 0.64 10.59 2.38 56 2.36 0.06

Are there important differences in the findings from the Tukey and Holm procedures in this
case?

con1a_tib <- tibble(con1a) |>
mutate(contr = str_c(Level1, " - ", Level2))

ggplot(con1a_tib, aes(y = contr, x = Difference)) +
geom_point() +
geom_errorbar(aes(xmin = CI_low, xmax = CI_high)) +
geom_vline(xintercept = 0, col = "red", lty = "dashed") +
labs(title = "Tukey 90% HSD Intervals for Hand Volume Change",

y = "Contrast",
x = "Difference in Hand Volume Change")

190



(Bath+Exercise) − Exercise

Bath − (Bath+Exercise)

Bath − Exercise

−5 0 5 10 15
Difference in Hand Volume Change

C
on

tr
as

t
Tukey 90% HSD Intervals for Hand Volume Change

9.4 Bayesian Model comparing 3 means

To fit a Bayesian linear model to compare the mean hand volume changes across our three
treatment groups, we can use the following code.

set.seed(431)
fit2 <- stan_glm(hand_vol_chg ~ treatment,

data = cbaths, refresh = 0)

post2 <- describe_posterior(fit2, ci = 0.90)
print_md(post2, digits = 2)

Table 9.5: Summary of Posterior Distribution

Parameter Median 90% CI pd ROPE
% in

ROPE Rhat ESS
(Intercept) 4.58 [ 2.14, 7.01] 99.72% [-0.77, 0.77] 0% 1.000 3141.00
treatmentBath+Exercise3.45 [ 0.04, 6.87] 95.12% [-0.77, 0.77] 7.82% 1.000 2951.00
treatmentExercise -5.70 [-9.72, -1.74] 98.95% [-0.77, 0.77] 0% 0.999 3201.00
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We see that the model selects the Bath only group as its baseline, with an estimated mean
(based on the median of the posterior distribution) of 4.58, with 90% credible interval (2.14,
7.01).

The difference between Bath only and Bath+Exercise is estimated to be 3.45 (with higher
values for the Bath+Exercise group) with 90% credible interval (0.04, 6.87).

The difference between Bath only and Exercise only is estimated to be 5.70 (with higher values
for the Bath group) with 90% credible interval (1.74, 9.72).

Here is the plot of these three effects, showing the 90% credible intervals.

plot(fit2,
plotfun = "areas", prob = 0.90,
pars = c("(Intercept)", "treatmentBath+Exercise",

"treatmentExercise"))

treatmentExercise

treatmentBath+Exercise

(Intercept)

−10 0 10

fit2 |> model_parameters(ci = 0.90) |> kable(digits = 2)

Parameter MedianCI CI_lowCI_highpd Rhat ESS Prior_DistributionPrior_LocationPrior_Scale
(Intercept) 4.58 0.9 2.14 7.01 1.00 1 3141.37normal 4.56 19.20
treatmentBath+Exercise3.45 0.9 0.04 6.87 0.95 1 2950.71normal 0.00 39.03
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Parameter MedianCI CI_lowCI_highpd Rhat ESS Prior_DistributionPrior_LocationPrior_Scale
treatmentExercise -

5.70
0.9 -

9.72
-1.74 0.99 1 3201.18normal 0.00 44.74

Again, we obtain the comparisons of the various treatment group means in terms of hand
volume change.

9.5 Non-Normality?

What if we’re not willing to assume a Normal distribution for each sample? Happily the
ANOVA procedure is pretty robust and we’ll usually be OK thinking about a linear model
(Bayesian or OLS) in practical work, unless we have substantial skew. The natural solution in
the case of skew might be to consider a transformation of our outcome, and we’ll think about
that more in our next chapter.

There are other options, which include extending our bootstrap approach to the case of 3
or more independent samples, working with a randomization approach, or the use of a rank
transformation to create something called a Kruskal-Wallis test, but I’ll leave those out of the
conversation for now.

9.6 For More Information

1. Chapter 22 of Introduction to Modern Statistics is entitled “Inference for comparing
many means” and does a very nice job of describing some key features of the random-
ization and ANOVA approaches. See Çetinkaya-Rundel and Hardin (2024).

2. Aickin and Gensler’s 1996 article in the American Journal of Public Health called Ad-
justing for multiple testing when reporting research results: the Bonferroni vs Holm
methods provides some logic for choosing Holm vs. Bonferroni approaches. Wikipedia
also has nice explanations of the Bonferroni correction and the Holm approach, which
may be of interest.

3. Wikipedia also describes and provides some of the mathematical foundations for Tukey’s
HSD test, which is also called several other things. Abdi and Williams (2010) has a nice
summary (pdf) called Tukey’s Honestly Significant Difference (HSD) Test.

4. The lmboot package in R (pdf) provides functions for bootstrap evaluation of ANOVA
settings, and the author of the package, Megan Heyman, produced slides on Bootstrap
in Linear Models: A Comprehensive R package in 2019.

5. The Kruskal-Wallis test is a rank-based test for assessing whether multiple samples come
from the same distribution or not. The kruskal.test() function is the main tool in R.
This page provides a pretty comprehensive example of its usage in R.

193

https://openintro-ims.netlify.app/inference-many-means
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1380484/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1380484/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1380484/
https://en.wikipedia.org/wiki/Bonferroni_correction
https://en.wikipedia.org/wiki/Holm%E2%80%93Bonferroni_method
https://en.wikipedia.org/wiki/Tukey%27s_range_testhttps://en.wikipedia.org/wiki/Tukey%27s_range_test
https://en.wikipedia.org/wiki/Tukey%27s_range_testhttps://en.wikipedia.org/wiki/Tukey%27s_range_test
https://personal.utdallas.edu/~herve/abdi-HSD2010-pretty.pdf
https://cran.r-project.org/web/packages/lmboot/lmboot.pdf
https://meganheyman.github.io/NESS2019Slides.pdf
https://meganheyman.github.io/NESS2019Slides.pdf
https://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_test
https://www.datanovia.com/en/lessons/kruskal-wallis-test-in-r/


6. Visit this tutorial from the bayestestR package (part of easystats) for a nice intro-
duction to the Bayesian model we’re fitting here.
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10 Storing Blood

10.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion. Appendix B describes the 431-Love.R script, and demonstrates its use.

library(car)
library(ggdist)
library(janitor)
library(knitr)
library(naniar)
library(patchwork)
library(rstanarm)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())

10.2 Blood Storage data

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

The storage.Rds tibble we provide comes from the Cleveland Clinic Statistical Dataset Repos-
itory. The source1 is Cata, Klein, and al. (2011). A version of the data is also available as

1Note that the first author’s last name is Cata, not Cato, as the CCF repository suggests.

195

https://www.lerner.ccf.org/quantitative-health/services/#research-education
https://www.lerner.ccf.org/quantitative-health/services/#research-education


part of the medicaldata package in R (see Higgins (2023).)

From the CCF Repository, we have the following background:

In cancer patients, perioperative blood transfusion has long been suspected of
reducing long-term survival, but available evidence is inconsistent. An important
factor associated with the deleterious effects of blood transfusion is the storage
age of the transfused blood units. It is suspected that cancer recurrence may be
worsened after the transfusion of older blood.

This study evaluated the association between red blood cells (RBC) storage du-
ration and biochemical prostate cancer recurrence after radical prostatectomy.
Specifically, tested was the hypothesis that perioperative transfusion of allogeneic
RBCs stored for a prolonged period is associated with earlier biochemical recur-
rence of prostate cancer after prostatectomy.

Patients were assigned to 1 of 3 RBC age exposure groups on the basis of the
terciles (ie, the 33rd and 66th percentiles) of the overall distribution of RBC storage
duration if all their transfused units could be loosely characterized as of “younger,”
“middle,” or “older” age.

The sample we study here includes data on 307 men who:

• had undergone radical prostatectomy and
• received transfusion during or within 30 days of the surgical procedure at Cleveland

Clinic and
• had available PSA follow-up data, and
• who received solely allogeneic blood products (rather than a combination) and could be

classified into one of the three RBC age exposure groups, and
• did not have any missing data on prostate volume.

The variable we’ll study here is the prostate volume (PVol, in g) of the subjects in each of the
three RBC Age Groups listed below, although this is just a convenient choice for us.

• RBC_group 1 was ≤ 13 days (“younger”)
• RBC_group 2 was in between (“middle”)
• RBC_group 3 was ≥ 18 days (“older”)

storage <- read_rds("data/storage.Rds")

storage
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# A tibble: 307 x 3
id RBC_group PVol
<chr> <fct> <dbl>

1 1 3 54
2 2 3 43.2
3 3 3 103.
4 4 2 46
5 5 2 60
6 6 3 45.9
7 7 3 42.6
8 8 1 40.7
9 9 1 45
10 10 2 67.6
# i 297 more rows

n_miss(storage)

[1] 0

As noted, we have no missing data to overcome, and the RBC_group information (codes 1, 2
and 3) are classified as a factor, rather than a numeric value.

10.3 Exploratory Data Analysis

10.3.1 Visualization

ggplot(storage, aes(x = RBC_group, y = PVol)) +
geom_violin(aes(fill = RBC_group)) +
geom_boxplot(width = 0.3) +
stat_summary(fun = mean, geom = "point", col = "red") +
scale_fill_brewer(palette = "Set2") +
guides(fill = "none")
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As when we’ve worked with other comparisons using independent samples, our main question
is whether each sample appears likely to have come from a Normal distribution, or not. Here,
all three RBC groups show meaningful (right) skew on the PVol outcome. We can see this with
other tools as well, such as a set of faceted Normal Q-Q plots.

ggplot(storage, aes(sample = PVol, col = RBC_group)) +
geom_qq() + geom_qq_line(aes(col = RBC_group)) +
scale_color_metro_d() +
facet_wrap(~ RBC_group, labeller = "label_both") +
guides(color = "none") +
labs(title = "Normal Q-Q plots of PVol by RBC_group",

y = "Observed Data", x = "N(0,1) expectation")

198



RBC_group: 1 RBC_group: 2 RBC_group: 3

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

0

100

200

N(0,1) expectation

O
bs

er
ve

d 
D

at
a

Normal Q−Q plots of PVol by RBC_group

All three plots curve up and away from their respective straight lines at both the top and
bottom of the distribution, indicating right skew.

Another approach we might use here comes from the ggdist package.

ggplot(storage, aes(y = RBC_group, x = PVol, fill = RBC_group)) +
stat_slab(aes(thickness = after_stat(pdf * n)), scale = 0.7) +
stat_dotsinterval(side = "bottom", scale = 0.7, slab_linewidth = NA) +
scale_fill_brewer(palette = "Set2") +
guides(fill = "none") +
theme_bw()
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10.3.2 Numerical Summaries

Within each group, we see the mean PVol above the median PVol, also a sign of right skew.

storage |>
reframe(lovedist(PVol), .by = RBC_group) |>
kable(digits = 2)

RBC_group n miss mean sd med mad min q25 q75 max
3 104 0 54.27 30.06 47.25 15.64 19.4 37.50 61.50 237.0
2 97 0 56.37 21.27 53.00 16.31 24.0 42.70 64.00 149.6
1 106 0 58.66 36.72 48.60 17.20 20.9 40.78 66.67 274.0

10.4 Initial Linear Fit

Despite the apparent right skew, let’s fit an OLS model (with lm()) first to the raw data, just
for completeness.
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fit1 <- lm(PVol ~ RBC_group, data = storage)

summary(fit1)

Call:
lm(formula = PVol ~ RBC_group, data = storage)

Residuals:
Min 1Q Median 3Q Max

-37.756 -16.174 -7.056 7.989 215.344

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 58.656 2.937 19.968 <2e-16 ***
RBC_group2 -2.289 4.249 -0.539 0.591
RBC_group3 -4.382 4.174 -1.050 0.295
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 30.24 on 304 degrees of freedom
Multiple R-squared: 0.003615, Adjusted R-squared: -0.00294
F-statistic: 0.5515 on 2 and 304 DF, p-value: 0.5767

Under the fitted model, how would we interpret the point estimates?

• The intercept shows the average value of PVol for subjects in RBC_group1, the group
not otherwise identfied here, and that is 58.7 grams.

• The RBC_group2 slope coefficient shows the average difference in PVol for subjects who
were in RBC_group2 as compared to the baseline category: RBC_group1. That mean
difference is estimated to be -2.3 grams, so that we estimate the mean PVol of RBC_group2
subjects to be 58.7 - 2.3 or 56.4 grams.

• Finally, the RBC_group3 slope coefficient shows the average difference in PVol for subjects
who were in RBC_group3 as compared to RBC_group1. That mean difference is estimated
to be -4.4 grams, so that we estimate the mean PVol of RBC_group3 subjects to be 58.7
- 4.4 or 54.3 grams.

Does the assumption of Normality required by this fit work well, according to the diagnostic
Q-Q plot of residuals shown below?
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plot(fit1, which = 2)
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No. We still have lots of right skew, especially on the higher end of the residuals. Let’s consider
transforming PVol.

10.5 Would a Transformation Be Useful?

boxCox(fit1, main = "Transformations of Prostate Volume")
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summary(powerTransform(fit1))$result

Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
Y1 -0.5717863 -0.5 -0.7825024 -0.3610701

Given the suggested power of -0.5, we’ll try an inverse square root, and compare it to the two
nearest transformations, the log (power = 0) and the inverse (power = -1.) Here are a set of
boxplots with means to help us.

p1 <- ggplot(storage, aes(x = log(PVol), y = RBC_group)) +
geom_boxplot() +
stat_summary(geom = "point", fun = "mean", size = 2, col = "red") +
labs(title = "log(Prostate Volume)", y = "Group")

p2 <- ggplot(storage, aes(x = PVol^(-0.5), y = RBC_group)) +
geom_boxplot() +
stat_summary(geom = "point", fun = "mean", size = 2, col = "red") +
labs(title = "Inverse Square Root of Prostate Volume", y = "Group")

p3 <- ggplot(storage, aes(x = 1/PVol, y = RBC_group)) +
geom_boxplot() +
stat_summary(geom = "point", fun = "mean", size = 2, col = "red") +
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labs(title = "1 / Prostate Volume", y = "Group")

p1 / p2 / p3 +
plot_annotation(title = "Candidate Transformations")
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I think we could possibly go with any of these transformations, but I will select the inverse
square root (power = -0.5) for two reasons:

• it has candidate outliers on both sides of the distribution, so it looks a little more
symmetric than the other choices, and

• I haven’t used that transformation yet in this book.

10.5.1 Build in Transformation

Here are the means and standard deviations of the raw PVol values after our transformation.

storage |> group_by(RBC_group) |>
summarise(mean = mean(PVol^(-0.5)), sd = sd(PVol^(-0.5)))

# A tibble: 3 x 3
RBC_group mean sd
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<fct> <dbl> <dbl>
1 1 0.141 0.0274
2 2 0.139 0.0231
3 3 0.145 0.0272

I would want to multiply these values by a constant, say, 100, so that we can more easily look
at the coefficients.

storage <- storage |>
mutate(PV_trans = 100*(PVol^(-0.5)))

storage |> group_by(RBC_group) |>
summarise(mean = mean(PV_trans), sd = sd(PV_trans))

# A tibble: 3 x 3
RBC_group mean sd
<fct> <dbl> <dbl>

1 1 14.1 2.74
2 2 13.9 2.31
3 3 14.5 2.72

10.6 Linear Fit after Inverse Square Root Transformation

fit2 <- lm(100*(PVol^(-0.5)) ~ RBC_group, data = storage)

summary(fit2)

Call:
lm(formula = 100 * (PVol^(-0.5)) ~ RBC_group, data = storage)

Residuals:
Min 1Q Median 3Q Max

-8.0487 -1.6050 0.0207 1.5161 8.1997

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.0899 0.2532 55.637 <2e-16 ***
RBC_group2 -0.1756 0.3664 -0.479 0.632
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RBC_group3 0.4142 0.3599 1.151 0.251
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.607 on 304 degrees of freedom
Multiple R-squared: 0.008931, Adjusted R-squared: 0.002411
F-statistic: 1.37 on 2 and 304 DF, p-value: 0.2557

plot(fit2, which = 2)
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After this transformation, the Normal Q-Q plot of residuals is certainly closer to a Normal
distribution. Is this also better than, say, the log transformation?

10.7 Linear Fit after Log Transformation

fit3 <- lm(log(PVol) ~ RBC_group, data = storage)

summary(fit3)
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Call:
lm(formula = log(PVol) ~ RBC_group, data = storage)

Residuals:
Min 1Q Median 3Q Max

-0.93428 -0.23894 -0.04056 0.20666 1.65158

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.96155 0.03825 103.576 <2e-16 ***
RBC_group2 0.01084 0.05533 0.196 0.845
RBC_group3 -0.06199 0.05435 -1.141 0.255
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3938 on 304 degrees of freedom
Multiple R-squared: 0.006664, Adjusted R-squared: 0.0001289
F-statistic: 1.02 on 2 and 304 DF, p-value: 0.3619

plot(fit3, which = 2)
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I think I prefer the inverse square root transformation here.
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10.8 Back-Transforming Predictions

Let’s get that fit’s (fit2) predictions for each RBC_group:

estimate_means(fit2, ci = 0.95)

We selected `by = c("RBC_group")`.

Warning in (function (object, at, cov.reduce = mean, cov.keep = get_emm_option("cov.keep"), : There are unevaluated constants in the response formula
Auto-detection of the response transformation may be incorrect

Estimated Marginal Means

RBC_group | Mean | SE | 95% CI
------------------------------------------
1 | 0.14 | 2.53e-03 | [0.14, 0.15]
2 | 0.14 | 2.65e-03 | [0.13, 0.14]
3 | 0.15 | 2.56e-03 | [0.14, 0.15]

Marginal means estimated at RBC_group

Note that we could also use:

estimate_expectation(fit2, data = "grid", ci = 0.95)

Model-based Expectation

RBC_group | Predicted | SE | 95% CI
---------------------------------------------
1 | 14.09 | 0.25 | [13.59, 14.59]
2 | 13.91 | 0.26 | [13.39, 14.44]
3 | 14.50 | 0.26 | [14.00, 15.01]

Variable predicted: PVol
Predictors modulated: RBC_group

So, for example, our predicted transformed value of PVol among subjects in RBC_group 1 is
14.09, with 95% CI (13.59, 14.59).

To back-transform, we remember that the transformation we used was:
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𝑃𝑉 𝑜𝑙𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 = 100√
𝑃𝑉 𝑜𝑙

To back out of the transformation we need to solve for PVol in terms of the transformed PVol.
That is:

𝑃𝑉 𝑜𝑙𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 = 100√
𝑃𝑉 𝑜𝑙

𝑃𝑉 𝑜𝑙𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑
100 = 1√

𝑃𝑉 𝑜𝑙
√

𝑃𝑉 𝑜𝑙 = 100
𝑃𝑉 𝑜𝑙𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑

𝑃𝑉 𝑜𝑙 = ( 100
𝑃𝑉 𝑜𝑙𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑

)
2

Again, our predicted transformed value of PVol among subjects in RBC_group 1 is 14.09,
with 95% CI (13.59, 14.59).

Converting these values back to our original scale (in g) for PVol gives:

• point estimate (100/14.09)^2 = 50.4
• lower bound (100/14.59)^2 = 47, and
• upper bound (100/13.59)^2 = 54.1

I’ll leave it to you to do the same sort of calculation for the point estimate and 95% CI for
RBC groups 2 and 3.

10.9 Pairwise Comparisons of Means

10.9.1 Bonferroni correction approach

con1 <- estimate_contrasts(fit2, contrast = "RBC_group",
ci = 0.95, p_adjust = "bonferroni")

Warning in (function (object, at, cov.reduce = mean, cov.keep = get_emm_option("cov.keep"), : There are unevaluated constants in the response formula
Auto-detection of the response transformation may be incorrect

con1 |> kable(digits = 2)

Level1 Level2 Difference CI_low CI_high SE df t p
RBC_group1 RBC_group2 0.18 -0.71 1.06 0.37 304 0.48 1.00
RBC_group1 RBC_group3 -0.41 -1.28 0.45 0.36 304 -1.15 0.75
RBC_group2 RBC_group3 -0.59 -1.48 0.30 0.37 304 -1.60 0.33
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Level1 Level2 Difference CI_low CI_high SE df t p

Note that each of these contrasts have confidence intervals which include zero. Is that still
true with our other approaches?

10.9.2 Holm-Bonferroni approach

con2 <- estimate_contrasts(fit2, contrast = "RBC_group",
ci = 0.95, p_adjust = "holm")

Warning in (function (object, at, cov.reduce = mean, cov.keep = get_emm_option("cov.keep"), : There are unevaluated constants in the response formula
Auto-detection of the response transformation may be incorrect

con2 |> kable(digits = 2)

Level1 Level2 Difference CI_low CI_high SE df t p
RBC_group1 RBC_group2 0.18 -0.71 1.06 0.37 304 0.48 0.63
RBC_group1 RBC_group3 -0.41 -1.28 0.45 0.36 304 -1.15 0.50
RBC_group2 RBC_group3 -0.59 -1.48 0.30 0.37 304 -1.60 0.33

10.9.3 Tukey HSD approach

con3 <- estimate_contrasts(fit2, contrast = "RBC_group",
ci = 0.95, p_adjust = "tukey")

Warning in (function (object, at, cov.reduce = mean, cov.keep = get_emm_option("cov.keep"), : There are unevaluated constants in the response formula
Auto-detection of the response transformation may be incorrect

con3 |> kable(digits = 2)

Level1 Level2 Difference CI_low CI_high SE df t p
RBC_group1 RBC_group2 0.18 -0.69 1.04 0.37 304 0.48 0.88
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Level1 Level2 Difference CI_low CI_high SE df t p
RBC_group1 RBC_group3 -0.41 -1.26 0.43 0.36 304 -1.15 0.48
RBC_group2 RBC_group3 -0.59 -1.46 0.28 0.37 304 -1.60 0.25

10.10 Bayesian Linear Model

We can, of course, run a Bayesian linear model on our transformed outcome, too.

set.seed(431)
fit4 <- stan_glm(PV_trans ~ RBC_group, data = storage, refresh = 0)

post4 <- describe_posterior(fit4, ci = 0.95)

print_md(post4, digits = 2)

Table 10.5: Summary of Posterior Distribution

Parameter Median 95% CI pd ROPE
% in

ROPE Rhat ESS
(Intercept) 14.09 [13.57, 14.61] 100% [-0.26, 0.26] 0% 1.000 3480.00
RBC_group2 -0.17 [-0.91, 0.54] 68.40% [-0.26, 0.26] 50.53% 1.000 3158.00
RBC_group3 0.41 [-0.32, 1.12] 86.10% [-0.26, 0.26] 32.42% 1.000 3476.00

As before, we can obtain estimated predictions from this model with, for instance:

estimate_means(fit4, ci = 0.95)

We selected `by = c("RBC_group")`.

Estimated Marginal Means

RBC_group | Mean | 95% CI | pd
-----------------------------------------
1 | 14.09 | [13.57, 14.61] | 100%
2 | 13.92 | [13.40, 14.43] | 100%
3 | 14.51 | [14.00, 15.00] | 100%

Marginal means estimated at RBC_group

and again, we can back-transform these means and 95% credible intervals.
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10.11 For More Information

1. Again, the Chapter on Inference for comparing many means in Çetinkaya-Rundel and
Hardin (2024) is a good starting place for some people.

2. David Scott’s sections on Box-Cox transformations, Tukey Ladder of Powers and on
Analysis of Variance: One-Factor may be helpful to you.

3. Andrea Onofri had some useful examples using the emmeans package in her 2019 tutorial
Stabilising transformations: how do I present my results?
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11 Association and Regression

11.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion. Appendix B describes the 431-Love.R script, and demonstrates its use.

library(GGally)
library(ggpubr)
library(ggstatsplot)
library(glue)
library(janitor)
library(knitr)
library(naniar)
library(patchwork)
library(rstanarm)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())

11.2 Data: US Wooden Roller Coasters

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.
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I was motivated to look at roller coaster1 data by an older example from the Data and Story
Library which also uses the Roller Coaster Database. Specifically, I used this URL to pull data
on 110 currently operating (as of late June 2024) wooden roller coasters in the US meeting
the following criteria:

• Classification = Roller Coaster
• Design = Sit Down
• Existing
• Location = United States
• Roller Coasters
• Current Status = Operating
• Type = Wood

coasters <- read_csv("data/coasters.csv", show_col_types = FALSE) |>
janitor::clean_names()

head(coasters)

# A tibble: 6 x 10
c_id coaster_n speed height duration opened park town state region
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr> <chr>

1 C-001 American Eagle 66 127 143 1981 Six ~ Gurn~ Illi~ Midwe~
2 C-002 American Thunder 48 82 NA 2008 Six ~ Eure~ Miss~ Midwe~
3 C-003 Apocalypse the Ri~ 50.1 95 180 2009 Six ~ Vale~ Cali~ West
4 C-004 Arkansas Twister NA 95 NA 1992 Magi~ Hot ~ Arka~ South
5 C-005 Beast 64.8 110 250 1979 King~ Mason Ohio Midwe~
6 C-006 Big Dipper NA NA 100 1958 Camd~ Hunt~ West~ South

The 10 variables in the data are:

Variable Description
c_ID Coaster Identification Code

coaster_N Name of Coaster
speed Maximum speed, in miles per hour
height Maximum height, in feet
duration Length of ride, in seconds
opened Year of opening
park Name of amusement park
town Name of town where park is located
state State where park is located

1My favorite amusement park is Kennywood Park, just outside of Pittsburgh.
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Variable Description
region Region of the US (4 categories)

11.2.1 Missing Data

The naniar package provides some excellent ways to count missing values in our data.

miss_var_summary(coasters)

# A tibble: 10 x 3
variable n_miss pct_miss
<chr> <int> <num>

1 duration 35 31.8
2 speed 17 15.5
3 height 9 8.18
4 c_id 0 0
5 coaster_n 0 0
6 opened 0 0
7 park 0 0
8 town 0 0
9 state 0 0
10 region 0 0

miss_case_table(coasters)

# A tibble: 4 x 3
n_miss_in_case n_cases pct_cases

<int> <int> <dbl>
1 0 64 58.2
2 1 32 29.1
3 2 13 11.8
4 3 1 0.909

As we’ve done in the past, we’ll restrict ourselves to just the 64 coasters with complete data
on all variables. We’ll also set up the ages of the coasters, where age is just 2024 minus the
year the coaster opened.
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coast_cc <- coasters |>
mutate(age = 2024 - opened) |>
drop_na()

coast_cc

# A tibble: 64 x 11
c_id coaster_n speed height duration opened park town state region age
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr> <chr> <dbl>

1 C-001 American E~ 66 127 143 1981 Six ~ Gurn~ Illi~ Midwe~ 43
2 C-003 Apocalypse~ 50.1 95 180 2009 Six ~ Vale~ Cali~ West 15
3 C-005 Beast 64.8 110 250 1979 King~ Mason Ohio Midwe~ 45
4 C-007 Blue Streak 40 78 105 1964 Ceda~ Sand~ Ohio Midwe~ 60
5 C-013 Classic Co~ 50 55 105 1935 Wash~ Puya~ Wash~ West 89
6 C-014 Coastersau~ 32 40 50 2004 Lego~ Wint~ Flor~ South 20
7 C-015 Comet 50 84 105 1946 Hers~ Hers~ Penn~ North~ 78
8 C-016 Comet 55 95 120 1994 Six ~ Quee~ New ~ North~ 30
9 C-017 Comet 25 37 84 1951 Wald~ Erie Penn~ North~ 73
10 C-019 Cyclone 60 75 110 1927 Luna~ Broo~ New ~ North~ 97
# i 54 more rows

11.3 Exploratory Data Analysis

11.3.1 Visualizations

Although we’re primarily interested in associations between variables, let’s look briefly at the
sample distributions for the four variables of interest.

p1 <- ggplot(coast_cc, aes(x = speed)) +
geom_histogram(bins = 8, fill = "red", col = "yellow") +
labs(title = "Speed in MPH")

p2 <- ggplot(coast_cc, aes(x = height)) +
geom_histogram(bins = 8, fill = "slateblue", col = "yellow") +
labs(title = "Height in feet")

p3 <- ggplot(coast_cc, aes(x = duration)) +
geom_histogram(bins = 8, fill = "magenta", col = "yellow") +
labs(title = "Duration in seconds")
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p4 <- ggplot(coast_cc, aes(x = age)) +
geom_histogram(bins = 8, fill = "seagreen", col = "yellow") +
labs(title = "Age in years")

(p1 + p2) / (p3 + p4) +
plot_annotation(title = "Roller Coaster Data: Quantities",

subtitle = "Histograms, n = 64 coasters")
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Roller Coaster Data: Quantities

11.3.2 Numeric Summaries

Here are distributional descriptions of our four main variables of interest.

res1 <- coast_cc |>
reframe(lovedist(speed)) |>
mutate(variable = "speed")

res2 <- coast_cc |>
reframe(lovedist(height)) |>
mutate(variable = "height")

res3 <- coast_cc |>
reframe(lovedist(duration)) |>
mutate(variable = "duration")
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res4 <- coast_cc |>
reframe(lovedist(age)) |>
mutate(variable = "age")

rbind(res1, res2, res3, res4) |>
relocate(variable) |>
kable(digits = 2)

variable n miss mean sd med mad min q25 q75 max
speed 64 0 50.76 9.06 51.15 7.19 25 45.75 56.00 70
height 64 0 86.20 26.19 85.00 22.24 35 70.75 100.00 181
duration 64 0 112.67 31.71 111.00 28.17 50 90.00 120.00 250
age 64 0 42.72 27.57 33.50 20.76 1 25.00 51.25 104

11.4 height - speed association

First, we’ll consider the association of each coaster’s speed with its height.

11.4.1 Scatterplot with Pearson correlation

Let’s create a plot including both the linear fit (from lm()) and a loess smooth, as well as the
Pearson correlation coefficient.

ggplot(coast_cc, aes(x = height, y = speed)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, col = "red") +
geom_smooth(method = "loess", formula = y ~ x, se = FALSE, col = "blue") +
labs(title = "Association of Speed with Height") +
annotate("text", x = 150, y = 40,

label = glue("Pearson r = ",
round(cor(coast_cc$height,

coast_cc$speed),3)))
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Pearson r = 0.79840
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Another way to augment the scatterplot with similar information (other than the loess smooth)
follows:

res6 <- cor_test(coast_cc, "height", "speed")

res6

Parameter1 | Parameter2 | r | 95% CI | t(62) | p
-----------------------------------------------------------------
height | speed | 0.80 | [0.69, 0.87] | 10.43 | < .001***

Observations: 64
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plot(res6)
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r = 0.80, 95% CI [0.69, 0.87], t(62) = 10.43, p < .001

11.4.2 Spearman’s rank correlation

This measure is the Pearson correlation of the rank scores of the two variables. It’s mostly
used for assessing whether or not an association is monotone.

cor_test(coast_cc, "height", "speed", method = "spearman")

Parameter1 | Parameter2 | rho | 95% CI | S | p
--------------------------------------------------------------------
height | speed | 0.72 | [0.57, 0.82] | 12371.84 | < .001***

Observations: 64

Numerous other measures of association are available. See this description, which is part of
easystats’ correlation package.
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11.5 Scatterplot Matrix

We’ll use the ggpairs function from the GGally package when I want to build a combined
matrix of scatterplots and correlation coefficients, as displayed below:

ggpairs(coast_cc |> select(height, duration, age, speed))

Corr:

0.502***

Corr:

−0.382**

Corr:
−0.201

Corr:

0.798***

Corr:
0.461***

Corr:

−0.203
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11.6 Correlation Matrix

Behold the complete set of correlation coefficients using the Pearson’s approach for the com-
plete cases in the coasters data.

res_c <- correlation(coast_cc)

res_c

# Correlation Matrix (pearson-method)

Parameter1 | Parameter2 | r | 95% CI | t(62) | p
--------------------------------------------------------------------
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speed | height | 0.80 | [ 0.69, 0.87] | 10.43 | < .001***
speed | duration | 0.46 | [ 0.24, 0.63] | 4.09 | < .001***
speed | opened | 0.20 | [-0.04, 0.43] | 1.63 | 0.429
speed | age | -0.20 | [-0.43, 0.04] | -1.63 | 0.429
height | duration | 0.50 | [ 0.29, 0.67] | 4.58 | < .001***
height | opened | 0.38 | [ 0.15, 0.57] | 3.26 | 0.011*
height | age | -0.38 | [-0.57, -0.15] | -3.26 | 0.011*
duration | opened | 0.20 | [-0.05, 0.43] | 1.62 | 0.429
duration | age | -0.20 | [-0.43, 0.05] | -1.62 | 0.429
opened | age | -1.00 | [-1.00, -1.00] | -Inf | < .001***

p-value adjustment method: Holm (1979)
Observations: 64

Once we have these results, we can plot them in several ways, in addition to the scatterplot
matrix we’ve seen. These include:

plot(summary(res_c))
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plot(summary(res_c), show_data = "points")
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11.6.1 Using a different measure

We can also obtain a correlation matrix using Spearman’s rank correlation, as follows:

res8 <- correlation(coast_cc, method = "spearman")

res8

# Correlation Matrix (spearman-method)

Parameter1 | Parameter2 | rho | 95% CI | S | p
-----------------------------------------------------------------------
speed | height | 0.72 | [ 0.57, 0.82] | 12371.84 | < .001***
speed | duration | 0.45 | [ 0.23, 0.63] | 23898.81 | 0.001**
speed | opened | 0.17 | [-0.09, 0.40] | 36461.32 | 0.768
speed | age | -0.17 | [-0.40, 0.09] | 50898.68 | 0.768
height | duration | 0.60 | [ 0.41, 0.74] | 17308.98 | < .001***
height | opened | 0.39 | [ 0.15, 0.58] | 26851.92 | 0.010*
height | age | -0.39 | [-0.58, -0.15] | 60508.08 | 0.010*
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duration | opened | 0.13 | [-0.12, 0.37] | 37811.21 | 0.768
duration | age | -0.13 | [-0.37, 0.12] | 49548.79 | 0.768
opened | age | -1.00 | [-1.00, -1.00] | 87360.00 | < .001***

p-value adjustment method: Holm (1979)
Observations: 64

11.7 Modeling Speed with Height

Let’s start with a linear model (fit using ordinary least squares) to predict speed using height
across our 64 coasters.

11.7.1 Fitting the Model

fit1 <- lm(speed ~ height, data = coast_cc)

11.7.2 Parameter Estimates

model_parameters(fit1, ci = 0.95) |> kable(digits = 2)

Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 26.95 2.38 0.95 22.18 31.71 11.31 62 0
height 0.28 0.03 0.95 0.22 0.33 10.43 62 0

Good ways to interpret these coefficients include:

1. When comparing any two coasters whose heights are one foot apart, we expect a speed
that is, on average, 0.28 miles per hour faster, for the taller coaster.

2. Under the fitted model, the average difference in coaster speed between two coasters
whose height differs by ten feet is 2.8 MPH.

Note that we multiplied the height difference by ten, so we needed to multiply the average
difference by 10, as well, in our second response.
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11.7.3 Performance of the Model

How well does our model fit1 perform? Some key summaries (applicable to any of the linear
models we’ve fit with ordinary least squares so far in this book, too) are shown below.

model_performance(fit1)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------
403.859 | 404.259 | 410.336 | 0.637 | 0.631 | 5.416 | 5.503

While we’ll focus on just a few of these measures in this chapter, specifically R2 and RMSE,
here is a description of all of the summaries.

• AIC: Akaike’s Information Criterion
• AICc: Second-order (or small sample) AIC with a correction for small sample sizes
• BIC: Bayesian Information Criterion

AIC, AICc and BIC are used when comparing one or more models for the same outcome. When
comparing models fitted by maximum likelihood (like ordinary least squares linear models),
the smaller the AIC or BIC, the better the fit. See the R documentation for these information
criteria here.

• R2: r-squared value
• R2_adj: adjusted r-squared

The R-squared (𝑅2) measure, also called the coefficient of determination, describes how much
of the variation in our outcome can be explained using our model (and its predictors.) 𝑅2 falls
between 0 and 1, and the closer it is to 1, the better the model fits our data. In a simple linear
regression model such as we fit here (with one predictor), the 𝑅2 value is also the square of
the Pearson correlation coefficient. Note also that in discussing ANOVA previously, we called
the 𝑅2 value 𝜂2.

An adjusted R-squared measure, is an index (so it’s no longer a proportion of anything) used to
compare different models (usually using different sets of predictors) that are fit to predict the
same outcome. While adjusted 𝑅2 usually falls between 0 and 1, it can also be negative, and
its formula takes into account both the number of observations available and the number of
predictors in the model. The idea is to reduce the temptation to overfit the data, by penalizing
the 𝑅2 value a little for each predictor. The adjusted 𝑅2 measure is always no larger than 𝑅2.
See the documentation for these measures in the performance package (part of easystats.)

• RMSE: root mean squared error
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• SIGMA: residual standard deviation, see insight::get_sigma()

The RMSE is the square root of the variance of the residuals and indicates the absolute fit of
the model to the data (difference between observed data to model’s predicted values). It can
be interpreted as the standard deviation of the unexplained variance, and is in the same units
as the response variable. Lower values indicate better model fit. (Source).

Linear models assume that their residuals are drawn from a Normal distribution with mean 0
and standard deviation equal to sigma (𝜎). The residual standard deviation sigma indicates
the accuracy for a model to predict our outcome. 𝜎 also indicates that the predicted outcome
will be within ±1𝜎 units of the observed outcome for approximately 68% of the data points,
for example. See the discussion of sigma here.

11.8 Checking a Linear Model

The main assumptions of any linear model are:

• linearity: we assume that the outcome is linearly related to our predictor
• constant variance (homoscedasticity): we assume that the variation of our outcome

is about the same regardless of the value of our predictor
• normal distribution: we assume that the errors around the regression model at any

specified values of the x-variables follow an approximately Normal distribution.

11.8.1 Posterior Predictive Checks

Next, we’ll walk through what each of these plots is doing, one at a time.

diagnostic_plots <- plot(check_model(fit1, panel = FALSE))

For confidence bands, please install `qqplotr`.

diagnostic_plots[[1]]
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11.8.2 Checking Linearity

diagnostic_plots[[2]]
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11.8.3 Checking for Homogeneity of Variance

diagnostic_plots[[3]]
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11.8.4 Checking for Influential Observations

diagnostic_plots[[4]]
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11.8.5 Checking for Normality of Residuals

diagnostic_plots[[5]]
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11.8.6 Running All of the Checks

Note

You will want to include
#| fig-height: 9
at the start of the R code chunk where you run check_model() in order to give the plots
some vertical space to breathe.

check_model(fit1)
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• See the check_model() web page at easystats (performance) for more details.

check_normality(fit1)

OK: residuals appear as normally distributed (p = 0.104).

check_heteroskedasticity(fit1)

OK: Error variance appears to be homoscedastic (p = 0.077).

11.9 Bayesian linear model for Speed with Height

11.9.1 Fitting the model

Here, we fit the Bayesian model, assuming weakly informative priors on the coefficients.

set.seed(431)
fit2 <- stan_glm(speed ~ height, data = coast_cc, refresh = 0)

11.9.2 Parameter Estimates

model_parameters(fit2, ci = 0.95) |> kable(digits = 2)

ParameterMedian CI CI_lowCI_highpd Rhat ESS Prior_DistributionPrior_LocationPrior_Scale
(Intercept)26.90 0.95 22.05 31.97 1 1 3770.92 normal 50.76 22.65
height 0.28 0.95 0.22 0.33 1 1 3516.32 normal 0.00 0.87

11.9.3 Performance of the Model

model_performance(fit2)

# Indices of model performance

ELPD | ELPD_SE | LOOIC | LOOIC_SE | WAIC | R2 | R2 (adj.) | RMSE | Sigma
-------------------------------------------------------------------------------------
-202.245 | 5.520 | 404.491 | 11.039 | 404.407 | 0.630 | 0.614 | 5.416 | 5.552

233

https://easystats.github.io/performance/articles/check_model.html


11.9.4 Checking the Model

check_model(fit2)
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11.10 Predicting Speed with Duration

Next, consider the relationship between duration and speed.

ggplot(coast_cc, aes(x = duration, y = speed)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, col = "red") +
geom_smooth(method = "loess", formula = y ~ x, se = FALSE, col = "blue") +
labs(title = "Association of Speed with Duration") +
stat_regline_equation(label.x = 200, label.y = 40) +
stat_cor(aes(label = after_stat(rr.label)),

label.x = 200, label.y = 35)

y = 36 + 0.13 x

R2 = 0.21
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11.10.1 Ordinary Least Squares

fit3 <- lm(speed ~ duration, data = coast_cc)

model_parameters(fit3, ci = 0.95) |> kable(digits = 2)
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Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 35.91 3.77 0.95 28.38 43.44 9.53 62 0
duration 0.13 0.03 0.95 0.07 0.20 4.09 62 0

model_performance(fit3) |> kable()

AIC AICc BIC R2 R2_adjusted RMSE Sigma
453.4355 453.8355 459.9122 0.2126508 0.1999516 7.97771 8.105361

check_model(fit3)
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11.10.2 Bayesian linear model fit

set.seed(431)
fit4 <- stan_glm(speed ~ duration, data = coast_cc, refresh = 0)

model_parameters(fit4, ci = 0.95) |> kable(digits = 2)

ParameterMedian CI CI_lowCI_highpd Rhat ESS Prior_DistributionPrior_LocationPrior_Scale
(Intercept)35.95 0.95 28.34 43.33 1 1 3722.28 normal 50.76 22.65
duration 0.13 0.95 0.07 0.20 1 1 3704.16 normal 0.00 0.71

model_performance(fit4)

# Indices of model performance

ELPD | ELPD_SE | LOOIC | LOOIC_SE | WAIC | R2 | R2 (adj.) | RMSE | Sigma
-------------------------------------------------------------------------------------
-227.090 | 7.486 | 454.181 | 14.972 | 454.127 | 0.209 | 0.180 | 7.978 | 8.168

check_model(fit4)
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11.11 Predicting Speed with Age

Finally, are newer coasters faster? Consider the relationship between age and speed.

ggplot(coast_cc, aes(x = age, y = speed)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, col = "red") +
geom_smooth(method = "loess", formula = y ~ x, se = FALSE, col = "blue") +
labs(title = "Association of Speed with Age") +
stat_regline_equation(label.x = 65, label.y = 65) +
stat_cor(aes(label = after_stat(rr.label)),

label.x = 65, label.y = 60)

y = 54 − 0.067 x

R2 = 0.041
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11.11.1 Ordinary Least Squares Fit

fit5 <- lm(speed ~ age, data = coast_cc)

model_parameters(fit5, ci = 0.95) |> kable(digits = 2)
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Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 53.61 2.07 0.95 49.47 57.75 25.86 62 0.00
age -0.07 0.04 0.95 -0.15 0.01 -1.63 62 0.11

model_performance(fit5)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------
466.039 | 466.439 | 472.516 | 0.041 | 0.026 | 8.803 | 8.944

check_model(fit5)
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11.11.2 Bayesian linear model fit

set.seed(431)
fit6 <- stan_glm(speed ~ age, data = coast_cc, refresh = 0)

model_parameters(fit6, ci = 0.95) |> kable(digits = 2)

ParameterMedian CI CI_lowCI_highpd Rhat ESS Prior_DistributionPrior_LocationPrior_Scale
(Intercept)53.54 0.95 49.57 57.64 1.00 1 3569.63normal 50.76 22.65
age -

0.07
0.95 -

0.15
0.01 0.95 1 3753.96normal 0.00 0.82

model_performance(fit6)

# Indices of model performance

ELPD | ELPD_SE | LOOIC | LOOIC_SE | WAIC | R2 | R2 (adj.) | RMSE | Sigma
-------------------------------------------------------------------------------------
-233.199 | 6.670 | 466.398 | 13.341 | 466.367 | 0.039 | -0.003 | 8.803 | 8.971

check_model(fit6)
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11.12 For More Information

1. Chapter 7 of Çetinkaya-Rundel and Hardin (2024) is about linear regression with a single
predictor.

2. This tutorial from the bayestestR package (part of easystats) uses simple linear re-
gression with both lm() and Bayesian approaches.

3. Here is a nice tutorial using R on Simple Linear Regression that addresses some of this
chapter’s issues.

4. Wikipedia’s page on Linear regression provides lots of useful details.
5. Plotting Functions for the correlation package
6. Correlation Types
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12 Studying Craters

12.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion. Appendix B describes the 431-Love.R script, and demonstrates its use.

library(glue)
library(haven)
library(janitor)
library(knitr)
library(naniar)
library(patchwork)
library(rstanarm)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())

12.2 Data from an SPSS File: Craters

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

These data are adapted from the Data and Story Library, which provides the following intro-
duction to the data which were originally gathered from the Earth Impact Database:
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Meteor Crater in Arizona was the first recognized impact crater and was identified
as such only in the 1920s. With the help of satellite images, more and more craters
have been identified; now more than 180 are known. These, of course, are only
a small sample of all the impacts the earth has experienced: Only 29% of earth’s
surface is land, and many craters have been covered or eroded away. Astronomers
have recog-nized a roughly 35 million-year cycle in the frequency of cratering,
although the cause of this cycle is not fully understood.

The data hold information about craters. craters from the most recent 35Ma
(million years) may be the more reliable data, and are suitable for analyses relating
age and diameter.

Craters are large indentations in the ground, usually bowl-shaped, and caused by the impact of
some sort of celestial object. Our data come from an SPSS format (.sav) and can be ingested
into R using the read_sav() function from the haven package.

craters <- read_sav("data/craters.sav") |>
janitor::clean_names()

craters

# A tibble: 168 x 10
crater name diameter age n_s latitude longitude buried drilled
<dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl+> <dbl+l>

1 1 "Haviland" 0.015 1 e-3 1 [N] 37.6 -99.2 1 [N] 1 [N]
2 2 "Dalgaranga" 0.024 2.7 e-1 2 [S] -27.6 117. 1 [N] 1 [N]
3 3 "Sikhote Ali~ 0.027 5.50e-5 1 [N] 46.1 135. 1 [N] 1 [N]
4 4 "Campo Del C~ 0.05 4 e-3 2 [S] -27.6 -61.7 1 [N] 2 [Y]
5 5 "Sobolev" 0.053 1 e-3 1 [N] 46.3 138. 1 [N] 2 [Y]
6 6 "Veevers" 0.08 1 e+0 2 [S] -23.0 125. 1 [N] 1 [N]
7 7 "Ilumets\u00~ 0.08 2 e-3 1 [N] 58.0 27.4 1 [N] 2 [Y]
8 8 "Morasko" 0.1 1 e-2 1 [N] 52.5 16.9 1 [N] 1 [N]
9 9 "Kaalij\u008~ 0.11 4 e-3 1 [N] 58.4 22.7 1 [N] 1 [N]

10 10 "Wabar" 0.116 1.4 e-4 1 [N] 21.5 50.5 1 [N] 1 [N]
# i 158 more rows
# i 1 more variable: location <chr>

Columns in the data include:

Variable Description
crater numerical code (1 - 168)
name name of crater
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Variable Description
diameter diameter in km

age age in millions of years (mA)
n_s (N)orthern or (S)outhern hemisphere

latitude Latitude, in degrees N or S of the equator
longitude Longitude, in degrees W or E of the Greenwich meridian
buried Yes or No
drilled Yes or No
location country (and sometimes state or province)

craters |> count(drilled)

# A tibble: 3 x 2
drilled n
<dbl+lbl> <int>

1 1 [N] 67
2 2 [Y] 96
3 NA 5

str(craters)

tibble [168 x 10] (S3: tbl_df/tbl/data.frame)
$ crater : num [1:168] 1 2 3 4 5 6 7 8 9 10 ...
..- attr(*, "format.spss")= chr "F8.2"
$ name : chr [1:168] "Haviland" "Dalgaranga" "Sikhote Alin" "Campo Del Cielo" ...
..- attr(*, "format.spss")= chr "A42"
$ diameter : num [1:168] 0.015 0.024 0.027 0.05 0.053 0.08 0.08 0.1 0.11 0.116 ...
..- attr(*, "format.spss")= chr "F8.2"
$ age : num [1:168] 1.0e-03 2.7e-01 5.5e-05 4.0e-03 1.0e-03 1.0 2.0e-03 1.0e-02 4.0e-03 1.4e-04 ...
..- attr(*, "format.spss")= chr "F8.2"
$ n_s : dbl+lbl [1:168] 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, ...
..@ format.spss: chr "F8.0"
..@ labels : Named num [1:2] 1 2
.. ..- attr(*, "names")= chr [1:2] "N" "S"

$ latitude : num [1:168] 37.6 -27.6 46.1 -27.6 46.3 ...
..- attr(*, "format.spss")= chr "F8.2"
$ longitude: num [1:168] -99.2 117.3 134.7 -61.7 137.9 ...
..- attr(*, "format.spss")= chr "F8.2"
$ buried : dbl+lbl [1:168] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
..@ format.spss: chr "F8.0"
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..@ labels : Named num [1:2] 1 2

.. ..- attr(*, "names")= chr [1:2] "N" "Y"
$ drilled : dbl+lbl [1:168] 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1...
..@ format.spss: chr "F8.0"
..@ labels : Named num [1:2] 1 2
.. ..- attr(*, "names")= chr [1:2] "N" "Y"

$ location : chr [1:168] "Kansas, U.S.A." "Western Australia, Australia" "Russia" "Argentina" ...
..- attr(*, "format.spss")= chr "A36"

As we can see, several of the columns are labeled, and we likely want to eliminate those labels
in our R code. To do so, we can use zap_labels() from the haven package.

craters <- craters |> zap_labels() |>
mutate(buried = fct_recode(factor(buried), "No" = "1", "Yes" = "2"),

drilled = fct_recode(factor(drilled), "No" = "1", "Yes" = "2"))

summary(craters)

crater name diameter age
Min. : 1.00 Length:168 Min. : 0.015 Min. : 0.0001
1st Qu.: 42.75 Class :character 1st Qu.: 3.150 1st Qu.: 36.9000
Median : 84.50 Mode :character Median : 8.000 Median : 124.5000
Mean : 84.50 Mean : 18.713 Mean : 266.2618
3rd Qu.:126.25 3rd Qu.: 18.250 3rd Qu.: 383.7500
Max. :168.00 Max. :300.000 Max. :2400.0000

n_s latitude longitude buried drilled
Min. :1.000 Min. :-34.72 Min. :-156.633 No :105 No :67
1st Qu.:1.000 1st Qu.: 22.56 1st Qu.: -80.858 Yes : 61 Yes :96
Median :1.000 Median : 46.98 Median : 18.333 NA's: 2 NA's: 5
Mean :1.208 Mean : 33.94 Mean : 2.892
3rd Qu.:1.000 3rd Qu.: 56.68 3rd Qu.: 48.642
Max. :2.000 Max. : 75.70 Max. : 172.083
location

Length:168
Class :character
Mode :character
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12.3 Association of age and diameter

res1 <- craters |> reframe(lovedist(age)) |> mutate(varname = "age")
res2 <- craters |> reframe(lovedist(diameter)) |> mutate(varname = "diameter")

rbind(res1, res2) |> relocate(varname) |> kable(digits = 2)

varname n miss mean sd med mad min q25 q75 max
age 168 0 266.26 379.03 124.5 183.69 0.00 36.90 383.75 2400
diameter 168 0 18.71 36.37 8.0 8.27 0.01 3.15 18.25 300

The age and diameter data each appear to be right skewed, with the sample mean substantially
larger than the sample median, and the points clustered more closely together at the left of
the histograms.

p1 <- ggplot(craters, aes(x = age)) +
geom_histogram(bins = 12, fill = "salmon", col = "beige") +
labs(title = "Age in millions of years (mA)")

p2 <- ggplot(craters, aes(x = diameter)) +
geom_histogram(bins = 12, fill = "forestgreen", col = "beige") +
labs(title = "Diameter in km")

(p1 + p2) +
plot_annotation(title = "Age and Diameter of Craters",

subtitle = "Histograms, n = 168 craters")
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When we look at the scatterplot of the association between age and diameter, most of the
points are gathered in the bottom left of the plot.

ggplot(craters, aes(x = age, y = diameter)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, col = "red") +
annotate("text", x = 500, y = 250,

label = glue("Pearson r = ",
round(cor(craters$age, craters$diameter),2)))
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Pearson r = 0.38
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In light of these results, it may be that a transformation (of either age, diameter or both) is
in order.

12.4 Logarithmic Transformation of Each Variable

Consider taking the logarithm of both age and diameter.

What does this imply? From Gelman, Hill, and Vehtari (2021) Section 3.4:

• The formula log y = a + b log x describes what is called power-law growth (if b > 0) or
decline (if b < 0), with the formula 𝑦 = 𝐴𝑥𝑏 where A = exp(a).

• The parameter A is the value of y when x = 1
• The parameter b determines the rate of growth or decline.
• A one-unit difference in log x corresponds to an additive difference of b in log y.
• One example is a power law: Let y be the area of a square and x be its perimeter. Then

𝑦 = (𝑥/4)2 and we can take the log of both sides to get log y = 2 (log x - log 4) = -2.8
+ 2 log x.

12.4.1 Distributions after Transformation

We’d expect applying a log transformation to spread out the lower values, reducing the right
skew in each variable. Is this what happens?
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p3 <- ggplot(craters, aes(x = log(age))) +
geom_histogram(bins = 12, fill = "salmon", col = "beige") +
labs(title = "log(Age in millions of years)")

p4 <- ggplot(craters, aes(x = log(diameter))) +
geom_histogram(bins = 12, fill = "forestgreen", col = "beige") +
labs(title = "log(Diameter in km)")

(p3 + p4) +
plot_annotation(title = "Logarithms of Age and Diameter",

subtitle = "Histograms, n = 168 craters")
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Logarithms of Age and Diameter

craters <- craters |>
mutate(logage = log(age), logdiameter = log(diameter))

res3 <- craters |> reframe(lovedist(logage)) |> mutate(varname = "logage")
res4 <- craters |> reframe(lovedist(logdiameter)) |> mutate(varname = "logdiameter")

rbind(res3, res4) |> relocate(varname) |> kable(digits = 2)
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varname n miss mean sd med mad min q25 q75 max
logage 168 0 3.76 3.46 4.82 1.71 -9.81 3.61 5.95 7.78
logdiameter 168 0 1.83 1.79 2.08 1.36 -4.20 1.15 2.90 5.70

Note that the means and medians after the logarithmic transformation are substantially closer
to each other, as is indicated by the reduction in skew we see in the histograms.

12.4.2 Association after Transformation

What happens when we look at the scatterplot of these transformed variables?

ggplot(craters, aes(x = logage, y = logdiameter)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, col = "red") +
annotate("text", x = -5, y = 5,

label = glue("Pearson r = ",
round(cor(craters$logage, craters$logdiameter),2)))

Pearson r = 0.72
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While we now have many points clustered in the top right of the plot, the overall fit of a linear
model appears much better, as the points more closely cluster around the fitted line.
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12.4.3 Comparing the Correlation Coefficients

We also see a larger Pearson correlation after this transformation, as we can also see from the
cor_test() results below.

cor_test(craters, "age", "diameter")

Parameter1 | Parameter2 | r | 95% CI | t(166) | p
------------------------------------------------------------------
age | diameter | 0.38 | [0.24, 0.50] | 5.25 | < .001***

Observations: 168

cor_test(craters, "logage", "logdiameter")

Parameter1 | Parameter2 | r | 95% CI | t(166) | p
-------------------------------------------------------------------
logage | logdiameter | 0.72 | [0.64, 0.79] | 13.49 | < .001***

Observations: 168

We might also consider looking at the Spearman rank correlations:

cor_test(craters, "age", "diameter", method = "Spearman")

Parameter1 | Parameter2 | rho | 95% CI | S | p
--------------------------------------------------------------------
age | diameter | 0.33 | [0.19, 0.46] | 5.28e+05 | < .001***

Observations: 168

cor_test(craters, "logage", "logdiameter", method = "Spearman")

Parameter1 | Parameter2 | rho | 95% CI | S | p
---------------------------------------------------------------------
logage | logdiameter | 0.33 | [0.19, 0.46] | 5.28e+05 | < .001***

Observations: 168

Notice that the logarithmic transformation preserves the order of the observations, so that the
ranks by age and diameter are identical to the ranks by log(age) and log(diameter), so the
transformation has no impact on the Spearman rank correlation.
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12.5 Untransformed Linear Model

fit1 <- lm(age ~ diameter, data = craters)

model_parameters(fit1, ci = 0.95) |> kable(digits = 2)

Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 192.71 30.57 0.95 132.35 253.06 6.30 166 0
diameter 3.93 0.75 0.95 2.45 5.41 5.25 166 0

model_performance(fit1)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
----------------------------------------------------------------------
2451.026 | 2451.172 | 2460.398 | 0.142 | 0.137 | 349.997 | 352.099

check_model(fit1)
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12.6 Log-Log Regression Model

fit3 <- lm(logage ~ logdiameter, data = craters)

model_parameters(fit3, ci = 0.95) |> kable(digits = 3)

Parameter Coefficient SE CI CI_low CI_high t df_error p
(Intercept) 1.199 0.265 0.95 0.675 1.723 4.52 166 0
logdiameter 1.401 0.104 0.95 1.196 1.606 13.49 166 0

model_performance(fit3)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------
774.932 | 775.078 | 784.304 | 0.523 | 0.520 | 2.386 | 2.400

Our equation is log(age) = 1.2 + 1.4 log(diameter).

We can exponentiate both sides to see the relation between age and diameter on the untrans-
formed scales.

exp(log 𝑦) = exp(1.2 + 1.4 log(𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟)), so 𝑦 = 𝑒𝑥𝑝(1.2) × 𝑥1.4, so 𝑦 = 3.32𝑥1.4

When increasing diameter by a factor of 2 (i.e., doubling the diameter) the estimated age is
multiplied by 21.4 = 2.64. Halving the diameter causes the estimated age to be multiplied by
(1/2)1.4 = 0.38, and so forth.

check_model(fit3)
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The fit is better here, although still not really as good as we might hope for. Would a Bayesian
fit be helpful?

12.7 Bayesian Log-Log Regression

set.seed(431)
fit4 <- stan_glm(logage ~ logdiameter,

data = craters, refresh = 0)

model_parameters(fit4, ci = 0.95) |> kable(digits = 2)

ParameterMedian CI CI_lowCI_highpd Rhat ESS Prior_DistributionPrior_LocationPrior_Scale
(Intercept) 1.21 0.95 0.67 1.72 1 1 3756.99 normal 3.76 8.66
logdiameter1.40 0.95 1.20 1.61 1 1 3860.42 normal 0.00 4.84

model_performance(fit4)

# Indices of model performance

ELPD | ELPD_SE | LOOIC | LOOIC_SE | WAIC | R2 | R2 (adj.) | RMSE | Sigma
-------------------------------------------------------------------------------------
-387.860 | 8.599 | 775.720 | 17.198 | 775.699 | 0.519 | 0.508 | 2.386 | 2.411
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check_model(fit4)
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We still have some meaningful non-linearity, I think, but we’ll leave it as is for now.

12.8 For More Information

1. Gelman, Hill, and Vehtari (2021) is a great, though not free, reference for many of the
ideas discussed in this entire book, and especially this chapter.

2. More on check_model() in Visual check of model assumptions. Posterior predictive
checks is another good resource.

3. Chapter 7 of Çetinkaya-Rundel and Hardin (2024) is about linear regression with a single
predictor, and has sections on residuals and checking for outliers, for instance.

4. The Qualtrics support page has a walkthrough for residual plots in the case of simple
linear regression that should provide some additional background.
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Part III

Comparing Categories
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13 Proportions and Rates

This is a DRAFT version of this Chapter.

This is a sketchy draft. I’ll remove this notice when I post a version of this Chapter that
is essentially finished.

13.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion.

library(Epi)
library(knitr)
library(medicaldata)
library(naniar)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())
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13.2 Data: strep_tb data from the medicaldata R package

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book. Appendix B describes the 431-Love.R script, and demonstrates its use.

See pages 51-52 of R&OS for standard errors and confidence intervals for propor-
tions, and for what to do when y = 0 or y = n

My source for these data is Higgins (2023).

strep_tb data from the medicaldata R package - we’ll look at study arm (streptomycin or
control) and the dichotomous outcome of improved (true, false) - will need to work with a
logical variable, and we’ll also keep the patient ID.

See https://higgi13425.github.io/medicaldata/ for more details.

strep <- medicaldata::strep_tb |>
mutate(

imp_f = factor(improved),
imp_f = fct_recode(imp_f,
"Improved" = "TRUE",
"Worsened" = "FALSE"

),
imp_f = fct_relevel(imp_f, "Improved")

)
strep

# A tibble: 107 x 14
patient_id arm dose_strep_g dose_PAS_g gender baseline_condition
<chr> <fct> <dbl> <dbl> <fct> <fct>

1 0001 Control 0 0 M 1_Good
2 0002 Control 0 0 F 1_Good
3 0003 Control 0 0 F 1_Good
4 0004 Control 0 0 M 1_Good
5 0005 Control 0 0 F 1_Good
6 0006 Control 0 0 M 1_Good
7 0007 Control 0 0 F 1_Good
8 0008 Control 0 0 M 1_Good
9 0009 Control 0 0 F 2_Fair

10 0010 Control 0 0 M 2_Fair
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# i 97 more rows
# i 8 more variables: baseline_temp <fct>, baseline_esr <fct>,
# baseline_cavitation <fct>, strep_resistance <fct>, radiologic_6m <fct>,
# rad_num <dbl>, improved <lgl>, imp_f <fct>

table(strep$arm, strep$imp_f)

Improved Worsened
Streptomycin 38 17
Control 17 35

13.3 Estimating a Proportion

Within those who received Streptomycin, 38 improved and 17 did not out of 55 subjects. Can
we estimate a confidence interval for the population proportion of all subjects?

13.3.1 Using a Bayesian augmentation

binom.test(x = 38 + 2, n = 55 + 4, conf.level = 0.95)

Exact binomial test

data: 38 + 2 and 55 + 4
number of successes = 40, number of trials = 59, p-value = 0.008641
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.5436200 0.7937535
sample estimates:
probability of success

0.6779661

13.3.2 SAIFS: single augmentation with an imaginary failure or success

The saifs_ci() function
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`saifs_ci` <-
function(x, n, conf.level=0.95, dig=3)
{

p.sample <- round(x/n, digits=dig)

p1 <- x / (n+1)
p2 <- (x+1) / (n+1)

var1 <- (p1*(1-p1))/n
se1 <- sqrt(var1)
var2 <- (p2*(1-p2))/n
se2 <- sqrt(var2)

lowq = (1 - conf.level)/2
tcut <- qt(lowq, df=n-1, lower.tail=FALSE)

lower.bound <- round(p1 - tcut*se1, digits=dig)
upper.bound <- round(p2 + tcut*se2, digits=dig)
tibble(
sample_x = x,
sample_n = n,
sample_p = p.sample,
lower = lower.bound,
upper = upper.bound,
conf_level = conf.level

)
}

Using the saifs_ci() function from Love-431.R

saifs_ci(x = 38, n = 55, conf.level = 0.95, dig = 3)

# A tibble: 1 x 6
sample_x sample_n sample_p lower upper conf_level

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 38 55 0.691 0.552 0.821 0.95

13.4 Assessing the 2 x 2 table

This table is in standard epidemiological format, which means that:
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• The rows of the table describe the “treatment” (which we’ll take here to be arm).

– The more interesting (sometimes also the more common) “treatment” is placed in
the top row. That’s Streptomycin here.

• The columns of the table describe the “outcome” (which we’ll take here to be whether
the subject improved or not.)

– Typically, the more common or more interesting “outcome” is placed to the left.
Here, we’ll use “improved” on the left.

twoby2(table(strep$arm, strep$imp_f))

2 by 2 table analysis:
------------------------------------------------------
Outcome : Improved
Comparing : Streptomycin vs. Control

Improved Worsened P(Improved) 95% conf. interval
Streptomycin 38 17 0.6909 0.5579 0.7984
Control 17 35 0.3269 0.2139 0.4644

95% conf. interval
Relative Risk: 2.1134 1.3773 3.2429

Sample Odds Ratio: 4.6021 2.0389 10.3877
Conditional MLE Odds Ratio: 4.5304 1.8962 11.2779

Probability difference: 0.3640 0.1754 0.5182

Exact P-value: 0.0002
Asymptotic P-value: 0.0002

------------------------------------------------------

13.5 Ebola Virus Study

The World Health Organization’s Ebola Response Team published an article1 in the October
16, 2014 issue of the New England Journal of Medicine, which contained some data I will use
in this example, focusing on their Table 2.

Suppose we want to compare the proportion of deaths among cases that had a definitive
outcome who were hospitalized to the proportion of deaths among cases that had a definitive
outcome who were not hospitalized.

1WHO Ebola Response Team (2014) Ebola virus disease in West Africa: The first 9 months of the epidemic
and forward projections. New Engl J Med 371: 1481-1495 doi: 10.1056/NEJMoa1411100

270



The article suggests that of the 1,737 cases with a definitive outcome, there were 1,153 hos-
pitalized cases. Across those 1,153 hospitalized cases, 741 people (64.3%) died, which means
that across the remaining 584 non-hospitalized cases, 488 people (83.6%) died.

Here is the initial contingency table, using only the numbers from the previous paragraph.

Initial Ebola Table Deceased Alive Total
Hospitalized 741 – 1153

Not Hospitalized 488 – 584
Total 1737

Now, we can use arithmetic to complete the table, since the rows and the columns are each
mutually exclusive and collectively exhaustive.

Ebola 2x2 Table Deceased Alive Total
Hospitalized 741 412 1153

Not Hospitalized 488 96 584
Total 1229 508 1737

We want to compare the fatality risk (probability of being in the deceased column) for the
population of people in the hospitalized row to the population of people in the not hospitalized
row.

See sections 25.4 and 26.11 in the 2023 course notes.

twobytwo(741, 412, 488, 96,
"Hosp", "Not Hosp", "Dead", "Alive",
conf.level = 0.95)

2 by 2 table analysis:
------------------------------------------------------
Outcome : Dead
Comparing : Hosp vs. Not Hosp

Dead Alive P(Dead) 95% conf. interval
Hosp 741 412 0.6427 0.6146 0.6698
Not Hosp 488 96 0.8356 0.8033 0.8635

95% conf. interval
Relative Risk: 0.7691 0.7271 0.8135

Sample Odds Ratio: 0.3538 0.2756 0.4542
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Conditional MLE Odds Ratio: 0.3540 0.2726 0.4566
Probability difference: -0.1929 -0.2325 -0.1508

Exact P-value: 0.0000
Asymptotic P-value: 0.0000

------------------------------------------------------

twobytwo(412, 741, 96, 488,
"Hosp", "Not Hosp", "Alive", "Dead",
conf.level = 0.95)

2 by 2 table analysis:
------------------------------------------------------
Outcome : Alive
Comparing : Hosp vs. Not Hosp

Alive Dead P(Alive) 95% conf. interval
Hosp 412 741 0.3573 0.3302 0.3854
Not Hosp 96 488 0.1644 0.1365 0.1967

95% conf. interval
Relative Risk: 2.1737 1.7823 2.6512

Sample Odds Ratio: 2.8264 2.2016 3.6284
Conditional MLE Odds Ratio: 2.8248 2.1900 3.6678

Probability difference: 0.1929 0.1508 0.2325

Exact P-value: 0.0000
Asymptotic P-value: 0.0000

------------------------------------------------------

13.6 For More Information

• https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797398/ talks about 2x2 tables

• OpenStats https://www.openintro.org/book/os/ Section 5 - foundations for inference
about a proportion

• OpenStats https://www.openintro.org/book/os/ Section 6 - inference for categorical
data (except but we don’t do 6.3 in 431)
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14 Cross-Tabulations

This is a DRAFT version of this Chapter.

This is a sketchy draft. I’ll remove this notice when I post a version of this Chapter that
is essentially finished.

14.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion.

library(janitor)
library(knitr)
library(naniar)

library(easystats)
library(tidyverse)

theme_set(theme_bw())

14.2 Tattoo Example

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.
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tats <- read_tsv("data/tattoos.txt", show_col_types = FALSE) |>
mutate(across(where(is.character), as_factor)) |>
janitor::clean_names()

glimpse(tats)

Rows: 626
Columns: 2
$ location <fct> Commercial Parlor, Commercial Parlor, Commercial Parlo~
$ has_hepatitis_c <fct> Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes,~

The tatoo.txt data we ingest here into R comes from the Data and Story Library. The
original source of the data is the University of Texas Southwestern Medical Center, and we
observe 625 individuals categorized according to their tattoo status and whether or not they
have a diagnosis of Hepatitis C. Specifically, the variables include:

• location in one of three groups:

– (tattoo obtained in a) Commercial Parlor,
– (tattoo obtained) Elsewhere, or
– No Tattoo

• has_hepatitis_c status in two groups: Yes, No

tats |> count(location, has_hepatitis_c)

# A tibble: 6 x 3
location has_hepatitis_c n
<fct> <fct> <int>

1 Commercial Parlor Yes 17
2 Commercial Parlor No 35
3 Elsewhere Yes 8
4 Elsewhere No 53
5 No Tattoo Yes 22
6 No Tattoo No 491

tats |> tabyl(location, has_hepatitis_c) |>
adorn_title() |>
kable()
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has_hepatitis_c
location Yes No
Commercial Parlor 17 35
Elsewhere 8 53
No Tattoo 22 491

tats |>
tabyl(location, has_hepatitis_c) |>
adorn_percentages(denominator = "row") |>
adorn_pct_formatting() |>
adorn_ns(position = "front")

location Yes No
Commercial Parlor 17 (32.7%) 35 (67.3%)

Elsewhere 8 (13.1%) 53 (86.9%)
No Tattoo 22 (4.3%) 491 (95.7%)

data_tabulate(tats$location, tats$has_hepatitis_c,
proportions = "col", include_na = FALSE

)

tats$location | Yes | No | <NA> | Total
------------------+------------+-------------+--------+------
Commercial Parlor | 17 (36.2%) | 35 (6.0%) | 0 (0%) | 52
Elsewhere | 8 (17.0%) | 53 (9.2%) | 0 (0%) | 61
No Tattoo | 22 (46.8%) | 491 (84.8%) | 0 (0%) | 513
<NA> | 0 (0.0%) | 0 (0.0%) | 0 (0%) | 0
------------------+------------+-------------+--------+------
Total | 47 | 579 | 0 | 626

14.3 Chi-Square Test

chisq.test(table(tats$location, tats$has_hepatitis_c))

Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
incorrect
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Pearson's Chi-squared test

data: table(tats$location, tats$has_hepatitis_c)
X-squared = 57.912, df = 2, p-value = 2.658e-13

A chi-square test of independence is a descriptive summary, like a correlation coefficient,
so there’s no outcome being modeled, really. This is reflected in the xtabs() function’s
approach.

tabx <- xtabs(~ location + has_hepatitis_c, data = tats)

tabx

has_hepatitis_c
location Yes No
Commercial Parlor 17 35
Elsewhere 8 53
No Tattoo 22 491

summary(tabx)

Call: xtabs(formula = ~location + has_hepatitis_c, data = tats)
Number of cases in table: 626
Number of factors: 2
Test for independence of all factors:

Chisq = 57.91, df = 2, p-value = 2.658e-13
Chi-squared approximation may be incorrect

tat_tab <- tats |> tabyl(location, has_hepatitis_c)

tab_res1 <- chisq.test(tat_tab, tabyl_results = TRUE)

Warning in stats::chisq.test(., ...): Chi-squared approximation may be
incorrect

tab_res1
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Pearson's Chi-squared test

data: tat_tab
X-squared = 57.912, df = 2, p-value = 2.658e-13

tab_res1$observed

location Yes No
Commercial Parlor 17 35

Elsewhere 8 53
No Tattoo 22 491

tab_res1$expected

location Yes No
Commercial Parlor 3.904153 48.09585

Elsewhere 4.579872 56.42013
No Tattoo 38.515974 474.48403

tab_res1$residuals

location Yes No
Commercial Parlor 6.627811 -1.8883383

Elsewhere 1.598143 -0.4553290
No Tattoo -2.661238 0.7582168

tab_res1$stdres

location Yes No
Commercial Parlor 7.196963 -7.196963

Elsewhere 1.749148 -1.749148
No Tattoo -6.512978 6.512978
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14.4 Personal Appearance Example

These data are also adapted from an example in the Data and Story Library. The data are an
excerpt from the results of a GfK Roper Reports® Worldwide survey. In addition to grouping
the subjects into five age groups, each was also asked how important their personal appearance
is to them, on a seven-point scale.

The data are a contingency table of responses to this question by age decade for 5,844 con-
sumers.

Personal Appearance 20-29 30-39 40-49 50-59 60plus Total
1 - Not at all important 37 53 56 36 52 234

2 43 53 58 37 45 236
3 83 88 93 54 45 363

4 - Average importance 376 403 423 224 210 1636
5 312 317 270 150 106 1155
6 326 307 254 123 86 1096

7 - Extremely important 337 300 252 142 93 1124
Total 1514 1521 1406 766 637 5844

Rather than generating an R tibble with 5844 rows, here I’ll just recreate the cross-tabulation
in R, then analyze it.

persapp <-
as.table(rbind (

c(37, 53, 56, 36, 52),
c(43, 53, 58, 37, 45),
c(83, 88, 93, 54, 45),
c(376, 403, 423, 224, 210),
c(312, 317, 270, 150, 106),
c(326, 307, 254, 123, 86),
c(337, 300, 252, 142, 93)))

dimnames(persapp) <-
list( appear= c("1", "2", "3", "4", "5", "6", "7"),

age = c("20-29", "30-39", "40-49", "50-59", "60plus"))

persapp

age
appear 20-29 30-39 40-49 50-59 60plus
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1 37 53 56 36 52
2 43 53 58 37 45
3 83 88 93 54 45
4 376 403 423 224 210
5 312 317 270 150 106
6 326 307 254 123 86
7 337 300 252 142 93

Now, let’s look at the results from a 𝜒2 test of independence of the rows and columns from
this contingency table.

out2 <- chisq.test(persapp)

out2

Pearson's Chi-squared test

data: persapp
X-squared = 120.83, df = 24, p-value = 6.914e-15

out2$observed

age
appear 20-29 30-39 40-49 50-59 60plus

1 37 53 56 36 52
2 43 53 58 37 45
3 83 88 93 54 45
4 376 403 423 224 210
5 312 317 270 150 106
6 326 307 254 123 86
7 337 300 252 142 93

out2$expected

age
appear 20-29 30-39 40-49 50-59 60plus

1 60.62218 60.90246 56.29774 30.67146 25.50616
2 61.14031 61.42300 56.77892 30.93361 25.72416
3 94.04209 94.47690 87.33368 47.58008 39.56725
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4 423.83710 425.79671 393.60301 214.43806 178.32512
5 299.22485 300.60832 277.87988 151.39117 125.89579
6 283.93977 285.25257 263.68515 143.65777 119.46475
7 291.19370 292.54004 270.42163 147.32786 122.51677

out2$residuals

age
appear 20-29 30-39 40-49 50-59 60plus

1 -3.0339202 -1.0126167 -0.0396820 0.9621465 5.2459285
2 -2.3199626 -1.0747345 0.1620508 1.0907250 3.8005169
3 -1.1386502 -0.6663530 0.6063321 0.9307154 0.8636781
4 -2.3236213 -1.1047681 1.4817456 0.6529731 2.3719674
5 0.7385286 0.9454163 -0.4727057 -0.1130655 -1.7731913
6 2.4960803 1.2876363 -0.5964354 -1.7235300 -3.0617357
7 2.6843194 0.4361579 -1.1202303 -0.4389451 -2.6666809

out2$stdres

age
appear 20-29 30-39 40-49 50-59 60plus

1 -3.59740205 -1.20165904 -0.04647599 1.05347351 5.67227598
2 -2.75133354 -1.27560078 0.18982947 1.19446962 4.11012547
3 -1.36592442 -0.80000375 0.71845112 1.03098141 0.94479685
4 -3.18122022 -1.51373842 2.00379056 0.82550794 2.96133317
5 0.95784108 1.22715817 -0.60557414 -0.13541096 -2.09716160
6 3.21713632 1.66094580 -0.75931957 -2.05129138 -3.59856010
7 3.46999984 0.56427443 -1.43038477 -0.52396591 -3.14352177

14.5 For More Information
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15 Statistical Significance

I’m not posting a draft here until it’s better than it is now.

I’ll remove this notice when I post a version of this Chapter that is essentially finished.

15.1 For More Information
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Part IV

Linear Regression
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16 Covariate Adjustment

This is a DRAFT version of this Chapter.

This is a sketchy draft. I’ll remove this notice when I post a version of this Chapter that
is essentially finished.

16.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion. Appendix B describes the 431-Love.R script, and demonstrates its use.

library(haven)
library(knitr)
library(naniar)
library(patchwork)
library(rstanarm)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())
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16.2 Data ingest from Stata: Supraclavicular Nerve Block

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

This is adapted from the Supraclavicular1 Nerve Block example at the Cleveland Clinic Sta-
tistical Dataset Repository. The source is Roberman et al. (2011). A version of the data is
also available as part of the medicaldata package in R (see Higgins (2023).)

We have provided the data in a Stata data file (.dta) which we can ingest into R using the
read_dta() function in the haven package, as follows:

supra <- read_dta("data/supraclav.dta")

head(supra)

# A tibble: 6 x 6
subject onset_sensory group opioid_total bmi age

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 0 1 30 41.2 52
2 2 7 2 150 25.2 54
3 3 24 2 0 34.1 46
4 4 4 1 15 41.6 54
5 5 30 1 90 27.2 41
6 6 4 2 15 22.0 21

The data contain information on 103 patients, ages 18-70 years who …

were scheduled to undergo an upper extremity procedure suitable for supraclavic-
ular anesthesia at the Cleveland Clinic. Patients were randomly assigned to either
(1) combined group-ropivacaine and mepivacaine mixture; or (2) sequential group-
mepivacaine followed by ropivacaine. A number of demographic and post-op pain
medication variables (fentanyl, alfentanil, midazolam) were collected. The primary
outcome is time to 4-nerve sensory block onset.

This study investigates whether sequential supraclavicular injection of 1.5% mepi-
vacaine followed 90 seconds later by 0.5% ropivacaine provides a quicker onset
and a longer duration of analgesia than an equidose combination of the 2 local
anesthetics.

1Supraclavicular refers to the area above the clavicle, or collarbone, on either side of the body.
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The primary outcome was time to 4-nerve sensory block onset, which was defined
as time from the completion of anesthetic injection until development of sensory
block to sharp pain in each of the 4 major nerve distributions: median, ulnar,
radial, and musculocutaneous.

Our interest today is in determining whether the mixture or sequential group has a shorter time
to 4-nerve sensory block2, measured in minutes. We will first assess this without adjustment for
any other variable, then consider whether adjusting for the total opioid consumption (measured
in mg) might change our thinking about the association of group with block time.

The variables of interest, then, are:

Variable Description
subject numeric subject ID code

onset_sensory time in minutes to 4-nerve sensory block3

group anesthetic group: either 1 = mixture, or 2 = sequential
opioid_total total opioid consumption (in mg)

We have also collected age (in years) for all subjects and BMI (in 𝑘𝑔/𝑚2) for all but three of
the subjects.

miss_var_summary(supra)

# A tibble: 6 x 3
variable n_miss pct_miss
<chr> <int> <num>

1 bmi 3 2.91
2 subject 0 0
3 onset_sensory 0 0
4 group 0 0
5 opioid_total 0 0
6 age 0 0

Let’s express the group in terms of the names of the two anesthetic conditions the study
applies.

2Onset_first_sensory was defined as time from the completion of anesthetic injection until development of
first sensory block to sharp pain.

3Two subjects (subjects 16 and 84) failed to achieve complete sensory and motor block, and these were censored
at 50 minutes. We’ll ignore this here.
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supra <- supra |>
mutate(group =

fct_recode(factor(group),
"Mixture" = "1", "Sequential" = "2"),

subject = as.character(subject))

glimpse(supra)

Rows: 103
Columns: 6
$ subject <chr> "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11",~
$ onset_sensory <dbl> 0, 7, 24, 4, 30, 4, 12, 13, 27, 4, 3, 21, 9, 9, 5, 50, 7~
$ group <fct> Mixture, Sequential, Sequential, Mixture, Mixture, Seque~
$ opioid_total <dbl> 30.00, 150.00, 0.00, 15.00, 90.00, 15.00, 15.00, 60.00, ~
$ bmi <dbl> 41.15, 25.22, 34.14, 41.57, 27.17, 22.05, 26.32, 24.69, ~
$ age <dbl> 52, 54, 46, 54, 41, 21, 68, 61, 44, 28, 36, 60, 34, 64, ~

16.3 Exploratory Data Analysis

We’ll start by looking at the distribution of our outcome, onset_sensory.

bw = 4 # specify width of bins in histogram

p1 <- ggplot(supra, aes(onset_sensory)) +
geom_histogram(binwidth = bw,

fill = "black", col = "yellow") +
stat_function(fun = function(x)

dnorm(x, mean = mean(supra$onset_sensory,
na.rm = TRUE),

sd = sd(supra$onset_sensory,
na.rm = TRUE)) *

length(supra$onset_sensory) * bw,
geom = "area", alpha = 0.5,
fill = "lightblue", col = "blue"
) +

labs(
x = "Time to 4-nerve sensory block",
title = "Histogram & Normal Curve"

)
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p2 <- ggplot(supra, aes(sample = onset_sensory)) +
geom_qq() +
geom_qq_line(col = "red") +
labs(

y = "Time to block",
x = "Standard Normal Distribution",
title = "Normal Q-Q plot"

)

p3 <- ggplot(supra, aes(x = onset_sensory, y = "")) +
geom_violin(fill = "cornsilk") +
geom_boxplot(width = 0.2) +
stat_summary(

fun = mean, geom = "point",
shape = 16, col = "red"

) +
labs(

y = "", x = "Time to 4-nerve sensory block",
title = "Boxplot with Violin"

)

p1 + (p2 / p3 + plot_layout(heights = c(2, 1))) +
plot_annotation(

title = "Supraclavicular Nerve Block",
subtitle = "Time to 4-nerve sensory block"

)
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supra |> reframe(lovedist(onset_sensory)) |>
kable(digits = 2)

n miss mean sd med mad min q25 q75 max
103 0 13.32 11.87 9 7.41 0 5 18 50

16.4 Time to Block by Group

16.4.1 Least Squares Linear Model

fit1 <- lm(onset_sensory ~ group, data = supra)

model_parameters(fit1, ci = 0.95)

Parameter | Coefficient | SE | 95% CI | t(101) | p
--------------------------------------------------------------------------
(Intercept) | 11.42 | 1.63 | [ 8.19, 14.66] | 7.00 | < .001
group [Sequential] | 3.83 | 2.32 | [-0.77, 8.43] | 1.65 | 0.102
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Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

estimate_contrasts(fit1, contrast = "group")

Marginal Contrasts Analysis

Level1 | Level2 | Difference | 95% CI | SE | t(101) | p
-------------------------------------------------------------------------
Mixture | Sequential | -3.83 | [-8.43, 0.77] | 2.32 | -1.65 | 0.102

Marginal contrasts estimated at group
p-value adjustment method: Holm (1979)

model_performance(fit1)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
-----------------------------------------------------------------
804.175 | 804.418 | 812.079 | 0.026 | 0.017 | 11.655 | 11.769

check_model(fit1)
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16.4.2 Bayesian linear model

set.seed(431)
fit2 <- stan_glm(onset_sensory ~ group, data = supra, refresh = 0)

model_parameters(fit2, ci = 0.95)

Parameter | Median | 95% CI | pd | Rhat | ESS | Prior
----------------------------------------------------------------------------------------------
(Intercept) | 11.43 | [ 8.27, 14.66] | 100% | 1.001 | 4070.00 | Normal (13.32 +- 29.67)
groupSequential | 3.79 | [-0.75, 8.32] | 94.95% | 1.001 | 4048.00 | Normal (0.00 +- 59.06)

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a MCMC distribution approximation.

estimate_contrasts(fit2, contrast = "group")

Marginal Contrasts Analysis

Level1 | Level2 | Difference | 95% CI | pd | % in ROPE
----------------------------------------------------------------------
Mixture | Sequential | -3.79 | [-8.32, 0.75] | 94.95% | 1.16%

Marginal contrasts estimated at group

model_performance(fit2)

# Indices of model performance

ELPD | ELPD_SE | LOOIC | LOOIC_SE | WAIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------------------------------
-402.665 | 10.611 | 805.331 | 21.222 | 805.304 | 0.026 | -0.003 | 11.655 | 11.816

check_model(fit2)
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16.5 Adjusting for Opioid Consumption

16.5.1 Least Squares Linear Model

fit3 <- lm(onset_sensory ~ group + opioid_total, data = supra)

model_parameters(fit3, ci = 0.95)

Parameter | Coefficient | SE | 95% CI | t(100) | p
--------------------------------------------------------------------------
(Intercept) | 8.35 | 1.85 | [ 4.68, 12.02] | 4.52 | < .001
group [Sequential] | 3.70 | 2.23 | [-0.71, 8.12] | 1.66 | 0.099
opioid total | 0.06 | 0.02 | [ 0.02, 0.10] | 3.12 | 0.002

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

estimate_contrasts(fit3, contrast = "group")

Marginal Contrasts Analysis

Level1 | Level2 | Difference | 95% CI | SE | t(100) | p
-------------------------------------------------------------------------
Mixture | Sequential | -3.70 | [-8.12, 0.71] | 2.23 | -1.66 | 0.099

Marginal contrasts estimated at group
p-value adjustment method: Holm (1979)

model_performance(fit3)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
-----------------------------------------------------------------
796.609 | 797.017 | 807.148 | 0.113 | 0.095 | 11.126 | 11.291
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check_model(fit3)
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16.5.2 Bayesian linear model

set.seed(431)
fit4 <- stan_glm(onset_sensory ~ group + opioid_total,

data = supra, refresh = 0)

model_parameters(fit4, ci = 0.95)

Parameter | Median | 95% CI | pd | Rhat | ESS | Prior
----------------------------------------------------------------------------------------------
(Intercept) | 8.35 | [ 4.59, 12.00] | 100% | 0.999 | 4530.00 | Normal (13.32 +- 29.67)
groupSequential | 3.75 | [-0.48, 8.16] | 95.45% | 1.000 | 5436.00 | Normal (0.00 +- 59.06)
opioid_total | 0.06 | [ 0.02, 0.10] | 99.80% | 0.999 | 4662.00 | Normal (0.00 +- 0.50)

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a MCMC distribution approximation.

estimate_contrasts(fit4, contrast = "group")

Marginal Contrasts Analysis

Level1 | Level2 | Difference | 95% CI | pd | % in ROPE
----------------------------------------------------------------------
Mixture | Sequential | -3.75 | [-8.16, 0.48] | 95.45% | 0.97%

Marginal contrasts estimated at group

model_performance(fit4)

# Indices of model performance

ELPD | ELPD_SE | LOOIC | LOOIC_SE | WAIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------------------------------
-399.338 | 10.630 | 798.676 | 21.260 | 798.573 | 0.118 | 0.053 | 11.126 | 11.315

check_model(fit4)
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16.6 What about a transformation of the outcome?

• discuss what to do here given that we have a zero in the outcome
• show the results on a multiplicative scale with exponentiate = TRUE

16.7 For More Information

431-book Chapter 16 reference OpenStats https://www.openintro.org/book/os/Section 8 -
intro to linear regression
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17 Nations of the World

This is a DRAFT version of this Chapter.

This is a sketchy draft. I’ll remove this notice when I post a version of this Chapter that
is essentially finished.

17.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion. Appendix B describes the 431-Love.R script, and demonstrates its use.

library(broom)
library(car)
library(janitor)
library(knitr)
library(mice)
library(naniar)
library(patchwork)
library(rstanarm)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())
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17.2 Data on Nations of the World

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

I collected these data from the World Health Organization and other sources, as of the end of
May 2024. The primary resource was the Global Health Observatory from the WHO. Other
resources included:

• The World Health Statistics Report
• Table of World Health Statistics 2024
• Gross Domestic Product Per Capita comes from the World Bank, accessed 2024-06-20.

nations <- read_csv("data/nations.csv", show_col_types = FALSE) |>
mutate(

UNIV_CARE = factor(UNIV_CARE),
WHO_REGION = factor(WHO_REGION),
C_NUM = as.character(C_NUM),
GDP_PERCAP = GDP_PERCAP/1000

) |>
janitor::clean_names()

glimpse(nations)

Rows: 192
Columns: 7
$ c_num <chr> "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", ~
$ country_name <chr> "Afghanistan", "Albania", "Algeria", "Andorra", "Angola",~
$ iso_alpha3 <chr> "AFG", "ALB", "DZA", "AND", "AGO", "ATG", "ARG", "ARM", "~
$ uhc_index <dbl> 41, 64, 74, 79, 37, 76, 79, 68, 87, 85, 66, 77, 76, 52, 7~
$ univ_care <fct> no, yes, yes, no, no, no, yes, no, yes, yes, no, yes, no,~
$ gdp_percap <dbl> 0.356, 6.810, 4.343, 41.993, 3.000, 19.920, 13.651, 7.018~
$ who_region <fct> Eastern Mediterranean, European, African, European, Afric~

The data include information on 7 variables (listed below), describing 192 separate countries
of the world.
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Note

By Country, we mean a sovereign state that is a member of both the United Nations
and the World Health Organization, in its own right. Note that Liechtenstein is not a
member of the World Health Organization, but is in the UN. Liechtenstein is the only
UN member nation not included in the nations data.

Variable Description
c_num Country ID (alphabetical by country_name)

country_name Name of Country (according to WHO and UN)
iso_alpha3 ISO Alphabetical 3-letter code gathered from WHO
uhc_index Universal Health Coverage: Service coverage index1 - higher numbers indicate

better coverage.
univ_care Yes if country offers government-regulated and government-funded health

care to more than 90% of its citizens as of 2023, else No
gdp_percap GDP Per Capita per the World Bank in thousands of 2023 US dollars2

who_region Six groups3 according to regional distribution

17.3 Exploratory Data Analysis

Our interest is in understanding the association of uhc_index and univ_care, perhaps after
adjustment for the country’s gdp_percap.

17.3.1 EDA for our outcome

bw = 4 # specify width of bins in histogram

p1 <- ggplot(nations, aes(uhc_index)) +
geom_histogram(binwidth = bw,

fill = "black", col = "yellow") +
stat_function(fun = function(x)

dnorm(x, mean = mean(nations$uhc_index,

1This is a measure of coverage of essential health services as expressed as the average score of 14 tracer
indicators of health service coverage, measured in 2021.

2Some of the GDP data describes 2021, some 2022 and some 2023, depending on what was most recent and
available.

3The WHO regions are African, Americas, Eastern Mediterranean, European, Southeast Asian and Western
Pacific.
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na.rm = TRUE),
sd = sd(nations$uhc_index,

na.rm = TRUE)) *
length(nations$uhc_index) * bw,

geom = "area", alpha = 0.5,
fill = "lightblue", col = "blue"
) +

labs(
x = "UHC Service Coverage Index",
title = "Histogram & Normal Curve"

)

p2 <- ggplot(nations, aes(sample = uhc_index)) +
geom_qq() +
geom_qq_line(col = "red") +
labs(

y = "UHC Service Coverage Index",
x = "Standard Normal Distribution",
title = "Normal Q-Q plot"

)

p3 <- ggplot(nations, aes(x = uhc_index, y = "")) +
geom_violin(fill = "cornsilk") +
geom_boxplot(width = 0.2) +
stat_summary(

fun = mean, geom = "point",
shape = 16, col = "red"

) +
labs(

y = "", x = "UHC Service Coverage Index",
title = "Boxplot with Violin"

)

p1 + (p2 / p3 + plot_layout(heights = c(2, 1))) +
plot_annotation(

title = "Nations: UHC Service Coverage Index"
)
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nations |>
reframe(lovedist(uhc_index)) |>
kable(digits = 2)

n miss mean sd med mad min q25 q75 max
192 0 65.46 16.29 69 19.27 27 52 79 91

17.3.2 UHC Service Coverage by Universal Care Status

ggplot(nations, aes(y = univ_care, x = uhc_index,
fill = univ_care)) +

geom_violin() +
geom_boxplot(width = 0.3, fill = "cornsilk", notch = TRUE) +
stat_summary(fun = mean, geom = "point", fill = "red",

size = 3, shape = 21) +
scale_fill_brewer(palette = "Set2") +
guides(fill = "none")
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nations |>
reframe(lovedist(uhc_index), .by = univ_care) |>
kable(digits = 2)

univ_care n miss mean sd med mad min q25 q75 max
no 124 0 59.92 15.77 59.5 21.50 27 46.00 75 86
yes 68 0 75.57 11.79 79.0 9.64 40 68.75 85 91

17.4 Should we transform our outcome?

Eventually, we will consider including the gdp_percap predictor in our model, so let’s include
that here, as well as univ_care when predicting uhc_index.

fit1 <- lm(uhc_index ~ univ_care + gdp_percap,
data = nations)

boxCox(fit1, main = "Transforming UHC_Index")
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summary(powerTransform(fit1))$result

Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
Y1 2.532079 2 1.908487 3.155671

17.4.1 Looking at Residual Plots

We might consider whether the residuals from our two models (with and without transforming
the outcome) follow the assumption of a Normal distribution.

fit2 <- lm((uhc_index^2) ~ univ_care + gdp_percap,
data = nations)

resids_df <- tibble(raw = fit1$residuals,
sqr = fit2$residuals)

p1 <- ggplot(resids_df, aes(sample = raw)) +
geom_qq() + geom_qq_line(col = "red") +
labs(title = "uhc_index",

subtitle = "Normal Q-Q for fit1 residuals")
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p2 <- ggplot(resids_df, aes(sample = sqr)) +
geom_qq() + geom_qq_line(col = "red") +
labs(title = "Square of uhc_index",

subtitle = "Normal Q-Q for fit2 residuals")

p1 + p2 +
plot_annotation("How well do we support a Normality assumption?")
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How well do we support a Normality assumption?

In terms of providing a better match to the assumption of Normality in the residuals, the
square transformation doesn’t appear to be very helpful. If anything, our problem with light
tails (fewer values far from the mean than expected) may get a little worse in fit2. So we’ll
skip the transformation and work with our original outcome in what follows.

17.5 Least Squares Linear Model

fit3 <- lm(uhc_index ~ univ_care, data = nations)

model_parameters(fit3, ci = 0.95)

Parameter | Coefficient | SE | 95% CI | t(190) | p
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-----------------------------------------------------------------------
(Intercept) | 59.92 | 1.30 | [57.35, 62.49] | 46.04 | < .001
univ care [yes] | 15.65 | 2.19 | [11.34, 19.97] | 7.16 | < .001

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

estimate_contrasts(fit3, contrast = "univ_care", ci = 0.95)

Marginal Contrasts Analysis

Level1 | Level2 | Difference | 95% CI | SE | t(190) | p
------------------------------------------------------------------------
no | yes | -15.65 | [-19.97, -11.34] | 2.19 | -7.16 | < .001

Marginal contrasts estimated at univ_care
p-value adjustment method: Holm (1979)

17.5.1 Interpreting the Fit

When comparing two nations where one offers universal health care and the other does not,
the country that offers universal care will, on average, have a UHC index score that is 15.7
points higher.

Under this fitted model, the average difference in UHC index score between a country that
offers universal health care and one that does not is 15.7 points (95% uncertainty interval for
the estimated difference is 11.34, 19.97 points.)

17.5.2 Performance of the Model

model_performance(fit3)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
--------------------------------------------------------------------
1575.544 | 1575.672 | 1585.317 | 0.212 | 0.208 | 14.417 | 14.493
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17.5.3 Checking the Model

check_model(fit3)
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17.6 Bayesian Linear Model

set.seed(431)
fit4 <- stan_glm(uhc_index ~ univ_care, data = nations, refresh = 0)

model_parameters(fit4, ci = 0.95)

Parameter | Median | 95% CI | pd | Rhat | ESS | Prior
-----------------------------------------------------------------------------------------
(Intercept) | 59.92 | [57.29, 62.50] | 100% | 1.000 | 4052.00 | Normal (65.46 +- 40.72)
univ_careyes | 15.69 | [11.28, 19.94] | 100% | 1.000 | 3679.00 | Normal (0.00 +- 84.92)

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a MCMC distribution approximation.

estimate_contrasts(fit4, contrast = "univ_care", ci = 0.95)

Marginal Contrasts Analysis

Level1 | Level2 | Difference | 95% CI | pd | % in ROPE
------------------------------------------------------------------
no | yes | -15.69 | [-19.94, -11.28] | 100% | 0%

Marginal contrasts estimated at univ_care

17.6.1 Interpreting the Fit

Under this fitted Bayesian model (fit4) which uses a weakly informative prior, the estimated
median difference in UHC index score between a country that offers universal health care and
one that does not is 15.7 points (95% credible interval for the median difference ranges from
11.28 to 19.94 points.)

The estimated probability that the median (universal care - no universal care) difference in
UHC index scores is positive is 100%, according to the fit4 model. None of the simulated
results comparing the two groups (universal care yes vs. no) fall in the region of practical
equivalence.
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17.6.2 Performance of the Model

model_performance(fit4)

# Indices of model performance

ELPD | ELPD_SE | LOOIC | LOOIC_SE | WAIC | R2 | R2 (adj.) | RMSE | Sigma
-----------------------------------------------------------------------------------------
-787.518 | 7.559 | 1575.035 | 15.119 | 1575.027 | 0.212 | 0.202 | 14.417 | 14.518

17.6.3 Checking the Model

check_model(fit4)
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17.7 Missing Data Mechanisms

We now tackle the issue of missing data.

My source for the following description of mechanisms is Chapter 25 of Gelman and Hill (2007),
and that chapter is available at this link.

1. MCAR = Missingness completely at random. A variable is missing completely
at random if the probability of missingness is the same for all units, for example, if for
each subject, we decide whether to collect gdp_percap by rolling a die and refusing to
answer if a “6” shows up. If data are missing completely at random, then throwing out
cases with missing data does not bias your inferences.

Note

We have tacitly made the MCAR assumption in all of our prior dealings with missing
data in this book.

2. Missingness that depends only on observed predictors. A more general assump-
tion, called missing at random or MAR, is that the probability a variable is missing
depends only on available information. Here, we would have to be willing to assume that
the probability of non-response to gdp_percap depends only on the other, fully recorded
variables in the data. It is often reasonable to model this process as a logistic regres-
sion, where the outcome variable equals 1 for observed cases and 0 for missing. When
an outcome variable is missing at random, it is acceptable to exclude the missing cases
(that is, to treat them as NA), as long as the regression adjusts for all of the variables
that affect the probability of missingness.

3. Missingness that depends on unobserved predictors. Missingness is no longer “at
random” if it depends on information that has not been recorded and this information
also predicts the missing values. If a particular treatment causes discomfort, a patient
is more likely to drop out of the study. This missingness is not at random (unless
“discomfort” is measured and observed for all patients). If missingness is not at random,
it must be explicitly modeled, or else you must accept some bias in your inferences.

4. Missingness that depends on the missing value itself. Finally, a particularly
difficult situation arises when the probability of missingness depends on the (potentially
missing) variable itself. For example, suppose that people with higher earnings are less
likely to reveal them.

Essentially, situations 3 and 4 are referred to collectively as non-random missingness, and
cause more trouble for us than 1 and 2.
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17.8 Dealing with Missing Data

There are several available methods for dealing with missing data that are MCAR or MAR,
but they basically boil down to:

• Complete Case (or Available Case) analyses
• Single Imputation
• Multiple Imputation

17.8.1 Complete Case (and Available Case) analyses

In Complete Case analyses, rows containing NA values are omitted from the data before
analyses commence. This is the default approach for many statistical software packages, and
may introduce unpredictable bias and fail to include some useful, often hard-won informa-
tion.

• A complete case analysis can be appropriate when the number of missing observations
is not large, and the missing pattern is either MCAR (missing completely at random) or
MAR (missing at random.)

• Two problems arise with complete-case analysis:

1. If the units with missing values differ systematically from the completely observed
cases, this could bias the complete-case analysis.

2. If many variables are included in a model, there may be very few complete cases, so
that most of the data would be discarded for the sake of a straightforward analysis.

• A related approach is available-case analysis where different aspects of a problem are
studied with different subsets of the data, perhaps identified on the basis of what is
missing in them.

17.8.2 Single Imputation

In single imputation analyses, NA values are estimated/replaced one time with one partic-
ular data value for the purpose of obtaining more complete samples, at the expense of creating
some potential bias in the eventual conclusions or obtaining slightly less accurate estimates
than would be available if there were no missing values in the data.

• A single imputation can be just a replacement with the mean or median (for a quantity)
or the mode (for a categorical variable.) However, such an approach, though easy to
understand, underestimates variance and ignores the relationship of missing values to
other variables.

• Single imputation can also be done using a variety of models to try to capture information
about the NA values that are available in other variables within the data set.
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• In this book, we will use the mice package to perform single imputations, as well as
multiple imputation.

17.8.3 Multiple Imputation

Multiple imputation, where NA values are repeatedly estimated/replaced with multiple
data values, for the purpose of obtaining mode complete samples and capturing details of the
variation inherent in the fact that the data have missingness, so as to obtain more accurate
estimates than are possible with single imputation.

How many imputations?

Quoting vanBuuren at https://stefvanbuuren.name/fimd/sec-howmany.html

They take a quote from Von Hippel (2009) as a rule of thumb: the number of
imputations should be similar to the percentage of cases that are incomplete. This
rule applies to fractions of missing information of up to 0.5.

White, Royston, and Wood (2011) suggest these criteria provide an adequate level
of reproducibility in practice. The idea of reproducibility is sensible, the rule is
simple to apply, so there is much to commend it. The rule has now become the
de-facto standard, especially in medical applications.

It is convenient to set m = 5 during model building, and increase m only after being
satisfied with the model for the “final” round of imputation. So if calculation is
not prohibitive, we may set m to the average percentage of missing data. The
substantive conclusions are unlikely to change as a result of raising m beyond m =
5.

17.9 Nations and Missing Data

In our study, if we want to adjust our estimates for the impact of per-capita GDP, we must
deal with the fact that these data are missing for four of the nations in our data.

miss_var_summary(nations)

# A tibble: 7 x 3
variable n_miss pct_miss
<chr> <int> <num>

1 gdp_percap 4 2.08
2 c_num 0 0
3 country_name 0 0
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4 iso_alpha3 0 0
5 uhc_index 0 0
6 univ_care 0 0
7 who_region 0 0

nations |> filter(is.na(gdp_percap)) |>
select(country_name, iso_alpha3, gdp_percap, uhc_index, univ_care) |>
kable()

country_name iso_alpha3 gdp_percap uhc_index univ_care
Democratic People’s Republic of Korea PRK NA 68 yes
Eritrea ERI NA 45 no
South Sudan SSD NA 34 no
Venezuela (Bolivarian Republic of) VEN NA 75 no

17.9.1 Complete Case Analysis

We can drop all of the missing values from a data set with drop_na or with na.omit or by
filtering for complete.cases. Any of these approaches produces the same result.

Note

If we don’t do anything about missing data, and simply feed the results to the lm() or
stan_glm() functions, the machine will produce a fit on the complete cases.

fit5 <- lm(uhc_index ~ univ_care + gdp_percap,
data = nations)

summary(fit5)

Call:
lm(formula = uhc_index ~ univ_care + gdp_percap, data = nations)

Residuals:
Min 1Q Median 3Q Max

-36.161 -9.625 1.336 9.558 19.917

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 57.02924 1.20223 47.436 < 2e-16 ***
univ_careyes 11.04387 1.98727 5.557 9.44e-08 ***
gdp_percap 0.27041 0.03414 7.920 2.14e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12.5 on 185 degrees of freedom
(4 observations deleted due to missingness)

Multiple R-squared: 0.4117, Adjusted R-squared: 0.4053
F-statistic: 64.73 on 2 and 185 DF, p-value: < 2.2e-16

model_parameters(fit5, ci = 0.95)

Parameter | Coefficient | SE | 95% CI | t(185) | p
-----------------------------------------------------------------------
(Intercept) | 57.03 | 1.20 | [54.66, 59.40] | 47.44 | < .001
univ care [yes] | 11.04 | 1.99 | [ 7.12, 14.96] | 5.56 | < .001
gdp percap | 0.27 | 0.03 | [ 0.20, 0.34] | 7.92 | < .001

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

model_performance(fit5)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
--------------------------------------------------------------------
1488.247 | 1488.465 | 1501.192 | 0.412 | 0.405 | 12.402 | 12.503

Note the indication that this model fit has had four observations deleted due to missingness.

Finally, we check the model…

check_model(fit5)
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17.9.2 Single Imputation

Here is how I produced a single imputation of the nations data in R using the mice package,
and some default choices, so that I could perform a regression analysis incorporating all of the
nations, including those with missing gdp_percap values.

Note

By default, mice uses predictive mean matching (or pmm), for numeric data. It uses
logistic regression imputation for binary data, polytomous regression imputation for un-
ordered categorical data with more than 2 levels, and a proportional odds regression
model for ordered categorical data with more than 2 levels.
All of these methodologies will be explored in the 432 class, but a detailed explanation
is beyond the scope of this book.

nations_simp <-
mice(nations, m = 1, seed = 431, print = FALSE) |>
complete() |>
tibble()

Warning: Number of logged events: 3

Here, m is the number of imputations I want to create (here just one), seed is the random seed
I set so that I can replicate the results later, and print is set to FALSE to reduce the amount
of unnecessary output this produces. I will ignore this warning about logged events in most
cases, including here.

Tip

If you want to see the logged events, try:

ini <- mice(nations, m = 1, seed = 431, print = FALSE)

Warning: Number of logged events: 3

ini$loggedEvents

it im dep meth out
1 0 0 constant c_num
2 0 0 constant country_name
3 0 0 constant iso_alpha3
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Here, our nations data include three variables which are not included in the imputation
process (and which we don’t want included) so all is well.

Here’s what I wind up with:

nations_simp

# A tibble: 192 x 7
c_num country_name iso_alpha3 uhc_index univ_care gdp_percap who_region
<chr> <chr> <chr> <dbl> <fct> <dbl> <fct>

1 1 Afghanistan AFG 41 no 0.356 Eastern M~
2 2 Albania ALB 64 yes 6.81 European
3 3 Algeria DZA 74 yes 4.34 African
4 4 Andorra AND 79 no 42.0 European
5 5 Angola AGO 37 no 3 African
6 6 Antigua and Barbu~ ATG 76 no 19.9 Americas
7 7 Argentina ARG 79 yes 13.7 Americas
8 8 Armenia ARM 68 no 7.02 European
9 9 Australia AUS 87 yes 65.1 Western P~
10 10 Austria AUT 85 yes 52.1 European
# i 182 more rows

n_miss(nations_simp)

[1] 0

Now, I can do everything I did previously with this singly imputed data set.

fit6 <- lm(uhc_index ~ univ_care + gdp_percap,
data = nations_simp)

summary(fit6)

Call:
lm(formula = uhc_index ~ univ_care + gdp_percap, data = nations_simp)

Residuals:
Min 1Q Median 3Q Max
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-36.216 -9.940 1.337 9.692 20.062

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 56.86773 1.19475 47.598 < 2e-16 ***
univ_careyes 11.16974 1.98286 5.633 6.34e-08 ***
gdp_percap 0.27131 0.03427 7.916 2.02e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12.59 on 189 degrees of freedom
Multiple R-squared: 0.4085, Adjusted R-squared: 0.4023
F-statistic: 65.27 on 2 and 189 DF, p-value: < 2.2e-16

model_parameters(fit6, ci = 0.95)

Parameter | Coefficient | SE | 95% CI | t(189) | p
-----------------------------------------------------------------------
(Intercept) | 56.87 | 1.19 | [54.51, 59.22] | 47.60 | < .001
univ care [yes] | 11.17 | 1.98 | [ 7.26, 15.08] | 5.63 | < .001
gdp percap | 0.27 | 0.03 | [ 0.20, 0.34] | 7.92 | < .001

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

model_performance(fit6)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
--------------------------------------------------------------------
1522.564 | 1522.778 | 1535.594 | 0.409 | 0.402 | 12.494 | 12.593

And, again, we check the model…

check_model(fit6)
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17.9.3 Multiple Imputation

The first thing we might consider is how many multiple imputations we want to do.

nations |> prop_miss_case()

[1] 0.02083333

2% of the cases in our nations tibble contain missing values, so in selecting the number of
imputations, I’d go for the most commonly used option. Let’s try 5 imputations.

nations_imp5 <- mice(nations, m = 5, seed = 431, print = FALSE)

Warning: Number of logged events: 3

Here, m is the number of imputations I want to create (five, in our case), seed is the random
seed I set so that I can replicate the results later, and print is set to FALSE to reduce the
amount of unnecessary output this produces. I will ignore this warning about logged events
in most cases, including here.

Here is how I would fit a set of five models, each using a different one of the five imputed data
sets and obtain a summary of my results:

est7 <- nations |>
mice(seed = 431, print = FALSE) |>
with(lm(uhc_index ~ univ_care + gdp_percap)) |>
pool()

Warning: Number of logged events: 3

model_parameters(est7, ci = 0.95)

Warning: Number of logged events: 3
Warning: Number of logged events: 3
Warning: Number of logged events: 3
Warning: Number of logged events: 3
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# Fixed Effects

Parameter | Coefficient | SE | 95% CI | t | df | p
-------------------------------------------------------------------------------
(Intercept) | 56.81 | 1.19 | [54.46, 59.17] | 47.58 | 186.81 | < .001
univ care [yes] | 11.16 | 1.98 | [ 7.26, 15.06] | 5.64 | 187.01 | < .001
gdp percap | 0.27 | 0.03 | [ 0.21, 0.34] | 7.98 | 186.80 | < .001

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

glance(est7)

nimp nobs r.squared adj.r.squared
1 5 192 0.4111089 0.4048772

17.10 For More Information

See https://library.virginia.edu/data/articles/getting-started-with-multiple-imputation-in-r

• Reference there to Rubin (1976)

Rubin (1976) classified types of missing data in three categories: MCAR, MAR,
MNAR

MCAR: Missing Completely at Random - the reason for the missingness of data
points are at random, meaning that the pattern of missing values is uncorrelated
with the structure of the data. An example would be a random sample taken from
the population: data on some people will be missing, but it will be at random since
everyone had the same chance of being included in the sample.

MAR: Missing at Random - the missingness is not completely random, but the
propensity of missingness depends on the observed data, not the missing data.
An example would be a survey respondent choosing not to answer a question on
income because they believe the privacy of personal information. As seen in this
case, the missing value for income can be predicted by looking at the answers for
the personal information question.
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MNAR: Missing Not at Random - the missing is not random, it correlates with
unobservable characteristics unknown to a researcher. An example would be social
desirability bias in survey - where respondents with certain characteristics we can’t
observe systematically shy away from answering questions on racial issues.

All multiple imputation techniques start with the MAR assumption. While MCAR
is desirable, in general it is unrealistic for the data. Thus, researchers make the
assumption that missing values can be replaced by predictions derived by the ob-
servable portion of the dataset. This is a fundamental assumption to make, oth-
erwise we wouldn’t be able to predict plausible values of missing data points from
the observed data.

17.11 For More Information

• https://stefvanbuuren.name/fimd/
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18 Multiple Regression

This is a DRAFT version of this Chapter.

This is a sketchy draft. I’ll remove this notice when I post a version of this Chapter that
is essentially finished.

18.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion. Appendix B describes the 431-Love.R script, and demonstrates its use.

library(broom)
library(car)
library(GGally)
library(knitr)
library(naniar)
library(rstanarm)
library(tidytuesdayR)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())
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18.2 Child Care Costs from Tidy Tuesday

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

The data for this example is a subset of data described at the Tidy Tuesday repository for
2023-05-09, on Child Care Costs.

The data source is the National Database of Childcare Prices.

The National Database of Childcare Prices (NDCP) is the most comprehensive
federal source of childcare prices at the county level. The database offers childcare
price data by childcare provider type, age of children, and county characteristics.
Data are available from 2008 to 2018.

We will focus on the 2018 data at the county level for the US, and we will read in the data
using the tidytuesdayR package.

The data we’re interested in comes in two separate files, one called childcare_costs, and the
other called counties.

tuesdata <- tidytuesdayR::tt_load("2023-05-09")

--- Compiling #TidyTuesday Information for 2023-05-09 ----

--- There are 2 files available ---

--- Starting Download ---

Downloading file 1 of 2: `childcare_costs.csv`
Downloading file 2 of 2: `counties.csv`

--- Download complete ---

childcare_costs <- tuesdata$childcare_costs
counties <- tuesdata$counties
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head(childcare_costs)

# A tibble: 6 x 61
county_fips_code study_year unr_16 funr_16 munr_16 unr_20to64 funr_20to64

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1001 2008 5.42 4.41 6.32 4.6 3.5
2 1001 2009 5.93 5.72 6.11 4.8 4.6
3 1001 2010 6.21 5.57 6.78 5.1 4.6
4 1001 2011 7.55 8.13 7.03 6.2 6.3
5 1001 2012 8.6 8.88 8.29 6.7 6.4
6 1001 2013 9.39 10.3 8.56 7.3 7.6
# i 54 more variables: munr_20to64 <dbl>, flfpr_20to64 <dbl>,
# flfpr_20to64_under6 <dbl>, flfpr_20to64_6to17 <dbl>,
# flfpr_20to64_under6_6to17 <dbl>, mlfpr_20to64 <dbl>, pr_f <dbl>,
# pr_p <dbl>, mhi_2018 <dbl>, me_2018 <dbl>, fme_2018 <dbl>, mme_2018 <dbl>,
# total_pop <dbl>, one_race <dbl>, one_race_w <dbl>, one_race_b <dbl>,
# one_race_i <dbl>, one_race_a <dbl>, one_race_h <dbl>, one_race_other <dbl>,
# two_races <dbl>, hispanic <dbl>, households <dbl>, ...

First, we work with the childcare_costs data to select the study_year of 2018, then collect
the following variables (besides the county_fips_code we’ll use to link to the counties data
and the study_year):

• Our outcome will be mfcc_preschool (Aggregated weekly, full-time median price
charged for Family Childcare for preschoolers (i.e. aged 36 through 54 months).

• Our first predictor is mhi_2018 (Median household income expressed in 2018 dollars.)
but recast as mhi_18 (mhi_2018 / 1000) to express income in thousands of 2018 dollars,

• Our other predictor is emp_service (Percent of civilians employed in service occupations
aged 16 years old and older in the county.)

In terms of dealing with missingness, we will drop all counties with missing values of the
outcome, which is the only missing element .

costs <- childcare_costs |>
filter(study_year == 2018) |>
mutate(mhi_18 = mhi_2018/1000) |>
select(county_fips_code, mfcc_preschool, mhi_18, emp_service) |>
filter(complete.cases(mfcc_preschool))

prop_miss_case(costs)

[1] 0
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Next, we use left_join() to merge the childcare costs and the county information by the
county_fips_code.

care_costs <- left_join(costs, counties, by = "county_fips_code") |>
rename(fips = county_fips_code,

county = county_name,
state = state_abbreviation) |>

mutate(fips = as.character(fips))

care_costs

# A tibble: 2,348 x 7
fips mfcc_preschool mhi_18 emp_service county state_name state
<chr> <dbl> <dbl> <dbl> <chr> <chr> <chr>

1 1001 106. 58.8 15.9 Autauga County Alabama AL
2 1003 109. 56.0 18.1 Baldwin County Alabama AL
3 1005 77.1 34.2 14.6 Barbour County Alabama AL
4 1007 87.1 45.3 18.7 Bibb County Alabama AL
5 1009 112. 48.7 13 Blount County Alabama AL
6 1011 106. 32.2 17.1 Bullock County Alabama AL
7 1013 107. 39.1 16.0 Butler County Alabama AL
8 1015 85.7 45.2 16.8 Calhoun County Alabama AL
9 1017 116. 39.9 16.0 Chambers County Alabama AL
10 1019 64.6 41.0 12.2 Cherokee County Alabama AL
# i 2,338 more rows

If we like, we can then partition the data into separate training and testing samples. Here,
we’ll put 70% of the rows (counties) in our training sample, and the remaining 30% into the
test sample.

set.seed(431)
ccosts_train <- slice_sample(care_costs, prop = 0.7, replace = FALSE)
ccosts_test <- anti_join(care_costs, ccosts_train, by = "fips")

c(nrow(care_costs), nrow(ccosts_train), nrow(ccosts_test))

[1] 2348 1643 705
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18.3 Fit model in training sample with lm

First, draw a picture with ggpairs from GGally of the training sample, so we can see the
individual associations.

ggpairs(ccosts_train |>
select(mhi_18, emp_service, mfcc_preschool))

Corr:

−0.319***

Corr:

0.631***

Corr:

0.003

mhi_18 emp_service mfcc_preschool

m
hi_18

em
p_service

m
fcc_preschool

50 100 0 10 20 30 40 100 200 300

0.00

0.01

0.02

0.03

0

10

20

30

40

100

200

300

Next, we’ll fit the model, and obtain some basic summaries of the model’s parameters and its
performance.

fit1 <- lm(mfcc_preschool ~ mhi_18 + emp_service, data = ccosts_train)

model_parameters(fit1, ci = 0.95)

Parameter | Coefficient | SE | 95% CI | t(1640) | p
--------------------------------------------------------------------
(Intercept) | -3.63 | 4.42 | [-12.30, 5.03] | -0.82 | 0.411
mhi 18 | 1.59 | 0.04 | [ 1.51, 1.68] | 36.22 | < .001
emp service | 1.99 | 0.17 | [ 1.66, 2.33] | 11.69 | < .001
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Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

model_performance(fit1)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
-----------------------------------------------------------------------
15063.765 | 15063.789 | 15085.382 | 0.444 | 0.444 | 23.638 | 23.660

Next, we’ll check a set of regression diagnostics to evaluate whether assumptions of linear
regression appear to hold sufficiently well.

check_model(fit1)
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check_heteroscedasticity(fit1)

Warning: Heteroscedasticity (non-constant error variance) detected (p < .001).

check_normality(fit1)

Warning: Non-normality of residuals detected (p < .001).

18.4 Transformation needed?

fit1 <- lm(mfcc_preschool ~ mhi_18 + emp_service, data = ccosts_train)

boxCox(fit1)

−2 −1 0 1 2

−
12

20
0

−
11

60
0

Profile Log−likelihood

λ

lo
g−

lik
el

ih
oo

d

 95%

333



18.5 Fitting an alternative model

Here, we’ll also consider fitting a model with only one predictor (the mhi_18) variable, to see
whether the addition of emp_service leads to a meaningful improvement. I don’t expect this
to be a better model than the model (fit1) that also includes emp_service in this case, but
we’ll use this comparison to demonstrate an appealing approach to using training and testing
samples.

fit2 <- lm(mfcc_preschool ~ mhi_18, data = ccosts_train)

model_parameters(fit2, ci = 0.95)

Parameter | Coefficient | SE | 95% CI | t(1641) | p
--------------------------------------------------------------------
(Intercept) | 40.81 | 2.35 | [36.21, 45.41] | 17.40 | < .001
mhi 18 | 1.43 | 0.04 | [ 1.34, 1.51] | 32.95 | < .001

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

model_performance(fit2)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
-----------------------------------------------------------------------
15193.355 | 15193.370 | 15209.568 | 0.398 | 0.398 | 24.604 | 24.619

check_model(fit2)
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check_heteroscedasticity(fit2)

Warning: Heteroscedasticity (non-constant error variance) detected (p < .001).

check_normality(fit2)

Warning: Non-normality of residuals detected (p < .001).

18.6 Comparing the models (training sample)

We can compare the models within our training sample by comparing the performance statis-
tics, as well as the quality of the diagnostic checks.

compare_performance(fit1, fit2)

# Comparison of Model Performance Indices

Name | Model | AIC (weights) | AICc (weights) | BIC (weights) | R2 | R2 (adj.) | RMSE | Sigma
--------------------------------------------------------------------------------------------------------
fit1 | lm | 15063.8 (>.999) | 15063.8 (>.999) | 15085.4 (>.999) | 0.444 | 0.444 | 23.638 | 23.660
fit2 | lm | 15193.4 (<.001) | 15193.4 (<.001) | 15209.6 (<.001) | 0.398 | 0.398 | 24.604 | 24.619

plot(compare_performance(fit1, fit2))
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Comparison of Model Indices

For this “spiderweb” plot, the different indices are normalized and larger values indicate better
model performance. So fit2, with points closer to the center displays worse fit indices than
fit1 within our training sample. Of course, this isn’t a surprise to us. For more on this, see
the documentation online.

18.7 Comparing linear models (test sample)

We’ll use the augment() function from the broom package in this effort.

test1 <- augment(fit1, newdata = ccosts_test) |>
mutate(mod_n = "Model 1")

test2 <- augment(fit2, newdata = ccosts_test) |>
mutate(mod_n = "Model 2")

test_res <- bind_rows(test1, test2) |>
select(mod_n, fips, mfcc_preschool, .fitted, .resid,

everything()) |>
arrange(fips, mod_n)

test_res |> head()

# A tibble: 6 x 10
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mod_n fips mfcc_preschool .fitted .resid mhi_18 emp_service county state_name
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr>

1 Mode~ 10003 155. 142. 12.7 71.0 16.5 New C~ Delaware
2 Mode~ 10003 155. 142. 12.8 71.0 16.5 New C~ Delaware
3 Mode~ 10005 122. 130. -8.38 60.9 18.4 Susse~ Delaware
4 Mode~ 10005 122. 128. -6.11 60.9 18.4 Susse~ Delaware
5 Mode~ 1003 109. 122. -13.1 56.0 18.1 Baldw~ Alabama
6 Mode~ 1003 109. 121. -12.3 56.0 18.1 Baldw~ Alabama
# i 1 more variable: state <chr>

Now, we can summarize the quality of the predictions across these two models with four
summary statistics calculated across the observations in the test sample.

• the mean absolute prediction error, or MAPE
• the median absolute prediction error, or medAPE
• the maximum absolute prediction error, or maxAPE
• the square root of the mean squared prediction error, or RMSPE

No one of these dominates the other, but we might be interested in which model gives us the
best (smallest) result for each of these summaries. Let’s run them.

test_res |>
group_by(mod_n) |>
summarise(MAPE = mean(abs(.resid)),

medAPE = median(abs(.resid)),
maxAPE = max(abs(.resid)),
RMSPE = sqrt(mean(.resid^2)),
rsqr = cor(mfcc_preschool, .fitted)^2) |>

kable()

mod_n MAPE medAPE maxAPE RMSPE rsqr
Model 1 17.34671 13.78572 151.2994 23.93467 0.5388358
Model 2 18.16049 13.86123 170.7277 25.37279 0.4738406

Model 1 (including both predictors) performs better within the test sample on each of these
four summaries. It has the smaller mean, median and maximum absolute prediction error,
and the smaller root mean squared prediction error.
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18.8 Bayesian linear model

Here, we’ll demonstrate a Bayesian fit including each of our predictors, with a weakly infor-
mative prior, and using the training data.

fit3 <- stan_glm(mfcc_preschool ~ mhi_18 + emp_service,
data = ccosts_train, refresh = 0)

model_parameters(fit3, ci = 0.95)

Parameter | Median | 95% CI | pd | Rhat | ESS | Prior
-------------------------------------------------------------------------------------------
(Intercept) | -3.55 | [-12.14, 4.66] | 79.15% | 0.999 | 4179.00 | Normal (115.45 +- 79.31)
mhi_18 | 1.59 | [ 1.51, 1.68] | 100% | 0.999 | 4659.00 | Normal (0.00 +- 5.66)
emp_service | 1.99 | [ 1.65, 2.32] | 100% | 0.999 | 4568.00 | Normal (0.00 +- 21.93)

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a MCMC distribution approximation.

model_performance(fit3)

# Indices of model performance

ELPD | ELPD_SE | LOOIC | LOOIC_SE | WAIC | R2 | R2 (adj.) | RMSE | Sigma
--------------------------------------------------------------------------------------------
-7532.963 | 35.580 | 15065.927 | 71.160 | 15065.919 | 0.444 | 0.441 | 23.638 | 23.670

check_model(fit3)
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18.9 For More Information

431-book Chapter 18 reference OpenStats https://www.openintro.org/book/os/Section 9 -
multiple regression (except we don’t do 9.5 in 431)
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19 Two Factor ANOVA

This is a DRAFT version of this Chapter.

This is a sketchy draft. I’ll remove this notice when I post a version of this Chapter that
is essentially finished.

19.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion. Appendix B describes the 431-Love.R script, and demonstrates its use.

library(knitr)
library(naniar)
library(rstanarm)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())

19.2 Data are Rosner’s FEV Data

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.
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Rosner’s FEV data in https://hbiostat.org/data/ FEV (quant) as a function of age, height, sex,
smoker should be useful for a two-way anova perhaps adjusting for two additional continuous
covariates

fev_ros <- read_csv("data/fev_ros.csv", show_col_types = FALSE) |>
mutate(across(where(is.character), as_factor)) |>
mutate(id = as.character(id))

fev_ros

# A tibble: 654 x 6
id age fev height sex smoke
<chr> <dbl> <dbl> <dbl> <fct> <fct>

1 301 9 1.71 57 female non-current smoker
2 451 8 1.72 67.5 female non-current smoker
3 501 7 1.72 54.5 female non-current smoker
4 642 9 1.56 53 male non-current smoker
5 901 9 1.90 57 male non-current smoker
6 1701 8 2.34 61 female non-current smoker
7 1752 6 1.92 58 female non-current smoker
8 1753 6 1.42 56 female non-current smoker
9 1901 8 1.99 58.5 female non-current smoker
10 1951 9 1.94 60 female non-current smoker
# i 644 more rows

n_miss(fev_ros)

[1] 0

19.3 Interaction Plot

19.3.1 Simple Plot of Means

fev_ros |> group_by(sex, smoke) |>
summarise(mean_fev = mean(fev)) |>
ggplot(aes(x = sex, y = mean_fev, group = smoke, col = smoke)) +
geom_point() +
geom_line() +
scale_color_metro_d() +
labs(x = "sex", y = "Mean of FEV")
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`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.

2.6
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3.8

female male
sex

M
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n 
of

 F
E

V

smoke

non−current smoker

current smoker

19.3.2 Labeled Interaction Plot

fev_ros |> group_by(sex, smoke) |>
summarise(mean_fev = mean(fev)) |>
ggplot(aes(x = smoke, y = mean_fev, group = sex, col = sex)) +
geom_line() +
geom_label(aes(label = round(mean_fev,2))) +
scale_color_see_d() +
labs(x = "Smoking Status", y = "Mean of FEV",

title = "Interaction of Sex and Smoking Status on Mean of FEV",
subtitle = "Rosner data")

`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.
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19.4 ANOVA models

fit1 <- aov(fev ~ sex * smoke, data = fev_ros)

model_parameters(fit1, es_type = "eta", ci = 0.95)

Parameter | Sum_Squares | df | Mean_Square | F | p | Eta2 (partial) | Eta2 95% CI
--------------------------------------------------------------------------------------------
sex | 21.32 | 1 | 21.32 | 31.98 | < .001 | 0.05 | [0.02, 1.00]
smoke | 33.68 | 1 | 33.68 | 50.51 | < .001 | 0.07 | [0.04, 1.00]
sex:smoke | 2.51 | 1 | 2.51 | 3.77 | 0.053 | 5.76e-03 | [0.00, 1.00]
Residuals | 433.40 | 650 | 0.67 | | | |

Anova Table (Type 1 tests)

fit2 <- lm(fev ~ sex * smoke, data = fev_ros)

model_parameters(fit2, ci = 0.95)
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Parameter | Coefficient | SE | 95% CI | t(650) | p
------------------------------------------------------------------------------------------
(Intercept) | 2.38 | 0.05 | [ 2.28, 2.48] | 48.67 | < .001
sex [male] | 0.36 | 0.07 | [ 0.22, 0.49] | 5.27 | < .001
smoke [current smoker] | 0.59 | 0.14 | [ 0.31, 0.86] | 4.20 | < .001
sex [male] × smoke [current smoker] | 0.42 | 0.22 | [ 0.00, 0.85] | 1.94 | 0.053

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

19.4.1 Bootstrapping CIs for estimates

set.seed(431)
model_parameters(fit2,

ci = 0.95, ci_method = "quantile",
bootstrap = TRUE, iteractions = 1000)

Parameter | Coefficient | 95% CI | p
--------------------------------------------------------------------------
(Intercept) | 2.38 | [ 2.31, 2.45] | < .001
sex [male] | 0.35 | [ 0.22, 0.49] | < .001
smoke [current smoker] | 0.58 | [ 0.44, 0.73] | < .001
sex [male] × smoke [current smoker] | 0.43 | [-0.01, 0.81] | 0.052

Uncertainty intervals (equal-tailed) are naıve bootstrap intervals.

19.5 ANOVA without interaction

fit3 <- aov(fev ~ sex + smoke, data = fev_ros)

model_parameters(fit3, es_type = "eta", ci = 0.95)

Parameter | Sum_Squares | df | Mean_Square | F | p | Eta2 (partial) | Eta2 95% CI
--------------------------------------------------------------------------------------------
sex | 21.32 | 1 | 21.32 | 31.85 | < .001 | 0.05 | [0.02, 1.00]
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smoke | 33.68 | 1 | 33.68 | 50.30 | < .001 | 0.07 | [0.04, 1.00]
Residuals | 435.91 | 651 | 0.67 | | | |

Anova Table (Type 1 tests)

anova(fit3, fit1)

Analysis of Variance Table

Model 1: fev ~ sex + smoke
Model 2: fev ~ sex * smoke
Res.Df RSS Df Sum of Sq F Pr(>F)

1 651 435.91
2 650 433.40 1 2.5127 3.7684 0.05266 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

19.6 Considering Model Diagnostics

check_model(fit1)
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check_model(fit3)
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19.7 Comparing Model Performance

compare_performance(fit1, fit3)

# Comparison of Model Performance Indices

Name | Model | AIC (weights) | AICc (weights) | BIC (weights) | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------------------------------------------
fit1 | aov | 1596.9 (0.709) | 1597.0 (0.706) | 1619.3 (0.206) | 0.117 | 0.113 | 0.814 | 0.817
fit3 | aov | 1598.7 (0.291) | 1598.7 (0.294) | 1616.6 (0.794) | 0.112 | 0.109 | 0.816 | 0.818

plot(compare_performance(fit1, fit3))
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19.8 For More Information
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20 Multiple Regression with many predictors

This is a DRAFT version of this Chapter.

This is a sketchy draft. I’ll remove this notice when I post a version of this Chapter that
is essentially finished.

20.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion.

library(car)
library(janitor)
library(knitr)
library(naniar)
library(olsrr)
library(rstanarm)

library(easystats)
library(tidyverse)

theme_set(theme_bw())

Multiple regression y predicted by 3-15 variables
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20.2 Data is bodyfat

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

My source for these data was Kaggle, although the data have been published in several other
places. The data describe 252 men whose percentage of body fat was determined via under-
water weighing and Siri’s (1956) equation.

From Kaggle:

These data are used to produce the predictive equations for lean body weight
given in the abstract “Generalized body composition prediction equation for men
using simple measurement techniques”, K.W. Penrose, A.G. Nelson, A.G. Fisher,
FACSM, Human Performance Research Center, Brigham Young University, Provo,
Utah 84602 as listed in Medicine and Science in Sports and Exercise, vol. 17, no.
2, April 1985, p. 189.

bodyfat <- read_csv("data/bodyfat.csv", show_col_types = FALSE) |>
janitor::clean_names()

bodyfat

# A tibble: 248 x 16
kag_row density siri_bf age weight height neck chest abdomen hip thigh
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 sub_001 1.07 12.3 23 154. 67.8 36.2 93.1 85.2 94.5 59
2 sub_002 1.09 6.1 22 173. 72.2 38.5 93.6 83 98.7 58.7
3 sub_003 1.04 25.3 22 154 66.2 34 95.8 87.9 99.2 59.6
4 sub_004 1.08 10.4 26 185. 72.2 37.4 102. 86.4 101. 60.1
5 sub_005 1.03 28.7 24 184. 71.2 34.4 97.3 100 102. 63.2
6 sub_006 1.05 21.3 24 210. 74.8 39 104. 94.4 108. 66
7 sub_007 1.05 19.2 26 181 69.8 36.4 105. 90.7 100. 58.4
8 sub_008 1.07 12.4 25 176 72.5 37.8 99.6 88.5 97.1 60
9 sub_009 1.09 4.1 25 191 74 38.1 101. 82.5 99.9 62.9
10 sub_010 1.07 11.7 23 198. 73.5 42.1 99.6 88.6 104. 63.1
# i 238 more rows
# i 5 more variables: knee <dbl>, ankle <dbl>, biceps <dbl>, forearm <dbl>,
# wrist <dbl>
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The variables included are:

Variable Description1

kag_row subject identification code
density density determined from underwater weighing
siri_bf percent body fat from Siri’s (1956) equation2

age age (years)
weight weight (pounds)
height height (inches)
neck neck circumference (cm)
chest chest circumference (cm)
abdomen abdomen circumference (cm)
hip hip circumference (cm)
thigh thigh circumference (cm)
knee knee circumference (cm)
ankle ankle circumference (cm)
biceps biceps (extended) circumference (cm)
forearm forearm circumference (cm)
wrist wrist circumference (cm)

As Kaggle motivates,

Accurate measurement of body fat is inconvenient/costly and it is desirable to have
easy methods of estimating body fat that are not inconvenient/costly.

So our job will be to predict the siri_bf measure using the 13 predictors listed above from
age through wrist, or perhaps a well-chosen subset of those predictors.

Note that we have no missing data here to worry about.

n_miss(bodyfat)

[1] 0

Since our main goal is making accurate predictions, it’s appealing to validate our models in
new data. We might split into training and testing samples

2Siri’s equation is BF = 495/density - 450
1(Measurement standards are apparently those listed in Benhke and Wilmore (1974), pp. 45-48 where, for

instance, the abdomen circumference is measured “laterally, at the level of the iliac crests, and anteriorly,
at the umbilicus”.)
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20.3 Need for transformation?

We’ll start by considering whether the Box-Cox approach suggests any particular transforma-
tion for our outcome variable when we fit a kitchen sink model (e.g., a model including main
effects of all available predictors.)

fit1 <- lm(
siri_bf ~ age + weight + height + neck + chest +

abdomen + hip + thigh + knee + ankle + biceps +
forearm + wrist,

data = bodyfat
)

boxCox(fit1)

−2 −1 0 1 2

−
15

00
−

13
00

−
11

00

Profile Log−likelihood

λ

lo
g−

lik
el

ih
oo

d

 95%

Since the recommended power transformation parameter 𝜆 is quite close to 1, we’ll not be
using any transformation in this chapter.

20.4 The Full OLS model
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model_parameters(fit1, ci = 0.95)

Parameter | Coefficient | SE | 95% CI | t(234) | p
---------------------------------------------------------------------
(Intercept) | -14.73 | 22.35 | [-58.77, 29.30] | -0.66 | 0.510
age | 0.05 | 0.03 | [ -0.01, 0.11] | 1.53 | 0.128
weight | -0.09 | 0.06 | [ -0.21, 0.04] | -1.40 | 0.162
height | -0.08 | 0.18 | [ -0.44, 0.27] | -0.46 | 0.644
neck | -0.48 | 0.23 | [ -0.94, -0.02] | -2.06 | 0.040
chest | -0.03 | 0.10 | [ -0.23, 0.18] | -0.27 | 0.786
abdomen | 0.97 | 0.09 | [ 0.79, 1.14] | 10.69 | < .001
hip | -0.21 | 0.15 | [ -0.50, 0.08] | -1.45 | 0.148
thigh | 0.20 | 0.15 | [ -0.09, 0.49] | 1.36 | 0.176
knee | 0.04 | 0.25 | [ -0.45, 0.52] | 0.14 | 0.886
ankle | 0.17 | 0.22 | [ -0.27, 0.61] | 0.78 | 0.436
biceps | 0.16 | 0.17 | [ -0.18, 0.50] | 0.93 | 0.354
forearm | 0.44 | 0.20 | [ 0.05, 0.83] | 2.21 | 0.028
wrist | -1.59 | 0.53 | [ -2.64, -0.54] | -2.98 | 0.003

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

check_model(fit1)
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model_performance(fit1)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
------------------------------------------------------------------
1440.004 | 1442.073 | 1492.706 | 0.742 | 0.728 | 4.153 | 4.275

20.5 Identify a predictor subset with backwards stepwise
elimination

fit2 <- select_parameters(fit1)

model_parameters(fit2, ci = 0.95)

Parameter | Coefficient | SE | 95% CI | t(239) | p
---------------------------------------------------------------------
(Intercept) | -19.90 | 11.68 | [-42.91, 3.11] | -1.70 | 0.090
age | 0.05 | 0.03 | [ -0.01, 0.11] | 1.67 | 0.096
weight | -0.09 | 0.04 | [ -0.17, -0.01] | -2.21 | 0.028
neck | -0.47 | 0.22 | [ -0.91, -0.03] | -2.12 | 0.035
abdomen | 0.96 | 0.07 | [ 0.82, 1.10] | 13.32 | < .001
hip | -0.21 | 0.14 | [ -0.48, 0.07] | -1.49 | 0.136
thigh | 0.26 | 0.13 | [ 0.00, 0.51] | 1.99 | 0.048
forearm | 0.49 | 0.19 | [ 0.13, 0.86] | 2.65 | 0.008
wrist | -1.46 | 0.51 | [ -2.47, -0.46] | -2.88 | 0.004

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

compare_models(fit1, fit2)

Parameter | fit1 | fit2
--------------------------------------------------------------
(Intercept) | -14.73 (-58.77, 29.30) | -19.90 (-42.91, 3.11)
age | 0.05 ( -0.01, 0.11) | 0.05 ( -0.01, 0.11)
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weight | -0.09 ( -0.21, 0.04) | -0.09 ( -0.17, -0.01)
neck | -0.48 ( -0.94, -0.02) | -0.47 ( -0.91, -0.03)
abdomen | 0.97 ( 0.79, 1.14) | 0.96 ( 0.82, 1.10)
hip | -0.21 ( -0.50, 0.08) | -0.21 ( -0.48, 0.07)
thigh | 0.20 ( -0.09, 0.49) | 0.26 ( 0.00, 0.51)
forearm | 0.44 ( 0.05, 0.83) | 0.49 ( 0.13, 0.86)
wrist | -1.59 ( -2.64, -0.54) | -1.46 ( -2.47, -0.46)
chest | -0.03 ( -0.23, 0.18) |
ankle | 0.17 ( -0.27, 0.61) |
height | -0.08 ( -0.44, 0.27) |
knee | 0.04 ( -0.45, 0.52) |
biceps | 0.16 ( -0.18, 0.50) |
--------------------------------------------------------------
Observations | 248 | 248

Note that fit2 drops five of the 13 predictors from the fit1 model.

check_model(fit2)
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model_performance(fit2)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
------------------------------------------------------------------
1431.933 | 1432.861 | 1467.067 | 0.740 | 0.732 | 4.169 | 4.247

compare_performance(fit1, fit2)

# Comparison of Model Performance Indices

Name | Model | AIC (weights) | AICc (weights) | BIC (weights) | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------------------------------------------
fit1 | lm | 1440.0 (0.017) | 1442.1 (0.010) | 1492.7 (<.001) | 0.742 | 0.728 | 4.153 | 4.275
fit2 | lm | 1431.9 (0.983) | 1432.9 (0.990) | 1467.1 (>.999) | 0.740 | 0.732 | 4.169 | 4.247

plot(compare_performance(fit1, fit2))
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performance_mae(fit1)

[1] 3.418899

performance_mae(fit2)

[1] 3.412077

performance_rmse(fit1)

[1] 4.15292

performance_rmse(fit2)

[1] 4.169102

set.seed(431)
performance_accuracy(fit1, method = "cv", k = 5)

# Accuracy of Model Predictions

Accuracy (95% CI): 81.49% [73.12%, 92.09%]
Method: Correlation between observed and predicted

set.seed(431)
performance_accuracy(fit2, method = "cv", k = 5)

# Accuracy of Model Predictions

Accuracy (95% CI): 82.87% [74.24%, 93.11%]
Method: Correlation between observed and predicted

set.seed(431)
performance_cv(fit1)
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# Cross-validation performance (30% holdout method)

MSE | RMSE | R2
-----------------
16 | 4 | 0.74

set.seed(431)
performance_cv(fit2)

# Cross-validation performance (30% holdout method)

MSE | RMSE | R2
-----------------
15 | 3.8 | 0.76

20.6 Best Subsets Regression and Mallows’ 𝐶𝑝

k <- ols_step_best_subset(fit1,
max_order = 8,
metric = "cp")

k

Best Subsets Regression
--------------------------------------------------------------
Model Index Predictors
--------------------------------------------------------------

1 abdomen
2 weight abdomen
3 weight abdomen wrist
4 weight abdomen forearm wrist
5 weight neck abdomen forearm wrist
6 weight neck abdomen biceps forearm wrist
7 age weight neck abdomen thigh forearm wrist
8 age weight neck abdomen hip thigh forearm wrist

--------------------------------------------------------------

Subsets Regression Summary
--------------------------------------------------------------------------------------------------------------------------------------
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Adj. Pred
Model R-Square R-Square R-Square C(p) AIC SBIC SBC MSEP FPE HSP APC
--------------------------------------------------------------------------------------------------------------------------------------
1 0.6543 0.6529 0.6438 69.8409 1488.8082 784.0875 1499.3485 5783.2127 23.5075 0.0952 0.3513
2 0.7143 0.7120 0.7047 17.3601 1443.5224 739.4622 1457.5761 4798.8699 19.5840 0.0793 0.2927
3 0.7233 0.7199 0.7104 11.1761 1437.5707 733.6757 1455.1379 4666.5692 19.1197 0.0774 0.2857
4 0.7304 0.7259 0.7159 6.8132 1433.2074 729.5437 1454.2879 4567.1491 18.7863 0.0761 0.2807
5 0.7335 0.7280 0.7175 5.9241 1432.2633 728.7699 1456.8573 4531.9786 18.7150 0.0758 0.2797
6 0.7355 0.7290 0.7176 6.1051 1432.3916 729.0562 1460.4990 4516.6449 18.7247 0.0759 0.2798
7 0.7378 0.7302 0.7175 6.0319 1432.2408 729.1139 1463.8617 4496.3797 18.7135 0.0759 0.2797
8 0.7403 0.7316 0.7186 5.8272 1431.9331 729.0634 1467.0674 4473.4501 18.6905 0.0758 0.2793

--------------------------------------------------------------------------------------------------------------------------------------
AIC: Akaike Information Criteria
SBIC: Sawa's Bayesian Information Criteria
SBC: Schwarz Bayesian Criteria
MSEP: Estimated error of prediction, assuming multivariate normality
FPE: Final Prediction Error
HSP: Hocking's Sp
APC: Amemiya Prediction Criteria

plot(k)
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20.7 Four-Predictor Model

fit4 <- lm(
siri_bf ~ weight + abdomen + forearm + wrist,
data = bodyfat

)

model_parameters(fit4, ci = 0.95)

Parameter | Coefficient | SE | 95% CI | t(243) | p
---------------------------------------------------------------------
(Intercept) | -33.61 | 7.26 | [-47.91, -19.32] | -4.63 | < .001
weight | -0.14 | 0.02 | [ -0.19, -0.09] | -5.58 | < .001
abdomen | 0.99 | 0.06 | [ 0.88, 1.10] | 17.71 | < .001
forearm | 0.45 | 0.18 | [ 0.10, 0.81] | 2.51 | 0.013
wrist | -1.48 | 0.44 | [ -2.36, -0.61] | -3.34 | < .001

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.
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model_performance(fit4)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
------------------------------------------------------------------
1433.207 | 1433.556 | 1454.288 | 0.730 | 0.726 | 4.248 | 4.291

check_model(fit4)
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20.8 Five-Predictor Model

fit5 <- lm(
siri_bf ~ weight + neck + abdomen + forearm + wrist,
data = bodyfat

)

model_parameters(fit5, ci = 0.95)

Parameter | Coefficient | SE | 95% CI | t(242) | p
---------------------------------------------------------------------
(Intercept) | -29.23 | 7.67 | [-44.35, -14.11] | -3.81 | < .001
weight | -0.12 | 0.03 | [ -0.17, -0.07] | -4.81 | < .001
neck | -0.37 | 0.22 | [ -0.81, 0.06] | -1.70 | 0.090
abdomen | 1.00 | 0.06 | [ 0.89, 1.11] | 17.85 | < .001
forearm | 0.51 | 0.18 | [ 0.15, 0.87] | 2.79 | 0.006
wrist | -1.23 | 0.47 | [ -2.15, -0.31] | -2.62 | 0.009

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

model_performance(fit5)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
------------------------------------------------------------------
1432.263 | 1432.730 | 1456.857 | 0.734 | 0.728 | 4.223 | 4.275

check_model(fit5)
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compare_performance(fit4, fit5)

# Comparison of Model Performance Indices

Name | Model | AIC (weights) | AICc (weights) | BIC (weights) | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------------------------------------------
fit4 | lm | 1433.2 (0.384) | 1433.6 (0.398) | 1454.3 (0.783) | 0.730 | 0.726 | 4.248 | 4.291
fit5 | lm | 1432.3 (0.616) | 1432.7 (0.602) | 1456.9 (0.217) | 0.734 | 0.728 | 4.223 | 4.275

set.seed(431)
performance_accuracy(fit1, method = "cv", k = 5)

# Accuracy of Model Predictions

Accuracy (95% CI): 81.49% [73.12%, 92.09%]
Method: Correlation between observed and predicted

set.seed(431)
performance_accuracy(fit2, method = "cv", k = 5)

# Accuracy of Model Predictions

Accuracy (95% CI): 82.87% [74.24%, 93.11%]
Method: Correlation between observed and predicted

set.seed(431)
performance_accuracy(fit4, method = "cv", k = 5)

# Accuracy of Model Predictions

Accuracy (95% CI): 83.10% [74.74%, 92.71%]
Method: Correlation between observed and predicted

set.seed(431)
performance_accuracy(fit5, method = "cv", k = 5)

# Accuracy of Model Predictions

Accuracy (95% CI): 82.99% [74.96%, 93.04%]
Method: Correlation between observed and predicted
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set.seed(431)
performance_cv(fit1)

# Cross-validation performance (30% holdout method)

MSE | RMSE | R2
-----------------
16 | 4 | 0.74

set.seed(431)
performance_cv(fit2)

# Cross-validation performance (30% holdout method)

MSE | RMSE | R2
-----------------
15 | 3.8 | 0.76

set.seed(431)
performance_cv(fit4)

# Cross-validation performance (30% holdout method)

MSE | RMSE | R2
-----------------
14 | 3.8 | 0.76

set.seed(431)
performance_cv(fit5)

# Cross-validation performance (30% holdout method)

MSE | RMSE | R2
-----------------
15 | 3.9 | 0.75
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20.9 Bayesian linear model

We’ll now refit the four-predictor model using stan_glm() and a weakly informative prior, as
usual.

fit4b <- stan_glm(
siri_bf ~ weight + abdomen + forearm + wrist,
data = bodyfat, refresh = 0

)

model_parameters(fit4b, ci = 0.95)

Parameter | Median | 95% CI | pd | Rhat | ESS | Prior
--------------------------------------------------------------------------------------------
(Intercept) | -33.40 | [-48.11, -19.22] | 100% | 1.003 | 2889.00 | Normal (19.28 +- 20.49)
weight | -0.14 | [ -0.19, -0.09] | 100% | 1.004 | 2119.00 | Normal (0.00 +- 0.71)
abdomen | 0.99 | [ 0.87, 1.10] | 100% | 1.002 | 2402.00 | Normal (0.00 +- 1.92)
forearm | 0.45 | [ 0.09, 0.81] | 99.40% | 1.001 | 3820.00 | Normal (0.00 +- 10.20)
wrist | -1.49 | [ -2.35, -0.59] | 99.95% | 1.002 | 3160.00 | Normal (0.00 +- 22.30)

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a MCMC distribution approximation.

model_performance(fit4b)

# Indices of model performance

ELPD | ELPD_SE | LOOIC | LOOIC_SE | WAIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------------------------------
-717.386 | 9.726 | 1434.773 | 19.452 | 1434.619 | 0.727 | 0.716 | 4.248 | 4.300

check_model(fit4b)
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set.seed(431)
performance_accuracy(fit4b, method = "cv", k = 5)

# Accuracy of Model Predictions

Accuracy (95% CI): 83.11% [74.77%, 92.71%]
Method: Correlation between observed and predicted

set.seed(431)
performance_cv(fit4b)

# Cross-validation performance (30% holdout method)

MSE | RMSE | R2
-----------------
14 | 3.8 | 0.76

20.10 For More Information
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21 Multiple Regression and Transformations

This is a DRAFT version of this Chapter.

This is a sketchy draft. I’ll remove this notice when I post a version of this Chapter that
is essentially finished.

21.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion. Appendix B describes the 431-Love.R script, and demonstrates its use.

library(car)
library(glmnet)
library(haven)
library(janitor)
library(knitr)
library(naniar)
library(olsrr)
library(patchwork)
library(rstanarm)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())
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21.2 Plasma Retinol and Beta-Carotene Dataset

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

The data in this study come from an unpublished study related to Nierenberg et al. (1989).
From Thérèse Stukel, one of the authors of that study, and posted to Statlib as well as Frank
Harrell’s repository…

Observational studies have suggested that low dietary intake or low plasma con-
centrations of retinol, beta-carotene, or other carotenoids might be associated with
increased risk of developing certain types of cancer. However, relatively few studies
have investigated the determinants of plasma concentrations of these micronutri-
ents. We designed a cross-sectional study to investigate the relationship between
personal characteristics and dietary factors, and plasma concentrations of retinol,
beta-carotene and other carotenoids. Study subjects (N = 315) were patients who
had an elective surgical procedure during a three-year period to biopsy or remove
a lesion of the lung, colon, breast, skin, ovary or uterus that was found to be non-
cancerous. Plasma concentrations of the micronutrients varied widely from subject
to subject.

21.2.1 Data Ingest

plasma <- read_csv("data/plasma.csv", show_col_types = FALSE) |>
mutate(across(where(is.character), as_factor)) |>
mutate(P_ID = as.character(P_ID)) |>
janitor::clean_names()

plasma

# A tibble: 315 x 15
p_id age sex smokstat bmi vituse calories fat fiber alcohol
<chr> <dbl> <fct> <fct> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>

1 1 64 Female Former 21.5 Fairly_Often 1299. 57 6.3 0
2 2 76 Female Never 23.9 Fairly_Often 1032. 50.1 15.8 0
3 3 38 Female Former 20.0 Not_Often 2372. 83.6 19.1 14.1
4 4 40 Female Former 25.1 Never 2450. 97.5 26.5 0.5
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5 5 72 Female Never 21.0 Fairly_Often 1952. 82.6 16.2 0
6 6 40 Female Former 27.5 Never 1367. 56 9.6 1.3
7 7 65 Female Never 22.0 Not_Often 2214. 52 28.7 0
8 8 58 Female Never 28.8 Fairly_Often 1596. 63.4 10.9 0
9 9 35 Female Never 23.1 Never 1800. 57.8 20.3 0.6
10 10 55 Female Former 35.0 Never 1264. 39.6 15.5 0
# i 305 more rows
# i 5 more variables: cholesterol <dbl>, betadiet <dbl>, retdiet <dbl>,
# betaplasma <dbl>, retplasma <dbl>

21.2.2 Variable Descriptions

Variable Description
p_id Subject identification code
age Age (years)
sex Sex (Male, Female)

smokstat Smoking status (Never, Former, Current Smoker)
bmi Body mass index (weight/(height^2))

vituse Vitamin Use (Yes, fairly often; Yes, not often; No)
calories Number of calories consumed per day.

fat Grams of fat consumed per day.
fiber Grams of fiber consumed per day.
alcohol Number of alcoholic drinks consumed per week.

cholesterol Cholesterol consumed (mg per day).
betadiet Dietary beta-carotene consumed (mcg per day).
retdiet Dietary retinol consumed (mcg per day)

betaplasma Plasma beta-carotene (ng/ml)
retplasma Plasma Retinol (ng/ml)

n_miss(plasma)

[1] 0

21.2.3 Data Summary; Outlier Removal

describe_distribution(plasma)
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Variable | Mean | SD | IQR | Range | Skewness | Kurtosis | n | n_Missing
-----------------------------------------------------------------------------------------------------
age | 50.15 | 14.58 | 24.00 | [19.00, 83.00] | 0.30 | -0.87 | 315 | 0
bmi | 26.16 | 6.01 | 7.16 | [16.33, 50.40] | 1.38 | 2.01 | 315 | 0
calories | 1796.65 | 680.35 | 772.60 | [445.20, 6662.20] | 1.75 | 8.13 | 315 | 0
fat | 77.03 | 33.83 | 41.40 | [14.40, 235.90] | 1.10 | 2.02 | 315 | 0
fiber | 12.79 | 5.33 | 6.50 | [3.10, 36.80] | 1.15 | 2.48 | 315 | 0
alcohol | 3.28 | 12.32 | 3.20 | [0.00, 203.00] | 13.82 | 221.33 | 315 | 0
cholesterol | 242.46 | 131.99 | 154.00 | [37.70, 900.70] | 1.48 | 3.41 | 315 | 0
betadiet | 2185.60 | 1473.89 | 1749.00 | [214.00, 9642.00] | 1.61 | 3.47 | 315 | 0
retdiet | 832.71 | 589.29 | 568.00 | [30.00, 6901.00] | 4.47 | 38.07 | 315 | 0
betaplasma | 189.89 | 183.00 | 142.00 | [0.00, 1415.00] | 3.56 | 17.21 | 315 | 0
retplasma | 602.79 | 208.90 | 253.00 | [179.00, 1727.00] | 1.31 | 4.02 | 315 | 0

That alcohol value of 203 drinks per week is concerning.

plasma |> count(alcohol) |> tail()

# A tibble: 6 x 2
alcohol n

<dbl> <int>
1 18.2 1
2 20 1
3 21 1
4 22 1
5 35 2
6 203 1

The next highest value is 35 drinks per week. I’m going to make the decision to remove this
observation from the data, for the remainder of this chapter.

plasma <- plasma |>
filter(alcohol < 200)

plasma |> reframe(lovedist(alcohol)) |> kable(digits = 2)

n miss mean sd med mad min q25 q75 max
314 0 2.64 4.95 0.3 0.44 0 0 3.2 35
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21.3 Predicting Plasma Beta-Carotene

Having removed the subject with an unrealistic alcohol value, our first main task is to predict
betaplasma using (a subset of) most of the other variables in the data. Let’s look at that
outcome.

p1 <- ggplot(plasma, aes(x = betaplasma)) +
geom_histogram(bins = 15, fill = "blue", col = "white") +
labs(

x = "Plasma beta-carotene (ng/ml)",
title = "Histogram"

)

p2 <- ggplot(plasma, aes(sample = betaplasma)) +
geom_qq() +
geom_qq_line(col = "red") +
labs(

y = "Plasma beta-carotene",
x = "Standard Normal Distribution",
title = "Normal Q-Q plot"

)

p3 <- ggplot(plasma, aes(x = betaplasma, y = "")) +
geom_violin(fill = "cornsilk") +
geom_boxplot(width = 0.2) +
stat_summary(

fun = mean, geom = "point",
shape = 16, col = "red"

) +
labs(

y = "", x = "Plasma beta-carotene",
title = "Boxplot with Violin"

)

p1 + (p2 / p3 + plot_layout(heights = c(2, 1))) +
plot_annotation(

title = "Plasma Beta-Carotene in ng/ml"
)
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We see a fairly pronounced skew to the right here.

plasma |> reframe(lovedist(betaplasma))

# A tibble: 1 x 10
n miss mean sd med mad min q25 q75 max

<int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 314 0 190. 183. 140 88.2 0 89.5 230. 1415

Note that we have a minimum value of 0 here. To use the Box-Cox method, we need to have
values of our outcome that are strictly positive. The simplest solution to this problem (of
seeing one or more zero values but no negative values) is to simply add one to each value of
betaplasma before considering transformations.

fit0 <- lm((betaplasma + 1) ~ age + sex + smokstat + bmi + vituse +
calories + fat + fiber + alcohol + cholesterol +
betadiet, data = plasma)

boxCox(fit0)
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We’ll apply a logarithmic transformation to (betaplasma + 1) as our revised outcome for
modeling.

p1 <- ggplot(plasma, aes(x = betaplasma)) +
geom_histogram(bins = 20, fill = "coral", col = "blue")

p2 <- ggplot(plasma, aes(x = log(betaplasma + 1))) +
geom_histogram(bins = 20, fill = "aquamarine", col = "blue")

p1 + p2
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Most of our modeling of this transformed outcome is going to be affected, to some degree, by
the outlying 0 value. Let’s take a closer look at that:

plasma |> count(betaplasma) |> head()

# A tibble: 6 x 2
betaplasma n

<dbl> <int>
1 0 1
2 14 1
3 16 1
4 19 1
5 21 1
6 22 1

A value of 0 ng/ml for plasma beta-carotene also seems at best implausible. I’m going to go
ahead and remove that subject from our study now, as well, and reframe our decision about a
transformation accordingly.

plasma <- plasma |> filter(betaplasma > 0)
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21.3.1 Final Analytic Data (- 2 observations)

So now, having removed two observations:

• one for having an implausible level of betaplasma of 0 ng/ml, and
• one for having an implaubible level of alcohol of 203 drinks per week,

we consider again the issue of transforming our outcome, and a Box-Cox plot, but now, thanks
to dropping one of our outliers, we have a strictly positive set of betaplasma values to work
with, so we no longer need to add 1 to that outcome.

fit00 <- lm(betaplasma ~
age + sex + smokstat + bmi + vituse +
calories + fat + fiber + alcohol +
cholesterol + betadiet,

data = plasma)

boxCox(fit00)
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Again, we’re strongly encouraged to fit a logarithm of the outcome, by virtue of the estimated
𝜆 = 0.

383



21.3.2 Initial OLS Fit

plasma <- plasma |>
mutate(logbeta = log(betaplasma))

fit1 <- lm(logbeta ~ age + sex + smokstat + bmi +
vituse + calories + fat + fiber + alcohol +
cholesterol + betadiet,

data = plasma)

model_parameters(fit1)

Parameter | Coefficient | SE | 95% CI | t(299) | p
------------------------------------------------------------------------------
(Intercept) | 5.48 | 0.28 | [ 4.93, 6.04] | 19.57 | < .001
age | 5.24e-03 | 2.94e-03 | [ 0.00, 0.01] | 1.78 | 0.076
sex [Male] | -0.23 | 0.13 | [-0.48, 0.02] | -1.85 | 0.066
smokstat [Never] | 0.09 | 0.08 | [-0.08, 0.25] | 1.02 | 0.308
smokstat [Current] | -0.21 | 0.12 | [-0.45, 0.04] | -1.66 | 0.098
bmi | -0.03 | 6.48e-03 | [-0.04, -0.02] | -4.87 | < .001
vituse [Not_Often] | -0.03 | 0.10 | [-0.22, 0.17] | -0.26 | 0.797
vituse [Never] | -0.30 | 0.09 | [-0.48, -0.12] | -3.25 | 0.001
calories | -2.19e-04 | 2.01e-04 | [ 0.00, 0.00] | -1.09 | 0.278
fat | 1.40e-03 | 3.18e-03 | [ 0.00, 0.01] | 0.44 | 0.659
fiber | 0.03 | 0.01 | [ 0.01, 0.05] | 2.78 | 0.006
alcohol | 5.25e-03 | 8.76e-03 | [-0.01, 0.02] | 0.60 | 0.549
cholesterol | -2.70e-04 | 4.38e-04 | [ 0.00, 0.00] | -0.62 | 0.538
betadiet | 4.69e-05 | 2.95e-05 | [ 0.00, 0.00] | 1.59 | 0.113

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

model_performance(fit1)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------
646.464 | 648.080 | 702.657 | 0.249 | 0.216 | 0.648 | 0.663
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check_model(fit1)
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21.3.3 Best Subsets Suggestion?

k <- ols_step_best_subset(fit1,
max_order = 11,
metric = "cp")

k

Best Subsets Regression
------------------------------------------------------------------------------------------
Model Index Predictors
------------------------------------------------------------------------------------------

1 bmi
2 bmi vituse
3 bmi vituse fiber
4 bmi vituse calories fiber
5 smokstat bmi vituse calories fiber
6 smokstat bmi vituse calories fiber betadiet
7 age sex smokstat bmi vituse calories fiber
8 age sex smokstat bmi vituse calories fiber betadiet
9 age sex smokstat bmi vituse calories fiber cholesterol betadiet
10 age sex smokstat bmi vituse calories fiber alcohol cholesterol betadiet
11 age sex smokstat bmi vituse calories fat fiber alcohol cholesterol betadiet

------------------------------------------------------------------------------------------

Subsets Regression Summary
-----------------------------------------------------------------------------------------------------------------------------------

Adj. Pred
Model R-Square R-Square R-Square C(p) AIC SBIC SBC MSEP FPE HSP APC
-----------------------------------------------------------------------------------------------------------------------------------
1 0.0790 0.0760 0.0672 57.5387 686.2096 -202.6728 697.4483 162.0541 0.5211 0.0017 0.9329
2 0.1327 0.1243 0.111 40.1581 671.3979 -219.4340 690.1289 153.0952 0.4954 0.0016 0.8841
3 0.1708 0.1600 0.1438 26.9872 659.3289 -231.3437 681.8061 146.8413 0.4767 0.0015 0.8507
4 0.2062 0.1933 0.175 14.8858 647.6592 -242.6879 673.8826 141.0242 0.4592 0.0015 0.8195
5 0.2254 0.2077 0.1839 11.2438 643.9939 -248.0769 677.7098 138.0622 0.4525 0.0015 0.8048
6 0.2332 0.2130 0.1862 10.1707 642.8577 -249.0400 680.3197 137.1339 0.4508 0.0014 0.8019
7 0.2403 0.2177 0.1883 9.3375 641.9383 -249.7554 683.1465 136.3077 0.4495 0.0014 0.7996
8 0.2466 0.2217 0.189 8.8230 641.3242 -250.1441 686.2786 135.6201 0.4487 0.0014 0.7980
9 0.2476 0.2201 0.1847 10.4380 642.9220 -248.4318 691.6227 135.8945 0.4510 0.0014 0.8021
10 0.2482 0.2181 0.18 12.1951 644.6680 -246.5767 697.1149 136.2354 0.4535 0.0015 0.8066
11 0.2487 0.2160 0.1738 14.0000 646.4639 -244.6723 702.6569 136.6003 0.4561 0.0015 0.8112
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-----------------------------------------------------------------------------------------------------------------------------------
AIC: Akaike Information Criteria
SBIC: Sawa's Bayesian Information Criteria
SBC: Schwarz Bayesian Criteria
MSEP: Estimated error of prediction, assuming multivariate normality
FPE: Final Prediction Error
HSP: Hocking's Sp
APC: Amemiya Prediction Criteria

plot(k)
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I’m going to look more closely at the four-predictor (suggested by SBC) and eight-predictor
(suggested by 𝐶𝑝) subsets1

21.3.4 Four-Predictor Model

fit4 <- lm(logbeta ~ bmi + vituse + calories + fiber,
data = plasma)

compare_models(fit1, fit4)

Parameter | fit1 | fit4
------------------------------------------------------------------------
(Intercept) | 5.48 ( 4.93, 6.04) | 5.79 ( 5.37, 6.21)
bmi | -0.03 (-0.04, -0.02) | -0.03 (-0.04, -0.02)
vituse (Not_Often) | -0.03 (-0.22, 0.17) | -0.07 (-0.26, 0.12)
vituse (Never) | -0.30 (-0.48, -0.12) | -0.36 (-0.53, -0.18)
calories | -2.19e-04 ( 0.00, 0.00) | -2.66e-04 ( 0.00, 0.00)
fiber | 0.03 ( 0.01, 0.05) | 0.04 ( 0.03, 0.06)

1If we run select_parameters(fit1), that stepwise procedure suggests the 8-predictor subset identified by
best subsets, as it turns out.
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smokstat (Current) | -0.21 (-0.45, 0.04) |
age | 5.24e-03 ( 0.00, 0.01) |
sex (Male) | -0.23 (-0.48, 0.02) |
smokstat (Never) | 0.09 (-0.08, 0.25) |
cholesterol | -2.70e-04 ( 0.00, 0.00) |
fat | 1.40e-03 ( 0.00, 0.01) |
alcohol | 5.25e-03 (-0.01, 0.02) |
betadiet | 4.69e-05 ( 0.00, 0.00) |
------------------------------------------------------------------------
Observations | 313 | 313

model_parameters(fit4, ci = 0.95)

Parameter | Coefficient | SE | 95% CI | t(307) | p
------------------------------------------------------------------------------
(Intercept) | 5.79 | 0.21 | [ 5.37, 6.21] | 27.17 | < .001
bmi | -0.03 | 6.38e-03 | [-0.04, -0.02] | -4.63 | < .001
vituse [Not_Often] | -0.07 | 0.10 | [-0.26, 0.12] | -0.69 | 0.493
vituse [Never] | -0.36 | 0.09 | [-0.53, -0.18] | -3.99 | < .001
calories | -2.66e-04 | 7.19e-05 | [ 0.00, 0.00] | -3.70 | < .001
fiber | 0.04 | 8.41e-03 | [ 0.03, 0.06] | 5.21 | < .001

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

model_performance(fit4)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------
647.659 | 648.026 | 673.883 | 0.206 | 0.193 | 0.666 | 0.672

check_model(fit4)
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21.3.5 Eight-Predictor Model

fit8 <- lm(logbeta ~ age + sex + smokstat + bmi +
vituse + calories + fiber + betadiet,

data = plasma)

compare_models(fit1, fit8)

Parameter | fit1 | fit8
------------------------------------------------------------------------
(Intercept) | 5.48 ( 4.93, 6.04) | 5.49 ( 4.95, 6.04)
age | 5.24e-03 ( 0.00, 0.01) | 5.40e-03 ( 0.00, 0.01)
sex (Male) | -0.23 (-0.48, 0.02) | -0.23 (-0.48, 0.01)
smokstat (Never) | 0.09 (-0.08, 0.25) | 0.08 (-0.09, 0.24)
smokstat (Current) | -0.21 (-0.45, 0.04) | -0.21 (-0.46, 0.03)
bmi | -0.03 (-0.04, -0.02) | -0.03 (-0.05, -0.02)
vituse (Not_Often) | -0.03 (-0.22, 0.17) | -0.02 (-0.21, 0.17)
vituse (Never) | -0.30 (-0.48, -0.12) | -0.29 (-0.46, -0.11)
calories | -2.19e-04 ( 0.00, 0.00) | -1.70e-04 ( 0.00, 0.00)
fiber | 0.03 ( 0.01, 0.05) | 0.03 ( 0.01, 0.05)
betadiet | 4.69e-05 ( 0.00, 0.00) | 4.65e-05 ( 0.00, 0.00)
cholesterol | -2.70e-04 ( 0.00, 0.00) |
fat | 1.40e-03 ( 0.00, 0.01) |
alcohol | 5.25e-03 (-0.01, 0.02) |
------------------------------------------------------------------------
Observations | 313 | 313

model_parameters(fit8)

Parameter | Coefficient | SE | 95% CI | t(302) | p
------------------------------------------------------------------------------
(Intercept) | 5.49 | 0.28 | [ 4.95, 6.04] | 19.90 | < .001
age | 5.40e-03 | 2.90e-03 | [ 0.00, 0.01] | 1.86 | 0.063
sex [Male] | -0.23 | 0.12 | [-0.48, 0.01] | -1.92 | 0.056
smokstat [Never] | 0.08 | 0.08 | [-0.09, 0.24] | 0.94 | 0.350
smokstat [Current] | -0.21 | 0.12 | [-0.46, 0.03] | -1.75 | 0.081
bmi | -0.03 | 6.35e-03 | [-0.05, -0.02] | -5.13 | < .001
vituse [Not_Often] | -0.02 | 0.10 | [-0.21, 0.17] | -0.24 | 0.814
vituse [Never] | -0.29 | 0.09 | [-0.46, -0.11] | -3.21 | 0.001
calories | -1.70e-04 | 7.71e-05 | [ 0.00, 0.00] | -2.21 | 0.028
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fiber | 0.03 | 9.36e-03 | [ 0.01, 0.05] | 3.13 | 0.002
betadiet | 4.65e-05 | 2.92e-05 | [ 0.00, 0.00] | 1.59 | 0.113

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

model_performance(fit8)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------
641.324 | 642.364 | 686.279 | 0.247 | 0.222 | 0.649 | 0.660

check_model(fit8)
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21.3.6 Our Three Models So Far

compare_performance(fit1, fit4, fit8)

# Comparison of Model Performance Indices

Name | Model | AIC (weights) | AICc (weights) | BIC (weights) | R2 | R2 (adj.) | RMSE | Sigma
-------------------------------------------------------------------------------------------------
fit1 | lm | 646.5 (0.068) | 648.1 (0.051) | 702.7 (<.001) | 0.249 | 0.216 | 0.648 | 0.663
fit4 | lm | 647.7 (0.038) | 648.0 (0.053) | 673.9 (0.998) | 0.206 | 0.193 | 0.666 | 0.672
fit8 | lm | 641.3 (0.894) | 642.4 (0.896) | 686.3 (0.002) | 0.247 | 0.222 | 0.649 | 0.660

plot(compare_performance(fit1, fit4, fit8))
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Comparison of Model Indices

set.seed(431)
performance_accuracy(fit1, method = "cv", k = 5)

# Accuracy of Model Predictions

Accuracy (95% CI): 42.42% [32.42%, 52.44%]
Method: Correlation between observed and predicted
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set.seed(431)
performance_accuracy(fit4, method = "cv", k = 5)

# Accuracy of Model Predictions

Accuracy (95% CI): 42.98% [37.50%, 52.45%]
Method: Correlation between observed and predicted

set.seed(431)
performance_accuracy(fit8, method = "cv", k = 5)

# Accuracy of Model Predictions

Accuracy (95% CI): 44.05% [32.92%, 57.60%]
Method: Correlation between observed and predicted

set.seed(431)
performance_cv(fit1)

# Cross-validation performance (30% holdout method)

MSE | RMSE | R2
------------------
0.56 | 0.75 | 0.19

set.seed(431)
performance_cv(fit4)

# Cross-validation performance (30% holdout method)

MSE | RMSE | R2
------------------
0.56 | 0.75 | 0.19

set.seed(431)
performance_cv(fit8)
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# Cross-validation performance (30% holdout method)

MSE | RMSE | R2
------------------
0.55 | 0.74 | 0.21

21.4 Using the Lasso

Need to discuss glmnet package, and point to:

• https://rpubs.com/jmkelly91/881590
• https://glmnet.stanford.edu/articles/glmnet.html#linear-regression-family-gaussian-

default

and add some of the comments I used in https://thomaselove.github.io/432-notes/lasso.html#
using-the-lasso-to-suggest-a-smaller-model

pred_x <- model.matrix(fit1)
out_y <- plasma |> select(logbeta) |> as.matrix()

set.seed(431)
lasso <- cv.glmnet(x = pred_x, y = out_y,

type.measure = "mse",
alpha = 1, family = "gaussian",
nlambda = 200, nfolds = 10)

plot(lasso)
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[1] -3.921033

predict(lasso, type = "coef", s = "lambda.min")

15 x 1 sparse Matrix of class "dgCMatrix"
lambda.min

(Intercept) 5.423141e+00
(Intercept) .
age 4.601321e-03
sexMale -1.703956e-01
smokstatNever 6.368383e-02
smokstatCurrent -1.874663e-01
bmi -2.918528e-02
vituseNot_Often .
vituseNever -2.486722e-01
calories -5.125006e-05
fat -4.158782e-04
fiber 2.216516e-02
alcohol .
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cholesterol -3.158420e-04
betadiet 4.038103e-05

We can use the lasso to identify a set of predictors to drop. Here, the lasso only drops the
alcohol variable from our initial set of predictors, since we aren’t willing to drop just one
level of a multi-categorical predictor like vituse.

21.4.1 No “alcohol” model

fit10 <- lm(logbeta ~ age + sex + smokstat + bmi +
vituse + calories + fat + fiber +
cholesterol + betadiet,

data = plasma)

compare_models(fit1, fit10)

Parameter | fit1 | fit10
------------------------------------------------------------------------
(Intercept) | 5.48 ( 4.93, 6.04) | 5.49 ( 4.94, 6.04)
age | 5.24e-03 ( 0.00, 0.01) | 5.35e-03 ( 0.00, 0.01)
sex (Male) | -0.23 (-0.48, 0.02) | -0.22 (-0.46, 0.02)
smokstat (Never) | 0.09 (-0.08, 0.25) | 0.08 (-0.09, 0.24)
smokstat (Current) | -0.21 (-0.45, 0.04) | -0.21 (-0.45, 0.03)
bmi | -0.03 (-0.04, -0.02) | -0.03 (-0.04, -0.02)
vituse (Not_Often) | -0.03 (-0.22, 0.17) | -0.02 (-0.21, 0.17)
vituse (Never) | -0.30 (-0.48, -0.12) | -0.29 (-0.47, -0.11)
calories | -2.19e-04 ( 0.00, 0.00) | -1.73e-04 ( 0.00, 0.00)
fat | 1.40e-03 ( 0.00, 0.01) | 8.53e-04 (-0.01, 0.01)
fiber | 0.03 ( 0.01, 0.05) | 0.03 ( 0.01, 0.05)
cholesterol | -2.70e-04 ( 0.00, 0.00) | -2.90e-04 ( 0.00, 0.00)
betadiet | 4.69e-05 ( 0.00, 0.00) | 4.81e-05 ( 0.00, 0.00)
alcohol | 5.25e-03 (-0.01, 0.02) |
------------------------------------------------------------------------
Observations | 313 | 313

model_parameters(fit10)

Parameter | Coefficient | SE | 95% CI | t(300) | p
------------------------------------------------------------------------------
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(Intercept) | 5.49 | 0.28 | [ 4.94, 6.04] | 19.66 | < .001
age | 5.35e-03 | 2.94e-03 | [ 0.00, 0.01] | 1.82 | 0.069
sex [Male] | -0.22 | 0.12 | [-0.46, 0.02] | -1.77 | 0.078
smokstat [Never] | 0.08 | 0.08 | [-0.09, 0.24] | 0.95 | 0.343
smokstat [Current] | -0.21 | 0.12 | [-0.45, 0.03] | -1.72 | 0.087
bmi | -0.03 | 6.40e-03 | [-0.04, -0.02] | -5.02 | < .001
vituse [Not_Often] | -0.02 | 0.10 | [-0.21, 0.17] | -0.21 | 0.834
vituse [Never] | -0.29 | 0.09 | [-0.47, -0.11] | -3.20 | 0.002
calories | -1.73e-04 | 1.86e-04 | [ 0.00, 0.00] | -0.93 | 0.353
fat | 8.53e-04 | 3.04e-03 | [-0.01, 0.01] | 0.28 | 0.779
fiber | 0.03 | 0.01 | [ 0.01, 0.05] | 2.72 | 0.007
cholesterol | -2.90e-04 | 4.36e-04 | [ 0.00, 0.00] | -0.66 | 0.507
betadiet | 4.81e-05 | 2.94e-05 | [ 0.00, 0.00] | 1.64 | 0.103

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

model_performance(fit10)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------
644.840 | 646.249 | 697.287 | 0.248 | 0.218 | 0.648 | 0.662

check_model(fit10)
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21.4.2 Comparing the Four Models

compare_performance(fit1, fit4, fit8, fit10)

# Comparison of Model Performance Indices

Name | Model | AIC (weights) | AICc (weights) | BIC (weights) | R2 | R2 (adj.) | RMSE | Sigma
--------------------------------------------------------------------------------------------------
fit1 | lm | 646.5 (0.059) | 648.1 (0.046) | 702.7 (<.001) | 0.249 | 0.216 | 0.648 | 0.663
fit4 | lm | 647.7 (0.033) | 648.0 (0.047) | 673.9 (0.998) | 0.206 | 0.193 | 0.666 | 0.672
fit8 | lm | 641.3 (0.775) | 642.4 (0.794) | 686.3 (0.002) | 0.247 | 0.222 | 0.649 | 0.660
fit10 | lm | 644.8 (0.134) | 646.2 (0.114) | 697.3 (<.001) | 0.248 | 0.218 | 0.648 | 0.662

plot(compare_performance(fit1, fit4, fit8, fit10))
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Within our sample, it looks like fit8 is the strongest of these models.

How about its cross-validation performance?

set.seed(431)
performance_accuracy(fit10, method = "cv", k = 5)
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# Accuracy of Model Predictions

Accuracy (95% CI): 42.65% [32.47%, 52.20%]
Method: Correlation between observed and predicted

set.seed(431)
performance_cv(fit10)

# Cross-validation performance (30% holdout method)

MSE | RMSE | R2
-----------------
0.55 | 0.74 | 0.2

21.4.3 Table of Cross-validated Performance

Model Accuracy and 95% CI MSE30 RMSE30 𝑅2
30

fit1 .4242 (.3242, .5244) 0.56 0.75 0.19
fit10 .4265 (.3247, .5220) 0.55 0.74 0.20
fit8 .4405 (.3292, .5760) 0.56 0.75 0.19
fit4 .4298 (.3750, .5245) 0.55 0.74 0.21

It appears that fit8 also performs well in cross-validation, in terms of accuracy. Model fit4
may be a bit better in the measures assessed here using the 30% holdout sample approach.
Still, given the strong in-sample performance of fit8, I think I would be inclined to select
that model.

21.5 Predicting Plasma Retinol

fit_ret0 <- lm(retplasma ~ age + sex + smokstat + bmi + vituse +
calories + fat + fiber + alcohol + cholesterol +
retdiet, data = plasma)

boxCox(fit_ret0)
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It appears we might want to be working with the logarithm of retplasma as our outcome.

plasma <- plasma |>
mutate(logret = log(retplasma))

fit_ret1 <- lm(logret ~ age + sex + smokstat + bmi +
vituse + calories + fat + fiber +
alcohol + cholesterol + retdiet,

data = plasma)

model_parameters(fit_ret1, ci = 0.95)

Parameter | Coefficient | SE | 95% CI | t(299) | p
-----------------------------------------------------------------------------
(Intercept) | 6.17 | 0.14 | [ 5.90, 6.44] | 45.37 | < .001
age | 4.98e-03 | 1.43e-03 | [ 0.00, 0.01] | 3.48 | < .001
sex [Male] | 0.06 | 0.06 | [-0.06, 0.18] | 1.00 | 0.316
smokstat [Never] | -0.07 | 0.04 | [-0.15, 0.01] | -1.74 | 0.083
smokstat [Current] | -0.09 | 0.06 | [-0.20, 0.03] | -1.43 | 0.153
bmi | 1.38e-03 | 3.14e-03 | [ 0.00, 0.01] | 0.44 | 0.659
vituse [Not_Often] | 2.27e-03 | 0.05 | [-0.09, 0.09] | 0.05 | 0.962
vituse [Never] | -0.04 | 0.04 | [-0.13, 0.05] | -0.86 | 0.390
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calories | 1.51e-04 | 9.81e-05 | [ 0.00, 0.00] | 1.54 | 0.124
fat | -2.93e-03 | 1.54e-03 | [-0.01, 0.00] | -1.90 | 0.058
fiber | -8.58e-03 | 5.04e-03 | [-0.02, 0.00] | -1.70 | 0.090
alcohol | 0.01 | 4.25e-03 | [ 0.00, 0.02] | 2.54 | 0.012
cholesterol | -7.67e-05 | 2.16e-04 | [ 0.00, 0.00] | -0.36 | 0.723
retdiet | 1.99e-06 | 3.57e-05 | [ 0.00, 0.00] | 0.06 | 0.956

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

model_performance(fit_ret1)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------
193.645 | 195.262 | 249.839 | 0.125 | 0.087 | 0.314 | 0.322

check_model(fit_ret1)
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Here, the use of a stepwise approach suggests a 6-predictor subset, including age, smokstat,
calories, fat, fiber and alcohol:

fit_ret6 <- select_parameters(fit_ret1)

compare_models(fit_ret1, fit_ret6)

Parameter | fit_ret1 | fit_ret6
----------------------------------------------------------------------
(Intercept) | 6.17 ( 5.90, 6.44) | 6.17 ( 5.97, 6.36)
age | 4.98e-03 ( 0.00, 0.01) | 5.36e-03 ( 0.00, 0.01)
smokstat (Never) | -0.07 (-0.15, 0.01) | -0.07 (-0.15, 0.01)
smokstat (Current) | -0.09 (-0.20, 0.03) | -0.09 (-0.21, 0.02)
calories | 1.51e-04 ( 0.00, 0.00) | 1.65e-04 ( 0.00, 0.00)
fat | -2.93e-03 (-0.01, 0.00) | -3.18e-03 (-0.01, 0.00)
fiber | -8.58e-03 (-0.02, 0.00) | -8.95e-03 (-0.02, 0.00)
alcohol | 0.01 ( 0.00, 0.02) | 0.01 ( 0.00, 0.02)
cholesterol | -7.67e-05 ( 0.00, 0.00) |
bmi | 1.38e-03 ( 0.00, 0.01) |
sex (Male) | 0.06 (-0.06, 0.18) |
vituse (Never) | -0.04 (-0.13, 0.05) |
retdiet | 1.99e-06 ( 0.00, 0.00) |
vituse (Not_Often) | 2.27e-03 (-0.09, 0.09) |
----------------------------------------------------------------------
Observations | 313 | 313

I’ll leave for the reader the exercise of evaluating this particular subset, and perhaps developing
other potential choices before making additional modeling decisions. One might also consider
returning to the data the observation with an unreasably low betaplasma, since that variable
isn’t involved in our prediction of retplasma.

21.6 For More Information
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22 Multiple Regression and Imputation

This is a DRAFT version of this Chapter.

This is a sketchy draft. I’ll remove this notice when I post a version of this Chapter that
is essentially finished.

22.1 R setup for this chapter

Note

Appendix A lists all R packages used in this book, and also provides R session informa-
tion. Appendix B describes the 431-Love.R script, and demonstrates its use.

library(broom)
library(car)
library(ggmice)
library(glmnet)
library(janitor)
library(knitr)
library(mice)
library(naniar)
library(olsrr)
library(patchwork)
library(rstanarm)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())
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22.2 Data will be Countries of the World version 2

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

ctry <- read_csv("data/countries.csv", show_col_types = FALSE) |>
mutate(

UNIV_CARE = factor(UNIV_CARE),
WHO_REGION = factor(WHO_REGION),
WBANK_INCOME = factor(WBANK_INCOME),
C_NUM = as.character(C_NUM)

) |>
janitor::clean_names()

ctry

# A tibble: 192 x 14
c_num country_name hale_all univ_care wbank_income hale_2000 births_attend
<chr> <chr> <dbl> <fct> <fct> <dbl> <dbl>

1 1 Afghanistan 50.4 no Low 46.8 68
2 2 Albania 66.7 yes Upper-middle 65.2 100
3 3 Algeria 65.5 yes Lower-middle 62.7 99
4 4 Andorra NA no High NA 100
5 5 Angola 53.8 no Lower-middle 42.9 50
6 6 Antigua and Ba~ 66.5 no High 65.5 99
7 7 Argentina 64.8 yes Upper-middle 65.1 99
8 8 Armenia 64 no Upper-middle 63.5 100
9 9 Australia 70.6 yes High 68.6 99
10 10 Austria 69.8 yes High 68.2 98
# i 182 more rows
# i 7 more variables: ihr_core_cap <dbl>, avg_tempc <dbl>, female_22 <dbl>,
# rural_22 <dbl>, covid_vax100 <dbl>, who_region <fct>, iso_alpha3 <chr>

miss_var_summary(ctry)

# A tibble: 14 x 3
variable n_miss pct_miss
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<chr> <int> <num>
1 births_attend 20 10.4
2 hale_all 9 4.69
3 hale_2000 9 4.69
4 covid_vax100 6 3.12
5 ihr_core_cap 2 1.04
6 wbank_income 1 0.521
7 c_num 0 0
8 country_name 0 0
9 univ_care 0 0
10 avg_tempc 0 0
11 female_22 0 0
12 rural_22 0 0
13 who_region 0 0
14 iso_alpha3 0 0

miss_case_table(ctry)

# A tibble: 4 x 3
n_miss_in_case n_cases pct_cases

<int> <int> <dbl>
1 0 164 85.4
2 1 16 8.33
3 2 5 2.60
4 3 7 3.65

• Outcome HALE_ALL
• 3 categorical variables (UNIV_CARE, WHO_REGION, WBANK_INCOME)
• 8 quantitative predictors (HALE_2000, BIRTHS_ATTEND, IHR_CORE_CAP,

AVG_TEMPC, FEMALE_22, RURAL_22, COVID_VAX100)

and some missing values (at least in the predictors) to deal with…

22.3 Build single imputation

22.3.1 Filter out countries without information on our outcome, hale_all.

ctry_cc <- ctry |>
filter(complete.cases(hale_all))

pct_miss_case(ctry_cc)
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[1] 10.38251

Later, when we do multiple imputation, we’ll run 15 imputations.

22.3.2 Single Imputation

ctry_si <-
mice(ctry_cc, m = 1, seed = 431, print = FALSE) |>
complete() |>
tibble()

Warning: Number of logged events: 3

dim(ctry_si)

[1] 183 14

n_miss(ctry_si)

[1] 0

22.3.3 Partition data after single imputation

We’ve seen other ways to partition the data. Here, let’s use data_partition() from the
datawizard package, part of the easystats ecosystem.

out <- data_partition(ctry_si, proportion = 0.7, seed = 431)

ctry_si_train <- out$p_0.7
ctry_si_test <- out$test

dim(ctry_si_train)

[1] 128 15
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dim(ctry_si_test)

[1] 55 15

22.4 Transforming the outcome?

fit0 <- lm(
hale_all ~ univ_care + wbank_income +

hale_2000 + births_attend + ihr_core_cap +
avg_tempc + female_22 + rural_22 + covid_vax100,

data = ctry_si_train
)

boxCox(fit0)
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Let’s try the square of hale_all as our outcome.
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p1 <- ggplot(ctry_si_train, aes(x = hale_all)) +
geom_histogram(bins = 20, fill = "coral", col = "blue")

p2 <- ggplot(ctry_si_train, aes(x = hale_all^2)) +
geom_histogram(bins = 20, fill = "aquamarine", col = "blue")

p1 + p2
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Not much of a difference, but perhaps we will see more meaningful improvements in our
regression residual plots.

ctry_si_train <- ctry_si_train |>
mutate(hale_sqr = hale_all^2)

ctry_si_test <- ctry_si_test |>
mutate(hale_sqr = hale_all^2)
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22.5 Fitting and Evaluating in Training Data

22.5.1 Kitchen Sink Model

fit1 <- lm( hale_sqr ~
univ_care + wbank_income + hale_2000 + births_attend +
ihr_core_cap + avg_tempc + female_22 + rural_22 +
covid_vax100,

data = ctry_si_train
)

model_parameters(fit1)

Parameter | Coefficient | SE | 95% CI | t(116) | p
------------------------------------------------------------------------------------------
(Intercept) | -291.03 | 598.75 | [-1476.93, 894.86] | -0.49 | 0.628
univ care [yes] | 44.22 | 61.01 | [ -76.62, 165.05] | 0.72 | 0.470
wbank income [Low] | -28.88 | 140.59 | [ -307.33, 249.58] | -0.21 | 0.838
wbank income [Lower-middle] | -186.50 | 98.98 | [ -382.54, 9.54] | -1.88 | 0.062
wbank income [Upper-middle] | -284.94 | 74.59 | [ -432.67, -137.21] | -3.82 | < .001
hale 2000 | 59.94 | 5.05 | [ 49.94, 69.94] | 11.87 | < .001
births attend | 4.81 | 2.11 | [ 0.64, 8.99] | 2.28 | 0.024
ihr core cap | 4.65 | 1.87 | [ 0.96, 8.35] | 2.49 | 0.014
avg tempc | -5.48 | 3.75 | [ -12.91, 1.95] | -1.46 | 0.147
female 22 | -2.05 | 9.07 | [ -20.01, 15.91] | -0.23 | 0.822
rural 22 | 1.67 | 1.62 | [ -1.54, 4.89] | 1.03 | 0.305
covid vax100 | 3.02 | 1.28 | [ 0.49, 5.56] | 2.36 | 0.020

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

model_performance(fit1)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
----------------------------------------------------------------------
1807.365 | 1810.558 | 1844.441 | 0.888 | 0.878 | 254.555 | 267.398
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22.5.2 LASSO to identify a subset

pred_x <- model.matrix(fit1)
out_y <- ctry_si_train |> select(hale_sqr) |> as.matrix()

set.seed(431)
lasso <- cv.glmnet(x = pred_x, y = out_y,

type.measure = "mse",
alpha = 1, family = "gaussian",
nlambda = 200, nfolds = 10)

plot(lasso)
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log(lasso$lambda.min)

[1] 2.275831

predict(lasso, type = "coef", s = "lambda.min")
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13 x 1 sparse Matrix of class "dgCMatrix"
lambda.min

(Intercept) -222.093827
(Intercept) .
univ_careyes 29.607576
wbank_incomeLow .
wbank_incomeLower-middle -129.930275
wbank_incomeUpper-middle -241.669217
hale_2000 58.555358
births_attend 4.299195
ihr_core_cap 4.520508
avg_tempc -4.936356
female_22 .
rural_22 .
covid_vax100 2.959860

The LASSO suggestion is to drop two of the 9 variables in our original fit1 model, specifcally
female_22 and rural_22, since wbank_income is multi-categorical.

So that model would be:

fit7 <- lm( hale_sqr ~
univ_care + wbank_income + hale_2000 + births_attend +
ihr_core_cap + avg_tempc + covid_vax100,

data = ctry_si_train
)

22.5.3 Stepwise Approach

fit6 <- select_parameters(fit1)

compare_models(fit1, fit6)

Parameter | fit1 | fit6
--------------------------------------------------------------------------------------
(Intercept) | -291.03 (-1476.93, 894.86) | -288.36 (-992.56, 415.84)
wbank income (Low) | -28.88 ( -307.33, 249.58) | 1.23 (-263.48, 265.94)
wbank income (Lower-middle) | -186.50 ( -382.54, 9.54) | -165.91 (-343.22, 11.40)
wbank income (Upper-middle) | -284.94 ( -432.67, -137.21) | -280.72 (-421.53, -139.91)
hale 2000 | 59.94 ( 49.94, 69.94) | 59.16 ( 49.52, 68.80)
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births attend | 4.81 ( 0.64, 8.99) | 4.96 ( 0.83, 9.10)
ihr core cap | 4.65 ( 0.96, 8.35) | 4.58 ( 1.08, 8.09)
avg tempc | -5.48 ( -12.91, 1.95) | -5.42 ( -11.86, 1.01)
covid vax100 | 3.02 ( 0.49, 5.56) | 3.08 ( 0.61, 5.55)
univ care (yes) | 44.22 ( -76.62, 165.05) |
rural 22 | 1.67 ( -1.54, 4.89) |
female 22 | -2.05 ( -20.01, 15.91) |
--------------------------------------------------------------------------------------
Observations | 128 | 128

The stepwise approach drops three predictors, univ_care, rural_22 and female_22.

22.5.4 Best Subsets

How about using the best subsets approach?

k <- ols_step_best_subset(fit1,
max_order = 7,
metric = "cp")

k

Best Subsets Regression
------------------------------------------------------------------------------------------------
Model Index Predictors
------------------------------------------------------------------------------------------------

1 hale_2000
2 wbank_income hale_2000
3 wbank_income hale_2000 ihr_core_cap
4 wbank_income hale_2000 births_attend ihr_core_cap
5 wbank_income hale_2000 births_attend ihr_core_cap covid_vax100
6 wbank_income hale_2000 births_attend ihr_core_cap avg_tempc covid_vax100
7 wbank_income hale_2000 births_attend ihr_core_cap avg_tempc rural_22 covid_vax100

------------------------------------------------------------------------------------------------

Subsets Regression Summary
-------------------------------------------------------------------------------------------------------------------------------------------------

Adj. Pred
Model R-Square R-Square R-Square C(p) AIC SBIC SBC MSEP FPE HSP APC
-------------------------------------------------------------------------------------------------------------------------------------------------
1 0.8151 0.8136 0.8073 68.3017 1852.0658 1487.2564 1860.6218 13968177.2014 110831.2677 873.0094 0.1908
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2 0.8556 0.8509 0.842 32.1908 1826.4294 1458.2510 1843.5416 10997356.3890 89354.3939 704.0977 0.1514
3 0.8724 0.8672 0.8573 16.6786 1812.5604 1445.0276 1832.5246 9794054.7936 80190.2350 632.1970 0.1358
4 0.8794 0.8734 0.8632 11.4137 1807.3525 1440.3096 1830.1687 9333656.2974 77004.7739 607.4578 0.1304
5 0.8844 0.8777 0.8668 8.1680 1803.8834 1437.4087 1829.5516 9017164.5402 74958.1159 591.7503 0.1269
6 0.8871 0.8795 0.8675 7.4172 1802.9193 1436.9166 1831.4396 8884176.1798 74408.9130 587.9223 0.1260
7 0.8879 0.8794 0.8666 8.5288 1803.9471 1438.2545 1835.3194 8891046.5054 75023.3563 593.3632 0.1270

-------------------------------------------------------------------------------------------------------------------------------------------------
AIC: Akaike Information Criteria
SBIC: Sawa's Bayesian Information Criteria
SBC: Schwarz Bayesian Criteria
MSEP: Estimated error of prediction, assuming multivariate normality
FPE: Final Prediction Error
HSP: Hocking's Sp
APC: Amemiya Prediction Criteria

plot(k)

0.83

0.85

0.87

0.89

2 4 6

R−Square

0.82

0.84

0.86

0.88

2 4 6

Adj. R−Square

20

40

60

2 4 6

C(p)

1810
1820
1830
1840
1850

2 4 6

AIC

Best Subset Regression

418



1440
1450
1460
1470
1480

2 4 6

SBIC

1830

1840

1850

1860

2 4 6

SBC

Best Subset Regression

The best subsets suggestions include

• the same six-predictor model we got with stepwise
• a five-predictor model with avg_tempc dropped from our 6-predictor model, and maybe
• a different seven-parameter model than we obtained from the LASSO (keeping rural_22

but dropping univ_care)

Let’s store the five-predictor model:

fit5 <- lm( hale_sqr ~
wbank_income + hale_2000 + births_attend +
ihr_core_cap + covid_vax100,

data = ctry_si_train
)

22.5.5 Compare Candidate Models in Training Sample

So we have at least four candidate models: fit1, fit5, fit6 and fit7.

compare_models(fit1, fit7, fit6, fit5)

Parameter | fit1 | fit7 | fit6 | fit5
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-------------------------------------------------------------------------------------------------------------------------------------------------
(Intercept) | -291.03 (-1476.93, 894.86) | -263.05 (-974.18, 448.09) | -288.36 (-992.56, 415.84) | -439.16 (-1125.27, 246.94)
wbank income (Low) | -28.88 ( -307.33, 249.58) | 1.60 (-263.85, 267.06) | 1.23 (-263.48, 265.94) | -33.50 ( -296.90, 229.91)
wbank income (Lower-middle) | -186.50 ( -382.54, 9.54) | -157.94 (-337.70, 21.81) | -165.91 (-343.22, 11.40) | -194.85 ( -370.09, -19.62)
wbank income (Upper-middle) | -284.94 ( -432.67, -137.21) | -279.75 (-420.99, -138.52) | -280.72 (-421.53, -139.91) | -300.61 ( -440.45, -160.78)
hale 2000 | 59.94 ( 49.94, 69.94) | 58.86 ( 49.13, 68.58) | 59.16 ( 49.52, 68.80) | 59.49 ( 49.78, 69.19)
births attend | 4.81 ( 0.64, 8.99) | 4.87 ( 0.71, 9.02) | 4.96 ( 0.83, 9.10) | 5.29 ( 1.15, 9.44)
ihr core cap | 4.65 ( 0.96, 8.35) | 4.42 ( 0.87, 7.98) | 4.58 ( 1.08, 8.09) | 5.04 ( 1.55, 8.53)
covid vax100 | 3.02 ( 0.49, 5.56) | 3.00 ( 0.50, 5.49) | 3.08 ( 0.61, 5.55) | 2.86 ( 0.39, 5.34)
univ care (yes) | 44.22 ( -76.62, 165.05) | 35.15 ( -81.32, 151.62) | |
female 22 | -2.05 ( -20.01, 15.91) | | |
avg tempc | -5.48 ( -12.91, 1.95) | -5.35 ( -11.81, 1.10) | -5.42 ( -11.86, 1.01) |
rural 22 | 1.67 ( -1.54, 4.89) | | |
-------------------------------------------------------------------------------------------------------------------------------------------------
Observations | 128 | 128 | 128 | 128

compare_performance(fit1, fit7, fit6, fit5)

# Comparison of Model Performance Indices

Name | Model | AIC (weights) | AICc (weights) | BIC (weights) | R2 | R2 (adj.) | RMSE | Sigma
-------------------------------------------------------------------------------------------------------
fit1 | lm | 1807.4 (0.050) | 1810.6 (0.026) | 1844.4 (<.001) | 0.888 | 0.878 | 254.555 | 267.398
fit7 | lm | 1804.5 (0.206) | 1806.8 (0.170) | 1835.9 (0.029) | 0.887 | 0.879 | 255.719 | 266.334
fit6 | lm | 1802.9 (0.460) | 1804.8 (0.463) | 1831.4 (0.272) | 0.887 | 0.879 | 256.106 | 265.614
fit5 | lm | 1803.9 (0.284) | 1805.4 (0.341) | 1829.6 (0.699) | 0.884 | 0.878 | 259.088 | 267.585

plot(compare_performance(fit1, fit7, fit6, fit5))
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Comparison of Model Indices

It looks like the six-predictor model is the best choice (but just barely) using adjusted 𝑅2, 𝜎
and AIC. Let’s look at the test sample.

22.5.6 Compare Candidate Models in Test Sample

test1 <- augment(fit1, newdata = ctry_si_test) |>
mutate(mod_n = "Model 1 (KS)")

test7 <- augment(fit7, newdata = ctry_si_test) |>
mutate(mod_n = "Model 7")

test6 <- augment(fit6, newdata = ctry_si_test) |>
mutate(mod_n = "Model 6")

test5 <- augment(fit5, newdata = ctry_si_test) |>
mutate(mod_n = "Model 5")

test_res <- bind_rows(test1, test7, test6, test5) |>
mutate(predicted_haleall = sqrt(.fitted),

resid_haleall = hale_all - predicted_haleall) |>
select(mod_n, country_name, hale_all,

predicted_haleall, resid_haleall, everything()) |>
arrange(c_num, mod_n)
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head(test_res, 8)

# A tibble: 8 x 21
mod_n country_name hale_all predicted_haleall resid_haleall c_num univ_care
<chr> <chr> <dbl> <dbl> <dbl> <chr> <fct>

1 Model 1~ Luxembourg 71.2 68.6 2.55 100 yes
2 Model 5 Luxembourg 71.2 68.5 2.68 100 yes
3 Model 6 Luxembourg 71.2 68.7 2.49 100 yes
4 Model 7 Luxembourg 71.2 68.8 2.39 100 yes
5 Model 1~ Maldives 66.7 63.8 2.90 104 yes
6 Model 5 Maldives 66.7 63.6 3.15 104 yes
7 Model 6 Maldives 66.7 63.2 3.53 104 yes
8 Model 7 Maldives 66.7 63.3 3.38 104 yes
# i 14 more variables: wbank_income <fct>, hale_2000 <dbl>,
# births_attend <dbl>, ihr_core_cap <dbl>, avg_tempc <dbl>, female_22 <dbl>,
# rural_22 <dbl>, covid_vax100 <dbl>, who_region <fct>, iso_alpha3 <chr>,
# .row_id <int>, hale_sqr <dbl>, .fitted <dbl>, .resid <dbl>

test_res |>
group_by(mod_n) |>
summarise(MAPE = mean(abs(resid_haleall)),

medAPE = median(abs(resid_haleall)),
maxAPE = max(abs(resid_haleall)),
RMSPE = sqrt(mean(resid_haleall^2)),
rsqr = cor(hale_all, predicted_haleall)^2) |>

kable()

mod_n MAPE medAPE maxAPE RMSPE rsqr
Model 1 (KS) 1.399561 1.172160 4.242786 1.682548 0.9063445
Model 5 1.387650 1.091875 3.818286 1.700453 0.9009602
Model 6 1.357642 1.198238 4.019098 1.660509 0.9072666
Model 7 1.347411 1.168969 3.973297 1.637438 0.9092709

We see that:

• Model 6 has the smallest mean, median and maximum average prediction error, but
• Model 7 has the smallest RMSPE and largest validated 𝑅2.

I’ll select model 6, assuming that model assumptions aren’t too badly violated in our training
sample. Let’s check that.
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22.6 Check Assumptions in Winning Model

check_model(fit6)
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The collinearity is OK now, and outside of a couple of observations, I think Normality isn’t a
serious problem.

22.7 Estimates for the Winning Model

So now, I’ll refit the six-predictor model, which includes:

• wbank_income
• hale_2000
• births_attend
• ihr_core_cap
• avg_tempc, and
• covid_vax100

to the entire set of data, with various assumptions about the missing data.

22.7.1 Complete Case Analysis

Here, we’ll fit the model to all of the data except (as we’ll do in all three cases) the countries
without outcome (hale_all) information.

fit_cc <- lm((hale_all^2) ~ wbank_income + hale_2000 +
births_attend + ihr_core_cap +
avg_tempc + covid_vax100,

data = ctry_cc)

model_parameters(fit_cc, ci = 0.95)

Parameter | Coefficient | SE | 95% CI | t(155) | p
-----------------------------------------------------------------------------------------
(Intercept) | -93.51 | 302.42 | [-690.90, 503.89] | -0.31 | 0.758
wbank income [Low] | -68.39 | 112.63 | [-290.88, 154.11] | -0.61 | 0.545
wbank income [Lower-middle] | -148.19 | 73.52 | [-293.42, -2.97] | -2.02 | 0.046
wbank income [Upper-middle] | -267.91 | 60.30 | [-387.02, -148.81] | -4.44 | < .001
hale 2000 | 57.44 | 4.20 | [ 49.14, 65.74] | 13.67 | < .001
births attend | 4.84 | 1.79 | [ 1.31, 8.37] | 2.71 | 0.008
ihr core cap | 3.80 | 1.51 | [ 0.81, 6.79] | 2.51 | 0.013
avg tempc | -5.51 | 2.80 | [ -11.05, 0.03] | -1.97 | 0.051
covid vax100 | 2.65 | 1.09 | [ 0.49, 4.81] | 2.42 | 0.017
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Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

model_performance(fit_cc)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
-------------------------------------------------------------------------
44110.965 | 44112.403 | 44141.963 | 0.881 | 0.874 | 247.017 | 254.088

22.7.2 After Single Imputation

fit_si <- lm((hale_all^2) ~ wbank_income + hale_2000 +
births_attend + ihr_core_cap +
avg_tempc + covid_vax100,

data = ctry_si)

model_parameters(fit_si, ci = 0.95)

Parameter | Coefficient | SE | 95% CI | t(174) | p
-----------------------------------------------------------------------------------------
(Intercept) | -49.82 | 270.59 | [-583.88, 484.25] | -0.18 | 0.854
wbank income [Low] | -79.91 | 97.08 | [-271.51, 111.69] | -0.82 | 0.412
wbank income [Lower-middle] | -178.92 | 65.89 | [-308.97, -48.86] | -2.72 | 0.007
wbank income [Upper-middle] | -293.54 | 56.08 | [-404.22, -182.87] | -5.23 | < .001
hale 2000 | 57.96 | 3.67 | [ 50.72, 65.20] | 15.80 | < .001
births attend | 4.50 | 1.63 | [ 1.29, 7.72] | 2.76 | 0.006
ihr core cap | 3.75 | 1.41 | [ 0.97, 6.53] | 2.66 | 0.008
avg tempc | -6.47 | 2.60 | [ -11.60, -1.35] | -2.49 | 0.014
covid vax100 | 2.64 | 0.98 | [ 0.70, 4.57] | 2.69 | 0.008

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.
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model_performance(fit_si)

# Indices of model performance

AIC | AICc | BIC | R2 | R2 (adj.) | RMSE | Sigma
-------------------------------------------------------------------------
52919.799 | 52921.078 | 52951.894 | 0.892 | 0.887 | 239.530 | 245.647

22.7.3 Multiple Imputation

As mentioned earlier, I am dropping the observations with no information on my outcome
(hale_all) which is the ctry_cc data. Then I am building 15 imputations, because I am
missing data on just over 10% of cases within ctry_cc.

pct_miss_case(ctry_cc) # as a reminder

[1] 10.38251

Now, we fit our six-predictor model in each of these 15 imputed data sets, like this:

imp_ests <- ctry_cc |>
mice(m = 15, seed = 431, print = FALSE) |>
with(lm((hale_all)^2 ~ wbank_income + hale_2000 +

births_attend + ihr_core_cap +
avg_tempc + covid_vax100)) |>

pool()

Warning: Number of logged events: 3

model_parameters(imp_ests, ci = 0.95)

Warning: Number of logged events: 3
Warning: Number of logged events: 3
Warning: Number of logged events: 3
Warning: Number of logged events: 3
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# Fixed Effects

Parameter | Coefficient | SE | 95% CI | t | df | p
-------------------------------------------------------------------------------------------------
(Intercept) | -66.57 | 274.03 | [-607.55, 474.42] | -0.24 | 168.60 | 0.808
wbank income [Low] | -74.63 | 97.66 | [-267.42, 118.15] | -0.76 | 169.38 | 0.446
wbank income [Lower-middle] | -172.29 | 66.57 | [-303.70, -40.88] | -2.59 | 170.49 | 0.010
wbank income [Upper-middle] | -294.49 | 56.44 | [-405.89, -183.09] | -5.22 | 171.96 | < .001
hale 2000 | 58.20 | 3.69 | [ 50.91, 65.49] | 15.76 | 169.20 | < .001
births attend | 4.50 | 1.66 | [ 1.23, 7.77] | 2.72 | 166.98 | 0.007
ihr core cap | 3.70 | 1.42 | [ 0.91, 6.50] | 2.62 | 171.40 | 0.010
avg tempc | -6.47 | 2.61 | [ -11.62, -1.32] | -2.48 | 171.81 | 0.014
covid vax100 | 2.70 | 1.01 | [ 0.72, 4.68] | 2.69 | 171.28 | 0.008

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a Wald t-distribution approximation.

glance(imp_ests)

nimp nobs r.squared adj.r.squared
1 15 183 0.8915267 0.8865394

and hopefully show them all to be fairly similar. Then describe that winning fit
in some detail, probably in the multiple imputation case.

22.8 Bayesian Linear Fit

Show Bayesian fit for the winning model across the entire sample, and draw con-
clusions about its fit and form.

ctry_si <- ctry_si |>
mutate(hale_sqr = hale_all^2)

fit_bay <- stan_glm(hale_sqr ~
wbank_income + hale_2000 +
births_attend + ihr_core_cap +
avg_tempc + covid_vax100,

data = ctry_si, refresh = 0)

model_parameters(fit_bay, ci = 0.95)

428



Parameter | Median | 95% CI | pd | Rhat | ESS | Prior
----------------------------------------------------------------------------------------------------------------
(Intercept) | -58.22 | [-593.32, 491.26] | 58.45% | 1.000 | 2586.00 | Normal (3859.71 +- 1825.71)
wbank_incomeLow | -79.75 | [-272.32, 116.58] | 78.38% | 1.001 | 2311.00 | Normal (0.00 +- 5057.64)
wbank_incomeLower-middle | -177.89 | [-309.74, -47.08] | 99.50% | 1.000 | 2335.00 | Normal (0.00 +- 4014.05)
wbank_incomeUpper-middle | -292.57 | [-409.28, -179.50] | 100% | 1.001 | 3126.00 | Normal (0.00 +- 4111.90)
hale_2000 | 58.05 | [ 50.54, 64.89] | 100% | 1.001 | 3029.00 | Normal (0.00 +- 209.73)
births_attend | 4.54 | [ 1.29, 7.67] | 99.72% | 1.000 | 4459.00 | Normal (0.00 +- 113.08)
ihr_core_cap | 3.74 | [ 0.99, 6.54] | 99.55% | 1.000 | 4377.00 | Normal (0.00 +- 101.06)
avg_tempc | -6.43 | [ -11.52, -1.41] | 99.33% | 1.000 | 4533.00 | Normal (0.00 +- 225.51)
covid_vax100 | 2.60 | [ 0.68, 4.50] | 99.62% | 1.000 | 4575.00 | Normal (0.00 +- 74.26)

Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
using a MCMC distribution approximation.

model_performance(fit_bay)

# Indices of model performance

ELPD | ELPD_SE | LOOIC | LOOIC_SE | WAIC | R2 | R2 (adj.) | RMSE | Sigma
--------------------------------------------------------------------------------------------
-1272.992 | 10.426 | 2545.984 | 20.853 | 2545.895 | 0.887 | 0.880 | 239.536 | 246.897

22.9 For More Information

point to https://r4ds.hadley.nz/missing-values
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23 NNYFS Case Study

This is a DRAFT version of this Chapter.

This is a sketchy draft. I’ll remove this notice when I post a version of this Chapter that
is essentially finished.

23.1 R setup for this chapter

Note

This section loads all needed R packages for this chapter. Appendix A lists all R packages
and data sets used in the book, and also provides R session information. Appendix B
describes the 431-Love.R script, and demonstrates its use.

library(knitr)
library(mice)
library(naniar)
library(rstanarm)

library(easystats)
library(tidyverse)

source("data/Love-431.R")
theme_set(theme_bw())
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23.2 Data should be NNYFS

Note

Appendix C provides further guidance on pulling data from other systems into R, while
Appendix D gives more information (including download links) for all data sets used in
this book.

nnyfs <- read_rds("data/nnyfs.Rds")

miss_var_summary(nnyfs)

# A tibble: 45 x 3
variable n_miss pct_miss
<chr> <int> <num>

1 educ_child 337 22.2
2 enjoy_recess 278 18.3
3 plank_time 134 8.83
4 calf_skinfold 128 8.43
5 income_pov 89 5.86
6 subscapular_skinfold 67 4.41
7 educ_adult 22 1.45
8 triceps_skinfold 21 1.38
9 salt_used 13 0.856
10 respondent 12 0.791
# i 35 more rows

23.3 For More Information
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A R Packages

A.1 R Packages used in this book

Here is a list of the R packages that are used in this book.

Chapters Package Description Reference(s)
17-18, 22 broom Summarize key information about

models into tibbles
Website

7, 10, 17-18,
20-22

car Box-Cox transformations, Companion to
Applied Regression

PDF manual,
related book

13 Epi twoby2(), Epidemiological Analysis with
R

Website

Appendix fivethirtyeight bechdel data set Website
11, 18 GGally scatterplot matrix through ggpairs() Website

2, 6-7, 9-10 ggdist Rain cloud plots, Visualizations of
distributions and uncertainty

Website

2, 11 ggpubr add fitted equation to scatterplot Website
21-22 glmnet LASSO and Elastic Net models Website

2, 11-12 glue working with strings and R results Website
8, 12, 16, 21 haven read and write various data formats Website

5-7 infer tidy statistical inference Website
2-4, 7, 9-12,
14, 17, 20-22

janitor clean_names(), tabyl(), for cleaning and
exploring

Overview

2-14, 16-23 knitr kable(), report generation Website
13 medicaldata data sets for teaching reproducible

medical research
Website

17, 22-23 mice Multivariate Imputation by Chained
Equations

Website, van
Buuren
(2021)

6-7 MKinfer bootstrap testing Website
2-3, 5, 7-14,

16-23
naniar Tidy ways to summarize missingness Website

20-22 olsrr building OLS models, including best
subsets

Website
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https://broom.tidymodels.org/
https://cran.r-project.org/web/packages/car/car.pdf
https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html
https://bendixcarstensen.com/Epi/
https://github.com/rudeboybert/fivethirtyeight
https://ggobi.github.io/ggally/
https://mjskay.github.io/ggdist/
https://rpkgs.datanovia.com/ggpubr/
https://glmnet.stanford.edu/index.html
https://glue.tidyverse.org/
https://haven.tidyverse.org/
https://infer.netlify.app/
https://cran.r-project.org/web/packages/janitor/vignettes/janitor.html
https://yihui.org/knitr/
https://higgi13425.github.io/medicaldata/
https://amices.org/mice/
https://github.com/stamats/MKinfer
https://naniar.njtierney.com/
https://olsrr.rsquaredacademy.com/


Chapters Package Description Reference(s)
2-3 palmerpenguins Palmer Penguins data Website,

Horst, Hill,
and Gorman

(2020)
2, 5-7, 10-12,
16-17, 21-22

patchwork Combining separate ggplots into one
graphic

Website

6 readxl get data out of Excel and into R Website
5-7, 9-12,
16-23

rstanarm Bayesian Applied Regression Modeling
via STAN

Website

all styler non-invasive code formatting for pretty
printing

Website
Tidyverse
Style Guide

18 tidytuesdayR access data from Tidy Tuesday
repository

Website

Appendix xfun for session information, Section A.3 Website

A.1.1 Meta-packages

Chapters Meta-Package Description Reference(s)
2-14, 16-23 easystats An R Framework for Easy Statistical

Modeling, Visualization and Reporting
Website,
Lüdecke et
al. (2022)

2-14, 16-23 tidyverse R packages for Data Science Website

A.2 Loading all of these R packages

knitr::opts_chunk$set(comment = NA)

library(broom)
library(car)
library(emmeans)
library(Epi)
library(fivethirtyeight)
library(GGally)
library(ggdist)
library(ggpubr)
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https://allisonhorst.github.io/palmerpenguins/
https://patchwork.data-imaginist.com/
https://readxl.tidyverse.org/
https://mc-stan.org/
https://mc-stan.org/rstanarm/
https://styler.r-lib.org/
https://style.tidyverse.org/
https://style.tidyverse.org/
https://github.com/rfordatascience/tidytuesday
https://github.com/rfordatascience/tidytuesday
https://github.com/thebioengineer/tidytuesdayR
https://github.com/yihui/xfun
https://easystats.github.io/easystats/
https://www.tidyverse.org/


library(glue)
library(haven)
library(infer)
library(janitor)
library(knitr)
library(medicaldata)
library(mice)
library(MKinfer)
library(naniar)
library(olsrr)
library(palmerpenguins)
library(patchwork)
library(readxl)
library(rstanarm)
library(styler)
library(tidytuesdayR)
library(xfun)

library(easystats)
library(tidyverse)

A.3 Session Information

xfun::session_info()

R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 22631)

Locale:
LC_COLLATE=English_United States.utf8
LC_CTYPE=English_United States.utf8
LC_MONETARY=English_United States.utf8
LC_NUMERIC=C
LC_TIME=English_United States.utf8

Package version:
abind_1.4-5 arrangements_1.1.9 askpass_1.2.0
backports_1.5.0 base64enc_0.1-3 bayesplot_1.11.1
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bayestestR_0.14.0 BH_1.84.0.0 bit_4.0.5
bit64_4.0.5 blob_1.2.4 boot_1.3-31
broom_1.0.6 broom.helpers_1.17.0 bslib_0.8.0
cachem_1.1.0 callr_3.7.6 car_3.1-2
carData_3.0-5 cards_0.2.2 cellranger_1.1.0
checkmate_2.3.2 cli_3.6.3 clipr_0.8.0
cmprsk_2.2-12 coda_0.19-4.1 codetools_0.2-20
colorspace_2.1-1 colourpicker_1.3.0 commonmark_1.9.1
compiler_4.4.1 conflicted_1.2.0 correlation_0.8.5
corrplot_0.94 cowplot_1.1.3 cpp11_0.5.0
crayon_1.5.3 credentials_2.0.1 crosstalk_1.2.1
curl_5.2.2 data.table_1.16.0 datasets_4.4.1
datawizard_0.12.3 DBI_1.2.3 dbplyr_2.5.0
Deriv_4.1.3 desc_1.4.3 digest_0.6.37
distributional_0.4.0 doBy_4.6.22 dplyr_1.1.4
DT_0.33 dtplyr_1.3.1 dygraphs_1.1.1.6
easystats_0.7.3 effectsize_0.8.9 emmeans_1.10.4
Epi_2.53 estimability_1.5.1 etm_1.1.1
evaluate_0.24.0 exactRankTests_0.8-35 fansi_1.0.6
farver_2.1.2 fastmap_1.2.0 fivethirtyeight_0.6.2
fontawesome_0.5.2 forcats_1.0.0 foreach_1.5.2
fs_1.6.4 gargle_1.5.2 generics_0.1.3
gert_2.1.1 GGally_2.2.1 ggdist_3.3.2
ggplot2_3.5.1 ggpubr_0.6.0 ggrepel_0.9.6
ggridges_0.5.6 ggsci_3.2.0 ggsignif_0.6.4
ggstats_0.6.0 gh_1.4.1 gitcreds_0.1.2
glmnet_4.1-8 glue_1.7.0 gmp_0.7-5
goftest_1.2-3 googledrive_2.1.1 googlesheets4_1.1.1
graphics_4.4.1 grDevices_4.4.1 grid_4.4.1
gridExtra_2.3 gtable_0.3.5 gtools_3.9.5
haven_2.5.4 highr_0.11 hms_1.1.3
htmltools_0.5.8.1 htmlwidgets_1.6.4 httpuv_1.6.15
httr_1.4.7 httr2_1.0.3 ids_1.0.1
igraph_2.0.3 infer_1.0.7 ini_0.3.1
inline_0.3.19 insight_0.20.4 isoband_0.2.7
iterators_1.0.14 janitor_2.2.0 jomo_2.7-6
jquerylib_0.1.4 jsonlite_1.8.8 knitr_1.48
labeling_0.4.3 labelled_2.13.0 later_1.3.2
lattice_0.22-6 lazyeval_0.2.2 lifecycle_1.0.4
lme4_1.1-35.5 loo_2.8.0 lubridate_1.9.3
magrittr_2.0.3 markdown_1.13 MASS_7.3-61
Matrix_1.7-0 MatrixModels_0.5.3 matrixStats_1.4.0
medicaldata_0.2.0 memoise_2.0.1 methods_4.4.1
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mgcv_1.9-1 mice_3.16.0 miceadds_3.17-44
microbenchmark_1.5.0 mime_0.12 miniUI_0.1.1.1
minqa_1.2.8 mitml_0.4-5 mitools_2.4
MKdescr_0.8 MKinfer_1.2 modelbased_0.8.8
modelr_0.1.11 multcomp_1.4-26 munsell_0.5.1
mvtnorm_1.3-1 naniar_1.1.0 nlme_3.1-164
nloptr_2.1.1 nnet_7.3-19 norm_1.0.11.1
nortest_1.0-4 numDeriv_2016.8-1.1 olsrr_0.6.0
openssl_2.2.1 ordinal_2023.12.4.1 palmerpenguins_0.1.1
pan_1.9 parallel_4.4.1 parameters_0.22.2
patchwork_1.2.0 pbkrtest_0.5.3 performance_0.12.3
pillar_1.9.0 pkgbuild_1.4.4 pkgconfig_2.0.3
plyr_1.8.9 polynom_1.4.1 posterior_1.6.0
prettyunits_1.2.0 processx_3.8.4 progress_1.2.3
promises_1.3.0 ps_1.7.7 purrr_1.0.2
quadprog_1.5.8 quantreg_5.98 QuickJSR_1.3.1
R.cache_0.16.0 R.methodsS3_1.8.2 R.oo_1.26.0
R.utils_2.12.3 R6_2.5.1 ragg_1.3.2
rappdirs_0.3.3 RColorBrewer_1.1-3 Rcpp_1.0.13
RcppArmadillo_14.0.0.1 RcppEigen_0.3.4.0.2 RcppParallel_5.1.9
readr_2.1.5 readxl_1.4.3 rematch_2.0.0
rematch2_2.1.2 report_0.5.9 reprex_2.1.1
reshape2_1.4.4 rlang_1.1.4 rmarkdown_2.28
rpart_4.1.23 rprojroot_2.0.4 rstan_2.32.6
rstanarm_2.32.1 rstantools_2.4.0 rstatix_0.7.2
rstudioapi_0.16.0 rvest_1.0.4 sandwich_3.1-0
sass_0.4.9 scales_1.3.0 see_0.9.0
selectr_0.4.2 shape_1.4.6.1 shiny_1.9.1
shinyjs_2.1.0 shinystan_2.6.0 shinythemes_1.2.0
snakecase_0.11.1 sourcetools_0.1.7.1 SparseM_1.84.2
splines_4.4.1 StanHeaders_2.32.10 stats_4.4.1
stats4_4.4.1 stringi_1.8.4 stringr_1.5.1
styler_1.10.3 survival_3.7-0 sys_3.4.2
systemfonts_1.1.0 tensorA_0.36.2.1 textshaping_0.4.0
TH.data_1.1-2 threejs_0.3.3 tibble_3.2.1
tidyr_1.3.1 tidyselect_1.2.1 tidytuesdayR_1.1.2
tidyverse_2.0.0 timechange_0.3.0 tinytex_0.52
tools_4.4.1 tzdb_0.4.0 ucminf_1.2.2
UpSetR_1.4.0 usethis_3.0.0 utf8_1.2.4
utils_4.4.1 uuid_1.2.1 V8_5.0.0
vctrs_0.6.5 viridis_0.6.5 viridisLite_0.4.2
visdat_0.6.0 vroom_1.6.5 whisker_0.4.1
withr_3.0.1 xfun_0.47 xml2_1.3.6

436



xplorerr_0.1.2 xtable_1.8-4 xts_0.14.0
yaml_2.3.10 zip_2.3.1 zoo_1.8-12

437



B The Love-431.R script

B.1 R setup for this appendix

Note

Appendix A lists all R packages and data sets used in the book, and also provides R
session information.

library(Epi)
library(palmerpenguins)

library(easystats)
library(tidyverse)

B.2 Contents of Love-431.R script

B.3 The lovedist() function

lovedist <- function(x) {
tibble::tibble(

n = length(x),
miss = sum(is.na(x)),
mean = mean(x, na.rm = TRUE),
sd = sd(x, na.rm = TRUE),
med = median(x, na.rm = TRUE),
mad = mad(x, na.rm = TRUE),
min = min(x, na.rm = TRUE),
q25 = quantile(x, 0.25, na.rm = TRUE),
q75 = quantile(x, 0.75, na.rm = TRUE),
max = max(x, na.rm = TRUE),

)
}
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B.3.1 Sample Use

palmerpenguins::penguins |>
reframe(lovedist(bill_depth_mm))

# A tibble: 1 x 10
n miss mean sd med mad min q25 q75 max

<int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 344 2 17.2 1.97 17.3 2.22 13.1 15.6 18.7 21.5

palmerpenguins::penguins |>
reframe(lovedist(bill_depth_mm), .by = species)

# A tibble: 3 x 11
species n miss mean sd med mad min q25 q75 max
<fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Adelie 152 1 18.3 1.22 18.4 1.19 15.5 17.5 19 21.5
2 Gentoo 124 1 15.0 0.981 15 1.19 13.1 14.2 15.7 17.3
3 Chinstrap 68 0 18.4 1.14 18.4 1.41 16.4 17.5 19.4 20.8

B.4 The twobytwo function

twobytwo <-
function(a, b, c, d,

namer1 = "Row1", namer2 = "Row2",
namec1 = "Col1", namec2 = "Col2",
conf.level = 0.95)
# build 2 by 2 table and run Epi library's twoby2 command to summarize
# from the row-by-row counts in a cross-tab
# upper left cell is a, upper right is b,
# lower left is c, lower right is d
# names are then given in order down the rows then across the columns
# use standard epidemiological format:

# outcomes in columns, treatments in rows
{

.Table <- matrix(c(a, b, c, d), 2, 2,
byrow = T,
dimnames = list(

439



c(namer1, namer2),
c(namec1, namec2)

)
)
Epi::twoby2(.Table, alpha = 1 - conf.level)

}

B.4.1 Sample Use

twobytwo(23, 14, 12, 9, "Treatment 1", "Treatment 2", "Out 1", "Out 2",
conf.level = 0.90

)

2 by 2 table analysis:
------------------------------------------------------
Outcome : Out 1
Comparing : Treatment 1 vs. Treatment 2

Out 1 Out 2 P(Out 1) 90% conf. interval
Treatment 1 23 14 0.6216 0.4847 0.7415
Treatment 2 12 9 0.5714 0.3923 0.7336

90% conf. interval
Relative Risk: 1.0878 0.7472 1.5839

Sample Odds Ratio: 1.2321 0.4936 3.0759
Conditional MLE Odds Ratio: 1.2277 0.4265 3.5045

Probability difference: 0.0502 -0.1587 0.2620

Exact P-value: 0.7834
Asymptotic P-value: 0.7074

------------------------------------------------------

B.5 The saifs_ci() function

saifs_ci <-
function(x, n, conf.level = 0.95, dig = 3) {

p.sample <- round(x / n, digits = dig)
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p1 <- x / (n + 1)
p2 <- (x + 1) / (n + 1)

var1 <- (p1 * (1 - p1)) / n
se1 <- sqrt(var1)
var2 <- (p2 * (1 - p2)) / n
se2 <- sqrt(var2)

lowq <- (1 - conf.level) / 2
tcut <- qt(lowq, df = n - 1, lower.tail = FALSE)

lower.bound <- round(p1 - tcut * se1, digits = dig)
upper.bound <- round(p2 + tcut * se2, digits = dig)
tibble(
sample_x = x,
sample_n = n,
sample_p = p.sample,
lower = lower.bound,
upper = upper.bound,
conf_level = conf.level

)
}

B.5.1 Sample Usage

saifs_ci(x = 19, n = 25, conf.level = 0.95)

# A tibble: 1 x 6
sample_x sample_n sample_p lower upper conf_level

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 19 25 0.76 0.548 0.943 0.95
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C Getting Data Into R

C.1 Using data from an R package

To use data from an R package, for instance, the bechdel data from the fivethirtyeight
package, you can simply load the relevant package with library and then the data frame will
be available

library(fivethirtyeight)
library(tidyverse)

bechdel

# A tibble: 1,794 x 15
year imdb title test clean_test binary budget domgross intgross code

<int> <chr> <chr> <chr> <ord> <chr> <int> <dbl> <dbl> <chr>
1 2013 tt1711425 21 & ~ nota~ notalk FAIL 1.3 e7 25682380 4.22e7 2013~
2 2012 tt1343727 Dredd~ ok-d~ ok PASS 4.50e7 13414714 4.09e7 2012~
3 2013 tt2024544 12 Ye~ nota~ notalk FAIL 2 e7 53107035 1.59e8 2013~
4 2013 tt1272878 2 Guns nota~ notalk FAIL 6.1 e7 75612460 1.32e8 2013~
5 2013 tt0453562 42 men men FAIL 4 e7 95020213 9.50e7 2013~
6 2013 tt1335975 47 Ro~ men men FAIL 2.25e8 38362475 1.46e8 2013~
7 2013 tt1606378 A Goo~ nota~ notalk FAIL 9.2 e7 67349198 3.04e8 2013~
8 2013 tt2194499 About~ ok-d~ ok PASS 1.20e7 15323921 8.73e7 2013~
9 2013 tt1814621 Admis~ ok ok PASS 1.3 e7 18007317 1.80e7 2013~
10 2013 tt1815862 After~ nota~ notalk FAIL 1.3 e8 60522097 2.44e8 2013~
# i 1,784 more rows
# i 5 more variables: budget_2013 <int>, domgross_2013 <dbl>,
# intgross_2013 <dbl>, period_code <int>, decade_code <int>

For more on this example, visit Bechdel analysis using the tidyverse.
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C.2 Using read_rds to read in an R data set

We have provided the nnyfs.Rds data file on the course data page.

Suppose you have downloaded this data file into a directory on your computer called data
which is a sub-directory of the directory where you plan to do your work, perhaps called
431-nnyfs.

Open RStudio and create a new project into the 431-nnyfs directory on your computer. You
should see a data subdirectory in the Files window in RStudio after the project is created.

Now, read in the nnyfs.Rds file to a new tibble in R called nnyfs with the following com-
mand:

nnyfs <- read_rds("data/nnyfs.Rds")

Here are the results…

nnyfs

# A tibble: 1,518 x 45
SEQN sex age_child race_eth educ_child language sampling_wt income_pov
<chr> <fct> <dbl> <fct> <dbl> <fct> <dbl> <dbl>

1 71917 Female 15 3_Black No~ 9 English 28299. 0.21
2 71918 Female 8 3_Black No~ 2 English 15127. 5
3 71919 Female 14 2_White No~ 8 English 29977. 5
4 71920 Female 15 2_White No~ 8 English 80652. 0.87
5 71921 Male 3 2_White No~ NA English 55592. 4.34
6 71922 Male 12 1_Hispanic 6 English 27365. 5
7 71923 Male 12 2_White No~ 5 English 86673. 5
8 71924 Female 8 4_Other Ra~ 2 English 39549. 2.74
9 71925 Male 7 1_Hispanic 0 English 42333. 0.46
10 71926 Male 8 3_Black No~ 2 English 15307. 1.57
# i 1,508 more rows
# i 37 more variables: age_adult <dbl>, educ_adult <fct>, respondent <fct>,
# salt_used <fct>, energy <dbl>, protein <dbl>, sugar <dbl>, fat <dbl>,
# diet_yesterday <fct>, water <dbl>, plank_time <dbl>, height <dbl>,
# weight <dbl>, bmi <dbl>, bmi_cat <fct>, arm_length <dbl>, waist <dbl>,
# arm_circ <dbl>, calf_circ <dbl>, calf_skinfold <dbl>,
# triceps_skinfold <dbl>, subscapular_skinfold <dbl>, active_days <dbl>, ...
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C.3 Using read_csv to read in a comma-separated version of a
data file

We have provided the fev_ros.csv data file on the course data page.

Suppose you have downloaded this data file into a directory on your computer called data.

Now, read in the fev_ros.csv file to a new tibble in R called fev_ros with the following
command, assuming you also want to convert the character variables to factors, as you will
often want to do before analyzing the results.

fev_ros <- read_csv("data/fev_ros.csv") |>
mutate(across(where(is.character), as_factor))

Rows: 654 Columns: 6
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (2): sex, smoke
dbl (4): id, age, fev, height

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

fev_ros

# A tibble: 654 x 6
id age fev height sex smoke

<dbl> <dbl> <dbl> <dbl> <fct> <fct>
1 301 9 1.71 57 female non-current smoker
2 451 8 1.72 67.5 female non-current smoker
3 501 7 1.72 54.5 female non-current smoker
4 642 9 1.56 53 male non-current smoker
5 901 9 1.90 57 male non-current smoker
6 1701 8 2.34 61 female non-current smoker
7 1752 6 1.92 58 female non-current smoker
8 1753 6 1.42 56 female non-current smoker
9 1901 8 1.99 58.5 female non-current smoker
10 1951 9 1.94 60 female non-current smoker
# i 644 more rows

Note that, for example, sex and smoke are now listed as factor (fctr) variables.

For more on factors, visit https://r4ds.had.co.nz/factors.html.
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Converting Data Frames to Tibbles

Use as_tibble() or simply tibble() to assign the attributes of a tibble to a data frame.
Note that read_rds and read_csv automatically create tibbles.

For more on tibbles, visit https://r4ds.had.co.nz/tibbles.html.

For more advice

• The R Graphics Cookbook has an excellent chapter on Getting Your Data into Shape
which is well worth your time.
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D Data Sets Used in this Book

D.1 Data Sets Provided on our Web Site

See the repository at https://github.com/THOMASELOVE/431-data.

Data Set File Type Loaded Source
bloodlead .csv Comma-

separated text
Section 5.2 J. Statistics

Education
bodyfat .csv Comma-

separated text
Section 20.2 Kaggle

BPX_I .xpt SAS transport
file

Section 8.2 NHANES 2015-16

cbaths .txt Tab-delimited
text

Section 9.2 Data and Story
Library

cle_nbd .csv Comma-
separated text

Section 4.2 Census Reporter &
NEOCANDO

coasters .csv Comma-
separated text

Section 11.2 Roller Coaster
Data Base

countries .csv Comma-
separated text

Section 22.2 WHO and others

craters .sav SPSS data set Section 12.2 Data and Story
Library

darwin .Rds R data set Section 7.2 UC Irvine
Repository

DEMO_I .xpt SAS transport
file

Section 8.2 NHANES 2015-16

fev_ros .csv Comma-
separated text

Section 19.2 Vanderbilt Data

nations .csv Comma-
separated text

Section 17.2 WHO and others

nnyfs .Rds R data set Section 23.2 NNYFS at CDC
park_rct .xlsx Excel worksheet Section 6.3 NEJM article
plasma .csv Comma-

separated text
Section 21.2 Vanderbilt Data

storage .Rds R data set Section 10.2 Cleveland Clinic
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https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2015
https://dasl.datadescription.com/datafile/contrast-baths
https://dasl.datadescription.com/datafile/contrast-baths
https://censusreporter.org/user_geo/70623cc2a11b0ad0e223a2eaa330cf8d/
https://neocando.case.edu/neocando/index.jsp
https://rcdb.com/r.htm?ex=on&st=93&ol=59&cs=277&ty=2&de=6&ot=2&column=1,4,3,19,20,21,22,27,8,26
https://rcdb.com/r.htm?ex=on&st=93&ol=59&cs=277&ty=2&de=6&ot=2&column=1,4,3,19,20,21,22,27,8,26
https://www.who.int/data/gho/publications/world-health-statistics
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https://hbiostat.org/data/
https://www.who.int/data/gho/publications/world-health-statistics
https://www.cdc.gov/nchs/nnyfs/index.htm
https://www.nejm.org/doi/full/10.1056/NEJMoa2312323
https://hbiostat.org/data/
https://www.lerner.ccf.org/quantitative-health/services/#research-education


Data Set File Type Loaded Source
supraclav .dta Stata data set Section 16.2 Cleveland Clinic
tattoos .txt Tab-delimited

text
Section 14.2 Data and Story

Library

D.2 Data Sets imported from R Packages

Data Set R Package Loaded HTML Link
bechdel fivethirtyeight Section C.1 Analysis using the

Tidyverse
childcare_costs tidytuesdayR Section 18.2 Github for Tidy

Tuesday 2023-05-09
counties tidytuesdayR Section 18.2 Github for Tidy

Tuesday 2023-05-09
penguins palmerpenguins Section 2.2 palmerpenguins
strep_tb medicaldata Section 13.2 medicaldata
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E Statistical Summaries

E.1 Summarizing a Quantity

E.1.1 The sample mean, ̄𝑥

The sample mean, ̄𝑥, of a set of 𝑛 observations is the sum of the observations divided by the
count, 𝑛.

̄𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

• Wikipedia on the mean

E.1.2 The sample variance and standard deviation

The sample variance, 𝑠2 of a set of 𝑛 observations is the sum of the squared deviance of each
of the observations from the sample mean, divided by one less than the count, 𝑛 minus 1.

𝑠2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2

The sample standard deviation, 𝑠 is the square root of the sample variance.

𝑠 = √ 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2

• Wikipedia on the standard deviation
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E.1.3 The range

The range of a data set can be expressed either as the two-element vector consisting of the min-
imum and maximum values of the data, or as the difference (maximum - minimum) depending
on context. Larger range is an indication of greater variation.

• Wikipedia on the range

E.1.4 The median

The median of a set of 𝑛 observations separates the upper half of the observations from the
lower half. It is the 50th percentile (or quantile) of the data, calculated as follows:

• if 𝑛 is odd, the sample median is the middle value when the data are sorted in order
from lowest to highest

• if 𝑛 is even, the sample median is the mean of the two middle values when the data are
sorted in order from lowest to highest

• Wikipedia on the median

E.1.5 Quantiles / Percentiles

Quantiles or percentiles (the terms are used equivalently here) divide the observations of
a sample into groups with equal probabilities within the sample. For example, the 42nd
percentile is the cut point which splits the sample data so that 42% of the observations are
below that cut point, with the remaining 58% above that cut point.

We often describe the 25th percentile as the first quartile (Q25) of the data, and the 75th
percentile as the third quartile (Q75). Some regard the zeroth percentile as the minimum
value in the data, while the 100th percentile describes the maximum value.

• Wikipedia on percentiles

E.1.6 The IQR (inter-quartile range)

The IQR of a data set is the difference between the third quartile (Q75) and the first quartile
(Q25). Thus, it provides a measure of the range of the “middle half” of the data. It also
describes the length of the box in a boxplot.

• Wikipedia on the inter-quartile range
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E.1.7 The median absolute deviation

The median absolute deviation (MAD) used in this book as a robust measure of variation,
is the median of the absolute deviations from the sample median, so if 𝑥𝑀𝐸𝐷 is the sample
median of a set of 𝑛 observations, multiplied by the constant 1.4826:

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑥𝑀𝐸𝐷) × 1.4826

The purpose of multiplying by the constant is so that if data come from a Normal distribution,
the MAD (with this multiplication) and the standard deviation will have the same value.

• Wikipedia on the median absolute deviation

E.1.8 The standard error of the sample mean

The standard error of the sample mean for a set of 𝑛 observations is:

𝑆𝐸 = 𝑠√𝑛
• Wikipedia on the standard error generally, and the standard error of the sample mean,

specifically

E.1.9 The coefficient of variation

The coefficient of variation of a set of 𝑛 observations is the sample standard deviation divided
by the sample mean:

𝐶𝑉 = 𝑠
̄𝑥

• Wikipedia on the coefficient of variation

E.1.10 The mode

The mode of a set of observations is simply the most common value. A batch of data can
have more than one mode, if there are multiple observations which tie for the most common
value.

• Wikipedia on the mode
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E.1.11 Skewness

Skew measures the degree of asymmetry in our data. The skewness function in R that is used
by describe_distribution() is Type II, often used by SAS and SPSS, for instance. For a
sample of 𝑛 observations with sample mean ̄𝑥,

• The Type I or “classical” method produces

𝑠𝑘𝑒𝑤𝐼 = (∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)3

𝑛 ) / (∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2

𝑛 )
1.5

• The Type II method then adjusts the result of the Type I method as follows:

𝑠𝑘𝑒𝑤𝐼𝐼 = 𝑠𝑘𝑒𝑤𝐼 × √𝑛(𝑛 − 1)
𝑛 − 2

and this is what describe_distribution() returns.

Each of these skewness measures will have a value of zero for symmetric data, including the
Normal distribution, with negative values indicating left skew and positive values indicating
right skew.

• See the skewness and kurtosis page in easystats for more details.
• Wikipedia on skewness.

E.1.12 Simple Skewness (𝑠𝑘𝑒𝑤0)

A (perhaps overly) simple description of skew of a set of 𝑛 observations that I occasionally look
at is the sample mean minus the sample median, divided by the sample standard deviation:

𝑠𝑘𝑒𝑤0 = ̄𝑥 − 𝑚𝑒𝑑𝑖𝑎𝑛
𝑠

• Values of 𝑠𝑘𝑒𝑤0 above +0.2 indicate right skew worthy of additional consideration
• Values of 𝑠𝑘𝑒𝑤0 below -0.2 indicate left skew worthy of additional consideration
• Values of 𝑠𝑘𝑒𝑤0 near 0 indicate fairly symmetric data
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E.1.13 Kurtosis

The sample kurtosis measures the “tailedness” of a distribution - whether it is light or heavy
tailed as compared to a Normal distribution.

The kurtosis function in R that is used by describe_distribution()is also the Type II
approach.

For a sample of 𝑛 observations with sample mean ̄𝑥,

• The Type I or “classical” method produces

𝑘𝑢𝑟𝑡𝐼 = 𝑛 × ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)4

(∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2)2

• The Type II method then adjusts the result of the Type I method as follows:

𝑘𝑢𝑟𝑡𝐼𝐼 = ((𝑛 + 1) × 𝑘𝑢𝑟𝑡𝐼 + 6) × 𝑛 − 1
(𝑛 − 2) × (𝑛 − 3)

and this is what describe_distribution() returns.

Each of these kurtosis estimates measures tail behavior and can help in characterizing the
sample distribution as either:

• mesokurtic (distribution has a kurtosis value near 0) which indicates similar tail behavior
to a Normal distribution

• leptokurtic (“fatter tails”) as indicated by a kurtosis value well above 0, or
• platykurtic (“thinner tails”) as indicated by a kurtosis value well below 0.

That said, I cannot remember the last time I used a kurtosis calculation in practical work.

• See the skewness and kurtosis page in easystats for more details.
• Wikipedia on kurtosis.

E.2 Summarizing an Association

E.2.1 The Pearson Correlation Coefficient

When applied to a sample, the Pearson correlation is represented by 𝑟𝑥𝑦, and can be calculated
using the formula below, assuming we have 𝑛 observations on both 𝑥 and 𝑦, and that ̄𝑥 is the
sample mean of the 𝑥 values, and ̄𝑦 is the sample mean of the 𝑦 values.
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𝑟𝑥𝑦 = ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

√∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2√∑𝑛

𝑖=1(𝑦𝑖 − ̄𝑦)2

An equivalent formula requires that we specify 𝑠𝑥 as the standard deviation of 𝑥, and 𝑠𝑦 as
the standard deviation of 𝑦. Then we have:

𝑟𝑥𝑦 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥
𝑠𝑥

) (𝑦𝑖 − ̄𝑦
𝑠𝑦

)

Yet another formula for the Pearson correlation is:

𝑟𝑥𝑦 = ∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖 − 𝑛 ̄𝑥 ̄𝑦
(𝑛 − 1)𝑠𝑥𝑠𝑦

• Wikipedia on the Pearson correlation coefficient

E.2.2 Intercept and Slope of a Least Squares Fit

Suppose we have 𝑛 observations on two variables, 𝑥 and 𝑦, where the mean of 𝑥 is ̄𝑥 and the
mean of 𝑦 is ̄𝑦. We want to estimate the slope (𝑏) and y-intercept (𝑎) of the least squares line
𝑦 = 𝑎 + 𝑏𝑥.
The least squares estimate of the slope is:

�̂� = ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)𝑦

∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2

and the least squares estimate of the intercept is:

̂𝑎 = ̄𝑦 − ̂𝑏 ̄𝑥

In addition to writing the equation as 𝑦 = 𝑎 + 𝑏𝑥, we could also write it as:

𝑦𝑖 = ̄𝑦 + ̂𝑏(𝑥𝑖 − ̄𝑥) + 𝑟𝑖

where the residual 𝑟𝑖 is

𝑟𝑖 = 𝑦𝑖 − ( ̂𝑎 + ̂𝑏𝑥𝑖)
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and this should make it clear that the least squares regression line must pass through ( ̄𝑥, ̄𝑦),
the means of the two variables.

• Wikipedia on the method of least squares
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