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Working with These Notes

1. This document is broken down into multiple chapters. Use the table of contents on the
left side of the screen to navigate between chapters, or use the right side to navigate
within the current chapter.

2. You can also search the document, using an automated index.
3. Any of the code provided in the document can be copied to the clipboard using the Copy

icon at the top right of the code block.
4. If you find a typo or other problem, please tell us about it through Campuswire.
5. This is a draft document. The publication date is shown above. Later drafts (including,

eventually, all three parts) will appear irregularly between now and December, so you’ll
need to stay current.

6. If, for some awful reason, you want to print or save this document, we recommend waiting
until the semester is over to do so, when a more “final” version will be available.

What You’ll Find Here

These Notes provide a series of examples using R to work through issues that are likely to
come up in PQHS/CRSP/MPHP 431. What you will mostly find are brief explanations of a
key idea or summary, accompanied (most of the time) by R code and a demonstration of the
results of applying that code.

While these Notes share some of the features of a textbook, they are neither comprehensive
nor completely original. The main purpose is to give 431 students a set of common materials
on which to draw during the course. In class, we will sometimes:

• reiterate points made in this document,
• amplify what is here,
• simplify the presentation of things done here,
• use new examples to show some of the same techniques,
• refer to issues not mentioned in this document,

but what we don’t do is follow these notes very precisely. We assume instead that you will
read the materials and try to learn from them, just as you will attend classes and try to learn
from them. We welcome feedback of all kinds on this document or anything else.
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The 431 Course online

The online home for Dr. Love’s 431 course in Fall 2023 is

https://thomaselove.github.io/431-2023/.

Go there for all information related to the course.

All of the code and text in these Notes is posted online as HTML, and it is also possible to
download PDF and ePub versions of the document from the down arrow next to the title
(Notes for 431) at the top left of this screen. All data and R code related to these notes are
also available to you through our course web site.

By the end of the semester, you will also have access to the Quarto files which generate
everything in the document, including all of the R results. You will also use Quarto during
the semester to complete your assignments, and so we will demonstrate the use of Quarto and
RStudio (the “program” we use to interface with the R language) in class.
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Setting Up R

These Notes make extensive use of

• the statistical software language R, and
• the development environment RStudio,

both of which are free, and you’ll need to install them on your machine. Instructions for doing
so will be found on the course website.

If you need a gentle introduction, or if you’re just new to R and RStudio and need to learn
about them, we encourage you to take a look at https://moderndive.com/, which provides an
introduction to statistical and data sciences via R at Ismay and Kim (2022).

Quarto

These notes were written using Quarto, which we’ll learn to use in 431. Quarto, like R and
RStudio, is free and open source.

Quarto is described as an scientific and technical publishing system for data science, which lets
you (among many other things):

• save and execute R code
• generate high-quality reports that can be shared with an audience

The Quarto Get Started page which provides an overview and quick tour of what’s possible
with Quarto.

Another excellent resource to learn more about Quarto is the Communicate section (especially
the [Quarto chapter]https://r4ds.hadley.nz/quarto.html)) of Hadley Wickham and Grolemund
(2023).
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R Packages

At the start of each chapter that involves R code, I’ll present a series of commands I run to
set up R to use several packages (libraries) of functions that expand its capabilities, make a
specific change to how I want R output to be displayed (that’s the comment = NA piece) and
sets the theme for most graphs to theme_bw(). A chunk of code like this will occur near the
top of any Quarto work.

For example, this is the setup for one of our early chapters that loads four packages.

knitr::opts_chunk$set(comment = NA)

library(palmerpenguins)
library(janitor)
library(knitr)
library(tidyverse)

theme_set(theme_bw())

You only need to install a package once, but you need to reload it (using the library()
function) every time you start a new session. I always load the package called tidyverse last,
since doing so avoids some annoying problems.

The Love-boost.R script

In October, when we start Part B of the course, we’ll use some special R functions I’ve
gathered for you in a script called Love-boost. I’ll tell R about that code using the following
command…

source("data/Love-boost.R")

The Love-boost.R script includes four functions:

• bootdif
• saifs.ci
• twobytwo
• retrodesign
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Packages Used in these Notes

A list of all R packages we want you to install this semester (which includes some packages
not included in these Notes) is maintained at our course web site.

Package Parts Key functions in the Package
arm C –
boot B –
broom A, B, C tidy, glance, augment (part of tidymodels)
car A, C boxCox, powerTransform
Epi B twoby2

fivethirtyeight Appendix source of data
GGally A, C ggpairs
ggrepel C –
ggridges A, B –
ggstance A –

gt A for presenting tables
gtsummary A tbl_summary
Hmisc A, B, C describe and others
janitor A, B, C tabyl and others

kableExtra A kbl, kable_stylings
knitr A, B, C kable
lvplot A geom_lv
mice C –

modelsummary A, C modelsummary
mosaic A, B, C favstats, inspect
naniar A n_miss, miss_case_table, gg_miss_var
NHANES A source of data

palmerpenguins A source of data
patchwork A, B, C for combining/annotating plots
psych A, B describe
pwr B –
rms C –

sessioninfo Appendix –
simputation A various imputation functions
summarytools A descr, dfSummary
tidyverse A, B, C, Appendix dozens of functions

vcd B –
visdat A vis_dat, vis_miss
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The tidyverse

The tidyverse package is actually a meta-package which includes the following core pack-
ages:

• ggplot2 for creating graphics
• dplyr for data manipulation
• tidyr for creating tidy data
• readr for reading in rectangular data
• purrr for working with functions and vectors
• tibble for creating tibbles - lazy, surly data frames
• stringr for working with data strings
• forcats for solving problems with factors

Loading the tidyverse with library(tidyverse) loads those eight packages.

Installing the tidyverse also installs several other useful packages on your machine, like glue
and lubridate, for example. Read more about the tidyverse at https://www.tidyverse.
org/
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1 Data Science and 431

The definition of data science can be a little slippery. One current view of data science, is
exemplified by Steven Geringer’s 2014 Venn diagram.

Figure 1.1: Data Science Venn Diagram from Steven Geringer

• The field encompasses ideas from mathematics and statistics and from computer science,
but with a heavy reliance on subject-matter knowledge. In our case, this includes clinical,
health-related, medical or biological knowledge.

• As Gelman and Nolan (2017) suggest, the experience and intuition necessary for good
statistical practice are hard to obtain, and teaching data science provides an excellent
opportunity to reinforce statistical thinking skills across the full cycle of a data analysis
project.

• The principal form in which computer science (coding/programming) play a role in this
course is to provide a form of communication. You’ll need to learn how to express your
ideas not just orally and in writing, but also through your code.
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Data Science is a team activity. Everyone working in data science brings some part of the
necessary skill set, but no one person can cover all three areas alone for excellent projects.

[The individual who is truly expert in all three key areas (mathematics/statistics,
computer science and subject-matter knowledge) is] a mythical beast with magical
powers who’s rumored to exist but is never actually seen in the wild.

http://www.kdnuggets.com/2016/10/battle-data-science-venn-diagrams.html

1.1 Data Science Project Cycle

A typical data science project can be modeled as follows, which comes from the introduction
to the amazing book R for Data Science, by Garrett Grolemund and Hadley Wickham,
which is a key text for this course (Hadley Wickham and Grolemund 2023).

Figure 1.2: Source: R for Data Science: Introduction

This diagram is sometimes referred to as the Krebs Cycle of Data Science. For more on the
steps of a data science project, we encourage you to read the Introduction of Hadley Wickham
and Grolemund (2023).

1.2 Data Science and the 431 Course

We’ll discuss each of these elements in the 431 course, focusing at the start on understanding
our data through transformation, modeling and (especially in the early stages) visualization.
In 431, we learn how to get things done.

• We get people working with R and R Studio and Quarto, even if they are completely
new to coding. A gentle introduction is provided at Ismay and Kim (2022)
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• We learn how to use the tidyverse (http://www.tidyverse.org/), an array of tools in R
(mostly developed by Hadley Wickham and his colleagues at R Studio) which share an
underlying philosophy to make data science faster, easier, more reproducible and more
fun. A critical text for understanding the tidyverse is Hadley Wickham and Grolemund
(2023). Tidyverse tools facilitate:

– importing data into R, which can be the source of intense pain for some things,
but is really quite easy 95% of the time with the right tool.

– tidying data, that is, storing it in a format that includes one row per observation
and one column per variable. This is harder, and more important, than you might
think.

– transforming data, perhaps by identifying specific subgroups of interest, creating
new variables based on existing ones, or calculating summaries.

– visualizing data to generate actual knowledge and identify questions about the
data - this is an area where R really shines, and we’ll start with it in class.

– modeling data, taking the approach that modeling is complementary to visualiza-
tion, and allows us to answer questions that visualization helps us identify.

– and last, but definitely not least, communicating results, models and visualiza-
tions to others, in a way that is reproducible and effective.

• Some programming/coding is an inevitable requirement to accomplish all of these aims.
If you are leery of coding, you’ll need to get past that, with the help of this course and
our stellar teaching assistants. Getting started is always the most challenging part, but
our experience is that most of the pain of developing these new skills evaporates by early
October.

1.3 What The Course Is and Isn’t

The 431 course is about getting things done. In developing this course, we adopt a modern
approach that places data at the center of our work. Our goal is to teach you how to do truly
reproducible research with modern tools. We want you to be able to collect and use data
effectively to address questions of interest.

The curriculum includes more on several topics than you might expect from a standard grad-
uate introduction to biostatistics.

• data gathering
• data wrangling
• exploratory data analysis and visualization
• multivariate modeling
• communication
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It also nearly completely avoids formalism and is extremely applied - this is absolutely not a
course in theoretical or mathematical statistics, and these Notes reflect that approach.

There’s very little of the mathematical underpinnings here:

𝑓(𝑥) = 𝑒−(𝑥−𝜇)2/(2𝜎2)

𝜎
√

2𝜋

Instead, these notes (and the course) focus on how we get R to do the things we want to do,
and how we interpret the results of our work. Our next Chapter provides a first example.
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Part I

Part A. Exploring Data
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2 The Palmer Penguins

The data in the palmerpenguins package in R includes information on several measurements
of interest for adult foraging penguins observed on islands in the Palmer Archipelago near
Palmer Station, Antarctica. Dr. Kristen Gorman and the Palmer Station Long Term Ecological
Research (LTER) Program collected the data and made it available1. The data describe three
species of penguins, called Adelie, Chinstrap and Gentoo.

For more on the palmerpenguins package, visit https://allisonhorst.github.io/palmerpenguins/.

2.1 Setup: Packages Used Here

We will use the palmerpenguins package to supply us with data for this chapter. The janitor
packages includes several useful functions, including tabyl. The knitr package includes the
kable() function we’ll use. Finally, the tidyverse package will provide the bulk of the
functions we’ll use in our work throughout the semester.

I always load the tidyverse last, because it solves some problems to do so.

knitr::opts_chunk$set(comment = NA)

library(palmerpenguins)
library(janitor)
library(knitr)
library(kableExtra)
library(gt)
library(tidyverse)

theme_set(theme_bw())

1Two fun facts: (1) Male Gentoo and Adelie penguins “propose” to females by giving them a pebble. (2) The
Adelie penguin was named for his wife by Jules Dumont d’Urville, who also rediscovered the Venus de Milo.
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2.2 Viewing a Data Set

The penguins data from the palmerpenguins package contains 344 rows and 8 columns. Each
row contains data for a different penguin, and each column describes a variable contained in
the data set.

penguins

# A tibble: 344 x 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>

1 Adelie Torgersen 39.1 18.7 181 3750
2 Adelie Torgersen 39.5 17.4 186 3800
3 Adelie Torgersen 40.3 18 195 3250
4 Adelie Torgersen NA NA NA NA
5 Adelie Torgersen 36.7 19.3 193 3450
6 Adelie Torgersen 39.3 20.6 190 3650
7 Adelie Torgersen 38.9 17.8 181 3625
8 Adelie Torgersen 39.2 19.6 195 4675
9 Adelie Torgersen 34.1 18.1 193 3475
10 Adelie Torgersen 42 20.2 190 4250
# i 334 more rows
# i 2 more variables: sex <fct>, year <int>

For instance, the first penguin in the data is of the species Adelie, and was observed on the
island called Torgeson. The remaining data for that penguin include measures of its bill length
and depth, its flipper length and body mass, its sex and the year in which it was observed.

Note that though there are 344 rows in the tibble of data called penguins, only the first ten
rows (penguins) are shown in the table above. Note also that the symbol NA or <NA> is used
to indicate a missing (not available) value.

2.3 Create new_penguins: Eliminating Missing Data

Next, let’s take the penguins data from the palmerpenguins package, and identify those
observations which have complete data (so, no missing values) in four variables of interest.
We’ll store that result in a new tibble (data set) called new_penguins and then take a look at
that result using the following code.

Note that the code below:
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• uses the “pipe” |> to send the penguins tibble to the filter() function
• uses <- to assign the result of our work to the new_penguins tibble
• uses the complete.cases() function to remove cases within penguins that have missing

data on any of the four variables (flipper_length_mm, body_mass_g, species or sex)
that we identify

new_penguins <- penguins |>
filter(complete.cases(flipper_length_mm, body_mass_g, species, sex))

new_penguins

# A tibble: 333 x 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>

1 Adelie Torgersen 39.1 18.7 181 3750
2 Adelie Torgersen 39.5 17.4 186 3800
3 Adelie Torgersen 40.3 18 195 3250
4 Adelie Torgersen 36.7 19.3 193 3450
5 Adelie Torgersen 39.3 20.6 190 3650
6 Adelie Torgersen 38.9 17.8 181 3625
7 Adelie Torgersen 39.2 19.6 195 4675
8 Adelie Torgersen 41.1 17.6 182 3200
9 Adelie Torgersen 38.6 21.2 191 3800
10 Adelie Torgersen 34.6 21.1 198 4400
# i 323 more rows
# i 2 more variables: sex <fct>, year <int>

2.4 Counting Things and Making Tables

So, how many penguins are in our new_penguins data? When we printed out the result, we
got an answer, but (as with many things in R) there are many ways to get the same result.

nrow(new_penguins)

[1] 333

How do our new_penguins data break down by sex and species? We’ll use the tabyl()
function from the janitor package to look at this.
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sex/species Adelie Chinstrap Gentoo Total
female 73 34 58 165
male 73 34 61 168
Total 146 68 119 333

new_penguins |>
tabyl(sex, species)

sex Adelie Chinstrap Gentoo
female 73 34 58
male 73 34 61

The output is reasonably clear (there are 73 female and 73 male Adelie penguins in the
newpenguins tibble, for example) but could we make that table a little prettier, and while
we’re at it, can we add the row and column totals?

new_penguins |>
tabyl(sex, species) |>
adorn_totals(where = c("row", "col")) |> # add row, column totals
kable() # one convenient way to make the table prettier

sex Adelie Chinstrap Gentoo Total
female 73 34 58 165
male 73 34 61 168
Total 146 68 119 333

The kable() function comes from the knitr package we loaded earlier. Notice that we added
some comments to the code here with the prefix #. These comments are ignored by R in
processing the data.

Another approach we could have used here is aided by the kableExtra package’s function
called kbl(), which lets us set up the alignment of our columns. We’ll also add the species
name using adorn_title() from the janitor package.

new_penguins |>
tabyl(sex, species) |>
adorn_totals(where = c("row", "col")) |>
adorn_title(placement = "combined") |>
kbl(align = c('lcccr')) |>
kable_styling(full_width = FALSE)
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We can switch the rows and columns, and add some additional features, using the code below,
which makes use of the gt() and tab_header() functions from the gt package, which is
designed to help build complex tables. More on the incredibly versatile gt() package is
available at https://gt.rstudio.com/.

new_penguins |>
tabyl(species, sex) |>
adorn_totals(where = c("row", "col")) |>
gt() |>
tab_header(
title = md("Palmer Penguins in **newpenguins**"),
subtitle = "Comparing sexes by species"

)

Palmer Penguins in newpenguins
Comparing sexes by species

species female male Total
Adelie 73 73 146

Chinstrap 34 34 68
Gentoo 58 61 119
Total 165 168 333

2.5 Creating a Scatterplot

Now, let’s look at the other two variables of interest. Let’s create a graph showing the associ-
ation of body mass with flipper length across the complete set of 333 penguins.

ggplot(new_penguins, aes(x = body_mass_g, y = flipper_length_mm)) +
geom_point()
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Some of you may want to include a straight-line model (fit by a classical linear regression) to
this plot. One way to do that in R involves the addition of a single line of code, like this:

ggplot(new_penguins, aes(x = body_mass_g, y = flipper_length_mm)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x,

col = "red", se = FALSE)
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Whenever we build a graph for ourselves, these default choices may be sufficient. But I’d like
to see a prettier version if I was going to show it to someone else. So, I might use a different
color for each species, and I might add a title, like this.

ggplot(new_penguins, aes(x = body_mass_g, y = flipper_length_mm, col = species)) +
geom_point() +
labs(title = "Flipper Length and Body Mass for 333 of the Palmer Penguins")
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2.6 Six Ways To “Improve” This Graph

Now, let’s build a new graph to incorporate some additional information and improve the
appearance. Here, I want to:

1. plot the relationship between body mass and flipper length in light of both Sex and
Species

2. increase the size of the points and add a little transparency so we can see if points overlap,
3. add some smooth curves to summarize the relationships between the two quantities (body

mass and flipper length) within each combination of species and sex,
4. split the graph into two “facets” (one for each sex),
5. improve the axis labels,
6. improve the titles by adding a subtitle, and also adding in some code to count the

penguins (rather than hard-coding in the total number.)

ggplot(new_penguins, aes(x = body_mass_g, y = flipper_length_mm,
col = species)) +

geom_point(size = 2, alpha = 0.5) +
geom_smooth(method = "loess", formula = y ~ x,

se = FALSE, size = 1.5) +
facet_grid(~ sex) +
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labs(title = "Flipper Length and Body Mass, by Sex & Species",
subtitle = str_glue(nrow(new_penguins), " of the Palmer Penguins"),
x = "Body Mass (g)",
y = "Flipper Length (mm)")

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.
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Flipper Length and Body Mass, by Sex & Species

2.7 A Little Reflection

What can we learn from these plots and their construction? In particular,

• What do these plots suggest about the center of the distribution of each quantity (body
mass and flipper length) overall, and within each combination of Sex and Species?

• What does the final plot suggest about the spread of the distribution of each of those
quantities in each combination of Sex and Species?

• What do the plots suggest about the association of body mass and flipper length across
the complete set of penguins?

• How does the shape and nature of this body mass - flipper length relationship change
based on Sex and Species?
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• Do you think it would be helpful to plot a straight-line relationship (rather than a smooth
curve) within each combination of Sex and Species in the final plot? Why or why not?
(Also, what would we have to do to the code to accomplish this?)

• How was the R code for the plot revised to accomplish each of the six “wants” specified
above?

2.8 Coming Up

Next, we’ll introduce and demonstrate some more of the many available tools for creating
summaries (both graphical and numerical) in R, again working with the Palmer Penguins
data.
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3 Summarizing Penguins

We will again use the data contained in the palmerpenguins package in this chapter. Here,
we present a few of the more appealing ways to obtain numerical and graphical summaries,
without much explanation. We’ll discuss these issues further in the rest of Part A of these
Course Notes.

3.1 Setup: Packages Used Here

Here, we’ll add several new packages to allow us to display some additional summaries, and
present our tables and plots in different ways.

knitr::opts_chunk$set(comment = NA)

library(palmerpenguins)
library(kableExtra)
library(gtsummary)
library(summarytools)
library(visdat)
library(lvplot)
library(tidyverse)

theme_set(theme_bw())

We will also use functions from the mosaic and Hmisc packages here, though I won’t load
them into our session at this time.

3.2 Our Data Set

Let’s look again at the penguins data contained in the palmerpenguins package.

penguins
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# A tibble: 344 x 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>

1 Adelie Torgersen 39.1 18.7 181 3750
2 Adelie Torgersen 39.5 17.4 186 3800
3 Adelie Torgersen 40.3 18 195 3250
4 Adelie Torgersen NA NA NA NA
5 Adelie Torgersen 36.7 19.3 193 3450
6 Adelie Torgersen 39.3 20.6 190 3650
7 Adelie Torgersen 38.9 17.8 181 3625
8 Adelie Torgersen 39.2 19.6 195 4675
9 Adelie Torgersen 34.1 18.1 193 3475
10 Adelie Torgersen 42 20.2 190 4250
# i 334 more rows
# i 2 more variables: sex <fct>, year <int>

3.3 Numerical Summaries for a Tibble

Note that in this work, I sometimes don’t explain all of the numerical summaries provided.
Some of that discussion is postponed to Chapter 7.

3.3.1 Using summary()

We have several ways to obtain useful summaries of all variables in the penguins data.

penguins |>
summary()

species island bill_length_mm bill_depth_mm
Adelie :152 Biscoe :168 Min. :32.10 Min. :13.10
Chinstrap: 68 Dream :124 1st Qu.:39.23 1st Qu.:15.60
Gentoo :124 Torgersen: 52 Median :44.45 Median :17.30

Mean :43.92 Mean :17.15
3rd Qu.:48.50 3rd Qu.:18.70
Max. :59.60 Max. :21.50
NA's :2 NA's :2

flipper_length_mm body_mass_g sex year
Min. :172.0 Min. :2700 female:165 Min. :2007
1st Qu.:190.0 1st Qu.:3550 male :168 1st Qu.:2007
Median :197.0 Median :4050 NA's : 11 Median :2008
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Mean :200.9 Mean :4202 Mean :2008
3rd Qu.:213.0 3rd Qu.:4750 3rd Qu.:2009
Max. :231.0 Max. :6300 Max. :2009
NA's :2 NA's :2

3.3.2 Using inspect() from mosaic

Some people like the inspect() function from the mosaic package.

penguins |>
mosaic::inspect()

categorical variables:
name class levels n missing

1 species factor 3 344 0
2 island factor 3 344 0
3 sex factor 2 333 11

distribution
1 Adelie (44.2%), Gentoo (36%) ...
2 Biscoe (48.8%), Dream (36%) ...
3 male (50.5%), female (49.5%)

quantitative variables:
name class min Q1 median Q3 max mean

1 bill_length_mm numeric 32.1 39.225 44.45 48.5 59.6 43.92193
2 bill_depth_mm numeric 13.1 15.600 17.30 18.7 21.5 17.15117
3 flipper_length_mm integer 172.0 190.000 197.00 213.0 231.0 200.91520
4 body_mass_g integer 2700.0 3550.000 4050.00 4750.0 6300.0 4201.75439
5 year integer 2007.0 2007.000 2008.00 2009.0 2009.0 2008.02907

sd n missing
1 5.4595837 342 2
2 1.9747932 342 2
3 14.0617137 342 2
4 801.9545357 342 2
5 0.8183559 344 0

Daniel Kaplan’s Statistical Modeling, 2nd edition provides an entire course which coordinates
nicely with the tools available in the mosaic package. In our course, we’ll most often use this
inspect() tool, and a related tool called favstats.
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min Q1 median Q3 max mean sd n missing
32.1 39.225 44.45 48.5 59.6 43.92193 5.459584 342 2

species min Q1 median Q3 max mean sd n missing
Adelie 32.1 36.75 38.80 40.750 46.0 38.79139 2.663405 151 1
Chinstrap 40.9 46.35 49.55 51.075 58.0 48.83382 3.339256 68 0
Gentoo 40.9 45.30 47.30 49.550 59.6 47.50488 3.081857 123 1

3.3.3 Using favstats() from mosaic.

The favstats function lets us look at some common summaries for a single variable, or for
one variable divided into groups by another. We’ll also return to this approach in Chapter 7.

mosaic::favstats(~ bill_length_mm, data = penguins) |>
kbl() |>
kable_styling()

mosaic::favstats(bill_length_mm ~ species, data = penguins) |>
kbl() |>
kable_styling()

3.3.4 Using describe() from psych

We can use the describe() function from the psych package to get some additional summaries,
if we’re interested, and here we also demonstrate the use of the kbl() and kable_styling()
functions from the kableExtra package to make the table look appealing in HTML. More on
the use of the kableExtra package is available here. We’ll also return to this approach in
Chapter 7.

penguins |>
psych::describe() |>
kbl() |>
kable_styling()

3.3.5 Using describe() from Hmisc

One approach Frank Harrell has developed that I find helpful is the describe() function
within his Hmisc package, which produces these results. We’ll also return to this approach in
Chapter 7.
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vars n mean sd median trimmed mad min max range skew kurtosis se
species* 1 344 1.918605 0.8933198 2.00 1.898551 1.48260 1.0 3.0 2.0 0.1591315 -1.7318773 0.0481646
island* 2 344 1.662791 0.7261940 2.00 1.579710 1.48260 1.0 3.0 2.0 0.6086049 -0.9064333 0.0391538
bill_length_mm 3 342 43.921930 5.4595837 44.45 43.906934 7.04235 32.1 59.6 27.5 0.0526530 -0.8931397 0.2952205
bill_depth_mm 4 342 17.151170 1.9747932 17.30 17.172628 2.22390 13.1 21.5 8.4 -0.1422086 -0.9233523 0.1067846
flipper_length_mm 5 342 200.915205 14.0617137 197.00 200.335766 16.30860 172.0 231.0 59.0 0.3426554 -0.9991866 0.7603704
body_mass_g 6 342 4201.754386 801.9545357 4050.00 4154.014598 889.56000 2700.0 6300.0 3600.0 0.4662117 -0.7395200 43.3647348
sex* 7 333 1.504504 0.5007321 2.00 1.505618 0.00000 1.0 2.0 1.0 -0.0179376 -2.0056743 0.0274400
year 8 344 2008.029070 0.8183559 2008.00 2008.036232 1.48260 2007.0 2009.0 2.0 -0.0532601 -1.5092478 0.0441228

penguins |>
Hmisc::describe()

penguins

8 Variables 344 Observations
--------------------------------------------------------------------------------
species

n missing distinct
344 0 3

Value Adelie Chinstrap Gentoo
Frequency 152 68 124
Proportion 0.442 0.198 0.360
--------------------------------------------------------------------------------
island

n missing distinct
344 0 3

Value Biscoe Dream Torgersen
Frequency 168 124 52
Proportion 0.488 0.360 0.151
--------------------------------------------------------------------------------
bill_length_mm

n missing distinct Info Mean Gmd .05 .10
342 2 164 1 43.92 6.274 35.70 36.60
.25 .50 .75 .90 .95

39.23 44.45 48.50 50.80 51.99

lowest : 32.1 33.1 33.5 34 34.1, highest: 55.1 55.8 55.9 58 59.6
--------------------------------------------------------------------------------
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bill_depth_mm
n missing distinct Info Mean Gmd .05 .10

342 2 80 1 17.15 2.267 13.9 14.3
.25 .50 .75 .90 .95
15.6 17.3 18.7 19.5 20.0

lowest : 13.1 13.2 13.3 13.4 13.5, highest: 20.7 20.8 21.1 21.2 21.5
--------------------------------------------------------------------------------
flipper_length_mm

n missing distinct Info Mean Gmd .05 .10
342 2 55 0.999 200.9 16.03 181.0 185.0
.25 .50 .75 .90 .95

190.0 197.0 213.0 220.9 225.0

lowest : 172 174 176 178 179, highest: 226 228 229 230 231
--------------------------------------------------------------------------------
body_mass_g

n missing distinct Info Mean Gmd .05 .10
342 2 94 1 4202 911.8 3150 3300
.25 .50 .75 .90 .95

3550 4050 4750 5400 5650

lowest : 2700 2850 2900 2925 2975, highest: 5850 5950 6000 6050 6300
--------------------------------------------------------------------------------
sex

n missing distinct
333 11 2

Value female male
Frequency 165 168
Proportion 0.495 0.505
--------------------------------------------------------------------------------
year

n missing distinct Info Mean Gmd
344 0 3 0.888 2008 0.8919

Value 2007 2008 2009
Frequency 110 114 120
Proportion 0.320 0.331 0.349

For the frequency table, variable is rounded to the nearest 0
--------------------------------------------------------------------------------
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3.3.6 Using tbl_summary() from gtsummary

If you want to produce results which look like you might expect to see in a published paper,
the tbl_summary() function from the gtsummary package has many nice features.

penguins |>
tbl_summary()

Table printed with `knitr::kable()`, not {gt}. Learn why at
https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

**Characteristic** **N = 344**
species
Adelie 152 (44%)
Chinstrap 68 (20%)
Gentoo 124 (36%)
island
Biscoe 168 (49%)
Dream 124 (36%)
Torgersen 52 (15%)
bill_length_mm 44.5 (39.2, 48.5)
Unknown 2
bill_depth_mm 17.30 (15.60, 18.70)
Unknown 2
flipper_length_mm 197 (190, 213)
Unknown 2
body_mass_g 4,050 (3,550, 4,750)
Unknown 2
sex
female 165 (50%)
male 168 (50%)
Unknown 11
year
2007 110 (32%)
2008 114 (33%)
2009 120 (35%)

A vignette explaining the use of the gtsummary package is available here. We’ll also return to
this approach in Chapter 7.
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3.3.6.1 Using descr from summarytools

The descr() function from the summarytools package can also be used to provide numerical
descriptions of all of the numerical variables contained within a tibble.

penguins |>
descr(stats = "common" )

Non-numerical variable(s) ignored: species, island, sex

Descriptive Statistics
penguins
N: 344

bill_depth_mm bill_length_mm body_mass_g flipper_length_mm year
--------------- --------------- ---------------- ------------- ------------------- ---------

Mean 17.15 43.92 4201.75 200.92 2008.03
Std.Dev 1.97 5.46 801.95 14.06 0.82

Min 13.10 32.10 2700.00 172.00 2007.00
Median 17.30 44.45 4050.00 197.00 2008.00

Max 21.50 59.60 6300.00 231.00 2009.00
N.Valid 342.00 342.00 342.00 342.00 344.00

Pct.Valid 99.42 99.42 99.42 99.42 100.00

An introduction to the summarytools package is available here, and illustrates some other ways
to modify this output to suit your needs. We’ll also return to this approach in Chapter 7.

3.3.7 dfSummary() from summarytools

The dfSummary() function from the summarytools package can be used to provide some
additional descriptions of all variables within a tibble. You’ll find more information about
these numerical descriptions in Chapter 7.

dfSummary(penguins,
plain.ascii = FALSE,
style = "grid",
graph.magnif = 0.75,
valid.col = FALSE)
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### Data Frame Summary
#### penguins
**Dimensions:** 344 x 8
**Duplicates:** 0

+----+--------------------+---------------------------+---------------------+------------------------+---------+
| No | Variable | Stats / Values | Freqs (% of Valid) | Graph | Missing |
+====+====================+===========================+=====================+========================+=========+
| 1 | species\ | 1\. Adelie\ | 152 (44.2%)\ | IIIIIIII \ | 0\ |
| | [factor] | 2\. Chinstrap\ | 68 (19.8%)\ | III \ | (0.0%) |
| | | 3\. Gentoo | 124 (36.0%) | IIIIIII | |
+----+--------------------+---------------------------+---------------------+------------------------+---------+
| 2 | island\ | 1\. Biscoe\ | 168 (48.8%)\ | IIIIIIIII \ | 0\ |
| | [factor] | 2\. Dream\ | 124 (36.0%)\ | IIIIIII \ | (0.0%) |
| | | 3\. Torgersen | 52 (15.1%) | III | |
+----+--------------------+---------------------------+---------------------+------------------------+---------+
| 3 | bill_length_mm\ | Mean (sd) : 43.9 (5.5)\ | 164 distinct values | \ \ \ \ . \ \ \ \ . :\ | 2\ |
| | [numeric] | min < med < max:\ | | \ \ . : : : : :\ | (0.6%) |
| | | 32.1 < 44.5 < 59.6\ | | \ \ : : : : : :\ | |
| | | IQR (CV) : 9.3 (0.1) | | \ \ : : : : : : .\ | |
| | | | | : : : : : : : : . | |
+----+--------------------+---------------------------+---------------------+------------------------+---------+
| 4 | bill_depth_mm\ | Mean (sd) : 17.2 (2)\ | 80 distinct values | \ \ \ \ \ \ \ \ \ \ :\ | 2\ |
| | [numeric] | min < med < max:\ | | \ \ \ \ \ \ \ \ : :\ | (0.6%) |
| | | 13.1 < 17.3 < 21.5\ | | \ \ : . : : : .\ | |
| | | IQR (CV) : 3.1 (0.1) | | . : : : : : :\ | |
| | | | | : : : : : : : . . | |
+----+--------------------+---------------------------+---------------------+------------------------+---------+
| 5 | flipper_length_mm\ | Mean (sd) : 200.9 (14.1)\ | 55 distinct values | \ \ \ \ \ \ :\ | 2\ |
| | [integer] | min < med < max:\ | | \ \ \ \ . :\ | (0.6%) |
| | | 172 < 197 < 231\ | | \ \ \ \ : : : \ \ . .\ | |
| | | IQR (CV) : 23 (0.1) | | \ \ . : : : \ \ : : :\ | |
| | | | | \ \ : : : : : : : : : | |
+----+--------------------+---------------------------+---------------------+------------------------+---------+
| 6 | body_mass_g\ | Mean (sd) : 4201.8 (802)\ | 94 distinct values | \ \ \ \ :\ | 2\ |
| | [integer] | min < med < max:\ | | \ \ . :\ | (0.6%) |
| | | 2700 < 4050 < 6300\ | | \ \ : : : :\ | |
| | | IQR (CV) : 1200 (0.2) | | \ \ : : : : : .\ | |
| | | | | . : : : : : : | |
+----+--------------------+---------------------------+---------------------+------------------------+---------+
| 7 | sex\ | 1\. female\ | 165 (49.5%)\ | IIIIIIIII \ | 11\ |
| | [factor] | 2\. male | 168 (50.5%) | IIIIIIIIII | (3.2%) |
+----+--------------------+---------------------------+---------------------+------------------------+---------+
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| 8 | year\ | Mean (sd) : 2008 (0.8)\ | 2007 : 110 (32.0%)\ | IIIIII \ | 0\ |
| | [integer] | min < med < max:\ | 2008 : 114 (33.1%)\ | IIIIII \ | (0.0%) |
| | | 2007 < 2008 < 2009\ | 2009 : 120 (34.9%) | IIIIII | |
| | | IQR (CV) : 2 (0) | | | |
+----+--------------------+---------------------------+---------------------+------------------------+---------+

3.3.8 Visualizing with visdat functions

The vis_dat() function from the visdat package shows something about the types of vari-
ables, providing visual clues about what’s inside. The picture below identifies variables types,
and missing values.

vis_dat(penguins)
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We can explore the missing data further using the vis_miss function.

vis_miss(penguins)
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A vignette explaining the use of the visdat package is available here.

3.4 Histograms for a Variable

The most common tool we use in producing a graphical summary of a variable, like the
penguin’s flipper length, is a histogram. Here’s one option.

ggplot(data = penguins, aes(x = flipper_length_mm)) +
geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 2 rows containing non-finite values (`stat_bin()`).
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This approach produces two messages that alert us to potential concerns, and a fairly unattrac-
tive plot.

This time, we’ll first exclude the two penguins without a measured flipper length, and then
set the binwidth to be 10. How well does that work?

penguins2 <-
penguins |>
filter(complete.cases(flipper_length_mm))

ggplot(data = penguins2, aes(x = flipper_length_mm)) +
geom_histogram(binwidth = 10)
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Now we’ve eliminated the messages, but it would be nice to have some more granularity in the
bars (so we’d like a smaller binwidth) and I’d also like to make the bars more clearly separated
with colors. I’d also like to add a title. Like this:

ggplot(data = penguins2, aes(x = flipper_length_mm)) +
geom_histogram(binwidth = 5, fill = "orange", col = "navy") +
labs(title = "Distribution of Flipper Length in 342 Palmer Penguins")
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Distribution of Flipper Length in 342 Palmer Penguins

There are some other options for creating a graphical summary of a variable’s distribution.
For example, we might consider a density plot, as well as a rug plot along the horizontal (X)
axis:

ggplot(data = penguins2, aes(x = flipper_length_mm)) +
geom_density(col = "navy") +
geom_rug(col = "red") +
labs(title = "Density and Rug Plot of Flipper Length in 342 Palmer Penguins")
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Or perhaps a dotplot would provide a useful look…

ggplot(data = penguins2, aes(x = flipper_length_mm)) +
geom_dotplot(binwidth = 1, fill = "orange", col = "navy") +
labs(title = "Dot Plot of Flipper Length in 342 Palmer Penguins")
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Dot Plot of Flipper Length in 342 Palmer Penguins

We’ll learn about several other approaches to summarizing the distribution of a variable graph-
ically later in the course.

3.5 Comparing Penguins by Species Numerically

We have data from three different species of penguin. Can we compare their flipper lengths
numerically, perhaps by calculating the mean flipper length within each species?

penguins |>
group_by(species) |>
summarise(mean(flipper_length_mm))

# A tibble: 3 x 2
species `mean(flipper_length_mm)`
<fct> <dbl>

1 Adelie NA
2 Chinstrap 196.
3 Gentoo NA

Well, that’s a problem. Looks like we have some missing values. Can we fix that, and also
provide some additional summaries, like the sample size (n) and the median and standard
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species n mean sd median
Adelie 151 189.9536 6.539457 190
Chinstrap 68 195.8235 7.131894 196
Gentoo 123 217.1870 6.484976 216

species min Q1 median Q3 max mean sd n missing
Adelie 32.1 36.75 38.80 40.750 46.0 38.79139 2.663405 151 1
Chinstrap 40.9 46.35 49.55 51.075 58.0 48.83382 3.339256 68 0
Gentoo 40.9 45.30 47.30 49.550 59.6 47.50488 3.081857 123 1

deviation within each species? While we’re at it, can we make it prettier, with kbl() and
kable_styling()?

penguins |>
filter(complete.cases(species, flipper_length_mm)) |>
group_by(species) |>
summarise(n = n(),

mean = mean(flipper_length_mm),
sd = sd(flipper_length_mm),
median = median(flipper_length_mm)) |>

kbl() |>
kable_styling(bootstrap_options = "striped", full_width = FALSE)

3.6 Using favstats() from the mosaic package

As we noted previously, we can also use favstats() from the mosaic package to help us look
at the results for a single variable, split into groups by another, like this:

mosaic::favstats(bill_length_mm ~ species, data = penguins) |>
kbl() |>
kable_styling()

One advantage of this approach is that (as you’ll note) it handles the missing data in the way
we’d probably expect, by restricting the summaries to the complete cases.

3.7 Using tbl_summary() to summarize the tibble

The tbl_summary() function from the gtsummary package can also do the job of summarizing
all of the other variables in the tibble, broken down by species, very nicely.
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penguins |>
tbl_summary(by = species)

Table printed with `knitr::kable()`, not {gt}. Learn why at
https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

**Characteristic** **Adelie**, N = 152 **Chinstrap**, N = 68 **Gentoo**, N = 124
island
Biscoe 44 (29%) 0 (0%) 124 (100%)
Dream 56 (37%) 68 (100%) 0 (0%)
Torgersen 52 (34%) 0 (0%) 0 (0%)
bill_length_mm 38.8 (36.8, 40.8) 49.6 (46.4, 51.1) 47.3 (45.3, 49.6)
Unknown 1 0 1
bill_depth_mm 18.40 (17.50, 19.00) 18.45 (17.50, 19.40) 15.00 (14.20, 15.70)
Unknown 1 0 1
flipper_length_mm 190 (186, 195) 196 (191, 201) 216 (212, 221)
Unknown 1 0 1
body_mass_g 3,700 (3,350, 4,000) 3,700 (3,488, 3,950) 5,000 (4,700, 5,500)
Unknown 1 0 1
sex
female 73 (50%) 34 (50%) 58 (49%)
male 73 (50%) 34 (50%) 61 (51%)
Unknown 6 0 5
year
2007 50 (33%) 26 (38%) 34 (27%)
2008 50 (33%) 18 (26%) 46 (37%)
2009 52 (34%) 24 (35%) 44 (35%)

3.8 Comparing Penguins by Species Graphically

3.8.1 Faceting Histograms with facet_wrap()

We could compare the distributions of the flipper lengths across the three species, by creating
a set of faceted histograms, like so…

penguins3 <-
penguins |>
filter(complete.cases(flipper_length_mm, species))
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ggplot(data = penguins3, aes(x = flipper_length_mm, fill = species)) +
geom_histogram(binwidth = 5, col = "white") +
facet_wrap(~ species) +
labs(title = "Distribution of Flipper Length in Palmer Penguins, by Species")
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We might add in the command

guides(fill = "none") +

to eliminate the redundant legend on the right-hand side of the plot.

3.8.2 Using facet_grid() instead

The facet_wrap() approach has created three histograms, spread horizontally. Alternatively,
we could plot the species vertically using facet_grid(), which clearly shows which species
produces the penguins with the larger flipper lengths, especially if we reduce the width of the
bins a bit.
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ggplot(data = penguins3, aes(x = flipper_length_mm, fill = species)) +
geom_histogram(binwidth = 2, col = "white") +
facet_grid(species ~ .) +
guides(fill = "none") +
labs(title = "Distribution of Flipper Length in Palmer Penguins, by Species")
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We’ll use facets like this all the time in what follows.

3.8.3 Boxplots

Another very common tool we’ll use for looking simultaneously at the distributions of a variable
across two or more categories is a boxplot. More on this later, but here’s one example of what
this might look like.

ggplot(data = penguins3, aes(x = flipper_length_mm, y = species,
fill = species)) +

geom_boxplot() +
guides(fill = "none") +
labs(title = "Distribution of Flipper Length in Palmer Penguins, by Species")
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3.8.4 Adding Violins

And here’s a somewhat fancier version, including a violin plot, and with the coordinates flipped
so the plots are shown vertically rather than horizontally.

ggplot(data = penguins3, aes(x = flipper_length_mm, y = species)) +
geom_violin(aes(col = species)) +
geom_boxplot(aes(fill = species), width = 0.3) +
guides(col = "none", fill = "none") +
coord_flip() +
labs(title = "Augmented Boxplot of Flipper Length in Penguins by Species")
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3.8.5 Letter-Value Plots (Boxplots for Large Data)

We might also consider a letter-value plot, using the geom_lv() function from the lvplot
package in R, although I rarely use such a plot unless I have at least 1000 observations to work
with.

ggplot(data = penguins3, aes(x = species, y = flipper_length_mm)) +
geom_lv(aes(fill=..LV..)) + scale_fill_brewer() +
labs(title = "Letter-Value Plot of Flipper Length in Penguins by Species")

Warning: The dot-dot notation (`..LV..`) was deprecated in ggplot2 3.4.0.
i Please use `after_stat(LV)` instead.
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3.9 Coming Up

You’re probably tiring of the penguins now. Next, we’ll look at some data on people, taken
from the National Health and Nutrition Examination Survey, or NHANES.
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4 NHANES Data

Next, we’ll explore some data from the US National Health and Nutrition Examination Survey,
often referred to as NHANES.

4.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(NHANES)
library(naniar)
library(kableExtra)
library(tidyverse)

theme_set(theme_bw())

4.2 The NHANES data: A First Sample

The NHANES package provides a sample of 10,000 NHANES responses from the 2009-10 and
2011-12 administrations, in a tibble also called NHANES. We can obtain the dimensions of this
tibble with the dim() function.

NHANES

# A tibble: 10,000 x 76
ID SurveyYr Gender Age AgeDecade AgeMonths Race1 Race3 Education

<int> <fct> <fct> <int> <fct> <int> <fct> <fct> <fct>
1 51624 2009_10 male 34 " 30-39" 409 White <NA> High School
2 51624 2009_10 male 34 " 30-39" 409 White <NA> High School
3 51624 2009_10 male 34 " 30-39" 409 White <NA> High School
4 51625 2009_10 male 4 " 0-9" 49 Other <NA> <NA>
5 51630 2009_10 female 49 " 40-49" 596 White <NA> Some College
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6 51638 2009_10 male 9 " 0-9" 115 White <NA> <NA>
7 51646 2009_10 male 8 " 0-9" 101 White <NA> <NA>
8 51647 2009_10 female 45 " 40-49" 541 White <NA> College Grad
9 51647 2009_10 female 45 " 40-49" 541 White <NA> College Grad
10 51647 2009_10 female 45 " 40-49" 541 White <NA> College Grad
# i 9,990 more rows
# i 67 more variables: MaritalStatus <fct>, HHIncome <fct>, HHIncomeMid <int>,
# Poverty <dbl>, HomeRooms <int>, HomeOwn <fct>, Work <fct>, Weight <dbl>,
# Length <dbl>, HeadCirc <dbl>, Height <dbl>, BMI <dbl>,
# BMICatUnder20yrs <fct>, BMI_WHO <fct>, Pulse <int>, BPSysAve <int>,
# BPDiaAve <int>, BPSys1 <int>, BPDia1 <int>, BPSys2 <int>, BPDia2 <int>,
# BPSys3 <int>, BPDia3 <int>, Testosterone <dbl>, DirectChol <dbl>, ...

We see that we have 10000 rows and 76 columns in the NHANES tibble. For more on what makes
a particular data frame into a tibble, and why we’d want such a thing, you might be interested
in the Tibbles section of Hadley Wickham and Grolemund (2023). Essentially, tibbles are data
frames that are easier and more predictable to work with.

4.3 Sampling NHANES Adults

Suppose we want to take this NHANES tibble, and use it to generate a sample describing 750
unique (distinct) adult subjects who completed the 2011-12 version of the survey when they
were between the ages of 21 and 64.

4.3.1 Creating a Temporary, Cleaner Tibble

I’ll start by describing the plan we will use to create a new tibble called nh_temp from which
we will eventually build our final sample. In particular, let me lay out the steps I will use to
create the nh_temp frame from the original NHANES tibble available in the R package called
NHANES.

1. We’ll filter the original NHANES tibble to include only the responses from the 2011-12
administration of the survey. This will cut the sample in half, from 10,000 rows to 5,000.

2. We’ll then filter again to restrict the sample to adults whose age is at least 21 and also
less than 65. I’ll do this because I want to avoid problems with including both children
and adults in my sample, and because I also want to focus on the population of people
in the US who are usually covered by private insurance from their job, or by Medicaid
insurance from the government, rather than those covered by Medicare.

66



3. What is listed in the NHANES tibble as Gender should be more correctly referred to as
Sex. Sex is a biological feature of an individual, while Gender is a social construct. This
is an important distinction, so I’ll change the name of the variable.

4. We’ll also rename three other variables, specifically we’ll use Race to describe the Race3
variable in the original NHANES tibble, as well as SBP to refer to the average systolic
blood pressure, which is specified as BPSysAve, and DBP to refer to the average diastolic
blood pressure, which is specified as BPDiaAve.

5. Having accomplished the previous four steps, we’ll then select the variables we want to
keep in the sample. (We use select for choosing variables or columns in the tibble, and
filter for selecting subjects or rows.) The sixteen variables we will select are: ID, Sex,
Age, Height, Weight, Race, Education, BMI, SBP, DBP, Pulse, PhysActive, Smoke100,
SleepTrouble, MaritalStatus and HealthGen.

6. The original NHANES tibble includes some subjects (rows) multiple times in an effort
to incorporate some of the sampling weights used in most NHANES analyses. For our
purposes, though, we’d like to only include each subject one time. We use the distinct()
function to limit the tibble to completely unique subjects (so that, for example, we don’t
wind up with two or more rows that have the same ID number.)

Here is the code I used to complete the six steps listed above and create the nh_temp tibble.

nh_temp <- NHANES |>
filter(SurveyYr == "2011_12") |>
filter(Age >= 21 & Age < 65) |>
rename(Sex = Gender, Race = Race3, SBP = BPSysAve, DBP = BPDiaAve) |>
select(ID, Sex, Age, Height, Weight, Race, Education, BMI, SBP, DBP,

Pulse, PhysActive, Smoke100, SleepTrouble,
MaritalStatus, HealthGen) |>

distinct()

The resulting nh_temp tibble has 1700 rows and 16 columns.

nh_temp

# A tibble: 1,700 x 16
ID Sex Age Height Weight Race Education BMI SBP DBP Pulse

<int> <fct> <int> <dbl> <dbl> <fct> <fct> <dbl> <int> <int> <int>
1 62172 female 43 172 98.6 Black High School 33.3 103 72 80
2 62176 female 34 172. 68.7 White College Gr~ 23.3 107 69 92
3 62180 male 35 179. 89 White College Gr~ 27.9 107 66 66
4 62199 male 57 186 96.9 White College Gr~ 28 110 65 84
5 62205 male 28 171. 84.8 White College Gr~ 28.9 122 87 70
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6 62206 female 35 167. 81.5 White Some Colle~ 29.1 106 50 58
7 62208 male 38 169. 63.2 Hispanic Some Colle~ 22.2 105 59 52
8 62209 female 62 143. 53.5 Mexican 8th Grade 26 108 57 72
9 62220 female 31 167. 113. Black College Gr~ 40.4 120 71 62
10 62222 male 32 179 80.1 White College Gr~ 25 104 73 78
# i 1,690 more rows
# i 5 more variables: PhysActive <fct>, Smoke100 <fct>, SleepTrouble <fct>,
# MaritalStatus <fct>, HealthGen <fct>

4.3.2 Sampling nh_temp to obtain our nh_adult750 sample

Having established the nh_temp tibble, we now select a random sample of 750 adults from the
1700 available responses.

• We will use the set.seed() function in R to set a random numerical seed to ensure that
if you redo this work, you will obtain the same sample.

– Setting a seed is an important part of being able to replicate the work later when
sampling is involved. If you and I use the same seed, we should get the same sample.

• Then we will use the slice_sample() function to actually draw the random sample,
without replacement.

– “Without replacement” means that once we’ve selected a particular subject, we
won’t select them again.

set.seed(431002)
# use set.seed to ensure that we all get the same random sample

nh_adult750 <- slice_sample(nh_temp, n = 750, replace = F)

nh_adult750

# A tibble: 750 x 16
ID Sex Age Height Weight Race Education BMI SBP DBP Pulse

<int> <fct> <int> <dbl> <dbl> <fct> <fct> <dbl> <int> <int> <int>
1 68648 female 30 181. 67.1 White College Gr~ 20.4 103 59 78
2 67200 male 30 180. 86.6 White College Gr~ 26.7 113 68 70
3 66404 female 35 160. 71.1 White College Gr~ 27.8 116 80 68
4 70535 male 40 177. 82 White College Gr~ 26.3 130 79 68
5 65308 female 54 151. 60.6 Mexican 8th Grade 26.6 130 64 48
6 67392 male 41 171. 90.7 Hispanic College Gr~ 31.2 124 82 68
7 63218 male 35 163. 81 Mexican 8th Grade 30.3 128 96 82
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8 65879 female 32 160. 66.4 Mexican College Gr~ 25.9 104 70 78
9 63617 male 29 189. 83.3 White College Gr~ 23.2 105 72 76
10 64720 male 29 174. 62.3 Black College Gr~ 20.6 127 60 84
# i 740 more rows
# i 5 more variables: PhysActive <fct>, Smoke100 <fct>, SleepTrouble <fct>,
# MaritalStatus <fct>, HealthGen <fct>

The nh_adult750 tibble now includes 750 rows (observations) on 16 variables (columns).
Essentially, we have 16 pieces of information on each of 750 adult NHANES subjects who were
included in the 2011-12 panel.

4.3.3 Summarizing the Data’s Structure

We can identify the number of rows and columns in a data frame or tibble with the dim
function.

dim(nh_adult750)

[1] 750 16

The str function provides a lot of information about the structure of a data frame or tibble.

str(nh_adult750)

tibble [750 x 16] (S3: tbl_df/tbl/data.frame)
$ ID : int [1:750] 68648 67200 66404 70535 65308 67392 63218 65879 63617 64720 ...
$ Sex : Factor w/ 2 levels "female","male": 1 2 1 2 1 2 2 1 2 2 ...
$ Age : int [1:750] 30 30 35 40 54 41 35 32 29 29 ...
$ Height : num [1:750] 181 180 160 177 151 ...
$ Weight : num [1:750] 67.1 86.6 71.1 82 60.6 90.7 81 66.4 83.3 62.3 ...
$ Race : Factor w/ 6 levels "Asian","Black",..: 5 5 5 5 4 3 4 4 5 2 ...
$ Education : Factor w/ 5 levels "8th Grade","9 - 11th Grade",..: 5 5 5 5 1 5 1 5 5 5 ...
$ BMI : num [1:750] 20.4 26.7 27.8 26.3 26.6 31.2 30.3 25.9 23.2 20.6 ...
$ SBP : int [1:750] 103 113 116 130 130 124 128 104 105 127 ...
$ DBP : int [1:750] 59 68 80 79 64 82 96 70 72 60 ...
$ Pulse : int [1:750] 78 70 68 68 48 68 82 78 76 84 ...
$ PhysActive : Factor w/ 2 levels "No","Yes": 1 2 2 1 1 2 1 2 2 2 ...
$ Smoke100 : Factor w/ 2 levels "No","Yes": 1 2 1 2 2 1 2 1 2 2 ...
$ SleepTrouble : Factor w/ 2 levels "No","Yes": 2 1 1 1 1 1 1 1 2 1 ...
$ MaritalStatus: Factor w/ 6 levels "Divorced","LivePartner",..: 3 4 3 3 2 3 3 3 3 2 ...
$ HealthGen : Factor w/ 5 levels "Excellent","Vgood",..: 1 1 1 2 4 3 NA 1 2 4 ...
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To see the first few observations, use head, and to see the last few, try tail…

tail(nh_adult750, 5) # shows the last five observations in the data set

# A tibble: 5 x 16
ID Sex Age Height Weight Race Education BMI SBP DBP Pulse

<int> <fct> <int> <dbl> <dbl> <fct> <fct> <dbl> <int> <int> <int>
1 63924 female 29 165. 113. Black High School 41.9 98 56 74
2 69825 female 43 164. 63.3 White College Grad 23.7 122 83 88
3 68109 male 45 170. 78.7 Black High School 27.1 140 79 102
4 64598 female 60 158 74.5 White Some College 29.8 137 80 78
5 64048 female 54 161. 67.5 White Some College 26.2 121 87 72
# i 5 more variables: PhysActive <fct>, Smoke100 <fct>, SleepTrouble <fct>,
# MaritalStatus <fct>, HealthGen <fct>

4.3.4 What are the variables?

We can use the glimpse function to get a short preview of the data.

glimpse(nh_adult750)

Rows: 750
Columns: 16
$ ID <int> 68648, 67200, 66404, 70535, 65308, 67392, 63218, 65879, ~
$ Sex <fct> female, male, female, male, female, male, male, female, ~
$ Age <int> 30, 30, 35, 40, 54, 41, 35, 32, 29, 29, 64, 28, 31, 59, ~
$ Height <dbl> 181.3, 180.2, 159.8, 176.6, 150.9, 170.6, 163.4, 160.2, ~
$ Weight <dbl> 67.1, 86.6, 71.1, 82.0, 60.6, 90.7, 81.0, 66.4, 83.3, 62~
$ Race <fct> White, White, White, White, Mexican, Hispanic, Mexican, ~
$ Education <fct> College Grad, College Grad, College Grad, College Grad, ~
$ BMI <dbl> 20.4, 26.7, 27.8, 26.3, 26.6, 31.2, 30.3, 25.9, 23.2, 20~
$ SBP <int> 103, 113, 116, 130, 130, 124, 128, 104, 105, 127, 128, 1~
$ DBP <int> 59, 68, 80, 79, 64, 82, 96, 70, 72, 60, 74, 76, 82, 66, ~
$ Pulse <int> 78, 70, 68, 68, 48, 68, 82, 78, 76, 84, 62, 56, 78, 66, ~
$ PhysActive <fct> No, Yes, Yes, No, No, Yes, No, Yes, Yes, Yes, Yes, No, N~
$ Smoke100 <fct> No, Yes, No, Yes, Yes, No, Yes, No, Yes, Yes, No, No, Ye~
$ SleepTrouble <fct> Yes, No, No, No, No, No, No, No, Yes, No, No, Yes, No, Y~
$ MaritalStatus <fct> Married, NeverMarried, Married, Married, LivePartner, Ma~
$ HealthGen <fct> Excellent, Excellent, Excellent, Vgood, Fair, Good, NA, ~
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The variables we have collected are described in the brief table below1.

Variable Description Sample Values
ID a numerical code identifying the subject 68648, 67200
Sex sex of subject (2 levels) female, male
Age age (years) at screening of subject 30, 35

Height height (in cm) at screening of subject 181.3, 180.2
Weight weight (in kg) at screening of subject 67.1, 86.6
Race reported race of subject (6 levels) White, Black

Education educational level of subject (5 levels) College Grad,
High School

BMI body-mass index, in kg/m2 20.4, 26.7
SBP systolic blood pressure in mm Hg 103, 113
DBP diastolic blood pressure in mm Hg 59, 68
Pulse 60 second pulse rate in beats per minute 78, 70

PhysActive Moderate or vigorous-intensity sports? Yes, No
Smoke100 Smoked at least 100 cigarettes lifetime? Yes, No

SleepTrouble Told a doctor they have trouble sleeping? Yes, No
MaritalStatus Marital Status Married,

Divorced
HealthGen Self-report general health rating (5 levels) Vgood, Fair

The levels for the multi-categorical variables are:

• Race: Mexican, Hispanic, White, Black, Asian, or Other.
• Education: 8th Grade, 9 - 11th Grade, High School, Some College, or College Grad.
• MaritalStatus: Married, Widowed, Divorced, Separated, NeverMarried or LivePartner

(living with partner).
• HealthGen: Excellent, Vgood, Good, Fair or Poor.

Some details can be obtained using the summary function, or any of the other approaches we
saw used with the penguins data earlier.

summary(nh_adult750)

ID Sex Age Height Weight
Min. :62206 female:388 Min. :21.00 Min. :142.4 Min. : 39.30
1st Qu.:64277 male :362 1st Qu.:30.00 1st Qu.:161.8 1st Qu.: 67.40

1Descriptions are adapted from the ?NHANES help file. Remember that what NHANES lists as Gender is
captured here as Sex, and similarly Race3, BPSysAve and BPDiaAve from NHANES are here listed as Race,
SBP and DBP.
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Median :66925 Median :40.00 Median :168.9 Median : 80.00
Mean :66936 Mean :40.82 Mean :168.9 Mean : 83.16
3rd Qu.:69414 3rd Qu.:51.00 3rd Qu.:175.7 3rd Qu.: 95.30
Max. :71911 Max. :64.00 Max. :200.4 Max. :198.70

NA's :5 NA's :5
Race Education BMI SBP

Asian : 70 8th Grade : 50 Min. :16.70 Min. : 83.0
Black :128 9 - 11th Grade: 76 1st Qu.:24.20 1st Qu.:108.0
Hispanic: 63 High School :143 Median :27.90 Median :118.0
Mexican : 80 Some College :241 Mean :29.08 Mean :118.8
White :393 College Grad :240 3rd Qu.:32.10 3rd Qu.:127.0
Other : 16 Max. :80.60 Max. :209.0

NA's :5 NA's :33
DBP Pulse PhysActive Smoke100 SleepTrouble

Min. : 0.00 Min. : 40.00 No :326 No :453 No :555
1st Qu.: 66.00 1st Qu.: 66.00 Yes:424 Yes:297 Yes:195
Median : 73.00 Median : 72.00
Mean : 72.69 Mean : 73.53
3rd Qu.: 80.00 3rd Qu.: 80.00
Max. :108.00 Max. :124.00
NA's :33 NA's :32

MaritalStatus HealthGen
Divorced : 78 Excellent: 84
LivePartner : 70 Vgood :197
Married :388 Good :252
NeverMarried:179 Fair :104
Separated : 19 Poor : 14
Widowed : 16 NA's : 99

Note the appearance of NA's (indicating missing values) in some columns, and that some
variables are summarized by a list of their (categorical) values (with counts) and some (quan-
titative/numeric) variables are summarized with a minimum, quartiles and means.

4.4 Counting Missing Values

The summary() command counts the number of missing observations in each variable, but
sometimes you want considerably more information.

We can use some functions from the naniar package to learn useful things about the missing
data in our nh_adult750 sample. (Recall that we could also use the vis_miss() function from
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the visdat package, as we saw earlier with the penguins to get some of this information, but
the naniar approach provides more exploratory tools.)

The miss_var_table command provides a table of the number of variables with 0, 1, 2, up
to n, missing values and the percentage of the total number of variables those variables make
up.

miss_var_table(nh_adult750)

# A tibble: 5 x 3
n_miss_in_var n_vars pct_vars

<int> <int> <dbl>
1 0 9 56.2
2 5 3 18.8
3 32 1 6.25
4 33 2 12.5
5 99 1 6.25

So, for instance, we have 9 variables with no missing data, and that constitutes 56.25% of the
16 variables in our nh_adult750 data.

The miss_var_summary() function tabulates the number, percent missing, and cumulative
sum of missing of each variable in our tibble, in order of most to least missing values.

miss_var_summary(nh_adult750) |>
kbl() |>
kable_styling(full_width = FALSE, position = "center")

So, for example, the HealthGen variable is the one missing more of our data than anything
else within the nh_adult750 tibble.

A graph of this information is available, as well.

gg_miss_var(nh_adult750)
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variable n_miss pct_miss
HealthGen 99 13.2000000
SBP 33 4.4000000
DBP 33 4.4000000
Pulse 32 4.2666667
Height 5 0.6666667
Weight 5 0.6666667
BMI 5 0.6666667
ID 0 0.0000000
Sex 0 0.0000000
Age 0 0.0000000
Race 0 0.0000000
Education 0 0.0000000
PhysActive 0 0.0000000
Smoke100 0 0.0000000
SleepTrouble 0 0.0000000
MaritalStatus 0 0.0000000
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I’ll note that there are also functions to count the number of missing observations by case
(observation) rather than variable. For example, we can use miss_case_table.
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miss_case_table(nh_adult750)

# A tibble: 6 x 3
n_miss_in_case n_cases pct_cases

<int> <int> <dbl>
1 0 636 84.8
2 1 78 10.4
3 3 15 2
4 4 19 2.53
5 6 1 0.133
6 7 1 0.133

Now we see that 636 observations, or 84.8% of all cases have no missing data.

We can use miss_case_summary() to identify cases with missing data, as well.

miss_case_summary(nh_adult750)

# A tibble: 750 x 3
case n_miss pct_miss

<int> <int> <dbl>
1 342 7 43.8
2 606 6 37.5
3 157 4 25
4 169 4 25
5 204 4 25
6 234 4 25
7 323 4 25
8 415 4 25
9 478 4 25
10 483 4 25
# i 740 more rows

4.5 Sampling 500 Complete Cases

If we wanted a sample of exactly 750 subjects with complete data, we would have needed to
add a step in the development of our nh_temp tibble to filter for complete cases.
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nh_temp2 <- NHANES |>
filter(SurveyYr == "2011_12") |>
filter(Age >= 21 & Age < 65) |>
rename(Sex = Gender, Race = Race3, SBP = BPSysAve, DBP = BPDiaAve) |>
select(ID, Sex, Age, Height, Weight, Race, Education, BMI, SBP, DBP,

Pulse, PhysActive, Smoke100, SleepTrouble,
MaritalStatus, HealthGen) |>

distinct() |>
na.omit()

Let’s check that this new tibble has no missing data.

miss_var_table(nh_temp2)

# A tibble: 1 x 3
n_miss_in_var n_vars pct_vars

<int> <int> <dbl>
1 0 16 100

OK. Now, let’s create a second sample, called nh_adult500cc, where now, we will select 500
adults with complete data on all of the variables of interest, and using a different random seed.
The cc here stands for complete cases.

set.seed(431003)
# use set.seed to ensure that we all get the same random sample

nh_adult500cc <- slice_sample(nh_temp2, n = 500, replace = F)

nh_adult500cc

# A tibble: 500 x 16
ID Sex Age Height Weight Race Education BMI SBP DBP Pulse

<int> <fct> <int> <dbl> <dbl> <fct> <fct> <dbl> <int> <int> <int>
1 64079 female 25 159. 86.2 Hispanic Some Colle~ 34.2 120 67 84
2 64374 female 52 169 65.5 Asian College Gr~ 22.9 92 58 60
3 71875 male 42 182. 94.1 Black College Gr~ 28.5 102 63 76
4 66396 female 46 161. 107. Asian 8th Grade 41.2 111 61 70
5 64315 female 52 161. 64.5 White 9 - 11th G~ 24.9 130 69 68
6 64015 male 32 168. 82.3 Mexican Some Colle~ 29 119 79 70
7 63590 male 21 181. 98.3 Black Some Colle~ 29.9 121 67 58
8 70893 female 30 171. 65.7 White 9 - 11th G~ 22.5 104 75 74
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9 70828 male 26 178. 100. White Some Colle~ 31.5 119 77 66
10 67930 male 59 172. 91.7 Mexican College Gr~ 31 127 85 66
# i 490 more rows
# i 5 more variables: PhysActive <fct>, Smoke100 <fct>, SleepTrouble <fct>,
# MaritalStatus <fct>, HealthGen <fct>

4.6 Saving our Samples in .Rds files

We’ll save the nh_adult750 and nh_adult500cc samples to use in later parts of the notes.
To do this, we’ll save them as .Rds files, which are files we can read directly into R with the
read_rds command, and which will have some advantages for us later on.

write_rds(nh_adult750, file = "data/nh_adult750.Rds")
write_rds(nh_adult500cc, file = "data/nh_adult500cc.Rds")

You will also find these .Rds files as part of the 431-data repository for the course.

4.7 Coming Up

Next, we’ll introduce some new ways of thinking about data and variables as we load, explore
and learn about some of the variables in our two NHANES samples.
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5 Types of Data

5.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(gtsummary)
library(kableExtra)
library(tidyverse)

theme_set(theme_bw())

We’ll also use the describe() function from the psych package in what follows, but I won’t
load the whole psych package here.

5.2 Data require structure and context

Descriptive statistics are concerned with the presentation, organization and summary of
data, as suggested in Norman and Streiner (2014). This includes various methods of organizing
and graphing data to get an idea of what those data can tell us.

As Vittinghoff et al. (2012) suggest, the nature of the measurement determines how best
to describe it statistically, and the main distinction is between numerical and categorical
variables. Even this is a little tricky - plenty of data can have values that look like numerical
values, but are just numerals serving as labels.

As Bock, Velleman, and De Veaux (2004) point out, the truly critical notion, of course, is
that data values, no matter what kind, are useless without their contexts. The Five W’s
(Who, What [and in what units], When, Where, Why, and often How) are just as useful for
establishing the context of data as they are in journalism. If you can’t answer Who and What,
in particular, you don’t have any useful information.

In general, each row of a data frame corresponds to an individual (respondent, experimental
unit, record, or observation) about whom some characteristics are gathered in columns (and
these characteristics may be called variables, factors or data elements.) Every column / variable
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should have a name that indicates what it is measuring, and every row / observation should
have a name that indicates who is being measured.

5.3 Reading in the “Complete Cases” Sample

Let’s begin by loading into the nh_500cc tibble the information from the nh_adult500cc.Rds
file we created in Section 4.5. Notice that I am simplifying the name of the tibble, to save me
some typing.

nh_500cc <- read_rds("data/nh_adult500cc.Rds")

One obvious hurdle we’ll avoid for the moment is what to do about missing data, since the
nh_500cc data are specifically drawn from complete responses. Working with complete cases
only can introduce bias to our estimates and visualizations, so it will be necessary in time to
address what we should do when a complete-case analysis isn’t a good choice. We’ll return to
this issue later.

5.4 Quantitative Variables

Variables recorded in numbers that we use as numbers are called quantitative. Familiar
examples include incomes, heights, weights, ages, distances, times, and counts. All quanti-
tative variables have measurement units, which tell you how the quantitative variable was
measured. Without units (like miles per hour, angstroms, yen or degrees Celsius) the values
of a quantitative variable have no meaning.

• It does little good to be told the price of something if you don’t know the currency being
used.

• You might be surprised to see someone whose age is 72 listed in a database on childhood
diseases until you find out that age is measured in months.

• Often just seeking the units can reveal a variable whose definition is challenging - just
how do we measure “friendliness”, or “success,” for example.

• Quantitative variables may also be classified by whether they are continuous or can
only take on a discrete set of values. Continuous data may take on any value, within a
defined range. Suppose we are measuring height. While height is really continuous, our
measuring stick usually only lets us measure with a certain degree of precision. If our
measurements are only trustworthy to the nearest centimeter with the ruler we have,
we might describe them as discrete measures. But we could always get a more precise
ruler. The measurement divisions we make in moving from a continuous concept to a
discrete measurement are usually fairly arbitrary. Another way to think of this, if you
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enjoy music, is that, as suggested in Norman and Streiner (2014), a piano is a discrete
instrument, but a violin is a continuous one, enabling finer distinctions between notes
than the piano is capable of making. Sometimes the distinction between continuous and
discrete is important, but usually, it’s not.

5.5 Quantitative Variables in nh_500cc

Here’s a list of the variables contained in our nh_500cc tibble.

names(nh_500cc)

[1] "ID" "Sex" "Age" "Height"
[5] "Weight" "Race" "Education" "BMI"
[9] "SBP" "DBP" "Pulse" "PhysActive"
[13] "Smoke100" "SleepTrouble" "MaritalStatus" "HealthGen"

The nh_500cc data includes seven quantitative variables, including Age, Height, Weight, BMI,
SBP, DBP and Pulse.

• We know these are quantitative variables because they have units:

– Age in years, Height in centimeters, Weight in kilograms,
– BMI in kg/m2, the BP measurements in mm Hg, and Pulse in beats per minute.

Let’s summarize them with the describe() function from the psych package.

nh_500cc |>
select(Age, Height, Weight, BMI, SBP, DBP, Pulse) |>
psych::describe() |>
kbl() |>
kable_styling()

As an alternative, we could use tbl_summary() from the gtsummary package, as well. The
approach below works nicely for producing a mean, standard deviation, and five-number sum-
mary for each of the variables we’ve identified as quantitative.

• Quantitative variables lend themselves to many of the summaries we will discuss, like
means, quantiles, and our various measures of spread, like the standard deviation or
inter-quartile range. They also have at least a chance to follow the Normal distribution.
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vars n mean sd median trimmed mad min max range skew kurtosis se
Age 1 500 41.6060 12.803853 42.00 41.48000 16.30860 21.0 64.0 43.0 0.0469923 -1.2377866 0.5726057
Height 2 500 169.3726 9.935372 169.05 169.19025 10.52646 144.8 200.4 55.6 0.1618323 -0.2539869 0.4443233
Weight 3 500 82.7094 20.884652 80.00 81.05650 19.94097 41.9 184.5 142.6 0.9835819 1.7024261 0.9339900
BMI 4 500 28.7574 6.567995 27.70 28.11625 6.07866 17.0 63.3 46.3 1.1522475 2.2838638 0.2937297
SBP 5 500 119.3320 15.049344 119.00 118.41250 13.34340 84.0 221.0 137.0 1.1872427 4.7556753 0.6730271
DBP 6 500 72.1580 11.245709 72.00 72.24500 8.89560 0.0 110.0 110.0 -0.5339975 4.5794674 0.5029234
Pulse 7 500 74.1640 11.500505 74.00 73.76500 11.86080 48.0 114.0 66.0 0.3414617 -0.0027802 0.5143182

nh_500cc |>
select(Age, Height, Weight, BMI, SBP, DBP, Pulse) |>
tbl_summary( statistic = list(all_continuous() ~ "{mean} ({sd}):

[ {min}, {p25}, {median}, {p75}, {max} ]"))

Table printed with `knitr::kable()`, not {gt}. Learn why at
https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

**Characteristic** **N = 500**
Age 42 (13): [ 21, 30, 42, 52, 64 ]
Height 169 (10): [ 145, 162, 169, 176, 200 ]
Weight 83 (21): [ 42, 68, 80, 94, 185 ]
BMI 29 (7): [ 17, 24, 28, 32, 63 ]
SBP 119 (15): [ 84, 110, 119, 127, 221 ]
DBP 72 (11): [ 0, 66, 72, 79, 110 ]
Pulse 74 (12): [ 48, 66, 74, 82, 114 ]

5.5.1 A look at BMI (Body-Mass Index)

The definition of BMI (body-mass index) for adult subjects (which is expressed in units of
kg/m2) is:

Body Mass Index = weight in kg
(height in meters)2 = 703 × weight in pounds

(height in inches)2

[BMI is essentially] … a measure of a person’s thinness or thickness… BMI was
designed for use as a simple means of classifying average sedentary (physically
inactive) populations, with an average body composition. For these individuals,
the current value recommendations are as follow: a BMI from 18.5 up to 25 may
indicate optimal weight, a BMI lower than 18.5 suggests the person is underweight,

81



a number from 25 up to 30 may indicate the person is overweight, and a number
from 30 upwards suggests the person is obese.

Wikipedia, https://en.wikipedia.org/wiki/Body_mass_index

5.5.2 Types of Quantitative Variables

Depending on the context, we would likely treat most of these quantitative variables as discrete
given that are measurements are fairly crude (this is certainly true for Age, measured in years)
although BMI is probably continuous in most settings, even though it is a function of two
other measures (Height and Weight) which are rounded off to integer numbers of centimeters
and kilograms, respectively.

It is also possible to separate out quantitative variables into ratio variables or interval vari-
ables.

• An interval variable has equal distances between values, but the zero point is arbitrary.
• A ratio variable has equal intervals between values, and a meaningful zero point.

For example, weight is an example of a ratio variable, while IQ is an example of an interval
variable. We all know what zero weight is. An intelligence score like IQ is a different matter.
We say that the average IQ is 100, but that’s only by convention. We could just as easily have
decided to add 400 to every IQ value and make the average 500 instead. Because IQ’s intervals
are equal, the difference between and IQ of 70 and an IQ of 80 is the same as the difference
between 120 and 130. However, an IQ of 100 is not twice as high as an IQ of 50. The point
is that if the zero point is artificial and movable, then the differences between numbers are
meaningful but the ratios between them are not.

On the other hand, most lab test values are ratio variables, as are physical characteristics like
height and weight. Each of the quantitative variables in our nh_500cc data can be thought
of as a ratio variable.A person who weighs 100 kg is twice as heavy as one who weighs 50 kg;
even when we convert kg to pounds, this is still true. For the most part, we can treat and
analyze interval or ratio variables the same way.

5.6 Qualitative (Categorical) Variables

Qualitative or categorical variables consist of names of categories. These names may be
numerical, but the numbers (or names) are simply codes to identify the groups or categories
into which the individuals are divided. Categorical variables with two categories, like yes or
no, up or down, or, more generally, 1 and 0, are called binary variables. Those with more
than two-categories are sometimes called multi-categorical variables.
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In the nh_500cc data, we have eight categorical variables, four binary and four with multiple
categories.

nh_500cc |>
select(Sex, PhysActive, Smoke100, SleepTrouble,

Race, Education, MaritalStatus, HealthGen) |>
summary()

Sex PhysActive Smoke100 SleepTrouble Race
female:236 No :216 No :291 No :380 Asian : 51
male :264 Yes:284 Yes:209 Yes:120 Black : 81

Hispanic: 37
Mexican : 48
White :262
Other : 21

Education MaritalStatus HealthGen
8th Grade : 26 Divorced : 47 Excellent: 52
9 - 11th Grade: 59 LivePartner : 46 Vgood :167
High School : 89 Married :256 Good :204
Some College :153 NeverMarried:125 Fair : 65
College Grad :173 Separated : 17 Poor : 12

Widowed : 9

5.6.1 Nominal vs. Ordinal Categories

• When the categories included in a variable are merely names, and come in no particular
order, we sometimes call them nominal variables. The most important summary of
such a variable is usually a table of frequencies, and the mode becomes an important
single summary, while the mean and median are essentially useless.

In the nh_500cc data, Race is a nominal variable with multiple unordered categories. So is
MaritalStatus.

• The alternative categorical variable (where order matters) is called ordinal, and includes
variables that are sometimes thought of as falling right in between quantitative and
qualitative variables.

Examples of ordinal multi-categorical variables in the nh_500cc data include the Education
and HealthGen variables.

• Answers to questions like “How is your overall physical health?” with available responses
Excellent, Very Good, Good, Fair or Poor, which are often coded as 1-5, certainly provide
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a perceived order, but a group of people with average health status 4 (Very Good) is not
necessarily twice as healthy as a group with average health status of 2 (Fair).

• Sometimes we treat the values from ordinal variables as sufficiently scaled to permit us to
use quantitative approaches like means, quantiles, and standard deviations to summarize
and model the results, and at other times, we’ll treat ordinal variables as if they were
nominal, with tables and percentages our primary tools.

• Note that all binary variables may be treated as either ordinal, or nominal.

Binary variables in the nh_500cc data include Sex, PhysActive, Smoke100, SleepTrouble.
Each can be thought of as either ordinal or nominal.

Lots of variables may be treated as either quantitative or qualitative, depending on how we
use them. For instance, we usually think of age as a quantitative variable, but if we simply
use age to make the distinction between “child” and “adult” then we are using it to describe
categorical information. Just because your variable’s values are numbers, don’t assume that
the information provided is quantitative.

5.7 Tabulating Binary Variables

Note how the tbl_summary() approach works with binary variables, and in particular with
variables coded Yes and No, like PhysActive, Smoke100 and SleepTrouble.

nh_500cc |>
select(Sex, PhysActive, Smoke100, SleepTrouble) |>
tbl_summary()

Table printed with `knitr::kable()`, not {gt}. Learn why at
https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

**Characteristic** **N = 500**
Sex
female 236 (47%)
male 264 (53%)
PhysActive 284 (57%)
Smoke100 209 (42%)
SleepTrouble 120 (24%)

We can also summarize any particular variable with the tabyl() function from the janitor
package.
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nh_500cc |>
tabyl(Sex)

Sex n percent
female 236 0.472
male 264 0.528

Or, we can make a basic cross-tabulation of two binary variables, like this:

nh_500cc |>
tabyl(PhysActive, Smoke100) |>
adorn_title()

Smoke100
PhysActive No Yes

No 111 105
Yes 180 104

5.8 Tabulating Multi-Categorical Variables

nh_500cc |>
select(Race, Education, MaritalStatus, HealthGen) |>
tbl_summary()

Table printed with `knitr::kable()`, not {gt}. Learn why at
https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.
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**Characteristic** **N = 500**
Race
Asian 51 (10%)
Black 81 (16%)
Hispanic 37 (7.4%)
Mexican 48 (9.6%)
White 262 (52%)
Other 21 (4.2%)
Education
8th Grade 26 (5.2%)
9 - 11th Grade 59 (12%)
High School 89 (18%)
Some College 153 (31%)
College Grad 173 (35%)
MaritalStatus
Divorced 47 (9.4%)
LivePartner 46 (9.2%)
Married 256 (51%)
NeverMarried 125 (25%)
Separated 17 (3.4%)
Widowed 9 (1.8%)
HealthGen
Excellent 52 (10%)
Vgood 167 (33%)
Good 204 (41%)
Fair 65 (13%)
Poor 12 (2.4%)

We can also use tabyl() to look at combinations of multi-categorical variables, whether they
are ordinal or nominal.

nh_500cc |>
tabyl(Education, HealthGen) |>
adorn_totals(where = c("row", "col")) |>
adorn_title() |>
kbl(align = 'lrrrrrc') |>
kable_styling(full_width = FALSE)
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HealthGen
Education Excellent Vgood Good Fair Poor Total
8th Grade 2 3 9 9 3 26
9 - 11th Grade 4 12 28 12 3 59
High School 9 26 36 18 0 89
Some College 11 46 75 17 4 153
College Grad 26 80 56 9 2 173
Total 52 167 204 65 12 500

5.9 Coming Up

Next, we’ll look at several additional approaches to building tabular and graphical summaries
for these data, beyond the ideas provided here.
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6 More NHANES Summaries

6.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(kableExtra)
library(patchwork)
library(tidyverse)

theme_set(theme_bw())

6.2 Re-Loading the “Complete Cases” Sample

In this chapter, we’ll build on the summaries we’ve illustrated previously. Let’s begin by again
loading into the nh_500cc tibble the information from the nh_adult500cc.Rds file we created
in Section 4.5.

nh_500cc <- read_rds("data/nh_adult500cc.Rds")

6.3 Distribution of Heights

What is the distribution of height in this new sample?

ggplot(data = nh_500cc, aes(x = Height)) +
geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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We can do several things to clean this up.

1. We’ll change the color of the lines for each bar of the histogram.
2. We’ll change the fill inside each bar to make them stand out a bit more.
3. We’ll add a title and relabel the horizontal (x) axis to include the units of measurement.
4. We’ll avoid the warning by selecting a number of bins (we’ll use 25 here) into which we’ll

group the heights before drawing the histogram.

ggplot(data = nh_500cc, aes(x = Height)) +
geom_histogram(bins = 25, col = "yellow", fill = "blue") +
labs(title = "Height of 500 NHANES Adults",

x = "Height in cm.")
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6.3.1 Changing a Histogram’s Fill and Color

The CWRU color guide (https://case.edu/umc/our-brand/visual-guidelines/) lists the HTML
color schemes for CWRU blue and CWRU gray. Let’s match that color scheme. We will
also change the bins for the histogram, to gather observations into groups of 2 cm. each, by
specifying the width of the bins, rather than the number of bins.

cwru.blue <- '#0a304e'
cwru.gray <- '#626262'

ggplot(data = nh_500cc, aes(x = Height)) +
geom_histogram(binwidth = 2,

col = cwru.gray, fill = cwru.blue) +
labs(title = "Height of 500 NHANES Adults",

x = "Height in cm.")
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6.3.2 Using a frequency polygon

A frequency polygon essentially smooths out the top of the histogram, and can also be used
to show the distribution of Height.

ggplot(data = nh_500cc, aes(x = Height)) +
geom_freqpoly(bins = 20) +
labs(title = "Height of 500 NHANES Adults",

x = "Height in cm.")
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6.3.3 Using a dotplot

A dotplot can also be used to show the distribution of a variable like Height, and produces a
somewhat more granular histogram, depending on the settings for binwidth and dotsize.

ggplot(data = nh_500cc, aes(x = Height)) +
geom_dotplot(dotsize = 0.75, binwidth = 1) +
scale_y_continuous(NULL, breaks = NULL) + # hide y axis
labs(title = "Height of 500 NHANES Adults",

x = "Height in cm.")
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6.4 Height and Sex

Let’s look again at the impact of a respondent’s sex on their height, but now within our sample
of adults.

ggplot(data = nh_500cc,
aes(x = Sex, y = Height, color = Sex)) +

geom_point() +
labs(title = "Height by Sex for 500 NHANES Adults",

y = "Height in cm.")

93



160

180

200

female male
Sex

H
ei

gh
t i

n 
cm

.

Sex

female

male

Height by Sex for 500 NHANES Adults

This plot isn’t so useful. We can improve things a little by jittering the points horizontally, so
that the overlap is reduced.

ggplot(data = nh_500cc, aes(x = Sex, y = Height, color = Sex)) +
geom_jitter(width = 0.2) +
labs(title = "Height by Sex (jittered) for 500 NHANES Adults",

y = "Height in cm.")
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Perhaps it might be better to summarize the distribution in a different way. We might consider
a boxplot of the data.

6.4.1 A Boxplot of Height by Sex

ggplot(data = nh_500cc, aes(x = Sex, y = Height, fill = Sex)) +
geom_boxplot() +
labs(title = "Boxplot of Height by Sex for 500 NHANES Adults",

y = "Height in cm.")
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The boxplot shows some summary statistics based on percentiles. The boxes in the middle of
the line show the data values that include the middle half of the data once its been sorted.
The 25th percentile (value that exceeds 1/4 of the data) is indicated by the bottom of the
box, while the top of the box is located at the 75th percentile. The solid line inside the box
indicates the median (also called the 50th percentile) of the Heights for that Sex.

6.4.2 Adding a violin plot

A boxplot is often supplemented with a violin plot to better show the shape of the distribu-
tion.

ggplot(data = nh_500cc, aes(x = Sex, y = Height, fill = Sex)) +
geom_violin() +
geom_boxplot(width = 0.3) +
labs(title = "Boxplot of Height by Sex for 500 NHANES Adults",

y = "Height in cm.")
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This usually works better if the boxes are given a different fill than the violins, as shown in
the following figure.

ggplot(data = nh_500cc, aes(x = Sex, y = Height)) +
geom_violin(aes(fill = Sex)) +
geom_boxplot(width = 0.3) +
labs(title = "Boxplot of Height by Sex for 500 NHANES Adults",

y = "Height in cm.")
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We can also flip the boxplots on their side, using coord_flip().

ggplot(data = nh_500cc, aes(x = Sex, y = Height)) +
geom_violin() +
geom_boxplot(aes(fill = Sex), width = 0.3) +
labs(title = "Boxplot of Height by Sex for 500 NHANES Adults",

y = "Height in cm.") +
coord_flip()
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6.4.3 Histograms of Height by Sex

Or perhaps we’d like to see a pair of faceted histograms?

ggplot(data = nh_500cc, aes(x = Height, fill = Sex)) +
geom_histogram(color = "white", bins = 20) +
labs(title = "Histogram of Height by Sex for 500 NHANES Adults",

x = "Height in cm.") +
facet_wrap(~ Sex)
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Can we redraw these histograms so that they are a little more comparable, and to get rid of
the unnecessary legend?

ggplot(data = nh_500cc, aes(x = Height, fill = Sex)) +
geom_histogram(color = "white", bins = 20) +
labs(title = "Histogram of Height by Sex for 500 NHANES Adults",

x = "Height in cm.") +
guides(fill = "none") +
facet_grid(Sex ~ .)
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6.5 Visualizing Age and Height’s Relationship, by Sex

We can start with a simple scatterplot of the Height (y-axis) and Age (x-axis) relationship
across the subjects in our nh_500cc tibble.

ggplot(data = nh_500cc, aes(x = Age, y = Height)) +
geom_point() +
labs(title = "Height-Age Relationship in 500 NHANES adults")
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Is there a meaningful difference in what this relationship looks like, depending on Sex?

6.5.1 Adding Color to the plot

Let’s add Sex to the plot using color, and also adjust the y axis label to incorporate the units
of measurement.

ggplot(data = nh_500cc, aes(x = Age, y = Height, color = Sex)) +
geom_point() +
labs(title = "Height-Age Relationship in 500 NHANES adults, by Sex",

y = "Height in cm.")
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6.5.2 Can we show the Female and Male relationships in separate panels?

Sure. We can facet the scatterplot into a panel for each Sex, as follows.

ggplot(data = nh_500cc, aes(x = Age, y = Height, color = Sex)) +
geom_point() +
labs(title = "Height-Age Relationship in 500 NHANES adults",

y = "Height in cm.") +
facet_wrap(~ Sex)
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6.5.3 Can we add a smooth curve to show the relationship in each plot?

Yes, by adding a call to the geom_smooth() function. Is there any indication of a strong
relationship between Age and Height in this sample?

ggplot(data = nh_500cc, aes(x = Age, y = Height, color = Sex)) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x) +
labs(title = "Height-Age Relationship in NHANES sample",

y = "Height in cm.") +
facet_wrap(~ Sex)
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6.5.4 What if we want to assume straight line relationships?

We could look at a linear model in each part of the plot instead, and this time, we’ll also
get rid of the redundant legend, using the guides() command. Does assuming a straight line
make much of a difference here?

ggplot(data = nh_500cc, aes(x = Age, y = Height, color = Sex)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x) +
guides(color = "none") +
labs(title = "Height-Age Relationship in NHANES sample",

y = "Height in cm.") +
facet_wrap(~ Sex)
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6.6 Combining Plots with patchwork

The patchwork package in R allows us to use some simple commands to put two plots to-
gether.

Suppose we create two separate plots, which we’ll name p1 and p2, as follows.

p1 <- ggplot(data = nh_500cc, aes(x = Age, y = Height)) +
geom_point() +
labs(title = "Height and Age")

p2 <- ggplot(data = nh_500cc, aes(x = Sex, y = Height)) +
geom_boxplot() +
labs(title = "Height, by Sex")

Now, suppose we want to put them together in a single figure. Thanks to patchwork, we can
simply type in the following.

p1 / p2
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or we can place the images next to each other, and add an annotation, like this:

p1 + p2 +
plot_annotation(title = "Our Combined Plots")
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Our Combined Plots

The patchwork package website provides lots of great examples and guides to make it very
easy to combine separate ggplots into the same graphic. While there are other packages
(gridExtra and cowplot are very nice, for instance) to do this task, I think patchwork is the
most user-friendly, so that’s the focus of these notes.

6.7 Looking at Pulse Rate

Let’s look at a different outcome, the pulse rate for our subjects.

Here’s a histogram, again with CWRU colors, for the pulse rates in our sample.

ggplot(data = nh_500cc, aes(x = Pulse)) +
geom_histogram(binwidth = 1,

fill = cwru.blue, col = cwru.gray) +
labs(title = "Histogram of Pulse Rate: NHANES Adults",

x = "Pulse Rate (beats per minute)")
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Suppose we instead bin up groups of 5 beats per minute together as we plot the Pulse rates.

ggplot(data = nh_500cc, aes(x = Pulse)) +
geom_histogram(binwidth = 5,

fill = cwru.blue, col = cwru.gray) +
labs(title = "Histogram of Pulse Rate: NHANES Adults",

x = "Pulse Rate (beats per minute)")
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Which is the more useful representation will depend a lot on what questions you’re trying to
answer.

6.7.1 Pulse Rate and Physical Activity

We can also split up our data into groups based on whether the subjects are physically active.
Let’s try a boxplot.

ggplot(data = nh_500cc,
aes(y = Pulse, x = PhysActive, fill = PhysActive)) +

geom_boxplot() +
guides(fill = "none") +
labs(title = "Pulse Rate by Physical Activity Status in NHANES Adults")

110



PhysActive count mean(Pulse) median(Pulse)
No 216 74.44 74
Yes 284 73.96 74
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As an accompanying numerical summary, we might ask how many people fall into each of
these PhysActive categories, and what is their “average” Pulse rate.

nh_500cc |>
group_by(PhysActive) |>
summarise(count = n(), mean(Pulse), median(Pulse)) |>
kbl(digits = 2) |>
kable_styling(full_width = FALSE)

The end of this chunk of code tells Quarto to generate a table with some attractive formatting,
and rounding any decimals to two figures.
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6.7.2 Pulse by Sleeping Trouble

ggplot(data = nh_500cc, aes(x = Pulse, fill = SleepTrouble)) +
geom_histogram(color = "white", bins = 20) +
labs(title = "Histogram of Pulse Rate by Sleep Trouble for NHANES Adults",

x = "Pulse Rate (beats per minute)") +
guides(fill = "none") +
facet_grid(SleepTrouble ~ ., labeller = "label_both")
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How many people fall into each of these SleepTrouble categories, and what is their “average”
Pulse rate?

nh_500cc |>
group_by(SleepTrouble) |>
summarise(count = n(), mean(Pulse), median(Pulse)) |>
kbl(digits = 2) |>
kable_styling(full_width = F)
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SleepTrouble count mean(Pulse) median(Pulse)
No 380 73.45 73
Yes 120 76.43 76

6.7.3 Pulse and HealthGen

We can compare the distribution of Pulse rate across groups by the subject’s self-reported
overall health (HealthGen), as well.

ggplot(data = nh_500cc, aes(x = HealthGen, y = Pulse, fill = HealthGen)) +
geom_boxplot() +
labs(title = "Pulse by Self-Reported Overall Health for NHANES Adults",

x = "Self-Reported Overall Health", y = "Pulse Rate") +
guides(fill = "none")
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How many people fall into each of these HealthGen categories, and what is their “average”
Pulse rate?

nh_500cc |>
group_by(HealthGen) |>
summarise(count = n(), mean(Pulse), median(Pulse)) |>
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HealthGen count mean(Pulse) median(Pulse)
Excellent 52 72.08 72
Vgood 167 71.78 72
Good 204 75.22 74
Fair 65 76.55 76
Poor 12 85.50 82

kbl(digits = 2) |>
kable_styling(full_width = F)

6.7.4 Pulse Rate and Systolic Blood Pressure

ggplot(data = nh_500cc, aes(x = SBP, y = Pulse)) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x) +
labs(title = "Pulse Rate vs. SBP for NHANES Adults")
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6.7.5 Sleep Trouble vs. No Sleep Trouble?

Could we see whether subjects who have described SleepTrouble show different SBP-pulse
rate patterns than the subjects who haven’t?

• Let’s try doing this by changing the shape and the color of the points based on
SleepTrouble.

ggplot(data = nh_500cc,
aes(x = SBP, y = Pulse,

color = SleepTrouble, shape = SleepTrouble)) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x) +
labs(title = "Pulse Rate vs. SBP for NHANES Adults")
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This plot might be easier to interpret if we faceted by SleepTrouble, as well.

ggplot(data = nh_500cc,
aes(x = SBP, y = Pulse,

color = SleepTrouble, shape = SleepTrouble)) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x) +
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labs(title = "Pulse Rate vs. SBP for NHANES Adults") +
facet_wrap(~ SleepTrouble, labeller = "label_both")
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6.8 General Health Status

Here’s a Table of the General Health Status results. Again, this is a self-reported rating of
each subject’s health on a five point scale (Excellent, Very Good, Good, Fair, Poor.)

nh_500cc |>
tabyl(HealthGen)

HealthGen n percent
Excellent 52 0.104

Vgood 167 0.334
Good 204 0.408
Fair 65 0.130
Poor 12 0.024

The HealthGen data are categorical, which means that summarizing them with averages isn’t
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as appealing as looking at percentages, proportions and rates. The tabyl function comes from
the janitor package in R.

• I don’t actually like the title of percent here, as it’s really a proportion, but that can
be adjusted, and we can add a total.

nh_500cc |>
tabyl(HealthGen) |>
adorn_totals() |>
adorn_pct_formatting()

HealthGen n percent
Excellent 52 10.4%

Vgood 167 33.4%
Good 204 40.8%
Fair 65 13.0%
Poor 12 2.4%
Total 500 100.0%

When working with an unordered categorical variable, like MaritalStatus, the same approach
can work.

nh_500cc |>
tabyl(MaritalStatus) |>
adorn_totals() |>
adorn_pct_formatting()

MaritalStatus n percent
Divorced 47 9.4%

LivePartner 46 9.2%
Married 256 51.2%

NeverMarried 125 25.0%
Separated 17 3.4%
Widowed 9 1.8%
Total 500 100.0%

6.8.1 Bar Chart for Categorical Data

Usually, a bar chart is the best choice for graphing a variable made up of categories.
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ggplot(data = nh_500cc, aes(x = HealthGen)) +
geom_bar()

0

50

100

150

200

Excellent Vgood Good Fair Poor
HealthGen

co
un

t

There are lots of things we can do to make this plot fancier.

ggplot(data = nh_500cc, aes(x = HealthGen, fill = HealthGen)) +
geom_bar() +
guides(fill = "none") +
labs(x = "Self-Reported Health Status",

y = "Number of NHANES subjects",
title = "Self-Reported Health Status in NHANES Adults")
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Or, we can really go crazy…

nh_500cc |>
count(HealthGen) |>
mutate(pct = round_half_up(prop.table(n) * 100, 1)) |>
ggplot(aes(x = HealthGen, y = pct, fill = HealthGen)) +
geom_bar(stat = "identity", position = "dodge") +
scale_fill_viridis_d() +
guides(fill = "none") +
geom_text(aes(y = pct + 1, # nudge above top of bar

label = paste0(pct, '%')), # prettify
position = position_dodge(width = .9),
size = 4) +

labs(x = "Self-Reported Health Status",
y = "Percentage of Subjects",
title = "Self-Reported Health Status in NHANES Adults")
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6.9 Two-Way Tables

We can create cross-classifications of two categorical variables (for example HealthGen and
Smoke100), adding both row and column marginal totals, and compare subjects by Sex, as
follows…

nh_500cc |>
tabyl(Smoke100, HealthGen) |>
adorn_totals(c("row", "col")) |>
adorn_title()

HealthGen
Smoke100 Excellent Vgood Good Fair Poor Total

No 44 108 105 29 5 291
Yes 8 59 99 36 7 209

Total 52 167 204 65 12 500

If we like, we can make this look a little more polished with the kbl() and kable_styling()
functions from the kableExtra package.
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HealthGen
Smoke100 Excellent Vgood Good Fair Poor Total

No 44 108 105 29 5 291
Yes 8 59 99 36 7 209
Total 52 167 204 65 12 500

HealthGen
Smoke100 Excellent Vgood Good Fair Poor

No 15.1% (44) 37.1% (108) 36.1% (105) 10.0% (29) 1.7% (5)
Yes 3.8% (8) 28.2% (59) 47.4% (99) 17.2% (36) 3.3% (7)
Total 10.4% (52) 33.4% (167) 40.8% (204) 13.0% (65) 2.4% (12)

nh_500cc |>
tabyl(Smoke100, HealthGen) |>
adorn_totals(c("row", "col")) |>
adorn_title() |>
kbl(align = 'crrrrr') |>
kable_styling(position = "center", full_width = FALSE)

Or, we can get a complete cross-tabulation, including (in this case) the percentages of people
within each of the two categories of Smoke100 that fall in each HealthGen category (percentages
within each row) like this.

nh_500cc |>
tabyl(Smoke100, HealthGen) |>
adorn_totals("row") |>
adorn_percentages("row") |>
adorn_pct_formatting() |>
adorn_ns() |>
adorn_title() |>
kbl(align = 'crrrrr') |>
kable_styling(position = "center", full_width = FALSE)

And, if we wanted the column percentages, to determine which sex had the higher rate of each
HealthGen status level, we can get that by changing the adorn_percentages to describe results
at the column level:

nh_500cc |>
tabyl(Sex, HealthGen) |>
adorn_totals("col") |>
adorn_percentages("col") |>
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HealthGen
Sex Excellent Vgood Good Fair Poor Total

female 63.5% (33) 44.3% (74) 43.6% (89) 47.7% (31) 75.0% (9) 47.2% (236)
male 36.5% (19) 55.7% (93) 56.4% (115) 52.3% (34) 25.0% (3) 52.8% (264)

adorn_pct_formatting() |>
adorn_ns() |>
adorn_title() |>
kbl(align = 'crrrrr') |>
kable_styling(position = "center", full_width = FALSE)

6.10 SBP by General Health Status

Let’s consider now the relationship between self-reported overall health and systolic blood
pressure.

ggplot(data = nh_500cc, aes(x = HealthGen, y = SBP,
fill = HealthGen)) +

geom_boxplot() +
labs(title = "SBP by Health Status, Overall Health for NHANES Adults",

y = "Systolic Blood Pressure",
x = "Self-Reported Overall Health") +

guides(fill = "none")
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HealthGen count mean(SBP) median(SBP)
Excellent 52 113.9231 113
Vgood 167 117.5928 118
Good 204 121.5931 120
Fair 65 120.3846 118
Poor 12 122.8333 124
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We can see that not too many people self-identify with the “Poor” health category.

nh_500cc |>
group_by(HealthGen) |>
summarise(count = n(), mean(SBP), median(SBP)) |>
kbl() |>
kable_styling(position = "center", full_width = FALSE)

6.10.1 SBP by Physical Activity and General Health Status

We’ll build a panel of boxplots to try to understand the relationships between Systolic Blood
Pressure, General Health Status and Physical Activity. Note the use of coord_flip to rotate
the graph 90 degrees, and the use of labeller within facet_wrap to include both the name
of the (Physical Activity) variable and its value.
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ggplot(data = nh_500cc, aes(x = HealthGen, y = SBP, fill = HealthGen)) +
geom_boxplot() +
labs(title = "SBP by Health Status, Overall Health for NHANES Adults",

y = "Systolic BP", x = "Self-Reported Overall Health") +
guides(fill = "none") +
facet_wrap(~ PhysActive, labeller = "label_both") +
coord_flip()
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6.10.2 SBP by Sleep Trouble and General Health Status

Here’s a plot of faceted histograms, which might be used to address similar questions related
to the relationship between Overall Health, Systolic Blood Pressure and whether someone has
trouble sleeping.

ggplot(data = nh_500cc, aes(x = SBP, fill = HealthGen)) +
geom_histogram(color = "white", bins = 20) +
labs(title = "SBP by Overall Health and Sleep Trouble for NHANES Adults",

x = "Systolic BP") +
guides(fill = "none") +
facet_grid(SleepTrouble ~ HealthGen, labeller = "label_both")
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6.11 Conclusions

This is just a small piece of the toolbox for visualizations that we’ll create in this class. Many
additional tools are on the way, but the main idea won’t change. Using the ggplot2 package,
we can accomplish several critical tasks in creating a visualization, including:

• Identifying (and labeling) the axes and titles
• Identifying a type of geom to use, like a point, bar or histogram
• Changing fill, color, shape, size to facilitate comparisons
• Building “small multiples” of plots with faceting

Good data visualizations make it easy to see the data, and ggplot2’s tools make it relatively
difficult to make a really bad graph.
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7 Summarizing Quantities

Most numerical summaries that might be new to you are applied most appropriately to quan-
titative variables. The measures that will interest us relate to:

• the center of our distribution,
• the spread of our distribution, and
• the shape of our distribution.

7.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(gtsummary)
library(kableExtra)
library(patchwork)
library(summarytools)
library(tidyverse)

theme_set(theme_bw())

This chapter also requires that the Hmisc, mosaic, and psych packages are loaded on your
machine, but these packages are not loaded with library() above.

7.2 Working with the nh_750 data

To demonstrate key ideas in this Chapter, we will consider our sample of 750 adults ages 21-64
from NHANES 2011-12 which includes some missing values. We’ll load into the nh_750 data
frame the information from the nh_adult750.Rds file we created in Section 4.3.2.

nh_750 <- read_rds("data/nh_adult750.Rds")
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7.3 The summary function for Quantitative data

R provides a small sampling of numerical summaries with the summary function, for instance.

nh_750 |>
select(Age, BMI, SBP, DBP, Pulse) |>
summary()

Age BMI SBP DBP
Min. :21.00 Min. :16.70 Min. : 83.0 Min. : 0.00
1st Qu.:30.00 1st Qu.:24.20 1st Qu.:108.0 1st Qu.: 66.00
Median :40.00 Median :27.90 Median :118.0 Median : 73.00
Mean :40.82 Mean :29.08 Mean :118.8 Mean : 72.69
3rd Qu.:51.00 3rd Qu.:32.10 3rd Qu.:127.0 3rd Qu.: 80.00
Max. :64.00 Max. :80.60 Max. :209.0 Max. :108.00

NA's :5 NA's :33 NA's :33
Pulse

Min. : 40.00
1st Qu.: 66.00
Median : 72.00
Mean : 73.53
3rd Qu.: 80.00
Max. :124.00
NA's :32

This basic summary includes a set of five quantiles1, plus the sample’s mean.

• Min. = the minimum value for each variable, so, for example, the youngest subject’s
Age was 21.

• 1st Qu. = the first quartile (25th percentile) for each variable - for example, 25% of
the subjects were Age 30 or younger.

• Median = the median (50th percentile) - half of the subjects were Age 40 or younger.
• Mean = the mean, usually what one means by an average - the sum of the Ages divided

by 750 is 40.8,
• 3rd Qu. = the third quartile (75th percentile) - 25% of the subjects were Age 51 or

older.
• Max. = the maximum value for each variable, so the oldest subject was Age 64.

The summary also specifies the number of missing values for each variable. Here, we are
missing 5 of the BMI values, for example.

1The quantiles (sometimes referred to as percentiles) can also be summarized with a boxplot.
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7.4 Measuring the Center of a Distribution

7.4.1 The Mean and The Median

The mean and median are the most commonly used measures of the center of a distribution
for a quantitative variable. The median is the more generally useful value, as it is relevant
even if the data have a shape that is not symmetric. We might also collect the sum of the
observations, and the count of the number of observations, usually symbolized with n.

For variables without missing values, like Age, this is pretty straightforward.

nh_750 |>
summarise(n = n(), Mean = mean(Age), Median = median(Age), Sum = sum(Age))

# A tibble: 1 x 4
n Mean Median Sum

<int> <dbl> <dbl> <int>
1 750 40.8 40 30616

And again, the Mean is just the Sum (30616), divided by the number of non-missing values of
Age (750), or 40.8213333.

The Median is the middle value when the data are sorted in order. When we have an odd
number of values, this is sufficient. When we have an even number, as in this case, we take
the mean of the two middle values. We could sort and list all 500 Ages, if we wanted to do
so.

nh_750 |> select(Age) |>
arrange(Age)

# A tibble: 750 x 1
Age

<int>
1 21
2 21
3 21
4 21
5 21
6 21
7 21
8 21
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9 21
10 21
# i 740 more rows

But this data set figures we don’t want to output more than 10 observations to a table like
this.

If we really want to see all of the data, we can use View(nh_750) to get a spreadsheet-style
presentation, or use the sort command…

sort(nh_750$Age)

[1] 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 22 22 22
[26] 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23
[51] 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 24
[76] 24 24 24 24 24 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25
[101] 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27
[126] 27 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28
[151] 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30
[176] 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 31 31 31 31 31 31
[201] 31 31 31 31 31 31 31 31 31 31 31 31 31 32 32 32 32 32 32 32 32 32 32 32 32
[226] 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 33 33 33 33 33 33 33 33 33
[251] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 34 34 34 34 34 34 34 34 34 34
[276] 34 34 34 34 35 35 35 35 35 35 35 35 35 35 35 36 36 36 36 36 36 36 36 36 36
[301] 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 37 37 37 37 37 37 37 37 37
[326] 37 37 37 37 37 37 37 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
[351] 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 40 40 40 40 40 40
[376] 40 40 40 40 40 40 40 40 40 40 40 40 41 41 41 41 41 41 41 41 41 41 41 41 41
[401] 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 43 43 43 43 43 43
[426] 43 43 43 43 43 43 43 43 43 43 43 43 44 44 44 44 44 44 44 44 44 44 44 44 44
[451] 44 44 44 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 46 46 46 46 46
[476] 46 46 46 46 46 46 46 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
[501] 47 48 48 48 48 48 48 48 48 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49
[526] 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
[551] 50 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 52 52 52 52
[576] 52 52 52 52 52 52 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 54 54
[601] 54 54 54 54 54 54 54 54 54 54 54 54 54 54 55 55 55 55 55 55 55 55 55 55 56
[626] 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 57 57 57 57 57 57 57
[651] 57 57 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 59 59 59 59 59
[676] 59 59 59 59 59 59 59 59 60 60 60 60 60 60 60 60 60 60 60 60 60 61 61 61 61
[701] 61 61 61 61 61 61 61 61 61 61 62 62 62 62 62 62 62 62 62 62 62 62 62 63 63
[726] 63 63 63 63 63 63 63 63 63 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64 64
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Again, to find the median, we would take the mean of the middle two observations in this
sorted data set. That would be the 250th and 251st largest Ages.

sort(nh_750$Age)[250:251]

[1] 33 33

7.4.2 Dealing with Missingness

When calculating a mean, you may be tempted to try something like this…

nh_750 |>
summarise(mean(Pulse), median(Pulse))

# A tibble: 1 x 2
`mean(Pulse)` `median(Pulse)`

<dbl> <int>
1 NA NA

This fails because we have some missing values in the Pulse data. We can address this by
either omitting the data with missing values before we run the summarise() function, or tell
the mean and median summary functions to remove missing values2.

nh_750 |>
filter(complete.cases(Pulse)) |>
summarise(count = n(), mean(Pulse), median(Pulse))

# A tibble: 1 x 3
count `mean(Pulse)` `median(Pulse)`
<int> <dbl> <dbl>

1 718 73.5 72

Or, we could tell the summary functions themselves to remove NA values.

nh_750 |>
summarise(mean(Pulse, na.rm=TRUE), median(Pulse, na.rm=TRUE))

2We could also use !is.na in place of complete.cases to accomplish the same thing.
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# A tibble: 1 x 2
`mean(Pulse, na.rm = TRUE)` `median(Pulse, na.rm = TRUE)`

<dbl> <dbl>
1 73.5 72

In Chapter 9, we will discuss various assumptions we can make about missing data, and the
importance of imputation when dealing with it in modeling or making inferences. For now,
we will limit our descriptive summaries to observed values, in what are called complete case
or available case analyses.

7.4.3 The Mode of a Quantitative Variable

One other less common measure of the center of a quantitative variable’s distribution is its
most frequently observed value, referred to as the mode. This measure is only appropriate for
discrete variables, be they quantitative or categorical. To find the mode, we usually tabulate
the data, and then sort by the counts of the numbers of observations.

nh_750 |>
group_by(Age) |>
summarise(count = n()) |>
arrange(desc(count))

# A tibble: 44 x 2
Age count

<int> <int>
1 32 28
2 36 26
3 50 26
4 30 24
5 33 24
6 24 23
7 21 22
8 22 22
9 23 22
10 28 20
# i 34 more rows

The mode is just the most common Age observed in the data.

Note the use of three different “verbs” in our function there - for more explanation of this
strategy, visit Hadley Wickham and Grolemund (2023). The group_by function here is very
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useful. It converts the nh_750 data frame into a new grouped tibble where operations are
performed on the groups. Here, this means that it groups the data by Age before counting
observations, and then sorting the groups (the Ages) by their frequencies.

As an alternative, the modeest package’s mlv function calculates the sample mode (or most
frequent value) 3.

7.5 Measuring the Spread of a Distribution

Statistics is all about variation, so spread or dispersion is an important fundamental concept
in statistics. Measures of spread like the inter-quartile range and range (maximum - minimum)
can help us understand and compare data sets. If the values in the data are close to the center,
the spread will be small. If many of the values in the data are scattered far away from the
center, the spread will be large.

7.5.1 The Range and the Interquartile Range (IQR)

The range of a quantitative variable is sometimes interpreted as the difference between the
maximum and the minimum, even though R presents the actual minimum and maximum
values when you ask for a range…

nh_750 |>
select(Age) |>
range()

[1] 21 64

And, for a variable with missing values, we can use…

nh_750 |>
select(BMI) |>
filter(complete.cases(BMI)) |>
range()

[1] 16.7 80.6

3See the documentation for the modeest package’s mlv function to look at other definitions of the mode.
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A more interesting and useful statistic is the inter-quartile range, or IQR, which is the
range of the middle half of the distribution, calculated by subtracting the 25th percentile value
from the 75th percentile value.

nh_750 |>
summarise(IQR(Age), quantile(Age, 0.25), quantile(Age, 0.75))

# A tibble: 1 x 3
`IQR(Age)` `quantile(Age, 0.25)` `quantile(Age, 0.75)`

<dbl> <dbl> <dbl>
1 21 30 51

We can calculate the range and IQR nicely from the summary information on quantiles, of
course:

nh_750 |>
select(Age, BMI, SBP, DBP, Pulse) |>
summary()

Age BMI SBP DBP
Min. :21.00 Min. :16.70 Min. : 83.0 Min. : 0.00
1st Qu.:30.00 1st Qu.:24.20 1st Qu.:108.0 1st Qu.: 66.00
Median :40.00 Median :27.90 Median :118.0 Median : 73.00
Mean :40.82 Mean :29.08 Mean :118.8 Mean : 72.69
3rd Qu.:51.00 3rd Qu.:32.10 3rd Qu.:127.0 3rd Qu.: 80.00
Max. :64.00 Max. :80.60 Max. :209.0 Max. :108.00

NA's :5 NA's :33 NA's :33
Pulse

Min. : 40.00
1st Qu.: 66.00
Median : 72.00
Mean : 73.53
3rd Qu.: 80.00
Max. :124.00
NA's :32

7.5.2 The Variance and the Standard Deviation

The IQR is always a reasonable summary of spread, just as the median is always a reasonable
summary of the center of a distribution. Yet, most people are inclined to summarize a batch
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of data using two numbers: the mean and the standard deviation. This is really only a
sensible thing to do if you are willing to assume the data follow a Normal distribution: a
bell-shaped, symmetric distribution without substantial outliers.

But most data do not (even approximately) follow a Normal distribution. Summa-
rizing by the median and quartiles (25th and 75th percentiles) is much more robust, explaining
R’s emphasis on them.

7.5.3 Obtaining the Variance and Standard Deviation in R

Here are the variances of the quantitative variables in the nh_750 data. Note the need to
include na.rm = TRUE to deal with the missing values in some variables.

nh_750 |>
select(Age, BMI, SBP, DBP, Pulse) |>
summarise_all(var, na.rm = TRUE)

# A tibble: 1 x 5
Age BMI SBP DBP Pulse

<dbl> <dbl> <dbl> <dbl> <dbl>
1 157. 52.4 229. 128. 136.

And here are the standard deviations of those same variables.

nh_750 |>
select(Age, BMI, SBP, DBP, Pulse) |>
summarise_all(sd, na.rm = TRUE)

# A tibble: 1 x 5
Age BMI SBP DBP Pulse

<dbl> <dbl> <dbl> <dbl> <dbl>
1 12.5 7.24 15.1 11.3 11.6

7.5.4 Defining the Variance and Standard Deviation

Bock, Velleman, and De Veaux (2004) have lots of useful thoughts here, which are lightly
edited here.

In thinking about spread, we might consider how far each data value is from the mean. Such
a difference is called a deviation. We could just average the deviations, but the positive and
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negative differences always cancel out, leaving an average deviation of zero, so that’s not
helpful. Instead, we square each deviation to obtain non-negative values, and to emphasize
larger differences. When we add up these squared deviations and find their mean (almost),
this yields the variance.

Variance = 𝑠2 = Σ(𝑦 − ̄𝑦)2

𝑛 − 1

Why almost? It would be the mean of the squared deviations only if we divided the sum
by 𝑛, but instead we divide by 𝑛 − 1 because doing so produces an estimate of the true
(population) variance that is unbiased4. If you’re looking for a more intuitive explanation,
this Stack Exchange link awaits your attention.

• To return to the original units of measurement, we take the square root of 𝑠2, and instead
work with 𝑠, the standard deviation, also abbreviated SD.

Standard Deviation = 𝑠 = √Σ(𝑦 − ̄𝑦)2

𝑛 − 1

7.5.5 Interpreting the SD when the data are Normally distributed

For a set of measurements that follow a Normal distribution, the interval:

• Mean ± Standard Deviation contains approximately 68% of the measurements;
• Mean ± 2(Standard Deviation) contains approximately 95% of the measurements;
• Mean ± 3(Standard Deviation) contains approximately all (99.7%) of the measurements.

We often refer to the population or process mean of a distribution with 𝜇 and the standard
deviation with 𝜎, leading to the Figure below.

But if the data are not from an approximately Normal distribution, then this Empirical Rule
is less helpful.

4When we divide by n-1 as we calculate the sample variance, the average of the sample variances for all possible
samples is equal to the population variance. If we instead divided by n, the average sample variance across
all possible samples would be a little smaller than the population variance.
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Figure 7.1: The Normal Distribution and the Empirical Rule
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7.5.6 Chebyshev’s Inequality: One Interpretation of the Standard Deviation

Chebyshev’s Inequality tells us that for any distribution, regardless of its relationship to a
Normal distribution, no more than 1/k2 of the distribution’s values can lie more than k stan-
dard deviations from the mean. This implies, for instance, that for any distribution, at least
75% of the values must lie within two standard deviations of the mean, and at least 89% must
lie within three standard deviations of the mean.

Again, most data sets do not follow a Normal distribution. We’ll return to this notion soon.
But first, let’s try to draw some pictures that let us get a better understanding of the distri-
bution of our data.

7.6 Measuring the Shape of a Distribution

When considering the shape of a distribution, one is often interested in three key points.

• The number of modes in the distribution, which I always assess through plotting the
data.

• The skewness, or symmetry that is present, which I typically assess by looking at a plot
of the distribution of the data, but if required to, will summarize with a non-parametric
measure of skewness, that we will discuss in Section 10.13.

• The kurtosis, or heavy-tailedness (outlier-proneness) that is present, usually in com-
parison to a Normal distribution. Again, this is something I nearly inevitably assess
graphically, but there are measures.

A Normal distribution has a single mode, is symmetric and, naturally, is neither heavy-tailed
nor light-tailed as compared to a Normal distribution (we call this mesokurtic).

7.6.1 Multimodal vs. Unimodal distributions

A unimodal distribution, on some level, is straightforward. It is a distribution with a single
mode, or “peak” in the distribution. Such a distribution may be skewed or symmetric, light-
tailed or heavy-tailed. We usually describe as multimodal distributions like the two on the
right below, which have multiple local maxima, even though they have just a single global
maximum peak.

Truly multimodal distributions are usually described that way in terms of shape. For unimodal
distributions, skewness and kurtosis become useful ideas.
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Figure 7.2: Unimodal and Multimodal Sketches

7.6.2 Skew

Whether or not a distribution is approximately symmetric is an important consideration in
describing its shape. Graphical assessments are always most useful in this setting, particularly
for unimodal data. My favorite measure of skew, or skewness if the data have a single mode,
is:

𝑠𝑘𝑒𝑤1 = mean − median
standard deviation

• Symmetric distributions generally show values of 𝑠𝑘𝑒𝑤1 near zero. If the distribution is
actually symmetric, the mean should be equal to the median.

• Distributions with 𝑠𝑘𝑒𝑤1 values above 0.2 in absolute value generally indicate meaningful
skew.

• Positive skew (mean > median if the data are unimodal) is also referred to as right skew.
• Negative skew (mean < median if the data are unimodal) is referred to as left skew.

Figure 7.3: Negative (Left) Skew and Positive (Right) Skew
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7.6.3 Kurtosis

When we have a unimodal distribution that is symmetric, we will often be interested in the
behavior of the tails of the distribution, as compared to a Normal distribution with the same
mean and standard deviation. High values of kurtosis measures (and there are several) indicate
data which has extreme outliers, or is heavy-tailed.

• A mesokurtic distribution has similar tail behavior to what we would expect from a
Normal distribution.

• A leptokurtic distribution is a thinner, more slender distribution, with heavier tails than
we’d expect from a Normal distribution. One example is the t distribution.

• A platykurtic distribution is a broader, flatter distribution, with thinner tails than we’d
expect from a Normal distribution. One example is a uniform distribution.

The visualization below (shown after the code) displays these three types of distributions.

set.seed(431)
sims_kurt <- tibble(meso = rnorm(n = 300, mean = 0, sd = 1),

lepto = rt(n = 300, df = 4),
platy = runif(n = 300, min = -2, max = 2))

p1 <- ggplot(sims_kurt, aes(x = meso)) +
geom_histogram(aes(y = stat(density)),

bins = 25, fill = "royalblue", col = "white") +
stat_function(fun = dnorm,

args = list(mean = mean(sims_kurt$meso),
sd = sd(sims_kurt$meso)),

col = "red") +
labs(title = "Normal (mesokurtic)")

p1a <- ggplot(sims_kurt, aes(x = meso, y = "")) +
geom_violin() +
geom_boxplot(fill = "royalblue", outlier.color = "royalblue", width = 0.3) +
labs(y = "", x = "Normal (mesokurtic)")

p2 <- ggplot(sims_kurt, aes(x = lepto)) +
geom_histogram(aes(y = stat(density)),

bins = 25, fill = "tomato", col = "white") +
stat_function(fun = dnorm,

args = list(mean = mean(sims_kurt$lepto),
sd = sd(sims_kurt$lepto)),

col = "royalblue") +
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labs(title = "t (leptokurtic)")

p2a <- ggplot(sims_kurt, aes(x = lepto, y = "")) +
geom_violin() +
geom_boxplot(fill = "tomato", outlier.color = "tomato", width = 0.3) +
labs(y = "", x = "t (slender with heavy tails)")

p3 <- ggplot(sims_kurt, aes(x = platy)) +
geom_histogram(aes(y = stat(density)),

bins = 25, fill = "yellow", col = "black") +
stat_function(fun = dnorm,

args = list(mean = mean(sims_kurt$platy),
sd = sd(sims_kurt$platy)),

col = "royalblue", lwd = 1.5) +
xlim(-3, 3) +
labs(title = "Uniform (platykurtic)")

p3a <- ggplot(sims_kurt, aes(x = platy, y = "")) +
geom_violin() +
geom_boxplot(fill = "yellow", width = 0.3) +
xlim(-3, 3) +
labs(y = "", x = "Uniform (broad with thin tails)")

(p1 + p2 + p3) / (p1a + p2a + p3a) +
plot_layout(heights = c(3, 1))
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Graphical tools are in most cases the best way to identify issues related to kurtosis, and
we usually only focus on kurtosis if we are willing to assume symmetry (or at least lack of
meaningful skew) in our data.

7.7 Multiple Summaries at once

7.7.1 favstats() from the mosaic package

The favstats function adds the standard deviation, and counts of overall and missing obser-
vations to our usual summary for a continuous variable. Let’s look at systolic blood pressure,
because we haven’t yet.

mosaic::favstats(~ SBP, data = nh_750)

min Q1 median Q3 max mean sd n missing
83 108 118 127 209 118.7908 15.14329 717 33

We could, of course, duplicate these results with several summarise() pieces…
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nh_750 |>
filter(complete.cases(SBP)) |>
summarise(min = min(SBP), Q1 = quantile(SBP, 0.25),

median = median(SBP), Q3 = quantile(SBP, 0.75),
max = max(SBP), mean = mean(SBP),
sd = sd(SBP), n = n(), miss = sum(is.na(SBP))) |>

kbl(digits = 2)

min Q1 median Q3 max mean sd n miss
83 108 118 127 209 118.79 15.14 717 0

The somewhat unusual structure of favstats (complete with an easy to forget ~) is actually
helpful. It allows you to look at some interesting grouping approaches, like this:

mosaic::favstats(SBP ~ Education, data = nh_750)

Education min Q1 median Q3 max mean sd n missing
1 8th Grade 96 110.25 119.5 129.75 167 122.4565 16.34993 46 4
2 9 - 11th Grade 85 107.75 116.0 127.00 191 118.8026 15.79453 76 0
3 High School 84 111.50 120.5 129.00 209 121.0882 16.52853 136 7
4 Some College 85 108.00 117.0 126.00 186 118.6293 14.32736 232 9
5 College Grad 83 107.00 117.0 125.00 171 116.8326 14.41202 227 13

Of course, we could accomplish the same comparison with dplyr commands, too, but the
favstats approach has much to offer.

nh_750 |>
filter(complete.cases(SBP, Education)) |>
group_by(Education) |>
summarise(min = min(SBP), Q1 = quantile(SBP, 0.25),

median = median(SBP), Q3 = quantile(SBP, 0.75),
max = max(SBP), mean = mean(SBP),
sd = sd(SBP), n = n(), miss = sum(is.na(SBP))) |>

kbl(digits = 2)

Education min Q1 median Q3 max mean sd n miss
8th Grade 96 110.25 119.5 129.75 167 122.46 16.35 46 0
9 - 11th Grade 85 107.75 116.0 127.00 191 118.80 15.79 76 0
High School 84 111.50 120.5 129.00 209 121.09 16.53 136 0
Some College 85 108.00 117.0 126.00 186 118.63 14.33 232 0
College Grad 83 107.00 117.0 125.00 171 116.83 14.41 227 0
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Age BMI DBP Pulse SBP
Mean 40.82 29.08 72.69 73.53 118.79
Std.Dev 12.54 7.24 11.34 11.65 15.14
Min 21.00 16.70 0.00 40.00 83.00
Q1 30.00 24.20 66.00 66.00 108.00
Median 40.00 27.90 73.00 72.00 118.00
Q3 51.00 32.10 80.00 80.00 127.00
Max 64.00 80.60 108.00 124.00 209.00
MAD 14.83 5.93 10.38 11.86 13.34
IQR 21.00 7.90 14.00 14.00 19.00
CV 0.31 0.25 0.16 0.16 0.13
Skewness 0.16 1.72 -0.28 0.48 0.96
SE.Skewness 0.09 0.09 0.09 0.09 0.09
Kurtosis -1.15 6.16 2.59 0.73 3.10
N.Valid 750.00 745.00 717.00 718.00 717.00
Pct.Valid 100.00 99.33 95.60 95.73 95.60

7.7.2 Using descr() from summarytools

The descr() function from the summarytools package produces numerous numerical sum-
maries for quantities.

nh_750 |>
select(Age, BMI, SBP, DBP, Pulse) |>
descr() |>
kbl(digits = 2) |>
kable_styling(full_width = F)

The additional statistics presented here are:

• MAD = the median absolute deviation (from the median), which can be used in a manner
similar to the standard deviation or IQR to measure spread.

– If the data are 𝑌1, 𝑌2, ..., 𝑌𝑛, then the MAD is defined as 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑌𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑌𝑖)|).
– To find the MAD for a set of numbers, find the median, subtract the median from

each value and find the absolute value of that difference, and then find the median
of those absolute differences.

– For non-normal data with a skewed shape but tails well approximated by the Nor-
mal, the MAD is likely to be a better (more robust) estimate of the spread than is
the standard deviation.

• CV = the coefficient of variation, or the standard deviation divided by the mean
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Age BMI DBP Pulse SBP
Mean 40.82 29.08 72.69 73.53 118.79
Std.Dev 12.54 7.24 11.34 11.65 15.14
Min 21.00 16.70 0.00 40.00 83.00
Median 40.00 27.90 73.00 72.00 118.00
Max 64.00 80.60 108.00 124.00 209.00
N.Valid 750.00 745.00 717.00 718.00 717.00
Pct.Valid 100.00 99.33 95.60 95.73 95.60

• a measure of Skewness and its standard error. This Skewness measure refers to how
much asymmetry is present in the shape of the distribution. The measure is not the
same as the nonparametric skew measure that we will usually prefer and that we discuss
further in Section 10.13.

• Our nonparametric skew measure is just the difference between the mean and the median,
divided by the standard deviation.

• The Wikipedia page on skewness is very detailed.
• a measure of Kurtosis, which refers to how outlier-prone, or heavy-tailed the shape of

the distribution is, as compared to a Normal distribution.
• the number of valid (non-missing) observations in each variable.

Recall that in Chapter 3, we saw the use of an adjustment to show only “common” summaries.
We can pick and choose from the entire list of available summaries. See the summarytools
package vignette for more details.

nh_750 |>
select(Age, BMI, SBP, DBP, Pulse) |>
descr(stats = "common") |>
kbl(digits = 2) |>
kable_styling(full_width = F)

7.7.3 describe in the psych package

The psych package has an even more detailed list of numerical summaries for quantitative
variables that lets us look at a group of observations at once.

psych::describe(nh_750 |> select(Age, BMI, SBP, DBP, Pulse))

vars n mean sd median trimmed mad min max range skew
Age 1 750 40.82 12.54 40.0 40.53 14.83 21.0 64.0 43.0 0.16
BMI 2 745 29.08 7.24 27.9 28.31 5.93 16.7 80.6 63.9 1.72
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SBP 3 717 118.79 15.14 118.0 117.88 13.34 83.0 209.0 126.0 0.96
DBP 4 717 72.69 11.34 73.0 72.65 10.38 0.0 108.0 108.0 -0.28
Pulse 5 718 73.53 11.65 72.0 73.11 11.86 40.0 124.0 84.0 0.48

kurtosis se
Age -1.15 0.46
BMI 6.16 0.27
SBP 3.10 0.57
DBP 2.59 0.42
Pulse 0.73 0.43

The additional statistics presented here, beyond those discussed previously, are:

• trimmed = a trimmed mean (by default in this function, this removes the top and bottom
10% from the data, then computes the mean of the remaining values - the middle 80%
of the full data set.)

• se = the standard error of the sample mean, equal to the sample sd divided by the
square root of the sample size.

7.7.4 The Hmisc package’s version of describe

Hmisc::describe(nh_750 |>
select(Age, BMI, SBP, DBP, Pulse))

select(nh_750, Age, BMI, SBP, DBP, Pulse)

5 Variables 750 Observations
--------------------------------------------------------------------------------
Age

n missing distinct Info Mean Gmd .05 .10
750 0 44 0.999 40.82 14.46 22 24
.25 .50 .75 .90 .95
30 40 51 59 62

lowest : 21 22 23 24 25, highest: 60 61 62 63 64
--------------------------------------------------------------------------------
BMI

n missing distinct Info Mean Gmd .05 .10
745 5 250 1 29.08 7.538 20.22 21.30
.25 .50 .75 .90 .95

24.20 27.90 32.10 37.60 41.28

145



lowest : 16.7 17.6 17.8 17.9 18 , highest: 59.1 62.8 63.3 69 80.6
--------------------------------------------------------------------------------
SBP

n missing distinct Info Mean Gmd .05 .10
717 33 81 0.999 118.8 16.36 98.0 102.0
.25 .50 .75 .90 .95

108.0 118.0 127.0 137.0 144.2

lowest : 83 84 85 86 89, highest: 171 179 186 191 209
--------------------------------------------------------------------------------
DBP

n missing distinct Info Mean Gmd .05 .10
717 33 66 0.999 72.69 12.43 55 59
.25 .50 .75 .90 .95
66 73 80 86 91

lowest : 0 25 41 42 44, highest: 104 105 106 107 108
--------------------------------------------------------------------------------
Pulse

n missing distinct Info Mean Gmd .05 .10
718 32 37 0.997 73.53 12.95 56 60
.25 .50 .75 .90 .95
66 72 80 88 94

lowest : 40 44 46 48 50, highest: 108 112 114 118 124
--------------------------------------------------------------------------------

The Hmisc package’s version of describe for a distribution of data presents three new ideas,
in addition to a more comprehensive list of quartiles (the 5th, 10th, 25th, 50th, 75th, 90th and
95th are shown) and the lowest and highest few observations. These are:

• distinct - the number of different values observed in the data.
• Info - a measure of how “continuous” the variable is, related to how many “ties” there

are in the data, with Info taking a higher value (closer to its maximum of one) if the
data are more continuous.

• Gmd - the Gini mean difference - a robust measure of spread that is calculated as the mean
absolute difference between any pairs of observations. Larger values of Gmd indicate
more spread-out distributions. (Gini is usually pronounced as “Genie”.)
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7.7.5 Using tbl_summary() from gtsummary

If you want to produce results which look like you might expect to see in a published paper,
the tbl_summary() function from the gtsummary package has many nice features. Here, we’ll
just show the medians, and 25th and 75th percentiles. Recall that we looked at some other
options for this tool back in Chapter 3.

nh_750 |>
select(Age, BMI, SBP, DBP, Pulse) |>
tbl_summary()

Table printed with `knitr::kable()`, not {gt}. Learn why at
https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

**Characteristic** **N = 750**
Age 40 (30, 51)
BMI 28 (24, 32)
Unknown 5
SBP 118 (108, 127)
Unknown 33
DBP 73 (66, 80)
Unknown 33
Pulse 72 (66, 80)
Unknown 32

7.7.6 Some Other Options

You’ll recall that in our discussion of the Palmer Penguins, back in Chapter 3, we used several
other strategies to develop graphical and numerical summaries of quantities, and all of those
approaches could be used here, too.

• The DataExplorer package can be used for more automated exploratory data analyses.
• Some people also like skimr which has some similar goals.

Next, we’ll focus on a few tools for summarizing categorical information.
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8 Summarizing Categories

8.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(kableExtra)
library(gt)
library(tidyverse)

theme_set(theme_bw())

8.2 Using the nh_adult750 data again

To demonstrate key ideas in this Chapter, we will again consider our sample of 750 adults
ages 21-64 from NHANES 2011-12 which includes some missing values. We’ll load into the
nh_750 data frame the information from the nh_adult750.Rds file we created in Section
@ref(newNHANES).

nh_750 <- read_rds("data/nh_adult750.Rds")

Summarizing categorical variables numerically is mostly about building tables, and calculating
percentages or proportions. We’ll save our discussion of modeling categorical data for later.
Recall that in the nh_750 data set we built in Section @ref(newNHANES) we had the following
categorical variables. The number of levels indicates the number of possible categories for each
categorical variable.

Variable Description Levels Type
Sex sex of subject 2 binary

Race subject’s race 6 nominal
Education subject’s educational level 5 ordinal
PhysActive Participates in sports? 2 binary
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Variable Description Levels Type
Smoke100 Smoked 100+ cigarettes? 2 binary

SleepTrouble Trouble sleeping? 2 binary
HealthGen Self-report health 5 ordinal

8.3 The summary function for Categorical data

When R recognizes a variable as categorical, it stores it as a factor. Such variables get special
treatment from the summary function, in particular a table of available values (so long as there
aren’t too many.)

nh_750 |>
select(Sex, Race, Education, PhysActive, Smoke100,

SleepTrouble, HealthGen, MaritalStatus) |>
summary()

Sex Race Education PhysActive Smoke100
female:388 Asian : 70 8th Grade : 50 No :326 No :453
male :362 Black :128 9 - 11th Grade: 76 Yes:424 Yes:297

Hispanic: 63 High School :143
Mexican : 80 Some College :241
White :393 College Grad :240
Other : 16

SleepTrouble HealthGen MaritalStatus
No :555 Excellent: 84 Divorced : 78
Yes:195 Vgood :197 LivePartner : 70

Good :252 Married :388
Fair :104 NeverMarried:179
Poor : 14 Separated : 19
NA's : 99 Widowed : 16

8.4 Tables to describe One Categorical Variable

Suppose we build a table (using the tabyl function from the janitor package) to describe
the HealthGen distribution.
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nh_750 |>
tabyl(HealthGen) |>
adorn_pct_formatting()

HealthGen n percent valid_percent
Excellent 84 11.2% 12.9%

Vgood 197 26.3% 30.3%
Good 252 33.6% 38.7%
Fair 104 13.9% 16.0%
Poor 14 1.9% 2.2%
<NA> 99 13.2% -

Note how the missing (<NA>) values are not included in the valid_percent calculation, but
are in the percent calculation. Note also the use of percentage formatting.

What if we want to add a total count, sometimes called the marginal total?

nh_750 |>
tabyl(HealthGen) |>
adorn_totals() |>
adorn_pct_formatting()

HealthGen n percent valid_percent
Excellent 84 11.2% 12.9%

Vgood 197 26.3% 30.3%
Good 252 33.6% 38.7%
Fair 104 13.9% 16.0%
Poor 14 1.9% 2.2%
<NA> 99 13.2% -
Total 750 100.0% 100.0%

What about marital status, which has no missing data in our sample?

nh_750 |>
tabyl(MaritalStatus) |>
adorn_totals() |>
adorn_pct_formatting()

MaritalStatus n percent
Divorced 78 10.4%
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LivePartner 70 9.3%
Married 388 51.7%

NeverMarried 179 23.9%
Separated 19 2.5%
Widowed 16 2.1%

Total 750 100.0%

8.5 Constructing Tables Well

The prolific Howard Wainer is responsible for many interesting books on visualization and
related issues, including Wainer (2005) and Wainer (2013). These rules come from Chapter
10 of Wainer (1997).

1. Order the rows and columns in a way that makes sense.
2. Round, a lot!
3. ALL is different and important

8.5.1 Alabama First!

Which of these Tables is more useful to you?

2013 Percent of Students in grades 9-12 who are obese

State % Obese 95% CI Sample Size
Alabama 17.1 (14.6 - 19.9) 1,499
Alaska 12.4 (10.5-14.6) 1,167
Arizona 10.7 (8.3-13.6) 1,520
Arkansas 17.8 (15.7-20.1) 1,470
Connecticut 12.3 (10.2-14.7) 2,270
Delaware 14.2 (12.9-15.6) 2,475
Florida 11.6 (10.5-12.8) 5,491
…
Wisconsin 11.6 (9.7-13.9) 2,771
Wyoming 10.7 (9.4-12.2) 2,910

or …

State % Obese 95% CI Sample Size
Kentucky 18.0 (15.7 - 20.6) 1,537
Arkansas 17.8 (15.7 - 20.1) 1,470
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State % Obese 95% CI Sample Size
Alabama 17.1 (14.6 - 19.9) 1,499
Tennessee 16.9 (15.1 - 18.8) 1,831
Texas 15.7 (13.9 - 17.6) 3,039
…
Massachusetts 10.2 (8.5 - 12.1) 2,547
Idaho 9.6 (8.2 - 11.1) 1,841
Montana 9.4 (8.4 - 10.5) 4,679
New Jersey 8.7 (6.8 - 11.2) 1,644
Utah 6.4 (4.8 - 8.5) 2,136

It is a rare event when Alabama first is the best choice.

8.5.2 ALL is different and important

Summaries of rows and columns provide a measure of what is typical or usual. Sometimes
a sum is helpful, at other times, consider presenting a median or other summary. The ALL
category, as Wainer (1997) suggests, should be both visually different from the individual
entries and set spatially apart.

On the whole, it’s far easier to fall into a good graph in R (at least if you have some ggplot2
skills) than to produce a good table.

8.6 The Mode of a Categorical Variable

A common measure applied to a categorical variable is to identify the mode, the most frequently
observed value. To find the mode for variables with lots of categories (so that the summary may
not be sufficient), we usually tabulate the data, and then sort by the counts of the numbers
of observations, as we did with discrete quantitative variables.

nh_750 |>
group_by(HealthGen) |>
summarise(count = n()) |>
arrange(desc(count))

# A tibble: 6 x 2
HealthGen count
<fct> <int>

1 Good 252
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2 Vgood 197
3 Fair 104
4 <NA> 99
5 Excellent 84
6 Poor 14

8.7 describe in the Hmisc package

Hmisc::describe(nh_750 |>
select(Sex, Race, Education, PhysActive,

Smoke100, SleepTrouble,
HealthGen, MaritalStatus))

select(nh_750, Sex, Race, Education, PhysActive, Smoke100, SleepTrouble, HealthGen, MaritalStatus)

8 Variables 750 Observations
--------------------------------------------------------------------------------
Sex

n missing distinct
750 0 2

Value female male
Frequency 388 362
Proportion 0.517 0.483
--------------------------------------------------------------------------------
Race

n missing distinct
750 0 6

Value Asian Black Hispanic Mexican White Other
Frequency 70 128 63 80 393 16
Proportion 0.093 0.171 0.084 0.107 0.524 0.021
--------------------------------------------------------------------------------
Education

n missing distinct
750 0 5

Value 8th Grade 9 - 11th Grade High School Some College
Frequency 50 76 143 241
Proportion 0.067 0.101 0.191 0.321
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Value College Grad
Frequency 240
Proportion 0.320
--------------------------------------------------------------------------------
PhysActive

n missing distinct
750 0 2

Value No Yes
Frequency 326 424
Proportion 0.435 0.565
--------------------------------------------------------------------------------
Smoke100

n missing distinct
750 0 2

Value No Yes
Frequency 453 297
Proportion 0.604 0.396
--------------------------------------------------------------------------------
SleepTrouble

n missing distinct
750 0 2

Value No Yes
Frequency 555 195
Proportion 0.74 0.26
--------------------------------------------------------------------------------
HealthGen

n missing distinct
651 99 5

Value Excellent Vgood Good Fair Poor
Frequency 84 197 252 104 14
Proportion 0.129 0.303 0.387 0.160 0.022
--------------------------------------------------------------------------------
MaritalStatus

n missing distinct
750 0 6

Value Divorced LivePartner Married NeverMarried Separated
Frequency 78 70 388 179 19
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Proportion 0.104 0.093 0.517 0.239 0.025

Value Widowed
Frequency 16
Proportion 0.021
--------------------------------------------------------------------------------

8.8 Cross-Tabulations of Two Variables

It is very common for us to want to describe the association of one categorical variable with
another. For instance, is there a relationship between Education and SleepTrouble in these
data?

nh_750 |>
tabyl(Education, SleepTrouble) |>
adorn_totals(where = c("row", "col"))

Education No Yes Total
8th Grade 40 10 50

9 - 11th Grade 52 24 76
High School 102 41 143

Some College 173 68 241
College Grad 188 52 240

Total 555 195 750

Note the use of adorn_totals to get the marginal counts, and how we specify that we want
both the row and column totals. We can add a title for the columns with…

nh_750 |>
tabyl(Education, SleepTrouble) |>
adorn_totals(where = c("row", "col")) |>
adorn_title(placement = "combined")

Education/SleepTrouble No Yes Total
8th Grade 40 10 50

9 - 11th Grade 52 24 76
High School 102 41 143
Some College 173 68 241
College Grad 188 52 240

Total 555 195 750
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Often, we’ll want to show percentages in a cross-tabulation like this. To get row percentages so
that we can directly see the probability of SleepTrouble = Yes for each level of Education,
we can use:

nh_750 |>
tabyl(Education, SleepTrouble) |>
adorn_totals(where = "row") |>
adorn_percentages(denominator = "row") |>
adorn_pct_formatting() |>
adorn_title(placement = "combined")

Education/SleepTrouble No Yes
8th Grade 80.0% 20.0%

9 - 11th Grade 68.4% 31.6%
High School 71.3% 28.7%
Some College 71.8% 28.2%
College Grad 78.3% 21.7%

Total 74.0% 26.0%

If we want to compare the distribution of Education between the two levels of SleepTrouble
with column percentages, we can use the following…

nh_750 |>
tabyl(Education, SleepTrouble) |>
adorn_totals(where = "col") |>
adorn_percentages(denominator = "col") |>
adorn_pct_formatting() |>
adorn_title(placement = "combined")

Education/SleepTrouble No Yes Total
8th Grade 7.2% 5.1% 6.7%

9 - 11th Grade 9.4% 12.3% 10.1%
High School 18.4% 21.0% 19.1%
Some College 31.2% 34.9% 32.1%
College Grad 33.9% 26.7% 32.0%

If we want overall percentages in the cells of the table, so that the total across all combinations
of Education and SleepTrouble is 100%, we can use:
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MaritalStatus/HealthGen Excellent Vgood Good Fair Poor NA_
Divorced 7 (9.0%) 19 (24.4%) 29 (37.2%) 11 (14.1%) 3 (3.8%) 9 (11.5%)
LivePartner 4 (5.7%) 19 (27.1%) 25 (35.7%) 18 (25.7%) 0 (0.0%) 4 (5.7%)
Married 46 (11.9%) 101 (26.0%) 130 (33.5%) 41 (10.6%) 6 (1.5%) 64 (16.5%)
NeverMarried 25 (14.0%) 52 (29.1%) 56 (31.3%) 24 (13.4%) 3 (1.7%) 19 (10.6%)
Separated 2 (10.5%) 3 (15.8%) 4 (21.1%) 8 (42.1%) 0 (0.0%) 2 (10.5%)
Widowed 0 (0.0%) 3 (18.8%) 8 (50.0%) 2 (12.5%) 2 (12.5%) 1 (6.2%)
Total 84 (11.2%) 197 (26.3%) 252 (33.6%) 104 (13.9%) 14 (1.9%) 99 (13.2%)

nh_750 |>
tabyl(Education, SleepTrouble) |>
adorn_totals(where = c("row", "col")) |>
adorn_percentages(denominator = "all") |>
adorn_pct_formatting() |>
adorn_title(placement = "combined") |>
kbl(align = 'lrrrrrr')

Education/SleepTrouble No Yes Total
8th Grade 5.3% 1.3% 6.7%
9 - 11th Grade 6.9% 3.2% 10.1%
High School 13.6% 5.5% 19.1%
Some College 23.1% 9.1% 32.1%
College Grad 25.1% 6.9% 32.0%
Total 74.0% 26.0% 100.0%

Another common approach is to include both counts and percentages in a cross-tabulation.
Let’s look at the breakdown of HealthGen by MaritalStatus.

nh_750 |>
tabyl(MaritalStatus, HealthGen) |>
adorn_totals(where = c("row")) |>
adorn_percentages(denominator = "row") |>
adorn_pct_formatting() |>
adorn_ns(position = "front") |>
adorn_title(placement = "combined") |>
kbl(align = 'lrrrrrr') |>
kable_styling(full_width = FALSE)

What if we wanted to ignore the missing HealthGen values? Most often, I filter down to the
complete observations.
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MaritalStatus/HealthGen Excellent Vgood Good Fair Poor
Divorced 7 (10.1%) 19 (27.5%) 29 (42.0%) 11 (15.9%) 3 (4.3%)
LivePartner 4 (6.1%) 19 (28.8%) 25 (37.9%) 18 (27.3%) 0 (0.0%)
Married 46 (14.2%) 101 (31.2%) 130 (40.1%) 41 (12.7%) 6 (1.9%)
NeverMarried 25 (15.6%) 52 (32.5%) 56 (35.0%) 24 (15.0%) 3 (1.9%)
Separated 2 (11.8%) 3 (17.6%) 4 (23.5%) 8 (47.1%) 0 (0.0%)
Widowed 0 (0.0%) 3 (20.0%) 8 (53.3%) 2 (13.3%) 2 (13.3%)
Total 84 (12.9%) 197 (30.3%) 252 (38.7%) 104 (16.0%) 14 (2.2%)

nh_750 |>
filter(complete.cases(MaritalStatus, HealthGen)) |>
tabyl(MaritalStatus, HealthGen) |>
adorn_totals(where = c("row")) |>
adorn_percentages(denominator = "row") |>
adorn_pct_formatting() |>
adorn_ns(position = "front") |>
adorn_title(placement = "combined") |>
kbl(align = 'lrrrrr') |>
kable_styling(full_width = FALSE)

For more on working with tabyls, see this overview of janitor functions. There you’ll find a
complete list of all of the adorn functions, for example.

Here’s another approach, to look at the cross-classification of Race and HealthGen:

xtabs(~ Race + HealthGen, data = nh_750)

HealthGen
Race Excellent Vgood Good Fair Poor
Asian 10 17 24 6 1
Black 15 28 40 24 4
Hispanic 4 9 24 13 2
Mexican 6 12 25 21 2
White 48 128 131 37 5
Other 1 3 8 3 0

8.9 Cross-Classifying Three Categorical Variables

Suppose we are interested in Smoke100 and its relationship to PhysActive and SleepTrouble.
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nh_750 |>
tabyl(Smoke100, PhysActive, SleepTrouble) |>
adorn_title(placement = "top")

$No
PhysActive

Smoke100 No Yes
No 137 219
Yes 93 106

$Yes
PhysActive

Smoke100 No Yes
No 41 56
Yes 55 43

The result here is a tabyl of Smoke100 (rows) by PhysActive (columns), split into a list by
SleepTrouble.

There are several alternative approaches for doing this, although I expect us to stick with
tabyl for our work in 431. These alternatives include the use of the xtabs function:

xtabs(~ Smoke100 + PhysActive + SleepTrouble, data = nh_750)

, , SleepTrouble = No

PhysActive
Smoke100 No Yes

No 137 219
Yes 93 106

, , SleepTrouble = Yes

PhysActive
Smoke100 No Yes

No 41 56
Yes 55 43

We can also build a flat version of this table, as follows:
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ftable(Smoke100 ~ PhysActive + SleepTrouble, data = nh_750)

Smoke100 No Yes
PhysActive SleepTrouble
No No 137 93

Yes 41 55
Yes No 219 106

Yes 56 43

And we can do this with dplyr functions and the table() function, as well, for example…

nh_750 |>
select(Smoke100, PhysActive, SleepTrouble) |>
table()

, , SleepTrouble = No

PhysActive
Smoke100 No Yes

No 137 219
Yes 93 106

, , SleepTrouble = Yes

PhysActive
Smoke100 No Yes

No 41 56
Yes 55 43

8.10 Gaining Control over Tables in R: the gt package

With the gt package, anyone can make wonderful-looking tables using the R programming
language. The gt package allows you to start with a tibble or data frame, and use it to make
very detailed tables that look professional, and includes tools that enable you to include titles
and subtitles, all sorts of labels, as well as footnotes and source notes.

Here’s a fairly simple example of a cross-tabulation of part of the nh_750 data built using a
few tools from the gt package.
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temp_tbl <- nh_750 |> filter(complete.cases(PhysActive, HealthGen)) |>
tabyl(PhysActive, HealthGen) |>
tibble()

gt(temp_tbl) |>
tab_header(title = md("**Cross-Tabulation from nh_750**"),

subtitle = md("Physical Activity vs. Overall Health"))

Cross-Tabulation from nh_750
Physical Activity vs. Overall Health

PhysActive Excellent Vgood Good Fair Poor
No 24 66 126 59 10
Yes 60 131 126 45 4

The gt package and its usage is described in detail at https://gt.rstudio.com/.

8.11 Coming Up

Next, we’ll make some early attempts at describing missingness in our data.
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9 Missing Data and Single Imputation

Almost all serious statistical analyses have to deal with missing data. Data values that are
missing are indicated in R, and to R, by the symbol NA.

9.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(naniar)
library(simputation)
library(tidyverse)

theme_set(theme_bw())

We’ll focus on tools from the naniar and simputation packages in this chapter. This chapter
also requires that the mosaic package is loaded on your machine so we can use the favstats()
function, but I won’t load that here.

9.2 A Toy Example (n = 15)

In the following tiny data set called sbp_example, we have four variables for a set of 15
subjects. In addition to a subject id, we have:

• the treatment this subject received (A, B or C are the treatments),
• an indicator (1 = yes, 0 = no) of whether the subject has diabetes,
• the subject’s systolic blood pressure at baseline
• the subject’s systolic blood pressure after the application of the treatment

# create some temporary variables
subject <- 101:115
x1 <- c("A", "B", "C", "A", "C", "A", "A", NA, "B", "C", "A", "B", "C", "A", "B")
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x2 <- c(1, 0, 0, 1, NA, 1, 0, 1, NA, 1, 0, 0, 1, 1, NA)
x3 <- c(120, 145, 150, NA, 155, NA, 135, NA, 115, 170, 150, 145, 140, 160, 135)
x4 <- c(105, 135, 150, 120, 135, 115, 160, 150, 130, 155, 140, 140, 150, 135, 120)

sbp_example <-
tibble(subject, treat = factor(x1), diabetes = x2,

sbp.before = x3, sbp.after = x4)

rm(subject, x1, x2, x3, x4) # just cleaning up

sbp_example

# A tibble: 15 x 5
subject treat diabetes sbp.before sbp.after

<int> <fct> <dbl> <dbl> <dbl>
1 101 A 1 120 105
2 102 B 0 145 135
3 103 C 0 150 150
4 104 A 1 NA 120
5 105 C NA 155 135
6 106 A 1 NA 115
7 107 A 0 135 160
8 108 <NA> 1 NA 150
9 109 B NA 115 130

10 110 C 1 170 155
11 111 A 0 150 140
12 112 B 0 145 140
13 113 C 1 140 150
14 114 A 1 160 135
15 115 B NA 135 120

9.3 Identifying missingness with naniar functions

The naniar package has many useful functions.

1. How many missing values do we have, overall?

n_miss(sbp_example)

[1] 7
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2. How many variables have missing values, overall?

n_var_miss(sbp_example)

[1] 3

3. Which variables contain missing values?

miss_var_which(sbp_example)

[1] "treat" "diabetes" "sbp.before"

4. How many missing values do we have in each variable?

miss_var_summary(sbp_example)

# A tibble: 5 x 3
variable n_miss pct_miss
<chr> <int> <dbl>

1 diabetes 3 20
2 sbp.before 3 20
3 treat 1 6.67
4 subject 0 0
5 sbp.after 0 0

We are missing one treat, 3 diabetes and 3 sbp.before values.

5. Can we plot missingness, by variable?

gg_miss_var(sbp_example)
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6. How many of the cases (rows) have missing values?

n_case_miss(sbp_example)

[1] 6

7. How many cases have complete data, with no missing values?

n_case_complete(sbp_example)

[1] 9

8. Can we tabulate missingness by case?

miss_case_table(sbp_example)

# A tibble: 3 x 3
n_miss_in_case n_cases pct_cases

<int> <int> <dbl>
1 0 9 60
2 1 5 33.3
3 2 1 6.67
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9. Which cases have missing values?

miss_case_summary(sbp_example)

# A tibble: 15 x 3
case n_miss pct_miss

<int> <int> <dbl>
1 8 2 40
2 4 1 20
3 5 1 20
4 6 1 20
5 9 1 20
6 15 1 20
7 1 0 0
8 2 0 0
9 3 0 0
10 7 0 0
11 10 0 0
12 11 0 0
13 12 0 0
14 13 0 0
15 14 0 0

10. How can we identify the subjects with missing data?

sbp_example |> filter(!complete.cases(sbp_example))

# A tibble: 6 x 5
subject treat diabetes sbp.before sbp.after

<int> <fct> <dbl> <dbl> <dbl>
1 104 A 1 NA 120
2 105 C NA 155 135
3 106 A 1 NA 115
4 108 <NA> 1 NA 150
5 109 B NA 115 130
6 115 B NA 135 120

We have nine subjects with complete data, three subjects with missing diabetes (only),
two subjects with missing sbp.before (only), and 1 subject who is missing both treat and
sbp.before.
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9.4 Missing-data mechanisms

My source for this description of mechanisms is Chapter 25 of Gelman and Hill (2007), and
that chapter is available at this link.

1. MCAR = Missingness completely at random. A variable is missing completely at
random if the probability of missingness is the same for all units, for example, if for each
subject, we decide whether to collect the diabetes status by rolling a die and refusing
to answer if a “6” shows up. If data are missing completely at random, then throwing
out cases with missing data does not bias your inferences.

2. Missingness that depends only on observed predictors. A more general assump-
tion, called missing at random or MAR, is that the probability a variable is missing
depends only on available information. Here, we would have to be willing to assume that
the probability of nonresponse to diabetes depends only on the other, fully recorded
variables in the data. It is often reasonable to model this process as a logistic regression,
where the outcome variable equals 1 for observed cases and 0 for missing. When an out-
come variable is missing at random, it is acceptable to exclude the missing cases (that is,
to treat them as NA), as long as the regression controls for all the variables that affect
the probability of missingness.

3. Missingness that depends on unobserved predictors. Missingness is no longer “at
random” if it depends on information that has not been recorded and this information
also predicts the missing values. If a particular treatment causes discomfort, a patient
is more likely to drop out of the study. This missingness is not at random (unless
“discomfort” is measured and observed for all patients). If missingness is not at random,
it must be explicitly modeled, or else you must accept some bias in your inferences.

4. Missingness that depends on the missing value itself. Finally, a particularly
difficult situation arises when the probability of missingness depends on the (potentially
missing) variable itself. For example, suppose that people with higher earnings are less
likely to reveal them.

Essentially, situations 3 and 4 are referred to collectively as non-random missingness, and
cause more trouble for us than 1 and 2.

9.5 Dealing with Missingness: Three Approaches

There are several available methods for dealing with missing data that are MCAR or MAR,
but they basically boil down to:

• Complete Case (or Available Case) analyses
• Single Imputation
• Multiple Imputation
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9.6 Complete Case (and Available Case) analyses

In Complete Case analyses, rows containing NA values are omitted from the data before
analyses commence. This is the default approach for many statistical software packages, and
may introduce unpredictable bias and fail to include some useful, often hard-won informa-
tion.

• A complete case analysis can be appropriate when the number of missing observations
is not large, and the missing pattern is either MCAR (missing completely at random) or
MAR (missing at random.)

• Two problems arise with complete-case analysis:

1. If the units with missing values differ systematically from the completely observed
cases, this could bias the complete-case analysis.

2. If many variables are included in a model, there may be very few complete cases, so
that most of the data would be discarded for the sake of a straightforward analysis.

• A related approach is available-case analysis where different aspects of a problem are
studied with different subsets of the data, perhaps identified on the basis of what is
missing in them.

9.7 Building a Complete Case Analysis

We can drop all of the missing values from a data set with drop_na or with na.omit or by
filtering for complete.cases. Any of these approaches produces the same result - a new data
set with 9 rows (after dropping the six subjects with any NA values) and 5 columns.

cc.1 <- na.omit(sbp_example)
cc.2 <- sbp_example |> drop_na()
cc.3 <- sbp_example |> filter(complete.cases(sbp_example))

9.8 Single Imputation

In single imputation analyses, NA values are estimated/replaced one time with one partic-
ular data value for the purpose of obtaining more complete samples, at the expense of creating
some potential bias in the eventual conclusions or obtaining slightly less accurate estimates
than would be available if there were no missing values in the data.

• A single imputation can be just a replacement with the mean or median (for a quantity)
or the mode (for a categorical variable.) However, such an approach, though easy to
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understand, underestimates variance and ignores the relationship of missing values to
other variables.

• Single imputation can also be done using a variety of models to try to capture information
about the NA values that are available in other variables within the data set.

• The simputation package can help us execute single imputations using a wide variety
of techniques, within the pipe approach used by the tidyverse. Another approach I
have used in the past is the mice package, which can also perform single imputations.

9.9 Single Imputation with the Mean or Mode

The most straightforward approach to single imputation is to impute a single summary of the
variable, such as the mean, median or mode.

mosaic::favstats(~ sbp.before, data = sbp_example)

min Q1 median Q3 max mean sd n missing
115 135 145 151.25 170 143.3333 15.71527 12 3

sbp_example |> tabyl(diabetes, treat) |>
adorn_totals(where = c("row", "col"))

diabetes A B C NA_ Total
0 2 2 1 0 5
1 4 0 2 1 7

<NA> 0 2 1 0 3
Total 6 4 4 1 15

Here, suppose we decide to impute

• sbp.before with the mean (143.3) among non-missing values,
• diabetes with its more common value, 1, and
• treat with its more common value, or mode (A)

si.1 <- sbp_example |>
replace_na(list(sbp.before = 143.33,

diabetes = 1,
treat = "A"))

si.1
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# A tibble: 15 x 5
subject treat diabetes sbp.before sbp.after

<int> <fct> <dbl> <dbl> <dbl>
1 101 A 1 120 105
2 102 B 0 145 135
3 103 C 0 150 150
4 104 A 1 143. 120
5 105 C 1 155 135
6 106 A 1 143. 115
7 107 A 0 135 160
8 108 A 1 143. 150
9 109 B 1 115 130

10 110 C 1 170 155
11 111 A 0 150 140
12 112 B 0 145 140
13 113 C 1 140 150
14 114 A 1 160 135
15 115 B 1 135 120

9.10 Doing Single Imputation with simputation

Single imputation is a potentially appropriate method when missingness can be assumed to
be either completely at random (MCAR) or dependent only on observed predictors (MAR).
We’ll use the simputation package to accomplish it.

• The simputation vignette is available at https://cran.r-project.org/web/packages/simputation/vignettes/intro.html
• The simputation reference manual is available at https://cran.r-project.org/web/packages/simputation/simputation.pdf

Suppose we wanted to use:

• a robust linear model to predict sbp.before missing values, on the basis of sbp.after
and diabetes status, and

• a predictive mean matching approach (which, unlike the robust linear model, will ensure
that only values of diabetes that we’ve seen before will be imputed) to predict diabetes
status, on the basis of sbp.after, and

• a decision tree approach to predict treat status, using all other variables in the data

set.seed(432009)

imp.2 <- sbp_example |>
impute_rlm(sbp.before ~ sbp.after + diabetes) |>
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impute_pmm(diabetes ~ sbp.after) |>
impute_cart(treat ~ .)

imp.2

# A tibble: 15 x 5
subject treat diabetes sbp.before sbp.after

* <int> <fct> <dbl> <dbl> <dbl>
1 101 A 1 120 105
2 102 B 0 145 135
3 103 C 0 150 150
4 104 A 1 139. 120
5 105 C 1 155 135
6 106 A 1 136. 115
7 107 A 0 135 160
8 108 A 1 155. 150
9 109 B 1 115 130

10 110 C 1 170 155
11 111 A 0 150 140
12 112 B 0 145 140
13 113 C 1 140 150
14 114 A 1 160 135
15 115 B 1 135 120

Details on the many available methods in simputation are provided in its manual. These
include:

• impute_cart uses a Classification and Regression Tree approach for numerical or cat-
egorical data. There is also an impute_rf command which uses Random Forests for
imputation.

• impute_pmm is one of several “hot deck” options for imputation, this one is predictive
mean matching, which can be used with numeric data (only). Missing values are first
imputed using a predictive model. Next, these predictions are replaced with the observed
values which are nearest to the prediction. Other imputation options in this group include
random hot deck, sequential hot deck and k-nearest neighbor imputation.

• impute_rlm is one of several regression imputation methods, including linear models, ro-
bust linear models (which use what is called M-estimation to impute numerical variables)
and lasso/elastic net/ridge regression models.

The simputation package can also do EM-based multivariate imputation, and multivariate
random forest imputation, and several other approaches.
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9.11 Multiple Imputation

Multiple imputation, where NA values are repeatedly estimated/replaced with multiple
data values, for the purpose of obtaining mode complete samples and capturing details of the
variation inherent in the fact that the data have missingness, so as to obtain more accurate
estimates than are possible with single imputation.

• We’ll postpone further discussion of multiple imputation to later in the semester, when
we’re building models for relationships in our data.

9.12 Coming Up

Next, we’ll look an even more detailed look at how we might summarize results from another
large data set, this time from the National Youth Fitness Survey.

172

http://www.cdc.gov/Nchs/Nnyfs.htm


10 National Youth Fitness Survey

10.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(ggridges)
library(janitor)
library(kableExtra)
library(patchwork)
library(tidyverse)

theme_set(theme_bw())

We also use functions from the Hmisc and mosaic packages in this chapter, but do not load
the whole packages.

10.2 What is the NHANES NYFS?

The nnyfs.csv and the nnyfs.Rds data files were built by Professor Love using data from
the 2012 National Youth Fitness Survey.

The NHANES National Youth Fitness Survey (NNYFS) was conducted in 2012 to
collect data on physical activity and fitness levels in order to provide an evaluation
of the health and fitness of children in the U.S. ages 3 to 15. The NNYFS collected
data on physical activity and fitness levels of our youth through interviews and
fitness tests.

In the nnyfs data file (either .csv or .Rds), I’m only providing a modest fraction of the
available information. More on the NNYFS (including information I’m not using) is available
at https://wwwn.cdc.gov/nchs/nhanes/search/nnyfs12.aspx.

The data elements I’m using fall into four main groups, or components:

• Demographics
• Dietary
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• Examination and
• Questionnaire

What I did was merge a few elements from each of the available components of the NHANES
National Youth Fitness Survey, reformulated (and in some cases simplified) some variables, and
restricted the sample to kids who had completed elements of each of the four components.

10.3 The Variables included in nnyfs

This section tells you where the data come from, and briefly describe what is collected.

10.3.1 From the NNYFS Demographic Component

All of these come from the Y_DEMO file.

In nnyfs In Y_DEMO Description
SEQN SEQN Subject ID, connects all of the files
sex RIAGENDR Really, this is sex, not gender

age_child RIDAGEYR Age in years at screening
race_eth RIDRETH1 Race/Hispanic origin (collapsed to 4 levels)

educ_child DMDEDUC3 Education Level (for children ages 6-15). 0 =
Kindergarten, 9 = Ninth grade or higher

language SIALANG Language in which the interview was conducted
sampling_wt WTMEC Full-sample MEC exam weight (for inference)
income_pov INDFMPIR Ratio of family income to poverty (ceiling is 5.0)
age_adult DMDHRAGE Age of adult who brought child to interview

educ_adult DMDHREDU Education level of adult who brought child

10.3.2 From the NNYFS Dietary Component

From the Y_DR1TOT file, we have a number of variables related to the child’s diet, with the
following summaries mostly describing consumption “yesterday” in a dietary recall question-
naire.

In nnyfs In Y_DR1TOT Description
respondent DR1MNRSP who responded to interview (child, Mom, someone

else)
salt_used DBQ095Z uses salt, lite salt or salt substitute at the table

energy DR1TKCAL energy consumed (kcal)
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In nnyfs In Y_DR1TOT Description
protein DR1TPROT protein consumed (g)
sugar DR1TSUGR total sugar consumed (g)
fat DR1TTFAT total fat consumed (g)

diet_yesterday DR1_300 compare food consumed yesterday to usual amount
water DR1_320Z total plain water drank (g)

10.3.3 From the NNYFS Examination Component

From the Y_BMX file of Body Measures:

In nnyfs In Y_BMX Description
height BMXHT standing height (cm)
weight BMXWT weight (kg)

bmi BMXBMI body mass index (𝑘𝑔/𝑚2)
bmi_cat BMDBMIC BMI category (4 levels)

arm_length BMXARML Upper arm length (cm)
waist BMXWAIST Waist circumference (cm)

arm_circ BMXARMC Arm circumference (cm)
calf_circ BMXCALF Maximal calf circumference (cm)

calf_skinfold BMXCALFF Calf skinfold (mm)
triceps_skinfold BMXTRI Triceps skinfold (mm)

subscapular_skinfold BMXSUB Subscapular skinfold (mm)

From the Y_PLX file of Plank test results:

In nnyfs In Y_PLX Description
plank_time MPXPLANK # of seconds plank position is held

10.3.4 From the NNYFS Questionnaire Component

From the Y_PAQ file of Physical Activity questions:

In nnyfs In Y_PAQ Description
active_days PAQ706 Days physically active (≥ 60 min.) in past week

tv_hours PAQ710 Average hours watching TV/videos past 30d
computer_hours PAQ715 Average hours on computer past 30d
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In nnyfs In Y_PAQ Description
physical_last_week PAQ722 Any physical activity outside of school past week

enjoy_recess PAQ750 Enjoy participating in PE/recess

From the Y_DBQ file of Diet Behavior and Nutrition questions:

In nnyfs In Y_DBQ Description
meals_out DBD895 # meals not home-prepared in past 7 days

From the Y_HIQ file of Health Insurance questions:

In nnyfs In Y_HIQ Description
insured HIQ011 Covered by Health Insurance?

insurance HIQ031 Type of Health Insurance coverage

From the Y_HUQ file of Access to Care questions:

In nnyfs In Y_HUQ Description
phys_health HUQ010 General health condition (Excellent - Poor)

access_to_care HUQ030 Routine place to get care?
care_source HUQ040 Type of place most often goes to for care

From the Y_MCQ file of Medical Conditions questions:

In nnyfs In Y_MCQ Description
asthma_ever MCQ010 Ever told you have asthma?
asthma_now MCQ035 Still have asthma?

From the Y_RXQ_RX file of Prescription Medication questions:

In nnyfs In Y_RXQ_RX Description
med_use RXDUSE Taken prescription medication in last month?

med_count RXDCOUNT # of prescription meds taken in past month
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10.4 Reading in the Data

Now, I’ll take a look at the nnyfs data, which I’ve made available in a comma-separated
version (nnyfs.csv), if you prefer, as well as in an R data set (nnyfs.Rds) which loads a bit
faster. After loading the file, let’s get a handle on its size and contents. In my R Project for
these notes, the data are contained in a separate data subdirectory.

nnyfs <- readRDS("data/nnyfs.Rds")

## size of the tibble
dim(nnyfs)

[1] 1518 45

There are 1518 rows (subjects) and 45 columns (variables), by which I mean that there are
1518 kids in the nnyfs data frame, and we have 45 pieces of information on each subject. So,
what do we have, exactly?

nnyfs

# A tibble: 1,518 x 45
SEQN sex age_child race_eth educ_child language sampling_wt income_pov

<dbl> <fct> <dbl> <fct> <dbl> <fct> <dbl> <dbl>
1 71917 Female 15 3_Black No~ 9 English 28299. 0.21
2 71918 Female 8 3_Black No~ 2 English 15127. 5
3 71919 Female 14 2_White No~ 8 English 29977. 5
4 71920 Female 15 2_White No~ 8 English 80652. 0.87
5 71921 Male 3 2_White No~ NA English 55592. 4.34
6 71922 Male 12 1_Hispanic 6 English 27365. 5
7 71923 Male 12 2_White No~ 5 English 86673. 5
8 71924 Female 8 4_Other Ra~ 2 English 39549. 2.74
9 71925 Male 7 1_Hispanic 0 English 42333. 0.46
10 71926 Male 8 3_Black No~ 2 English 15307. 1.57
# i 1,508 more rows
# i 37 more variables: age_adult <dbl>, educ_adult <fct>, respondent <fct>,
# salt_used <fct>, energy <dbl>, protein <dbl>, sugar <dbl>, fat <dbl>,
# diet_yesterday <fct>, water <dbl>, plank_time <dbl>, height <dbl>,
# weight <dbl>, bmi <dbl>, bmi_cat <fct>, arm_length <dbl>, waist <dbl>,
# arm_circ <dbl>, calf_circ <dbl>, calf_skinfold <dbl>,
# triceps_skinfold <dbl>, subscapular_skinfold <dbl>, active_days <dbl>, ...
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We can learn something about the structure of the tibble from such functions as str or
glimpse.

str(nnyfs)

tibble [1,518 x 45] (S3: tbl_df/tbl/data.frame)
$ SEQN : num [1:1518] 71917 71918 71919 71920 71921 ...
$ sex : Factor w/ 2 levels "Female","Male": 1 1 1 1 2 2 2 1 2 2 ...
$ age_child : num [1:1518] 15 8 14 15 3 12 12 8 7 8 ...
$ race_eth : Factor w/ 4 levels "1_Hispanic","2_White Non-Hispanic",..: 3 3 2 2 2 1 2 4 1 3 ...
$ educ_child : num [1:1518] 9 2 8 8 NA 6 5 2 0 2 ...
$ language : Factor w/ 2 levels "English","Spanish": 1 1 1 1 1 1 1 1 1 1 ...
$ sampling_wt : num [1:1518] 28299 15127 29977 80652 55592 ...
$ income_pov : num [1:1518] 0.21 5 5 0.87 4.34 5 5 2.74 0.46 1.57 ...
$ age_adult : num [1:1518] 46 46 42 53 31 42 39 31 45 56 ...
$ educ_adult : Factor w/ 5 levels "1_Less than 9th Grade",..: 2 3 5 3 3 4 2 3 2 3 ...
$ respondent : Factor w/ 3 levels "Child","Mom",..: 1 2 1 1 2 1 1 1 2 1 ...
$ salt_used : Factor w/ 2 levels "No","Yes": 2 2 2 2 1 2 2 2 1 2 ...
$ energy : num [1:1518] 2844 1725 2304 1114 1655 ...
$ protein : num [1:1518] 169.1 55.2 199.3 14 50.6 ...
$ sugar : num [1:1518] 128.2 118.7 81.4 119.2 90.3 ...
$ fat : num [1:1518] 127.9 63.7 86.1 36 53.3 ...
$ diet_yesterday : Factor w/ 3 levels "1_Much more than usual",..: 2 2 2 2 2 2 1 2 2 3 ...
$ water : num [1:1518] 607 178 503 859 148 ...
$ plank_time : num [1:1518] NA 45 121 45 11 107 127 44 184 58 ...
$ height : num [1:1518] NA 131.6 172 167.1 90.2 ...
$ weight : num [1:1518] NA 38.6 58.7 92.5 12.4 66.4 56.7 22.2 20.9 28.3 ...
$ bmi : num [1:1518] NA 22.3 19.8 33.1 15.2 25.9 22.5 14.4 15.9 17 ...
$ bmi_cat : Factor w/ 4 levels "1_Underweight",..: NA 4 2 4 2 4 3 2 2 2 ...
$ arm_length : num [1:1518] NA 27.7 38.4 35.9 18.3 34.2 33 26.5 24.2 26 ...
$ waist : num [1:1518] NA 71.9 79.4 96.4 46.8 90 72.3 56.1 54.5 59.7 ...
$ arm_circ : num [1:1518] NA 25.4 26 37.9 15.1 29.5 27.9 17.6 17.7 19.9 ...
$ calf_circ : num [1:1518] NA 32.3 35.3 46.8 19.4 36.9 36.8 24 24.3 27.3 ...
$ calf_skinfold : num [1:1518] NA 22 18.4 NA 8.4 22 18.3 7 7.2 8.2 ...
$ triceps_skinfold : num [1:1518] NA 19.9 15 20.6 8.6 22.8 20.5 12.9 6.9 8.8 ...
$ subscapular_skinfold: num [1:1518] NA 17.4 9.8 22.8 5.7 24.4 12.6 6.8 4.8 6.1 ...
$ active_days : num [1:1518] 3 5 3 3 7 2 5 3 7 7 ...
$ tv_hours : num [1:1518] 2 2 1 3 2 3 0 4 2 2 ...
$ computer_hours : num [1:1518] 1 2 3 3 0 1 0 3 1 1 ...
$ physical_last_week : Factor w/ 2 levels "No","Yes": 1 1 2 2 2 2 2 2 2 2 ...
$ enjoy_recess : Factor w/ 5 levels "1_Strongly Agree",..: 1 1 3 2 NA 2 2 NA 1 1 ...
$ meals_out : num [1:1518] 0 2 3 2 1 1 2 1 0 2 ...
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$ insured : Factor w/ 2 levels "Has Insurance",..: 1 1 1 1 1 1 1 1 1 1 ...
$ phys_health : Factor w/ 5 levels "1_Excellent",..: 1 3 1 3 1 1 3 1 2 1 ...
$ access_to_care : Factor w/ 2 levels "Has Usual Care Source",..: 1 1 1 1 1 1 1 1 1 1 ...
$ care_source : Factor w/ 6 levels "Clinic or Health Center",..: 1 2 2 2 2 2 2 2 2 2 ...
$ asthma_ever : Factor w/ 2 levels "History of Asthma",..: 2 1 2 1 2 2 2 2 2 2 ...
$ asthma_now : Factor w/ 2 levels "Asthma Now","No Asthma Now": 2 1 2 1 2 2 2 2 2 2 ...
$ med_use : Factor w/ 2 levels "Had Medication",..: 2 1 2 1 2 2 2 2 2 2 ...
$ med_count : num [1:1518] 0 1 0 2 0 0 0 0 0 0 ...
$ insurance : Factor w/ 10 levels "Medicaid","Medicare",..: 8 8 5 8 5 5 5 5 8 1 ...

There are a lot of variables here. Let’s run through the first few in a little detail.

10.4.1 SEQN

The first variable, SEQN is just a (numerical) identifying code attributable to a given subject
of the survey. This is nominal data, which will be of little interest down the line. On some
occasions, as in this case, the ID numbers are sequential, in the sense that subject 71919 was
included in the data base after subject 71918, but this fact isn’t particularly interesting here,
because the protocol remained unchanged throughout the study.

10.4.2 sex

The second variable, sex, is listed as a factor variable (R uses factor and character to refer
to categorical, especially non-numeric information). Here, as we can see below, we have two
levels, Female and Male.

nnyfs |>
tabyl(sex) |>
adorn_totals() |>
adorn_pct_formatting()

sex n percent
Female 760 50.1%
Male 758 49.9%
Total 1518 100.0%
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10.4.3 age_child

The third variable, age_child, is the age of the child at the time of their screening to be in the
study, measured in years. Note that age is a continuous concept, but the measure used here
(number of full years alive) is a common discrete approach to measurement. Age, of course,
has a meaningful zero point, so this can be thought of as a ratio variable; a child who is 6 is
half as old as one who is 12. We can tabulate the observed values, since there are only a dozen
or so.

nnyfs |>
tabyl(age_child) |>
adorn_pct_formatting()

age_child n percent
3 110 7.2%
4 112 7.4%
5 114 7.5%
6 129 8.5%
7 123 8.1%
8 112 7.4%
9 99 6.5%
10 124 8.2%
11 111 7.3%
12 137 9.0%
13 119 7.8%
14 130 8.6%
15 98 6.5%

At the time of initial screening, these children should have been between 3 and 15 years of
age, so things look reasonable. Since this is a meaningful quantitative variable, we may be
interested in a more descriptive summary.

nnyfs |>
select(age_child) |>
summary()

age_child
Min. : 3.000
1st Qu.: 6.000
Median : 9.000
Mean : 9.033
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3rd Qu.:12.000
Max. :15.000

These six numbers provide a nice, if incomplete, look at the ages.

• Min. = the minimum, or youngest age at the examination was 3 years old.
• 1st Qu. = the first quartile (25th percentile) of the ages was 6. This means that 25

percent of the subjects were age 6 or less.
• Median = the second quartile (50th percentile) of the ages was 9. This is often used to

describe the center of the data. Half of the subjects were age 9 or less.
• 3rd Qu. = the third quartile (75th percentile) of the ages was 12
• Max. = the maximum, or oldest age at the examination was 15 years.

We could get the standard deviation and a count of missing and non-missing observations
with favstats from the mosaic package, among many other options (see Chapter 3 and
@#sec-summ_quant for examples.)

mosaic::favstats(~ age_child, data = nnyfs) |>
kbl(digits = 1)

Registered S3 method overwritten by 'mosaic':
method from
fortify.SpatialPolygonsDataFrame ggplot2

min Q1 median Q3 max mean sd n missing
3 6 9 12 15 9 3.7 1518 0

10.4.4 race_eth

The fourth variable in the data set is race_eth, which is a multi-categorical variable describing
the child’s race and ethnicity.

nnyfs |> tabyl(race_eth) |>
adorn_pct_formatting() |>
kbl()

race_eth n percent
1_Hispanic 450 29.6%
2_White Non-Hispanic 610 40.2%
3_Black Non-Hispanic 338 22.3%
4_Other Race/Ethnicity 120 7.9%
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And now, we get the idea of looking at whether our numerical summaries of the children’s
ages varies by their race/ethnicity…

mosaic::favstats(age_child ~ race_eth, data = nnyfs)

race_eth min Q1 median Q3 max mean sd n missing
1 1_Hispanic 3 5.25 9.0 12 15 8.793333 3.733846 450 0
2 2_White Non-Hispanic 3 6.00 9.0 12 15 9.137705 3.804421 610 0
3 3_Black Non-Hispanic 3 6.00 9.0 12 15 9.038462 3.576423 338 0
4 4_Other Race/Ethnicity 3 7.00 9.5 12 15 9.383333 3.427970 120 0

10.4.5 income_pov

Skipping down a bit, let’s look at the family income as a multiple of the poverty level. Here’s
the summary.

nnyfs |>
select(income_pov) |>
summary()

income_pov
Min. :0.000
1st Qu.:0.870
Median :1.740
Mean :2.242
3rd Qu.:3.520
Max. :5.000
NA's :89

We see there is some missing data here. Let’s ignore that for the moment and concentrate on
interpreting the results for the children with actual data. We should start with a picture.

ggplot(nnyfs, aes(x = income_pov)) +
geom_histogram(bins = 30, fill = "white", col = "blue")

Warning: Removed 89 rows containing non-finite values (`stat_bin()`).
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race_eth min Q1 median Q3 max mean sd n missing
1_Hispanic 0 0.6 1.0 1.7 5 1.3 1.1 409 41
2_White Non-Hispanic 0 1.5 3.0 4.5 5 2.9 1.6 588 22
3_Black Non-Hispanic 0 0.8 1.6 2.8 5 2.0 1.5 328 10
4_Other Race/Ethnicity 0 1.2 2.7 4.6 5 2.8 1.7 104 16
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The histogram shows us that the values are truncated at 5, so that children whose actual family
income is above 5 times the poverty line are listed as 5. We also see a message reminding us
that some of the data are missing for this variable.

Is there a relationship between income_pov and race_eth in these data?

mosaic::favstats(income_pov ~ race_eth, data = nnyfs) |>
kbl(digits = 1) |>
kable_styling(full_width = FALSE)

This deserves a picture. Let’s try a boxplot.

ggplot(nnyfs, aes(x = race_eth, y = income_pov)) +
geom_boxplot()

Warning: Removed 89 rows containing non-finite values (`stat_boxplot()`).

183



0

1

2

3

4

5

1_Hispanic 2_White Non−Hispanic3_Black Non−Hispanic4_Other Race/Ethnicity
race_eth

in
co

m
e_

po
v

We’re reminded here that several of our subjects are not included in this plot, since they have
some missing information.

10.4.6 bmi

Moving into the body measurement data, bmi is the body-mass index of the child. The BMI
is a person’s weight in kilograms divided by his or her height in meters squared. Symbolically,
BMI = weight in kg / (height in m)2. This is a continuous concept, measured to as many
decimal places as you like, and it has a meaningful zero point, so it’s a ratio variable.

nnyfs |>
select(bmi) |>
summary()

bmi
Min. :11.90
1st Qu.:15.90
Median :18.10
Mean :19.63
3rd Qu.:21.90
Max. :48.30
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NA's :4

Why would a table of these BMI values not be a great idea, for these data? A hint is that
R represents this variable as num or numeric in its depiction of the data structure, and this
implies that R has some decimal values stored. Here, I’ll use the head() function and the
tail() function to show the first few and the last few values of what would prove to be a very
long table of bmi values.

nnyfs |>
tabyl(bmi) |>
adorn_pct_formatting() |>
head()

bmi n percent valid_percent
11.9 1 0.1% 0.1%
12.6 1 0.1% 0.1%
12.7 1 0.1% 0.1%
12.9 1 0.1% 0.1%
13.0 2 0.1% 0.1%
13.1 1 0.1% 0.1%

nnyfs |>
tabyl(bmi) |>
adorn_pct_formatting() |>
tail()

bmi n percent valid_percent
42.8 1 0.1% 0.1%
43.0 1 0.1% 0.1%
46.9 1 0.1% 0.1%
48.2 1 0.1% 0.1%
48.3 1 0.1% 0.1%
NA 4 0.3% -

10.4.7 bmi_cat

Next I’ll look at the bmi_cat information. This is a four-category ordinal variable, which
divides the sample according to BMI into four groups. The BMI categories use sex-specific
2000 BMI-for-age (in months) growth charts prepared by the Centers for Disease Control for
the US. We can get the breakdown from a table of the variable’s values.
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bmi_cat min Q1 median Q3 max mean sd n missing
1_Underweight 11.9 13.4 13.7 15.0 16.5 14.1 1.1 41 0
2_Normal 13.5 15.4 16.5 18.7 24.0 17.2 2.3 920 0
3_Overweight 16.9 18.3 21.4 23.4 27.9 21.2 2.9 258 0
4_Obese 17.9 22.3 26.2 30.2 48.3 26.7 5.7 295 0

nnyfs |>
tabyl(bmi_cat) |>
adorn_pct_formatting()

bmi_cat n percent valid_percent
1_Underweight 41 2.7% 2.7%

2_Normal 920 60.6% 60.8%
3_Overweight 258 17.0% 17.0%

4_Obese 295 19.4% 19.5%
<NA> 4 0.3% -

In terms of percentiles by age and sex from the growth charts, the meanings of the categories
are:

• Underweight (BMI < 5th percentile)
• Normal weight (BMI 5th to < 85th percentile)
• Overweight (BMI 85th to < 95th percentile)
• Obese (BMI ≥ 95th percentile)

Note how I’ve used labels in the bmi_cat variable that include a number at the start so that
the table results are sorted in a rational way. R sorts tables alphabetically, in general. We’ll
use the forcats package to work with categorical variables that we store as factors eventually,
but for now, we’ll keep things relatively simple.

Note that the bmi_cat data don’t completely separate out the raw bmi data, because the
calculation of percentiles requires different tables for each combination of age and sex.

mosaic::favstats(bmi ~ bmi_cat, data = nnyfs) |>
kbl(digits = 1) |>
kable_styling(full_width = FALSE)

10.4.8 waist

Let’s also look briefly at waist, which is the circumference of the child’s waist, in centimeters.
Again, this is a numeric variable, so perhaps we’ll stick to the simple summary, rather than
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obtaining a table of observed values.

mosaic::favstats(~ waist, data = nnyfs)

min Q1 median Q3 max mean sd n missing
42.5 55.6 64.8 76.6 144.7 67.70536 15.19809 1512 6

Here’s a histogram of the waist circumference data.

ggplot(nnyfs, aes(x = waist)) +
geom_histogram(bins = 25, fill = "tomato", color = "cyan")

Warning: Removed 6 rows containing non-finite values (`stat_bin()`).
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10.4.9 triceps_skinfold

The last variable I’ll look at for now is triceps_skinfold, which is measured in millimeters.
This is one of several common locations used for the assessment of body fat using skinfold
calipers, and is a frequent part of growth assessments in children. Again, this is a numeric
variable according to R.

187



mosaic::favstats(~ triceps_skinfold, data = nnyfs)

min Q1 median Q3 max mean sd n missing
4 9.1 12.4 18 38.8 14.35725 6.758825 1497 21

And here’s a histogram of the triceps skinfold data, with the fill and color flipped from what
we saw in the plot of the waist circumference data a moment ago.

ggplot(nnyfs, aes(x = triceps_skinfold)) +
geom_histogram(bins = 25, fill = "cyan", color = "tomato")

Warning: Removed 21 rows containing non-finite values (`stat_bin()`).
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OK. We’ve seen a few variables, and we’ll move on now to look more seriously at the data.
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10.5 Additional Numeric Summaries

10.5.1 The Five Number Summary, Quantiles and IQR

The five number summary is most famous when used to form a box plot - it’s the minimum,
25th percentile, median, 75th percentile and maximum. For numerical and integer variables,
the summary function produces the five number summary, plus the mean, and a count of any
missing values (NA’s).

nnyfs |>
select(waist, energy, sugar) |>
summary()

waist energy sugar
Min. : 42.50 Min. : 257 Min. : 1.00
1st Qu.: 55.60 1st Qu.:1368 1st Qu.: 82.66
Median : 64.80 Median :1794 Median :116.92
Mean : 67.71 Mean :1877 Mean :124.32
3rd Qu.: 76.60 3rd Qu.:2306 3rd Qu.:157.05
Max. :144.70 Max. :5265 Max. :405.49
NA's :6

As an alternative, we can use the $ notation to indicate the variable we wish to study inside
a data set, and we can use the fivenum function to get the five numbers used in developing a
box plot. We’ll focus for a little while on the number of kilocalories consumed by each child,
according to the dietary recall questionnaire. That’s the energy variable.

fivenum(nnyfs$energy)

[1] 257.0 1367.0 1794.5 2306.0 5265.0

• As mentioned in @ref(rangeandiqr), the inter-quartile range, or IQR, is sometimes
used as a competitor for the standard deviation. It’s the difference between the 75th
percentile and the 25th percentile. The 25th percentile, median, and 75th percentile are
referred to as the quartiles of the data set, because, together, they split the data into
quarters.

IQR(nnyfs$energy)

[1] 938.5
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We can obtain quantiles (percentiles) as we like - here, I’m asking for the 1st and 99th:

quantile(nnyfs$energy, probs=c(0.01, 0.99))

1% 99%
566.85 4051.75

10.6 Additional Summaries from favstats

If we’re focusing on a single variable, the favstats function in the mosaic package can be very
helpful. Rather than calling up the entire mosaic library here, I’ll just specify the function
within the library.

mosaic::favstats(~ energy, data = nnyfs)

min Q1 median Q3 max mean sd n missing
257 1367.5 1794.5 2306 5265 1877.157 722.3537 1518 0

This adds three useful results to the base summary - the standard deviation, the sample size
and the number of missing observations.

10.7 The Histogram

Obtaining a basic histogram of, for example, the energy (kilocalories consumed) in the nnyfs
data is pretty straightforward.

ggplot(data = nnyfs, aes(x = energy)) +
geom_histogram(binwidth = 100, col = "white")
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10.7.1 Freedman-Diaconis Rule to select bin width

If we like, we can suggest a particular number of cells for the histogram, instead of accepting
the defaults. In this case, we have 𝑛 = 1518 observations. The Freedman-Diaconis rule
can be helpful here. That rule suggests that we set the bin-width to

ℎ = 2 ∗ 𝐼𝑄𝑅
𝑛1/3

so that the number of bins is equal to the range of the data set (maximum - minimum) divided
by ℎ.
For the energy data in the nnyfs tibble, we have

• IQR of 938.5, 𝑛 = 1518 and range = 5008
• Thus, by the Freedman-Diaconis rule, the optimal binwidth ℎ is 163.3203676, or, realis-

tically, 163.
• And so the number of bins would be 30.6636586, or, realistically 31.

Here, we’ll draw the graph again, using the Freedman-Diaconis rule to identify the number of
bins, and also play around a bit with the fill and color of the bars.
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bw <- 2 * IQR(nnyfs$energy) / length(nnyfs$energy)^(1/3)
ggplot(data = nnyfs, aes(x = energy)) +

geom_histogram(binwidth=bw, color = "white", fill = "black")
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This is a nice start, but it is by no means a finished graph.

Let’s improve the axis labels, add a title, and fill in the bars with a distinctive blue and use a
black outline around each bar. I’ll just use 25 bars, because I like how that looks in this case,
and optimizing the number of bins is rarely important.

ggplot(data = nnyfs, aes(x = energy)) +
geom_histogram(bins=25, color = "black", fill = "dodgerblue") +
labs(title = "Histogram of Body-Mass Index Results in the nnyfs data",

x = "Energy Consumed (kcal)", y = "# of Subjects")
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Histogram of Body−Mass Index Results in the nnyfs data

10.7.2 A Note on Colors

The simplest way to specify a color is with its name, enclosed in parentheses. My favorite list
of R colors is http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf. In a pinch, you can
usually find it by googling Colors in R. You can also type colors() in the R console to
obtain a list of the names of the same 657 colors.

When using colors to make comparisons, you may be interested in using a scale that has
some nice properties. The viridis package vignette describes four color scales (viridis, magma,
plasma and inferno) that are designed to be colorful, robust to colorblindness and gray scale
printing, and perceptually uniform, which means (as the package authors describe it) that
values close to each other have similar-appearing colors and values far away from each other
have more different-appearing colors, consistently across the range of values. We can apply
these colors with special functions within ggplot.

Here’s a comparison of several histograms, looking at energy consumed as a function of
whether yesterday was typical in terms of food consumption.

ggplot(data = nnyfs, aes(x = energy, fill = diet_yesterday)) +
geom_histogram(bins = 20, col = "white") +
scale_fill_viridis_d() +
facet_wrap(~ diet_yesterday)
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We don’t really need the legend here, and perhaps we should restrict the plot to participants
who responded to the diet_yesterday question, and put in a title and better axis labels?

nnyfs_temp <- nnyfs |>
filter(!is.na(energy), !is.na(diet_yesterday))

ggplot(data = nnyfs_temp, aes(x = energy, fill = diet_yesterday)) +
geom_histogram(bins = 20, col = "white") +
scale_fill_viridis_d() +
guides(fill = "none") +
facet_wrap(~ diet_yesterday) +
labs(x = "Energy consumed, in kcal",

title = "Energy Consumption and How Typical Was Yesterday's Eating",
subtitle = "NHANES National Youth Fitness Survey, no survey weighting")
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10.8 The Frequency Polygon with Rug Plot

As we’ve seen, we can also plot the distribution of a single continuous variable using the
freqpoly geom. We can also add a rug plot, which places a small vertical line on the horizontal
axis everywhere where an observation appears in the data.

ggplot(data = nnyfs, aes(x = energy)) +
geom_freqpoly(binwidth = 150, color = "dodgerblue") +
geom_rug(color = "red") +
labs(title = "Frequency Polygon of nnyfs Energy data",

x = "Energy (kcal)", y = "# of Patients")

195



0

50

100

150

0 2000 4000
Energy (kcal)

# 
of

 P
at

ie
nt

s

Frequency Polygon of nnyfs Energy data

10.9 Plotting the Probability Density Function

We can also produce a density function, which has the effect of smoothing out the bumps in
a histogram or frequency polygon, while also changing what is plotted on the y-axis.

ggplot(data = nnyfs, aes(x = energy)) +
geom_density(kernel = "gaussian", color = "dodgerblue") +
labs(title = "Density of nnyfs Energy data",

x = "Energy (kcal)", y = "Probability Density function")
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Density of nnyfs Energy data

So, what’s a density function?

• A probability density function is a function of a continuous variable, x, that represents
the probability of x falling within a given range. Specifically, the integral over the interval
(a,b) of the density function gives the probability that the value of x is within (a,b).

• If you’re interested in exploring more on the notion of density functions for continuous
(and discrete) random variables, some nice elementary material is available at Khan
Academy.

10.10 The Boxplot

Sometimes, it’s helpful to picture the five-number summary of the data in such a way as
to get a general sense of the distribution. One approach is a boxplot, sometimes called a
box-and-whisker plot.

10.10.1 Drawing a Boxplot for One Variable in ggplot2

The ggplot2 library easily handles comparison boxplots for multiple distributions, as we’ll see
in a moment. However, building a boxplot for a single distribution requires a little trickiness.
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ggplot(nnyfs, aes(x = 1, y = energy)) +
geom_boxplot(fill = "deepskyblue") +
coord_flip() +
labs(title = "Boxplot of Energy for kids in the NNYFS",

y = "Energy (kcal)",
x = "") +

theme(axis.text.y = element_blank(),
axis.ticks.y = element_blank())

1000 2000 3000 4000 5000
Energy (kcal)

Boxplot of Energy for kids in the NNYFS

10.10.2 About the Boxplot

The boxplot is another John Tukey invention.

• R draws the box (here in yellow) so that its edges of the box fall at the 25th and 75th

percentiles of the data, and the thick line inside the box falls at the median (50th per-
centile).

• The whiskers then extend out to the largest and smallest values that are not classified
by the plot as candidate outliers.

• An outlier is an unusual point, far from the center of a distribution.
• Note that I’ve used the horizontal option to show this boxplot in this direction. Most

comparison boxplots, as we’ll see below, are oriented vertically.

The boxplot’s whiskers that are drawn from the first and third quartiles (i.e. the 25th and
75th percentiles) out to the most extreme points in the data that do not meet the standard
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of “candidate outliers.’ ’ An outlier is simply a point that is far away from the center of the
data - which may be due to any number of reasons, and generally indicates a need for further
investigation.

Most software, including R, uses a standard proposed by Tukey which describes a “candidate
outlier’ ’ as any point above the upper fence or below the lower fence. The definitions of
the fences are based on the inter-quartile range (IQR).

If IQR = 75th percentile - 25th percentile, then the upper fence is 75th percentile + 1.5 IQR,
and the lower fence is 25th percentile - 1.5 IQR.

So for these energy data,

• the upper fence is located at 2306 + 1.5(938.5) = 3713.75
• the lower fence is located at 1367 - 1.5(938.5) = -40.75

In this case, we see no points identified as outliers in the low part of the distribution, but quite
a few identified that way on the high side. This tends to identify about 5% of the data as a
candidate outlier, if the data follow a Normal distribution.

• This plot is indicating clearly that there is some asymmetry (skew) in the data, specifi-
cally right skew.

• The standard R uses is to indicate as outliers any points that are more than 1.5 inter-
quartile ranges away from the edges of the box.

The horizontal orientation I’ve chosen here clarifies the relationship of direction of skew to
the plot. A plot like this, with multiple outliers on the right side is indicative of a long right
tail in the distribution, and hence, positive or right skew - with the mean being larger than
the median. Other indications of skew include having one side of the box being substantially
wider than the other, or one side of the whiskers being substantially longer than the other.
More on skew later.

10.11 A Simple Comparison Boxplot

Boxplots are most often used for comparison, as we’ve seen (for example) in Chapter 3 and
@#sec-summ_quant. We can build boxplots using ggplot2, as well, and we’ll discuss that in
detail later. For now, here’s a boxplot built to compare the energy results by the subject’s
race/ethnicity.

ggplot(nnyfs, aes(x = factor(race_eth), y = energy, fill=factor(race_eth))) +
geom_boxplot() +
guides(fill = "none") +
labs(y = "Energy consumed (kcal)", x = "Race/Ethnicity")
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Let’s look at the comparison of observed energy levels across the five categories in our
phys_health variable, now making use of the viridis color scheme.

ggplot(nnyfs, aes(x = factor(phys_health), y = energy, fill = factor(phys_health))) +
geom_boxplot() +
scale_fill_viridis_d() +
labs(title = "Energy by Self-Reported Physical Health, in nnyfs data")
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As a graph, that’s not bad, but what if we want to improve it further?

Let’s turn the boxes in the horizontal direction, and get rid of the perhaps unnecessary
phys_health labels.

ggplot(nnyfs, aes(x = factor(phys_health), y = energy, fill = factor(phys_health))) +
geom_boxplot() +
scale_fill_viridis_d() +
coord_flip() +
guides(fill = "none") +
labs(title = "Energy Consumed by Self-Reported Physical Health",

subtitle = "NHANES National Youth Fitness Survey, unweighted",
x = "")
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10.12 Using describe in the psych library

For additional numerical summaries, one option would be to consider using the describe
function from the psych library.

psych::describe(nnyfs$energy)

vars n mean sd median trimmed mad min max range skew kurtosis
X1 1 1518 1877.16 722.35 1794.5 1827.1 678.29 257 5265 5008 0.8 1.13

se
X1 18.54

This package provides, in order, the following…

• n = the sample size
• mean = the sample mean
• sd = the sample standard deviation
• median = the median, or 50th percentile
• trimmed = mean of the middle 80% of the data
• mad = median absolute deviation
• min = minimum value in the sample
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• max = maximum value in the sample
• range = max - min
• skew = skewness measure, described below (indicates degree of asymmetry)
• kurtosis = kurtosis measure, described below (indicates heaviness of tails, degree of

outlier-proneness)
• se = standard error of the sample mean = sd / square root of sample size, useful in

inference

10.12.1 The Trimmed Mean

The trimmed mean trim value in R indicates proportion of observations to be trimmed
from each end of the outcome distribution before the mean is calculated. The trimmed value
provided by the psych::describe package describes what this particular package calls a 20%
trimmed mean (bottom and top 10% of energy values are removed before taking the mean -
it’s the mean of the middle 80% of the data.) I might call that a 80% trimmed mean sometimes,
but that’s just me.

mean(nnyfs$energy, trim=.1)

[1] 1827.1

10.12.2 The Median Absolute Deviation

An alternative to the IQR that is fancier, and a bit more robust, is the median absolute
deviation, which, in large sample sizes, for data that follow a Normal distribution, will be
(in expectation) equal to the standard deviation. The MAD is the median of the absolute
deviations from the median, multiplied by a constant (1.4826) to yield asymptotically normal
consistency.

mad(nnyfs$energy)

[1] 678.2895

10.13 Assessing Skew

A relatively common idea is to assess skewness, several measures of which are available. Many
models assume a Normal distribution, where, among other things, the data are symmetric
around the mean.

203



Skewness measures asymmetry in the distribution, where left skew (mean < median) is indi-
cated by negative skewness values, while right skew (mean > median) is indicated by positive
values. The skew value will be near zero for data that follow a symmetric distribution.

10.13.1 Non-parametric Skewness

A simpler measure of skew, sometimes called the nonparametric skew and closely related
to Pearson’s notion of median skewness, falls between -1 and +1 for any distribution. It is
just the difference between the mean and the median, divided by the standard deviation.

• Values greater than +0.2 are sometimes taken to indicate fairly substantial right skew,
while values below -0.2 indicate fairly substantial left skew.

(mean(nnyfs$energy) - median(nnyfs$energy))/sd(nnyfs$energy)

[1] 0.114427

The Wikipedia page on skewness, from which some of this material is derived, provides defi-
nitions for several other skewness measures.

10.14 Assessing Kurtosis (Heavy-Tailedness)

Another measure of a distribution’s shape that can be found in the psych library is the
kurtosis. Kurtosis is an indicator of whether the distribution is heavy-tailed or light-tailed
as compared to a Normal distribution. Positive kurtosis means more of the variance is due
to outliers - unusual points far away from the mean relative to what we might expect from a
Normally distributed data set with the same standard deviation.

• A Normal distribution will have a kurtosis value near 0, a distribution with similar tail
behavior to what we would expect from a Normal is said to be mesokurtic

• Higher kurtosis values (meaningfully higher than 0) indicate that, as compared to a Nor-
mal distribution, the observed variance is more the result of extreme outliers (i.e. heavy
tails) as opposed to being the result of more modest sized deviations from the mean.
These heavy-tailed, or outlier prone, distributions are sometimes called leptokurtic.

• Kurtosis values meaningfully lower than 0 indicate light-tailed data, with fewer outliers
than we’d expect in a Normal distribution. Such distributions are sometimes referred to
as platykurtic, and include distributions without outliers, like the Uniform distribution.

Here’s a table:
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Fewer outliers than a Normal Approximately Normal More outliers than a Normal
Light-tailed “Normalish” Heavy-tailed

platykurtic (kurtosis < 0) mesokurtic (kurtosis =
0)

leptokurtic (kurtosis > 0)

psych::kurtosi(nnyfs$energy)

[1] 1.130539

Note that the kurtosi() function is strangely named, and is part of the psych package.

10.14.1 The Standard Error of the Sample Mean

The standard error of the sample mean, which is the standard deviation divided by the
square root of the sample size:

sd(nnyfs$energy)/sqrt(length(nnyfs$energy))

[1] 18.54018

10.15 The describe function in the Hmisc package

The Hmisc package has lots of useful functions. It’s named for its main developer, Frank
Harrell. The describe function in Hmisc knows enough to separate numerical from categorical
variables, and give you separate (and detailed) summaries for each.

• For a categorical variable, it provides counts of total observations (n), the number of
missing values, and the number of unique categories, along with counts and percentages
falling in each category.

• For a numerical variable, it provides:
• counts of total observations (n), the number of missing values, and the number of unique

values
• an Info value for the data, which indicates how continuous the variable is (a score of 1 is

generally indicative of a completely continuous variable with no ties, while scores near 0
indicate lots of ties, and very few unique values)

• the sample Mean
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• Gini’s mean difference, which is a robust measure of spread, with larger values indicating
greater dispersion in the data. It is defined as the mean absolute difference between any
pairs of observations.

• many sample percentiles (quantiles) of the data, specifically (5, 10, 25, 50, 75, 90, 95,
99)

• either a complete table of all observed values, with counts and percentages (if there are
a modest number of unique values), or

• a table of the five smallest and five largest values in the data set, which is useful for
range checking

nnyfs |>
select(waist, energy, bmi) |>
Hmisc::describe()

select(nnyfs, waist, energy, bmi)

3 Variables 1518 Observations
--------------------------------------------------------------------------------
waist

n missing distinct Info Mean Gmd .05 .10
1512 6 510 1 67.71 16.6 49.40 51.40
.25 .50 .75 .90 .95

55.60 64.80 76.60 88.70 96.84

lowest : 42.5 43.4 44.1 44.4 44.5 , highest: 125.8 126 127 132.3 144.7
--------------------------------------------------------------------------------
energy

n missing distinct Info Mean Gmd .05 .10
1518 0 1137 1 1877 796.1 849 1047
.25 .50 .75 .90 .95
1368 1794 2306 2795 3195

lowest : 257 260 326 349 392, highest: 4382 4529 5085 5215 5265
--------------------------------------------------------------------------------
bmi

n missing distinct Info Mean Gmd .05 .10
1514 4 225 1 19.63 5.269 14.30 14.90
.25 .50 .75 .90 .95

15.90 18.10 21.90 26.27 30.20

lowest : 11.9 12.6 12.7 12.9 13 , highest: 42.8 43 46.9 48.2 48.3
--------------------------------------------------------------------------------
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More on the Info value in Hmisc::describe is available here

10.16 Summarizing data within subgroups

Suppose we want to understand how the subjects whose diet involved consuming much more
than usual yesterday compare to those who consumer their usual amount, or to those who
consumed much less than usual, in terms of the energy they consumed, as well as the protein.
We might start by looking at the medians and means.

nnyfs |>
group_by(diet_yesterday) |>
select(diet_yesterday, energy, protein) |>
summarise_all(list(median = median, mean = mean))

# A tibble: 4 x 5
diet_yesterday energy_median protein_median energy_mean protein_mean
<fct> <dbl> <dbl> <dbl> <dbl>

1 1_Much more than usual 2098 69.4 2150. 75.1
2 2_Usual 1794 61.3 1858. 67.0
3 3_Much less than usual 1643 53.9 1779. 60.1
4 <NA> 4348 155. 4348 155.

Perhaps we should restrict ourselves to the people who were not missing the diet_yesterday
category, and look now at their sugar and water consumption.

nnyfs |>
filter(complete.cases(diet_yesterday)) |>
group_by(diet_yesterday) |>
select(diet_yesterday, energy, protein, sugar, water) |>
summarise_all(list(median))

# A tibble: 3 x 5
diet_yesterday energy protein sugar water
<fct> <dbl> <dbl> <dbl> <dbl>

1 1_Much more than usual 2098 69.4 137. 500
2 2_Usual 1794 61.3 114. 385.
3 3_Much less than usual 1643 53.9 115. 311.
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It looks like the children in the “Much more than usual” category consumed more energy,
protein, sugar and water than the children in the other two categories. Let’s draw a picture
of this.

temp_dat <- nnyfs |>
filter(complete.cases(diet_yesterday)) |>
mutate(diet_yesterday = fct_recode(diet_yesterday,

"Much more" = "1_Much more than usual",
"Usual diet" = "2_Usual",
"Much less" = "3_Much less than usual"))

p1 <- ggplot(temp_dat, aes(x = diet_yesterday, y = energy)) +
geom_violin() +
geom_boxplot(aes(fill = diet_yesterday), width = 0.2) +
theme_light() +
scale_fill_viridis_d() +
guides(fill = "none") +
labs(title = "Energy Comparison")

p2 <- ggplot(temp_dat, aes(x = diet_yesterday, y = protein)) +
geom_violin() +
geom_boxplot(aes(fill = diet_yesterday), width = 0.2) +
theme_light() +
scale_fill_viridis_d() +
guides(fill = "none") +
labs(title = "Protein Comparison")

p3 <- ggplot(temp_dat, aes(x = diet_yesterday, y = sugar)) +
geom_violin() +
geom_boxplot(aes(fill = diet_yesterday), width = 0.2) +
theme_light() +
scale_fill_viridis_d() +
guides(fill = "none") +
labs(title = "Sugar Comparison")

p4 <- ggplot(temp_dat, aes(x = diet_yesterday, y = water)) +
geom_violin() +
geom_boxplot(aes(fill = diet_yesterday), width = 0.2) +
theme_light() +
scale_fill_viridis_d() +
guides(fill = "none") +
labs(title = "Water Comparison")
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We can see that there is considerable overlap in these distributions, regardless of what we’re
measuring.

10.17 Another Example

Suppose now that we ask a different question. Do kids in larger categories of BMI have larger
waist circumferences?

nnyfs |>
group_by(bmi_cat) |>
summarise(mean = mean(waist), sd = sd(waist),

median = median(waist),
skew_1 = round((mean(waist) - median(waist)) /

sd(waist),2))

# A tibble: 5 x 5
bmi_cat mean sd median skew_1
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bmi_cat min Q1 median Q3 max mean sd n missing
1_Underweight 42.5 49.3 54.5 62.4 68.5 55.2 7.6 41 0
2_Normal 44.1 53.9 59.5 68.4 89.2 61.2 9.4 917 3
3_Overweight 49.3 62.3 74.0 81.2 105.3 72.3 11.9 258 0
4_Obese 52.1 72.7 86.8 96.8 144.7 85.6 17.1 294 1

<fct> <dbl> <dbl> <dbl> <dbl>
1 1_Underweight 55.2 7.58 54.5 0.09
2 2_Normal NA NA NA NA
3 3_Overweight 72.3 11.9 74 -0.14
4 4_Obese NA NA NA NA
5 <NA> NA NA NA NA

Oops. Looks like we need to filter for cases with complete data on both BMI category and
waist circumference in order to get meaningful results. We should add a count, too.

nnyfs |>
filter(complete.cases(bmi_cat, waist)) |>
group_by(bmi_cat) |>
summarise(count = n(), mean = mean(waist),

sd = sd(waist), median = median(waist),
skew_1 =

round((mean(waist) - median(waist)) / sd(waist),2))

# A tibble: 4 x 6
bmi_cat count mean sd median skew_1
<fct> <int> <dbl> <dbl> <dbl> <dbl>

1 1_Underweight 41 55.2 7.58 54.5 0.09
2 2_Normal 917 61.2 9.35 59.5 0.19
3 3_Overweight 258 72.3 11.9 74 -0.14
4 4_Obese 294 85.6 17.1 86.8 -0.07

Or, we could use something like favstats from the mosaic package, which automatically ac-
counts for missing data, and omits it when calculating summary statistics within each group.

mosaic::favstats(waist ~ bmi_cat, data = nnyfs) |>
kbl(digits = 1) |>
kable_styling(full_width = FALSE)
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While patients in the heavier groups generally had higher waist circumferences, the standard
deviations suggest there may be some meaningful overlap. Let’s draw the picture, in this case
a comparison boxplot accompanying a violin plot.

nnyfs_temp2 <- nnyfs |>
filter(complete.cases(bmi_cat, waist))

ggplot(nnyfs_temp2, aes(x = bmi_cat, y = waist)) +
geom_violin() +
geom_boxplot(aes(fill = bmi_cat), width = 0.2) +
theme_light() +
scale_fill_viridis_d() +
guides(fill = "none") +
labs(title = "Waist Circumference by BMI Category")
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The data transformation with dplyr cheat sheet found under the Help menu in RStudio is
a great resource. And, of course, for more details, visit Hadley Wickham and Grolemund
(2023).
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10.18 Boxplots to Relate an Outcome to a Categorical Predictor

Boxplots are much more useful when comparing samples of data. For instance, consider
this comparison boxplot describing the triceps skinfold results across the four levels of BMI
category.

ggplot(nnyfs, aes(x = bmi_cat, y = triceps_skinfold,
fill = bmi_cat)) +

geom_boxplot() +
scale_fill_viridis_d() +
theme_light()

Warning: Removed 21 rows containing non-finite values (`stat_boxplot()`).
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Again, we probably want to omit those missing values (both in bmi_cat and triceps_skinfold)
and also eliminate the repetitive legend (guides) on the right.

nnyfs_temp3 <- nnyfs |>
filter(complete.cases(bmi_cat, triceps_skinfold))

ggplot(nnyfs_temp3,
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aes(x = bmi_cat, y = triceps_skinfold, fill = bmi_cat)) +
geom_boxplot() +
scale_fill_viridis_d() +
guides(fill = "none") +
theme_light() +
labs(x = "BMI Category", y = "Triceps Skinfold in mm",

title = "Triceps Skinfold increases with BMI category",
subtitle = "NNYFS children")
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As always, the boxplot shows the five-number summary (minimum, 25th percentile, median,
75th percentile and maximum) in addition to highlighting candidate outliers.

10.18.1 Augmenting the Boxplot with the Sample Mean

Often, we want to augment such a plot, perhaps by adding a little diamond to show the
sample mean within each category, so as to highlight skew (in terms of whether the mean is
meaningfully different from the median.)

nnyfs_temp3 <- nnyfs |>
filter(complete.cases(bmi_cat, triceps_skinfold))
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ggplot(nnyfs_temp3,
aes(x = bmi_cat, y = triceps_skinfold, fill = bmi_cat)) +

geom_boxplot() +
stat_summary(fun="mean", geom="point",

shape=23, size=3, fill="white") +
scale_fill_viridis_d() +
guides(fill = "none") +
theme_light() +
labs(x = "BMI Category", y = "Triceps Skinfold in mm",

title = "Triceps Skinfold increases with BMI category",
subtitle = "NNYFS children")
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10.19 Building a Violin Plot

There are a number of other plots which compare distributions of data sets. An interesting
one is called a violin plot. A violin plot is a kernel density estimate, mirrored to form a
symmetrical shape.

nnyfs_temp3 <- nnyfs |>
filter(complete.cases(bmi_cat, triceps_skinfold))
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ggplot(nnyfs_temp3, aes(x=bmi_cat, y=triceps_skinfold, fill = bmi_cat)) +
geom_violin(trim=FALSE) +
scale_fill_viridis_d() +
guides(fill = "none") +
labs(title = "Triceps Skinfold by BMI Category")
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Traditionally, these plots are shown with overlaid boxplots and a white dot at the median, like
this example, now looking at waist circumference again.

nnyfs_temp2 <- nnyfs |>
filter(complete.cases(bmi_cat, waist))

ggplot(nnyfs_temp2, aes(x = bmi_cat, y = waist, fill = bmi_cat)) +
geom_violin(trim=FALSE) +
geom_boxplot(width=.1, outlier.colour=NA,

color = c(rep("white",2), rep("black",2))) +
stat_summary(fun=median, geom="point",

fill="white", shape=21, size=3) +
scale_fill_viridis_d() +
guides(fill = "none") +
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labs(title = "Waist Circumference by BMI Category")

40

80

120

160

1_Underweight 2_Normal 3_Overweight 4_Obese
bmi_cat

w
ai

st
Waist Circumference by BMI Category

10.19.1 Adding Notches to a Boxplot

Notches are used in boxplots to help visually assess whether the medians of the distributions
across the various groups actually differ to a statistically detectable extent. Think of them as
confidence regions around the medians. If the notches do not overlap, as in this situation, this
provides some evidence that the medians in the populations represented by these samples may
be different.

nnyfs_temp3 <- nnyfs |>
filter(complete.cases(bmi_cat, triceps_skinfold))

ggplot(nnyfs_temp3, aes(x = bmi_cat, y = triceps_skinfold)) +
geom_violin() +
geom_boxplot(aes(fill = bmi_cat), width = 0.3, notch = TRUE) +
scale_fill_viridis_d() +
guides(fill = "none") +
theme_light() +
labs(x = "BMI Category", y = "Triceps Skinfold in mm",
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title = "Triceps Skinfold increases with BMI category",
subtitle = "NNYFS children")
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There is no overlap between the notches for each of the four categories, so we might reasonably
conclude that the true median triceps skinfold values across the four categories are statistically
significantly different.

For an example where the notches do overlap, consider the comparison of plank times by BMI
category.

nnyfs_temp4 <- nnyfs |>
filter(complete.cases(bmi_cat, plank_time))

ggplot(nnyfs_temp4, aes(x=bmi_cat, y=plank_time)) +
geom_violin(aes(fill = bmi_cat)) +
geom_boxplot(width = 0.3, notch=TRUE) +
scale_fill_viridis_d() +
guides(fill = "none") +
theme_light() +
labs(title = "Plank Times by BMI category",

x = "", y = "Plank Time (in seconds)")
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The overlap in the notches (for instance between Underweight and Normal) suggests that the
median plank times in the population of interest don’t necessarily differ in a meaningful way
by BMI category, other than perhaps the Obese group which may have a shorter time.

These data are somewhat right skewed. Would a logarithmic transformation in the plot help
us see the patterns more clearly?

nnyfs_temp4 <- nnyfs |>
filter(complete.cases(bmi_cat, plank_time))

ggplot(nnyfs_temp4, aes(x=bmi_cat, y = log(plank_time))) +
geom_violin() +
geom_boxplot(aes(fill = bmi_cat), width = 0.3, notch=TRUE) +
scale_fill_viridis_d() +
guides(fill = "none") +
theme_light() +
labs(title = "log(Plank Times) by BMI category",

x = "", y = "Natural Log of Plank Time")
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10.20 Using Multiple Histograms to Make Comparisons

We can make an array of histograms to describe multiple groups of data, using ggplot2 and
the notion of faceting our plot.

nnyfs_temp3 <- nnyfs |>
filter(complete.cases(bmi_cat, triceps_skinfold))

ggplot(nnyfs_temp3, aes(x=triceps_skinfold, fill = bmi_cat)) +
geom_histogram(binwidth = 2, color = "black") +
facet_wrap(~ bmi_cat) +
scale_fill_viridis_d() +
guides(fill = "none") +
labs(title = "Triceps Skinfold by BMI Category")
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10.21 Using Multiple Density Plots to Make Comparisons

Or, we can make a series of density plots to describe multiple groups of data.

nnyfs_temp3 <- nnyfs |>
filter(complete.cases(bmi_cat, triceps_skinfold))

ggplot(nnyfs_temp3, aes(x=triceps_skinfold, fill = bmi_cat)) +
geom_density(color = "black") +
facet_wrap(~ bmi_cat) +
scale_fill_viridis_d() +
guides(fill = "none") +
labs(title = "Triceps Skinfold by BMI Category")
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Or, we can plot all of the densities on top of each other with semi-transparent fills.

nnyfs_temp3 <- nnyfs |>
filter(complete.cases(bmi_cat, triceps_skinfold))

ggplot(nnyfs_temp3, aes(x=triceps_skinfold, fill = bmi_cat)) +
geom_density(alpha=0.3) +
scale_fill_viridis_d() +
labs(title = "Triceps Skinfold by BMI Category")
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This really works better when we are comparing only two groups, like females to males.

nnyfs_temp5 <- nnyfs |>
filter(complete.cases(sex, triceps_skinfold))

ggplot(nnyfs_temp5, aes(x=triceps_skinfold, fill = sex)) +
geom_density(alpha=0.5) +
labs(title = "Triceps Skinfold by Sex")
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10.22 A Ridgeline Plot

Some people don’t like violin plots - for example, see https://simplystatistics.org/2017/07/13/the-
joy-of-no-more-violin-plots/. An alternative plot is available as part of the ggridges package.
This shows the distribution of several groups simultaneously, especially when you have lots
of subgroup categories, and is called a ridgeline plot.

nnyfs_temp6 <- nnyfs |>
filter(complete.cases(waist, bmi_cat))

ggplot(nnyfs_temp6, aes(x = waist, y = bmi_cat, height = ..density..)) +
geom_density_ridges(scale = 0.85) +
theme_light() +
labs(title = "Ridgeline Plot: Waist Circumference by BMI category (nnyfs)",

x = "Waist Circumference", y = "BMI Category")

Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
i Please use `after_stat(density)` instead.

Picking joint bandwidth of 3.47
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And here’s a ridgeline plot for the triceps skinfolds. We’ll start by sorting the subgroups by
the median value of our outcome (triceps skinfold) in this case, though it turns out not to
matter. We’ll also add some color.

nnyfs_temp3 <- nnyfs |>
filter(complete.cases(bmi_cat, triceps_skinfold)) |>
mutate(bmi_cat = fct_reorder(bmi_cat,

triceps_skinfold,
.fun = median))

ggplot(nnyfs_temp3, aes(x = triceps_skinfold, y = bmi_cat,
fill = bmi_cat, height = ..density..)) +

ggridges::geom_density_ridges(scale = 0.85) +
scale_fill_viridis_d(option = "magma") +
guides(fill = "none") +
labs(title = "Ridgeline Plot of Triceps Skinfold by BMI Category (nnyfs)",

x = "Triceps Skinfold", y = "BMI Category") +
theme_light()

Picking joint bandwidth of 1.37
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For one last example, we’ll look at age by BMI category, so that sorting the BMI subgroups by
the median matters, and we’ll try an alternate color scheme, and a theme specially designed
for the ridgeline plot.

nnyfs_temp7 <- nnyfs |>
filter(complete.cases(bmi_cat, age_child)) |>
mutate(bmi_cat = reorder(bmi_cat, age_child, median))

ggplot(nnyfs_temp7, aes(x = age_child, y = bmi_cat,
fill = bmi_cat, height = ..density..)) +

geom_density_ridges(scale = 0.85) +
scale_fill_brewer(palette = "YlOrRd") +
guides(fill = "none") +
labs(title = "Ridgeline Plot of Age at Exam by BMI category (nnyfs)",

x = "Age of Child at Exam", y = "BMI Category") +
theme_ridges()

Picking joint bandwidth of 1.15
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10.23 What Summaries to Report

It is usually helpful to focus on the shape, center and spread of a distribution. Bock, Velleman
and DeVeaux provide some useful advice:

• If the data are skewed, report the median and IQR (or the three middle quantiles). You
may want to include the mean and standard deviation, but you should point out why
the mean and median differ. The fact that the mean and median do not agree is a sign
that the distribution may be skewed. A histogram will help you make that point.

• If the data are symmetric, report the mean and standard deviation, and possibly the
median and IQR as well.

• If there are clear outliers and you are reporting the mean and standard deviation, report
them with the outliers present and with the outliers removed. The differences may be
revealing. The median and IQR are not likely to be seriously affected by outliers.

10.24 Coming Up

Next, we’ll look at the issue of Normalilty, and in particular how to assess whether a particular
batch of data is well-approximated by the Normal distribution.
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11 Assessing Normality

11.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(patchwork)
library(tidyverse)

theme_set(theme_bw())

We also use the favstat function from the mosaic package in this chapter, but do not load
the whole package.

11.2 Introduction

Data are well approximated by a Normal distribution if the shape of the data’s distribution is
a good match for a Normal distribution with mean and standard deviation equal to the sample
statistics.

• the data are symmetrically distributed about a single peak, located at the sample mean
• the spread of the distribution is well characterized by a Normal distribution with standard

deviation equal to the sample standard deviation
• the data show outlying values (both in number of candidate outliers, and size of the

distance between the outliers and the center of the distribution) that are similar to what
would be predicted by a Normal model.

We have several tools for assessing Normality of a single batch of data, including:

• a histogram with superimposed Normal distribution
• histogram variants (like the boxplot) which provide information on the center, spread

and shape of a distribution
• the Empirical Rule for interpretation of a standard deviation
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• a specialized normal Q-Q plot (also called a normal probability plot or normal quantile-
quantile plot) designed to reveal differences between a sample distribution and what we
might expect from a normal distribution of a similar number of values with the same
mean and standard deviation

11.3 Empirical Rule Interpretation of the Standard Deviation

For a set of measurements that follows a Normal distribution, the interval:

• Mean ± Standard Deviation contains approximately 68% of the measurements;
• Mean ± 2(Standard Deviation) contains approximately 95% of the measurements;
• Mean ± 3(Standard Deviation) contains approximately all (99.7%) of the measurements.

Again, most data sets do not follow a Normal distribution. We will occasionally think about
transforming or re-expressing our data to obtain results which are better approximated by a
Normal distribution, in part so that a standard deviation can be more meaningful.

For the energy data we have been studying, here again are some summary statistics…

nnyfs <- read_rds("data/nnyfs.Rds")

mosaic::favstats(nnyfs$energy)

min Q1 median Q3 max mean sd n missing
257 1367.5 1794.5 2306 5265 1877.157 722.3537 1518 0

The mean is 1877 and the standard deviation is 722, so if the data really were Normally
distributed, we’d expect to see:

• About 68% of the data in the range (1155, 2600). In fact, 1085 of the 1518 energy values
are in this range, or 71.5%.

• About 95% of the data in the range (432, 3322). In fact, 1450 of the 1518 energy values
are in this range, or 95.5%.

• About 99.7% of the data in the range (-290, 4044). In fact, 1502 of the 1518 energy
values are in this range, or 98.9%.

So, based on this Empirical Rule approximation, do the energy data seem to be well approxi-
mated by a Normal distribution?
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11.4 Describing Outlying Values with Z Scores

The maximum energy consumption value here is 5265. One way to gauge how extreme this
is (or how much of an outlier it is) uses that observation’s Z score, the number of standard
deviations away from the mean that the observation falls.

Here, the maximum value, 5265 is 4.69 standard deviations above the mean, and thus has a Z
score of 4.7.

A negative Z score would indicate a point below the mean, while a positive Z score indicates,
as we’ve seen, a point above the mean. The minimum body-mass index, 257 is 2.24 standard
deviations below the mean, so it has a Z score of -2.2.

Recall that the Empirical Rule suggests that if a variable follows a Normal distribution, it
would have approximately 95% of its observations falling inside a Z score of (-2, 2), and
99.74% falling inside a Z score range of (-3, 3).

11.4.1 Fences and Z Scores

Note the relationship between the fences (Tukey’s approach to identifying points which fall
within the whiskers of a boxplot, as compared to candidate outliers) and the Z scores.

The upper inner fence in this case falls at 3713.75, which indicates a Z score of 2.5, while the
lower inner fence falls at -40.25, which indicates a Z score of -2.7. It is neither unusual nor
inevitable for the inner fences to fall at Z scores near -2.0 and +2.0.

11.5 Comparing a Histogram to a Normal Distribution

Most of the time, when we want to understand whether our data are well approximated by a
Normal distribution, we will use a graph to aid in the decision.

One option is to build a histogram with a Normal density function (with the same mean and
standard deviation as our data) superimposed. This is one way to help visualize deviations
between our data and what might be expected from a Normal distribution.

res <- mosaic::favstats(~ energy, data = nnyfs)
bin_w <- 50 # specify binwidth

ggplot(nnyfs, aes(x=energy)) +
geom_histogram(aes(y = ..density..), binwidth = bin_w,

fill = "papayawhip", color = "seagreen") +
stat_function(fun = dnorm,
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args = list(mean = res$mean, sd = res$sd),
lwd = 1.5, col = "blue") +

geom_text(aes(label = paste("Mean", round(res$mean,1),
", SD", round(res$sd,1))),

x = 4000, y = 0.0006,
color="blue", fontface = "italic") +

labs(title = "nnyfs energy values with Normal Density Superimposed",
x = "Energy (kcal)", y = "Probability Density Function")

Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
i Please use `after_stat(density)` instead.
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Does it seem as though the Normal model (as shown in the blue density curve) is an effective
approximation to the observed distribution shown in the bars of the histogram?

We’ll return shortly to the questions:

• Does a Normal distribution model fit our data well? and
• If the data aren’t Normal, but we want to use a Normal model anyway, what should we

do?
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11.5.1 Histogram of energy with Normal model (with Counts)

But first, we’ll demonstrate an approach to building a histogram of counts (rather than a
probability density) and then superimposing a Normal model.

res <- mosaic::favstats(~ energy, data = nnyfs)
bin_w <- 50 # specify binwidth

ggplot(nnyfs, aes(x = energy)) +
geom_histogram(binwidth = bin_w,

fill = "papayawhip",
col = "navy") +

stat_function(
fun = function(x) dnorm(x, mean = res$mean,

sd = res$sd) * res$n * bin_w,
col = "blue", size = 2) +
geom_text(aes(label = paste("Mean", round(res$mean,1),

", SD", round(res$sd,1))),
x = 4000, y = 50,
color="blue", fontface = "italic") +

labs(title = "Histogram of energy, with Normal Model",
x = "Energy consumed (kcal)", y = "# of subjects")

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.
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11.6 Does a Normal model work well for the waist circumference?

Now, suppose we instead look at the waist data, remembering to filter the data to the complete
cases before plotting. Do these data appear to follow a Normal distribution?

res <- mosaic::favstats(~ waist, data = nnyfs)
bin_w <- 5 # specify binwidth

nnyfs_ccw <- nnyfs |>
filter(complete.cases(waist))

ggplot(nnyfs_ccw, aes(x = waist)) +
geom_histogram(binwidth = bin_w,

fill = "antiquewhite",
col = "navy") +

stat_function(
fun = function(x) dnorm(x, mean = res$mean,

sd = res$sd) *
res$n * bin_w,

col = "darkred", size = 2) +
geom_text(aes(label = paste("Mean", round(res$mean,1),
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", SD", round(res$sd,1))),
x = 100, y = 200,
color="darkred", fontface = "italic") +

labs(title = "Histogram of waist, with Normal Model",
x = "Waist Circumference (cm)", y = "# of subjects")
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mosaic::favstats(~ waist, data = nnyfs)

min Q1 median Q3 max mean sd n missing
42.5 55.6 64.8 76.6 144.7 67.70536 15.19809 1512 6

If we rerun this after excluding the missing values, only the last column changes.

mosaic::favstats(~ waist, data = nnyfs_ccw)

min Q1 median Q3 max mean sd n missing
42.5 55.6 64.8 76.6 144.7 67.70536 15.19809 1512 0

The mean is 67.71 and the standard deviation is 15.2 so if the waist data really were Normally
distributed, we’d expect to see:
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• About 68% of the data in the range (52.51, 82.9). In fact, 1076 of the 1512 Age values
are in this range, or 71.2%.

• About 95% of the data in the range (37.31, 98.1). In fact, 1443 of the 1512 Age values
are in this range, or 95.4%.

• About 99.7% of the data in the range (22.11, 113.3). In fact, 1500 of the 1512 Age values
are in this range, or 99.2%.

How does the Normal approximation work for waist circumference, according to the Empirical
Rule?

11.7 The Normal Q-Q Plot

A normal probability plot (or normal quantile-quantile plot) of the energy results from the
nnyfs data, developed using ggplot2 is shown below. In this case, this is a picture of 1518
energy consumption assessments. The idea of a normal Q-Q plot is that it plots the observed
sample values (on the vertical axis) and then, on the horizontal, the expected or theoretical
quantiles that would be observed in a standard normal distribution (a Normal distribution
with mean 0 and standard deviation 1) with the same number of observations.

A Normal Q-Q plot will follow a straight line when the data are (approximately) Normally
distributed. When the data have a different shape, the plot will reflect that.

ggplot(nnyfs, aes(sample = energy)) +
geom_qq() + geom_qq_line(col = "red") +
theme_light() +
labs(title = "Normal Q-Q plot for energy data")
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11.8 Interpreting the Normal Q-Q Plot

The purpose of a Normal Q-Q plot is to help point out distinctions from a Normal distribution.
A Normal distribution is symmetric and has certain expectations regarding its tails. The
Normal Q-Q plot can help us identify data as well approximated by a Normal distribution, or
not, because of:

• skew (including distinguishing between right skew and left skew)
• behavior in the tails (which could be heavy-tailed [more outliers than expected] or light-

tailed)

11.8.1 Data from a Normal distribution shows up as a straight line in a Normal
Q-Q plot

We’ll demonstrate the looks that we can obtain from a Normal Q-Q plot in some simulations.
First, here is an example of a Normal Q-Q plot, and its associated histogram, for a sample of
200 observations simulated from a Normal distribution.

set.seed(123431) # so the results can be replicated
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# simulate 200 observations from a Normal(20, 5) distribution and place them
# in the d variable within the temp_1 tibble
temp_1 <- tibble(d = rnorm(200, mean = 20, sd = 5))

# left plot - basic Normal Q-Q plot of simulated data
p1 <- ggplot(temp_1, aes(sample = d)) +

geom_qq() + geom_qq_line(col = "red") +
theme_light() +
labs(y = "Ordered Simulated Sample Data")

# right plot - histogram with superimposed normal distribution
res <- mosaic::favstats(~ d, data = temp_1)
bin_w <- 2 # specify binwidth

p2 <- ggplot(temp_1, aes(x = d)) +
geom_histogram(binwidth = bin_w,

fill = "papayawhip",
col = "seagreen") +

stat_function(
fun = function(x) dnorm(x, mean = res$mean,

sd = res$sd) *
res$n * bin_w,

col = "blue", size = 1.5) +
geom_text(aes(label = paste("Mean", round(res$mean,1),

", SD", round(res$sd,1))),
x = 25, y = 35,
color="blue", fontface = "italic") +

labs(x = "Simulated Sample Data", y = "")

p1 + p2 +
plot_annotation(title = "200 observations from a simulated Normal")
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# uses patchwork package to combine plots

These simulated data appear to be well-modeled by the Normal distribution, because the
points on the Normal Q-Q plot follow the diagonal reference line. In particular,

• there is no substantial curve (such as we’d see with data that were skewed)
• there is no particularly surprising behavior (curves away from the line) at either tail, so

there’s no obvious problem with outliers

11.8.2 Skew is indicated by monotonic curves in the Normal Q-Q plot

Data that come from a skewed distribution appear to curve away from a straight line in the
Q-Q plot.

set.seed(123431) # so the results can be replicated

# simulate 200 observations from a beta(5, 2) distribution into the e1 variable
# simulate 200 observations from a beta(1, 5) distribution into the e2 variable
temp_2 <- tibble(e1 = rbeta(200, 5, 2), e2 = rbeta(200, 1, 5))

p1 <- ggplot(temp_2, aes(sample = e1)) +
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geom_qq(col = "orchid") + geom_qq_line(col = "blue") +
theme_light() +
labs(y = "Ordered Sample e1",

title = "Beta(5, 2) sample: Left Skewed")

p2 <- ggplot(temp_2, aes(sample = e2)) +
geom_qq(col = "darkorange") + geom_qq_line(col = "blue") +
theme_light() +
labs(y = "Ordered Sample e2",

title = "Beta(1, 5) sample: Right Skewed")

p1 + p2 + plot_annotation(title = "200 observations from simulated Betas")
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Note the bends away from a straight line in each sample. The non-Normality may be easier
to see in a histogram.

res1 <- mosaic::favstats(~ e1, data = temp_2)
bin_w1 <- 0.025 # specify binwidth

p1 <- ggplot(temp_2, aes(x = e1)) +
geom_histogram(binwidth = bin_w1,
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fill = "orchid",
col = "black") +

stat_function(
fun = function(x) dnorm(x, mean = res1$mean,

sd = res1$sd) *
res1$n * bin_w1,

col = "blue", size = 1.5) +
labs(x = "Sample e1", y = "",

title = "Beta(5,2) sample: Left Skew")

res2 <- mosaic::favstats(~ e2, data = temp_2)
bin_w2 <- 0.025 # specify binwidth

p2 <- ggplot(temp_2, aes(x = e2)) +
geom_histogram(binwidth = bin_w2,

fill = "darkorange",
col = "black") +

stat_function(
fun = function(x) dnorm(x, mean = res2$mean,

sd = res2$sd) *
res2$n * bin_w2,

col = "blue", size = 1.5) +
labs(x = "Sample e1", y = "",

title = "Beta(1,5) sample: Right Skew")

p1 + p2 + plot_annotation(caption = "Histograms with Normal curve superimposed")
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11.8.3 Direction of Skew

In each of these pairs of plots, we see the same basic result.

• The left plot (for data e1) shows left skew, with a longer tail on the left hand side and
more clustered data at the right end of the distribution.

• The right plot (for data e2) shows right skew, with a longer tail on the right hand side, the
mean larger than the median, and more clustered data at the left end of the distribution.

11.8.4 Outlier-proneness is indicated by “s-shaped” curves in a Normal Q-Q plot

• Heavy-tailed but symmetric distributions are indicated by reverse “S”-shapes, as shown
on the left below.

• Light-tailed but symmetric distributions are indicated by “S” shapes in the plot, as
shown on the right below.

set.seed(4311) # so the results can be replicated

# sample 200 observations from each of two probability distributions
temp_3 <- tibble(s1 = rcauchy(200, location=10, scale = 1),

s2 = runif(200, -30, 30))

240



p1 <- ggplot(temp_3, aes(sample = s1)) +
geom_qq(col = "slateblue") + geom_qq_line(col = "black") +
theme_light() +
labs(y = "Ordered Sample s1",

title = "Heavy-Tailed Symmetric Sample s1")

p2 <- ggplot(temp_3, aes(sample = s2)) +
geom_qq(col = "dodgerblue") + geom_qq_line(col = "black") +
theme_light() +
labs(y = "Ordered Sample s2",

title = "Light-Tailed Symmetric Sample s2")

p1 + p2 + plot_annotation(title = "200 observations from simulated distributions")
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200 observations from simulated distributions

And, we can also visualize these simulations with histograms, although they’re less helpful for
understanding tail behavior than they are for skew.

res1 <- mosaic::favstats(~ s1, data = temp_3)
bin_w1 <- 20 # specify binwidth
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p1 <- ggplot(temp_3, aes(x = s1)) +
geom_histogram(binwidth = bin_w1,

fill = "slateblue",
col = "white") +

stat_function(
fun = function(x) dnorm(x, mean = res1$mean,

sd = res1$sd) *
res1$n * bin_w1,

col = "blue") +
labs(x = "Sample s1", y = "",

title = "Cauchy sample: Heavy Tails")

res2 <- mosaic::favstats(~ s2, data = temp_3)
bin_w2 <- 2 # specify binwidth

p2 <- ggplot(temp_3, aes(x = s2)) +
geom_histogram(binwidth = bin_w2,

fill = "dodgerblue",
col = "white") +

stat_function(
fun = function(x) dnorm(x, mean = res2$mean,

sd = res2$sd) *
res2$n * bin_w2,

col = "blue") +
labs(x = "Sample s2", y = "",

title = "Uniform sample: Light Tails")

p1 + p2 + plot_annotation(caption = "Histograms with Normal curve superimposed")
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Instead, boxplots (here augmented with violin plots) can be more helpful when thinking about
light-tailed vs. heavy-tailed distributions.

p1 <- ggplot(temp_3, aes(x = "s1", y = s1)) +
geom_violin(col = "slateblue") +
geom_boxplot(fill = "slateblue", width = 0.2) +
theme_light() +
coord_flip() +
labs(y = "Ordered Sample s1", x = "",

title = "Heavy-Tailed Symmetric Sample s1")

p2 <- ggplot(temp_3, aes(x = "s2", y = s2)) +
geom_violin(col = "dodgerblue") +
geom_boxplot(fill = "dodgerblue", width = 0.2) +
theme_light() +
coord_flip() +
labs(y = "Ordered Sample s2", x = "",

title = "Light-Tailed Symmetric Sample s2")

p1 + p2 + plot_annotation(title = "200 observations from simulated distributions")
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rm(temp_1, temp_2, temp_3, p1, p2,
res, res1, res2, bin_w, bin_w1, bin_w2) # cleaning up

11.9 Can a Normal Distribution Fit the nnyfs energy data Well?

The energy data we’ve been studying shows meaningful signs of right skew.

p1 <- ggplot(nnyfs, aes(sample = energy)) +
geom_qq(col = "coral", size = 2) +
geom_qq_line(col = "blue") +
theme_light() +
labs(title = "Energy Consumed",

y = "Sorted Energy data")

res <- mosaic::favstats(~ energy, data = nnyfs)
bin_w <- 250 # specify binwidth

p2 <- ggplot(nnyfs, aes(x = energy)) +
geom_histogram(binwidth = bin_w,

fill = "coral",
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col = "white") +
stat_function(

fun = function(x) dnorm(x, mean = res$mean,
sd = res$sd) *

res$n * bin_w,
col = "blue", size = 1.5) +

labs(x = "Energy (kcal consumed)", y = "",
title = "Energy Consumed")
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• Skewness is indicated by the curve in the Normal Q-Q plot. Curving up and away from
the line in both tails suggests right skew, as does the histogram.

What if we plotted not the original energy values (all of which are positive) but instead plotted
the square roots of the energy values?

• Compare these two plots - the left describes the distribution of the original energy data
from the NNYFS data frame, and the right plot shows the distribution of the square
root of those values.
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p1 <- ggplot(nnyfs, aes(sample = energy)) +
geom_qq(col = "coral", size = 2) +
geom_qq_line(col = "blue") +
theme_light() +
labs(title = "Energy Consumed",

y = "Sorted Energy data")

p2 <- ggplot(nnyfs, aes(sample = sqrt(energy))) +
geom_qq(col = "darkcyan", size = 2) +
geom_qq_line(col = "blue") +
theme_light() +
labs(title = "Square Root of Energy",

y = "Sorted Square Root of Energy")

p1 + p2
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• The left plot shows substantial right or positive skew
• The right plot shows there’s much less skew after the square root has been taken.

Our conclusion is that a Normal model is a far better fit to the square root of the energy values
than it is to the raw energy values.

The effect of taking the square root may be clearer from the histograms below, with Normal
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models superimposed.

res <- mosaic::favstats(~ energy, data = nnyfs)
bin_w <- 250 # specify binwidth

p1 <- ggplot(nnyfs, aes(x = energy)) +
geom_histogram(binwidth = bin_w,

fill = "coral",
col = "white") +

stat_function(
fun = function(x) dnorm(x, mean = res$mean,

sd = res$sd) *
res$n * bin_w,

col = "black", size = 1.5) +
labs(x = "Energy (kcal consumed)", y = "",

title = "Energy Consumed")

res2 <- mosaic::favstats(~ sqrt(energy), data = nnyfs)
bin_w2 <- 5 # specify binwidth

p2 <- ggplot(nnyfs, aes(x = sqrt(energy))) +
geom_histogram(binwidth = bin_w2,

fill = "darkcyan",
col = "white") +

stat_function(
fun = function(x) dnorm(x, mean = res2$mean,

sd = res2$sd) *
res2$n * bin_w2,

col = "black", size = 1.5) +
labs(x = "Square Root of Energy", y = "",

title = "Square Root of Energy")

p1 + p2 + plot_annotation(title = "Comparing energy to sqrt(energy)")
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rm(p1, p2, bin_w, bin_w2, res, res2) # cleanup

When we are confronted with a variable that is not Normally distributed but that we wish was
Normally distributed, it is sometimes useful to consider whether working with a transforma-
tion of the data will yield a more helpful result, as the square root does in this instance.

The rest of this Chapter provides some guidance about choosing from a class of power trans-
formations that can reduce the impact of non-Normality in unimodal data.

• When we are confronted with a variable that is not Normally distributed but that we
wish was Normally distributed, it is sometimes useful to consider whether working with
a transformation of the data will yield a more helpful result.

• Many statistical methods, including t tests and analyses of variance, assume Normal
distributions.

• We’ll discuss using R to assess a range of what are called Box-Cox power transformations,
via plots, mainly.

11.10 The Ladder of Power Transformations

The key notion in re-expression of a single variable to obtain a distribution better approximated
by the Normal or re-expression of an outcome in a simple regression model is that of a ladder
of power transformations, which applies to any unimodal data.
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Power Transformation
3 x3

2 x2

1 x (unchanged)
0.5 x0.5 =

√𝑥
0 ln x

-0.5 x-0.5 = 1/
√𝑥

-1 x-1 = 1/x
-2 x-2 = 1/x2

11.11 Using the Ladder

As we move further away from the identity function (power = 1) we change the shape more
and more in the same general direction.

• For instance, if we try a logarithm, and this seems like too much of a change, we might
try a square root instead.

• Note that this ladder (which like many other things is due to John Tukey) uses the
logarithm for the “power zero” transformation rather than the constant, which is what
x0 actually is.

• If the variable x can take on negative values, we might take a different approach. If x is a
count of something that could be zero, we often simply add 1 to x before transformation.

The ladder of power transformations is particularly helpful when we are confronted with data
that shows skew.

• To handle right skew (where the mean exceeds the median) we usually apply powers
below 1.

• To handle left skew (where the median exceeds the mean) we usually apply powers
greater than 1.

The most common transformations are the square (power 2), the square root (power 1/2), the
logarithm (power 0) and the inverse (power -1), and I usually restrict myself to those options
in practical work.

11.12 Protein Consumption in the NNYFS data

Here are the protein consumption (in grams) results from the NNYFS data.
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mosaic::favstats(~ protein, data = nnyfs)

min Q1 median Q3 max mean sd n missing
4.18 45.33 61.255 82.565 241.84 66.90148 30.96319 1518 0

p1 <- ggplot(nnyfs, aes(x = "Protein", y = protein)) +
geom_violin() +
geom_boxplot(width = 0.2, fill = "salmon",

outlier.color = "red") +

labs(title = "NNYFS Protein consumption",
x = "", y = "Protein Consumption (g)")

p2 <- ggplot(nnyfs, aes(sample = protein)) +
geom_qq(col = "salmon") +
geom_qq_line(col = "black") +

labs(title = "NNYFS Protein Consumption",
y = "Protein Consumption (g)")
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The key point here is that we see several signs of meaningful right skew, and we’ll want to
consider a transformation that might make a Normal model more plausible.

11.12.1 Using patchwork to compose plots

As we mentioned previously, I feel that the slickest approach to composing how a series of
plots are placed together is available in the patchwork package. Here’s another example.

res <- mosaic::favstats(~ protein, data = nnyfs)
bin_w <- 5 # specify binwidth

p1 <- ggplot(nnyfs, aes(x = protein)) +
geom_histogram(binwidth = bin_w,

fill = "salmon",
col = "white") +

stat_function(
fun = function(x) dnorm(x, mean = res$mean,

sd = res$sd) *
res$n * bin_w,

col = "darkred", size = 2) +
labs(title = "Histogram with Normal fit",

x = "Protein Consumption (g)", y = "# of subjects")

p2 <- ggplot(nnyfs, aes(sample = protein)) +
geom_qq(col = "salmon") +
geom_qq_line(col = "black") +

labs(title = "Normal Q-Q plot",
y = "Protein Consumption (g)")

p3 <- ggplot(nnyfs, aes(x = "", y = protein)) +
geom_violin() +
geom_boxplot(width = 0.2, fill = "salmon",

outlier.color = "red") +

coord_flip() +
labs(title = "Boxplot with Violin",

x = "", y = "Protein Consumption (g)")
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p1 + p2 - p3 + plot_layout(ncol = 1, height = c(3, 1)) +
plot_annotation(title = "NNYFS Protein Consumption")
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Again, the patchwork package repository at https://patchwork.data-imaginist.com/index.html
has lots of nice examples to work from.

11.13 Can we transform the protein data?

As we’ve seen, the protein data are right skewed, and all of the values are strictly positive.
If we want to use the tools of the Normal distribution to describe these data, we might try
taking a step “down” our ladder from power 1 (raw data) to lower powers.

11.13.1 The Square Root

Would a square root applied to the protein data help alleviate that right skew?

res <- mosaic::favstats(~ sqrt(protein), data = nnyfs)
bin_w <- 1 # specify binwidth
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p1 <- ggplot(nnyfs, aes(x = sqrt(protein))) +
geom_histogram(binwidth = bin_w,

fill = "salmon",
col = "white") +

stat_function(
fun = function(x) dnorm(x, mean = res$mean,

sd = res$sd) *
res$n * bin_w,

col = "darkred", size = 2) +
labs(title = "Histogram with Normal fit",

x = "Square Root of Protein Consumption (g)", y = "# of subjects")

p2 <- ggplot(nnyfs, aes(sample = sqrt(protein))) +
geom_qq(col = "salmon") +
geom_qq_line(col = "black") +

labs(title = "Normal Q-Q plot",
y = "Square Root of Protein Consumption (g)")

p3 <- ggplot(nnyfs, aes(x = "", y = sqrt(protein))) +
geom_violin() +
geom_boxplot(width = 0.2, fill = "salmon",

outlier.color = "red") +

coord_flip() +
labs(title = "Boxplot with Violin",

x = "", y = "Square Root of Protein Consumption (g)")

p1 + p2 - p3 + plot_layout(ncol = 1, height = c(3, 1)) +
plot_annotation(title = "Square Root of NNYFS Protein Consumption")
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That looks like a more symmetric distribution, certainly, although we still have some outliers
on the right side of the distribution. Should we take another step down the ladder?

11.13.2 The Logarithm

We might also try a logarithm of the energy circumference data. We can use either the natural
logarithm (log, in R) or the base-10 logarithm (log10, in R) - either will have the same impact
on skew.

res <- mosaic::favstats(~ log(protein), data = nnyfs)
bin_w <- 0.5 # specify binwidth

p1 <- ggplot(nnyfs, aes(x = log(protein))) +
geom_histogram(binwidth = bin_w,

fill = "salmon",
col = "white") +

stat_function(
fun = function(x) dnorm(x, mean = res$mean,

sd = res$sd) *
res$n * bin_w,

col = "darkred", size = 2) +
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labs(title = "Histogram with Normal fit",
x = "Log of Protein Consumption (g)", y = "# of subjects")

p2 <- ggplot(nnyfs, aes(sample = log(protein))) +
geom_qq(col = "salmon") +
geom_qq_line(col = "black") +
labs(title = "Normal Q-Q plot",

y = "Log of Protein Consumption (g)")

p3 <- ggplot(nnyfs, aes(x = "", y = log(protein))) +
geom_violin() +
geom_boxplot(width = 0.2, fill = "salmon",

outlier.color = "red") +
coord_flip() +
labs(title = "Boxplot with Violin",

x = "", y = "Log of Protein Consumption (g)")

p1 + p2 - p3 + plot_layout(ncol = 1, height = c(3, 1)) +
plot_annotation(title = "Logarithm of NNYFS Protein Consumption")
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Now, it looks like we may have gone too far in the other direction. It looks like the square root
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is a sensible choice to try to improve the fit of a Normal model to the protein consumption
data.

11.13.3 This course uses Natural Logarithms, unless otherwise specified

In this course, we will assume the use of natural logarithms unless we specify otherwise.
Following R’s convention, we will use log for natural logarithms.

11.14 What if we considered all 9 available transformations?

p1 <- ggplot(nnyfs, aes(sample = protein^3)) +
geom_qq(col = "salmon") +
geom_qq_line(col = "black") +
labs(title = "Cube (power 3)",

y = "Protein, Cubed")

p2 <- ggplot(nnyfs, aes(sample = protein^2)) +
geom_qq(col = "salmon") +
geom_qq_line(col = "black") +
labs(title = "Square (power 2)",

y = "Protein, Squared")

p3 <- ggplot(nnyfs, aes(sample = protein)) +
geom_qq(col = "salmon") +
geom_qq_line(col = "black") +
labs(title = "Original Data",

y = "Protein (g)")

p4 <- ggplot(nnyfs, aes(sample = sqrt(protein))) +
geom_qq(col = "salmon") +
geom_qq_line(col = "black") +
labs(title = "sqrt (power 0.5)",

y = "Square Root of Protein")

p5 <- ggplot(nnyfs, aes(sample = log(protein))) +
geom_qq(col = "salmon") +
geom_qq_line(col = "black") +
labs(title = "log (power 0)",

y = "Natural Log of Protein")
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p6 <- ggplot(nnyfs, aes(sample = protein^(-0.5))) +
geom_qq(col = "salmon") +
geom_qq_line(col = "black") +
labs(title = "1/sqrt (power -0.5)",

y = "1/Square Root(Protein)")

p7 <- ggplot(nnyfs, aes(sample = 1/protein)) +
geom_qq(col = "salmon") +
geom_qq_line(col = "black") +
labs(title = "Inverse (power -1)",

y = "1/Protein")

p8 <- ggplot(nnyfs, aes(sample = 1/(protein^2))) +
geom_qq(col = "salmon") +
geom_qq_line(col = "black") +
labs(title = "1/Square (power -2)",

y = "1 /(Protein squared)")

p9 <- ggplot(nnyfs, aes(sample = 1/(protein^3))) +
geom_qq(col = "salmon") +
geom_qq_line(col = "black") +
labs(title = "1/Cube (power -3)",

y = "1/(Protein cubed)")

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 +
plot_layout(nrow = 3) +
plot_annotation(title = "Transformations of NNYFS Protein Consumption")
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The square root still appears to be the best choice of transformation here, even after we
consider all 8 transformation of the raw data.
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11.15 A Simulated Data Set

set.seed(431);
sim_2 <-

tibble(sample2 = 100*rbeta(n = 125, shape1 = 5, shape2 = 2))

If we’d like to transform these data so as to better approximate a Normal distribution, where
should we start? What transformation do you suggest?

res <- mosaic::favstats(~ sample2, data = sim_2)
bin_w <- 4 # specify binwidth

p1 <- ggplot(sim_2, aes(x = sample2)) +
geom_histogram(binwidth = bin_w,

fill = "royalblue",
col = "white") +

stat_function(
fun = function(x) dnorm(x, mean = res$mean,

sd = res$sd) *
res$n * bin_w,

col = "darkred", size = 2) +
labs(title = "Histogram with Normal fit",

x = "Simulated Data", y = "# of subjects")

p2 <- ggplot(sim_2, aes(sample = sample2)) +
geom_qq(col = "royalblue") +
geom_qq_line(col = "black") +
labs(title = "Normal Q-Q plot",

y = "Simulated Data")

p3 <- ggplot(sim_2, aes(x = "", y = sample2)) +
geom_violin() +
geom_boxplot(width = 0.3, fill = "royalblue",

outlier.color = "royalblue") +
coord_flip() +
labs(title = "Boxplot with Violin",

x = "", y = "Simulated Data")

p1 + p2 - p3 + plot_layout(ncol = 1, height = c(3, 1)) +
plot_annotation(title = "Simulated Data")
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Given the left skew in the data, it looks like a step up in the ladder is warranted, perhaps by
looking at the square of the data?

res <- mosaic::favstats(~ sample2^2, data = sim_2)
bin_w <- 600 # specify binwidth

p1 <- ggplot(sim_2, aes(x = sample2^2)) +
geom_histogram(binwidth = bin_w,

fill = "royalblue",
col = "white") +

stat_function(
fun = function(x) dnorm(x, mean = res$mean,

sd = res$sd) *
res$n * bin_w,

col = "darkred", size = 2) +
labs(title = "Histogram with Normal fit",

x = "Squared Simulated Data", y = "# of subjects")

p2 <- ggplot(sim_2, aes(sample = sample2^2)) +
geom_qq(col = "royalblue") +
geom_qq_line(col = "black") +
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labs(title = "Normal Q-Q plot",
y = "Squared Simulated Data")

p3 <- ggplot(sim_2, aes(x = "", y = sample2^2)) +
geom_violin() +
geom_boxplot(width = 0.3, fill = "royalblue",

outlier.color = "royalblue") +
coord_flip() +
labs(title = "Boxplot with Violin",

x = "", y = "Squared Simulated Data")

p1 + p2 - p3 + plot_layout(ncol = 1, height = c(3, 1)) +
plot_annotation(title = "Squared Simulated Data")
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Looks like at best a modest improvement. How about cubing the data, instead?

res <- mosaic::favstats(~ sample2^3, data = sim_2)
bin_w <- 100000 # specify binwidth

p1 <- ggplot(sim_2, aes(x = sample2^3)) +
geom_histogram(binwidth = bin_w,
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fill = "royalblue",
col = "white") +

stat_function(
fun = function(x) dnorm(x, mean = res$mean,

sd = res$sd) *
res$n * bin_w,

col = "darkred", size = 2) +
labs(title = "Histogram with Normal fit",

x = "Cubed Simulated Data", y = "# of subjects")

p2 <- ggplot(sim_2, aes(sample = sample2^3)) +
geom_qq(col = "royalblue") +
geom_qq_line(col = "black") +
labs(title = "Normal Q-Q plot",

y = "Cubed Simulated Data")

p3 <- ggplot(sim_2, aes(x = "", y = sample2^3)) +
geom_violin() +
geom_boxplot(width = 0.3, fill = "royalblue",

outlier.color = "royalblue") +
coord_flip() +
labs(title = "Boxplot with Violin",

x = "", y = "Cubed Simulated Data")

p1 + p2 - p3 + plot_layout(ncol = 1, height = c(3, 1)) +
plot_annotation(title = "Cubed Simulated Data")
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The newly transformed (cube of the) data appears more symmetric, although somewhat light-
tailed. Perhaps a Normal model would be more appropriate now, although the standard
deviation is likely to overstate the variation we see in the data due to the light tails. Again,
I wouldn’t be thrilled using a cube in practical work, as it is so hard to interpret, but it does
look like a reasonable choice here.

11.16 What if we considered all 9 available transformations?

p1 <- ggplot(sim_2, aes(sample = sample2^3)) +
geom_qq(col = "royalblue") +
geom_qq_line(col = "black") +
labs(title = "Cube (power 3)")

p2 <- ggplot(sim_2, aes(sample = sample2^2)) +
geom_qq(col = "royalblue") +
geom_qq_line(col = "black") +
labs(title = "Square (power 2)")

p3 <- ggplot(sim_2, aes(sample = sample2)) +
geom_qq(col = "royalblue") +
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geom_qq_line(col = "black") +
labs(title = "Original Data")

p4 <- ggplot(sim_2, aes(sample = sqrt(sample2))) +
geom_qq(col = "royalblue") +
geom_qq_line(col = "black") +
labs(title = "sqrt (power 0.5)")

p5 <- ggplot(sim_2, aes(sample = log(sample2))) +
geom_qq(col = "royalblue") +
geom_qq_line(col = "black") +
labs(title = "log (power 0)")

p6 <- ggplot(sim_2, aes(sample = sample2^(0.5))) +
geom_qq(col = "royalblue") +
geom_qq_line(col = "black") +
labs(title = "1/sqrt (power -0.5)")

p7 <- ggplot(sim_2, aes(sample = 1/sample2)) +
geom_qq(col = "royalblue") +
geom_qq_line(col = "black") +
labs(title = "Inverse (power -1)")

p8 <- ggplot(sim_2, aes(sample = 1/(sample2^2))) +
geom_qq(col = "royalblue") +
geom_qq_line(col = "black") +
labs(title = "1/Square (power -2)")

p9 <- ggplot(sim_2, aes(sample = 1/(sample2^3))) +
geom_qq(col = "royalblue") +
geom_qq_line(col = "black") +
labs(title = "1/Cube (power -3)")

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 +
plot_layout(nrow = 3) +
plot_annotation(title = "Transformations of Simulated Sample")
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Again, either the cube or the square looks like best choice here, in terms of creating a more
symmetric (albeit light-tailed) distribution.
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11.17 Coming Up

Next, we’ll spend some time thinking about scatterplots, correlation and straight line regression
models.

266



12 Straight Line Models

12.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(janitor)
library(kableExtra)
library(modelsummary)
library(patchwork)
library(tidyverse)

theme_set(theme_bw())

12.2 Assessing A Scatterplot

Let’s consider the relationship of protein and fat consumption for children in the nnyfs
data.

nnyfs <- read_rds("data/nnyfs.Rds")

We’ll begin our investigation, as we always should, by drawing a relevant picture. For the
association of two quantitative variables, a scatterplot is usually the right start. Each subject
in the nnyfs data is represented by one of the points below. To the plot, I’ve also used
geom_smooth to add a straight line regression model, which we’ll discuss later.

ggplot(data = nnyfs, aes(x = protein, y = fat)) +
geom_point(shape = 1, size = 2, col = "sienna") +
geom_smooth(method = "lm", formula = y ~ x,

se = FALSE, col = "steelblue") +
labs(title = "Protein vs. Fat consumption in NNYFS data",

subtitle = "with fitted straight line regression model",
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x = "Protein (in g)", y = "Fat (in g)")
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Here, I’ve arbitrarily decided to place fat on the vertical axis, and protein on the horizontal.
Fitting a prediction model to this scatterplot will then require that we predict fat on the basis
of protein.

In this case, the pattern appears to be:

1. direct, or positive, in that the values of the 𝑥 variable (protein) increase, so do the
values of the 𝑦 variable (fat). Essentially, it appears that subjects who consumed more
protein also consumed more fat, but we don’t know cause and effect here.

2. fairly linear in that most of the points cluster around what appears to be a pattern
which is well-fitted by a straight line.

3. moderately strong in that the range of values for fat associated with any particular
value of protein is fairly tight. If we know someone’s protein consumption, that should
meaningfully improve our ability to predict their fat consumption, among the subjects
in these data.

4. that we see some unusual or outlier values, further away from the general pattern of
most subjects shown in the data.
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12.3 Highlighting an unusual point

Consider the subject with protein consumption close to 200 g, whose fat consumption is below
100 g. That’s well below the prediction of the linear model for example. We can identify the
subject because it is the only person with protein > 190 and fat < 100 with BMI > 35 and
waist.circ < 70. So I’ll create a subset of the nnyfs data containing the point that meets that
standard, and then add a red point and a label to the plot.

# identify outlier and place it in nnyfs_temp1 tibble
nnyfs_temp1 <- nnyfs |>
filter(protein > 190 & fat < 100)

ggplot(data = nnyfs, aes(x = protein, y = fat)) +
geom_point(shape = 1, size = 2, col = "sienna") +
geom_smooth(method = "lm", se = FALSE, formula = y ~ x, col = "steelblue") +
geom_point(data = nnyfs_temp1, size = 2, col = "red") +
geom_text(data = nnyfs_temp1, label = nnyfs_temp1$SEQN,

vjust = -1, col = "red") +
labs(title = "Protein vs. Fat consumption in NNYFS",

subtitle = "with regression line, and an outlier labeled by SEQN",
x = "Protein (in g)", y = "Fat (in g)")
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While this subject is hardly the only unusual point in the data set, it is one of the more unusual
ones, in terms of its vertical distance from the regression line. We can identify the subject by
printing (part of) the tibble we created.

nnyfs_temp1 |>
select(SEQN, sex, race_eth, age_child, protein, fat) |> kable()

SEQN sex race_eth age_child protein fat
71919 Female 2_White Non-Hispanic 14 199.33 86.08

Now, does it seem to you like a straight line model will describe this protein-fat relationship
well?

12.4 Adding a Scatterplot Smooth using loess

Next, we’ll use the loess procedure to fit a smooth curve to the data, which attempts to
capture the general pattern.

ggplot(data = nnyfs, aes(x = protein, y = fat)) +
geom_point(shape = 1, size = 2, col = "sienna") +
geom_smooth(method = "loess", se = FALSE, formula = y ~ x, col = "red") +
geom_smooth(method = "lm", se = FALSE, formula = y ~ x, col = "steelblue") +
labs(title = "Protein vs. Fat consumption in NNYFS",

subtitle = "with loess smooth (red) and linear fit (blue)",
x = "Protein (in g)", y = "Fat (in g)")

270



0

50

100

150

200

0 50 100 150 200 250
Protein (in g)

Fa
t (

in
 g

)

with loess smooth (red) and linear fit (blue)

Protein vs. Fat consumption in NNYFS

This “loess” smooth curve is fairly close to the straight line fit, indicating that perhaps a linear
regression model might fit the data well.

A loess smooth is a method of fitting a local polynomial regression model that R uses as its
default smooth for scatterplots with fewer than 1000 observations. Think of the loess as a way
of fitting a curve to data by tracking (at point x) the points within a neighborhood of point
x, with more emphasis given to points near x. It can be adjusted by tweaking two specific
parameters, in particular:

• a span parameter (defaults to 0.75) which is also called 𝛼 in the literature, that controls
the degree of smoothing (essentially, how large the neighborhood should be), and

• a degree parameter (defaults to 2) which specifies the degree of polynomial to be used.
Normally, this is either 1 or 2 - more complex functions are rarely needed for simple
scatterplot smoothing.

In addition to the curve, smoothing procedures can also provide confidence intervals around
their main fitted line. Consider the following plot, which adjusts the span and also adds in
the confidence intervals.

p1 <- ggplot(data = nnyfs, aes(x = protein, y = fat)) +
geom_point(shape = 1, size = 2, col = "sienna") +
geom_smooth(method = "loess", span = 0.75, se = TRUE,

col = "red", formula = y ~ x) +
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labs(title = "loess smooth (span = 0.75)",
x = "Protein (in g)", y = "Fat (in g)")

p2 <- ggplot(data = nnyfs, aes(x = protein, y = fat)) +
geom_point(shape = 1, size = 2, col = "sienna") +
geom_smooth(method = "loess", span = 0.2, se = TRUE,

col = "red", formula = y ~ x) +
labs(title = "loess smooth (span = 0.2)",

x = "Protein (in g)", y = "Fat (in g)")

p1 + p2 +
plot_annotation(title = "Impact of adjusting loess smooth span: NNYFS")
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By reducing the size of the span, the plot on the right shows a somewhat less “smooth” function
than the plot on the left.

12.5 Equation for a Linear Model

Returning to the linear regression model, how can we, mathematically, characterize that line?
As with any straight line, our model equation requires us to specify two parameters: a slope
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and an intercept (sometimes called the y-intercept.)

To identify the equation R used to fit this line (using the method of least squares), we use the
lm command

m <- lm(fat ~ protein, data = nnyfs)
m

Call:
lm(formula = fat ~ protein, data = nnyfs)

Coefficients:
(Intercept) protein

18.8945 0.7251

So the fitted line contained in model m can be specified as

̂fat = 18.89 + 0.73(protein)

12.6 Summarizing the Fit of a Linear Model

A detailed summary of the fitted linear regression model is also available.

summary(m)

Call:
lm(formula = fat ~ protein, data = nnyfs)

Residuals:
Min 1Q Median 3Q Max

-77.798 -14.841 -2.449 13.601 110.597

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.8945 1.5330 12.32 <2e-16 ***
protein 0.7251 0.0208 34.87 <2e-16 ***
---
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(1)
(Intercept) 18.895

(1.533)
protein 0.725

(0.021)
Num.Obs. 1518
R2 0.445
R2 Adj. 0.445
AIC 14 094.2
BIC 14 110.1
Log.Lik. −7044.082
F 1215.779
RMSE 25.06

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 25.08 on 1516 degrees of freedom
Multiple R-squared: 0.4451, Adjusted R-squared: 0.4447
F-statistic: 1216 on 1 and 1516 DF, p-value: < 2.2e-16

12.6.1 Using modelsummary()

Another available approach to provide a summary is to use the modelsummary() function from
the modelsummary package. Although this is mostly used for comparing multiple models, we
can obtain good results for just one, like this.

modelsummary(m)

The modelsummary vignette provides a lot of information on how to amplify these results.

12.6.2 Plotting coefficients with modelplot()

Also from the modelsummary package, the modelplot() function can be of some help in
understanding the size of our coefficients (and their standard errors).

modelplot(m) +
labs(title = "Model m coefficients")
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term estimate std.error statistic p.value conf.low conf.high
(Intercept) 18.895 1.533 12.325 0 15.887 21.902
protein 0.725 0.021 34.868 0 0.684 0.766

(Intercept)

protein

0 5 10 15 20
Coefficient estimates and 95% confidence intervals

Model m coefficients

12.7 Summaries with the broom package

If we want to use them to do anything else, the way we’ll usually summarize the estimated
coefficients of a linear model is to use the broom package’s tidy function to put the coefficient
estimates into a tibble.

tidy(lm(fat ~ protein, data = nnyfs),
conf.int = TRUE, conf.level = 0.95) |>

kbl(digits = 3) |>
kable_styling(full_width = FALSE)

We can also summarize the quality of fit in a linear model using the broom package’s glance
function. For now, we’ll focus our attention on just one of the many summaries available for
a linear model from glance: the R-squared value.

glance(lm(fat ~ protein, data = nnyfs)) |>
select(r.squared) |>
kbl(digits = 3) |>
kable_styling(full_width = FALSE)
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r.squared
0.445

We’ll spend a lot of time working with these regression summaries in this course.

12.8 Key Takeaways from a Simple Regression

For now, it will suffice to understand the following:

• The outcome variable in this model is fat, and the predictor variable is protein.
• The straight line model for these data fitted by least squares is fat = 18.895 + 0.725

protein
• The slope of protein is positive, which indicates that as protein increases, we expect

that fat will also increase. Specifically, we expect that for every additional gram of
protein consumed, the fat consumption will be 0.725 gram larger.

• The multiple R-squared (squared correlation coefficient) is 0.445, which implies that
44.5% of the variation in fat is explained using this linear model with protein.

• This also implies that the Pearson correlation between fat and protein is the square
root of 0.445, or 0.667. More on the Pearson correlation soon.

So, if we plan to use a simple (least squares) linear regression model to describe fat consumption
as a function of protein consumption in the NNYFS data, does it look like a least squares (or
linear regression) model will be an effective choice?

One way to study this is through looking at correlation: which is our next subject.
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13 Correlation

13.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(kableExtra)
library(tidyverse)

theme_set(theme_bw())

13.2 Our Data

In this chapter, we will make use of the nnyfs data, as well as several simulated examples
stored on our 431-data page as .csv files.

nnyfs <- read_rds("data/nnyfs.Rds")

correx1 <- read_csv("data/correx1.csv", show_col_types = FALSE)
correx2 <- read_csv("data/correx2.csv", show_col_types = FALSE)
correx3 <- read_csv("data/correx3.csv", show_col_types = FALSE)

13.3 Measuring Correlation

Two correlation measures are worth our immediate attention.

• The one most often used is called the Pearson correlation coefficient, and is symbolized
with the letter r or sometimes the Greek letter rho (𝜌).

• Another tool is the Spearman rank correlation coefficient, also occasionally symbolized
by 𝜌.
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For the nnyfs data, the Pearson correlation of fat and protein can be found using the cor()
function.

nnyfs |>
select(fat, protein) |>
cor()

fat protein
fat 1.0000000 0.6671209
protein 0.6671209 1.0000000

Note that the correlation of any variable with itself is 1, and that the correlation of fat with
protein is the same regardless of whether you enter fat first or protein first.

13.4 The Pearson Correlation Coefficient

Suppose we have 𝑛 observations on two variables, called X and Y. The Pearson correlation
coefficient assesses how well the relationship between X and Y can be described using a linear
function.

• The Pearson correlation is dimension-free.
• It falls between -1 and +1, with the extremes corresponding to situations where all the

points in a scatterplot fall exactly on a straight line with negative and positive slopes,
respectively.

• A Pearson correlation of zero corresponds to the situation where there is no linear asso-
ciation.

• Unlike the estimated slope in a regression line, the sample correlation coefficient is sym-
metric in X and Y, so it does not depend on labeling one of them (Y) the response
variable, and one of them (X) the predictor.

Suppose we have 𝑛 observations on two variables, called 𝑋 and 𝑌 , where �̄� is the sample
mean of 𝑋 and 𝑠𝑥 is the standard deviation of 𝑋. The Pearson correlation coefficient 𝑟𝑋𝑌
is:

𝑟𝑋𝑌 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥
𝑠𝑥

)(𝑦𝑖 − ̄𝑦
𝑠𝑦

)
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13.5 Studying Correlation through Six Examples

The correx1 data file we read in at the start of this Chapter contains six different sets of (x,y)
points, identified by the set variable.

summary(correx1)

set x y
Length:277 Min. : 5.897 Min. : 7.308
Class :character 1st Qu.:29.487 1st Qu.:30.385
Mode :character Median :46.154 Median :46.923

Mean :46.529 Mean :49.061
3rd Qu.:63.333 3rd Qu.:68.077
Max. :98.205 Max. :95.385

13.5.1 Data Set Alex

Let’s start by working with the Alex data set.

ggplot(filter(correx1, set == "Alex"), aes(x = x, y = y)) +
geom_point() +
labs(title = "correx1: Data Set Alex")
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correx1: Data Set Alex

ggplot(filter(correx1, set == "Alex"), aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x, col = "blue") +
labs(title = "correx1: Alex, with loess smooth")
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correx1: Alex, with loess smooth

setA <- filter(correx1, set == "Alex")

ggplot(setA, aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, col = "red") +
labs(title = "correx1: Alex, with Fitted Linear Model") +
annotate("text", x = 75, y = 75, col = "purple", size = 6,

label = paste("Pearson r = ", round_half_up(cor(setA$x, setA$y),3))) +
annotate("text", x = 50, y = 15, col = "red", size = 5,

label = paste("y = ", round_half_up(coef(lm(setA$y ~ setA$x))[1],3),
round_half_up(coef(lm(setA$y ~ setA$x))[2],2), "x"))
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Pearson r =  −0.97

y =  94.205 −0.96 x
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correx1: Alex, with Fitted Linear Model

13.5.2 Data Set Bonnie

setB <- filter(correx1, set == "Bonnie")

ggplot(setB, aes(x = x, y = y)) +
geom_point() +
labs(title = "correx1: Data Set Bonnie")
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correx1: Data Set Bonnie

ggplot(setB, aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, col = "red") +
labs(title = "correx1: Bonnie, with Fitted Linear Model") +
annotate("text", x = 25, y = 65, col = "purple", size = 6,

label = paste("Pearson r = ", round_half_up(cor(setB$x, setB$y),2))) +
annotate("text", x = 50, y = 15, col = "red", size = 5,

label = paste("y = ", round_half_up(coef(lm(setB$y ~ setB$x))[1],3),
" + ",
round_half_up(coef(lm(setB$y ~ setB$x))[2],2), "x"))
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set Pearson r
Alex -0.97
Bonnie 0.80
Colin -0.80
Danielle 0.00
Earl -0.01
Fiona 0.00

Pearson r =  0.8

y =  11.443  +  0.56 x
20

40

60

25 50 75 100
x

y

correx1: Bonnie, with Fitted Linear Model

13.5.3 Correlations for All Six Data Sets in correx1

Let’s look at the Pearson correlations associated with each of the six data sets contained in
the correx1 example.

tab1 <- correx1 |>
group_by(set) |>
summarise("Pearson r" = round_half_up(cor(x, y, use="complete"),2))

tab1 |>
kbl() |>
kable_styling(full_width = FALSE)
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13.5.4 Data Set Colin

It looks like the picture for Colin should be very similar (in terms of scatter) to the picture
for Bonnie, except that Colin will have a negative slope, rather than the positive one Bonnie
has. Is that how this plays out?

setBC <- filter(correx1, set == "Bonnie" | set == "Colin")

ggplot(setBC, aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, col = "red") +
facet_wrap(~ set)
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Uh, oh. It looks like the point in Colin at the top right is twisting what would otherwise be
a very straight regression model with an extremely strong negative correlation. There’s no
better way to look for outliers than to examine the scatterplot.

13.5.5 Draw the Picture!

We’ve seen that Danielle, Earl and Fiona all show Pearson correlations of essentially zero.
However, the three data sets look very different in a scatterplot.
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ggplot(correx1, aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x) +
facet_wrap(~ set)
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When we learn that the correlation is zero, we tend to assume we have a picture like the
Danielle data set. If Danielle were our real data, we might well think that x would be of little
use in predicting y.

• But what if our data looked like Earl? In the Earl data set, x is incredibly helpful
in predicting y, but we can’t use a straight line model - instead, we need a non-linear
modeling approach.

• You’ll recall that the Fiona data set also had a Pearson correlation of zero. But here,
the picture is rather more interesting.

So, remember, draw the appropriate scatterplot whenever you make use of a correlation coef-
ficient.
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13.6 Estimating Correlation from Scatterplots

The correx2 data set is designed to help you calibrate yourself a bit in terms of estimating a
correlation from a scatterplot. There are 11 data sets buried within the correx2 example, and
they are labeled by their Pearson correlation coefficients, ranging from r = 0.01 to r = 0.999

correx2 |>
group_by(set) |>
summarise(cor = round(cor(x, y, use="complete"),3))

# A tibble: 11 x 2
set cor
<chr> <dbl>

1 Set 01 0.01
2 Set 10 0.102
3 Set 20 0.202
4 Set 30 0.301
5 Set 40 0.403
6 Set 50 0.499
7 Set 60 0.603
8 Set 70 0.702
9 Set 80 0.799
10 Set 90 0.902
11 Set 999 0.999

Here is a plot of the 11 data sets, showing the increase in correlation from 0.01 (in Set 01) to
0.999 (in Set 999).

ggplot(correx2, aes(x = x, y = y)) +
geom_point() +
facet_wrap(~ set) +
labs(title = "Pearson Correlations from 0.01 to 0.999")
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Pearson Correlations from 0.01 to 0.999

Note that R will allow you to fit a straight line model to any of these relationships, no matter
how appropriate it might be to do so.

ggplot(correx2, aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, col = "red") +
facet_wrap(~ set) +
labs(title = "R will fit a straight line to anything.")
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R will fit a straight line to anything.

ggplot(correx2, aes(x = x, y = y)) +
geom_point() +
geom_smooth(col = "blue") +
facet_wrap(~ set) +
labs(title = "Even if a loess smooth suggests non-linearity.")
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Even if a loess smooth suggests non−linearity.

ggplot(correx2, aes(x = x, y = y, color = factor(group))) +
geom_point() +
guides(color = "none") +
facet_wrap(~ set) +
labs(title = "Note: The same 10 points (in red) are in each plot.")
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Note: The same 10 points (in red) are in each plot.

Note that the same 10 points are used in each of the data sets. It’s always possible that a
lurking subgroup of the data within a scatterplot follows a very strong linear relationship.
This is why it’s so important (and difficult) not to go searching for such a thing without a
strong foundation of logic, theory and prior empirical evidence.

13.7 The Spearman Rank Correlation

The Spearman rank correlation coefficient is a rank-based measure of statistical dependence
that assesses how well the relationship between X and Y can be described using a monotone
function even if that relationship is not linear.

• A monotone function preserves order, that is, Y must either be strictly increasing as X
increases, or strictly decreasing as X increases.

• A Spearman correlation of 1.0 indicates simply that as X increases, Y always increases.
• Like the Pearson correlation, the Spearman correlation is dimension-free, and falls be-

tween -1 and +1.
• A positive Spearman correlation corresponds to an increasing (but not necessarily linear)

association between X and Y, while a negative Spearman correlation corresponds to a
decreasing (but again not necessarily linear) association.
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13.7.1 Spearman Formula

To calculate the Spearman rank correlation, we take the ranks of the X and Y data, and then
apply the usual Pearson correlation. To find the ranks, sort X and Y into ascending order, and
then number them from 1 (smallest) to n (largest). In the event of a tie, assign the average
rank to the tied subjects.

13.7.2 Comparing Pearson and Spearman Correlations

Let’s look at the nnyfs data again.

nnyfs |> select(fat, protein) |> cor()

fat protein
fat 1.0000000 0.6671209
protein 0.6671209 1.0000000

cor_sp <- nnyfs |>
select(fat, protein)

cor_sp |> cor(method = "spearman")

fat protein
fat 1.0000000 0.6577489
protein 0.6577489 1.0000000

The Spearman and Pearson correlations are not especially different in this case.

13.7.3 Spearman vs. Pearson Example 1

The next few plots describe relationships where we anticipate the Pearson and Spearman
correlations might differ in their conclusions.

Example 1 shows a function where the Pearson correlation is 0.925 (a strong but not perfect
linear relation), but the Spearman correlation is 1 because the relationship is monotone, even
though it is not perfectly linear.

ggplot(correx3, aes(x = x1, y = y1)) +
geom_point() +
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labs(title = "Spearman vs. Pearson, Example 1") +
annotate("text", x = -10, y = 20,

label = paste("Pearson r = ",
round_half_up(cor(correx3$x1, correx3$y1,

use = "complete.obs"),3),
", Spearman r = ",
round_half_up(cor(correx3$x1, correx3$y1, method = "spearman",

use = "complete.obs"),3)))

Pearson r =  0.925 , Spearman r =  0.999
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Spearman vs. Pearson, Example 1

So, a positive Spearman correlation corresponds to an increasing (but not necessarily linear)
association between x and y.

13.7.4 Spearman vs. Pearson Example 2

Example 2 shows that a negative Spearman correlation corresponds to a decreasing (but, again,
not necessarily linear) association between x and y.

ggplot(correx3, aes(x = x2, y = y2)) +
geom_point(col = "purple") +
geom_smooth(method = "loess", formula = y ~ x, se = FALSE) +
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labs(title = "Spearman vs. Pearson, Example 2") +
annotate("text", x = 0, y = 20, col = "purple",

label = paste("Pearson r = ",
round_half_up(cor(correx3$x2, correx3$y2,

use = "complete.obs"),2),
", Spearman r = ",
round_half_up(cor(correx3$x2, correx3$y2, method = "spearman",

use = "complete.obs"),2)))

Pearson r =  −0.86 , Spearman r =  −0.91
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Spearman vs. Pearson, Example 2

13.7.5 Spearman vs. Pearson Example 3

The Spearman correlation is less sensitive than the Pearson correlation is to strong outliers
that are unusual on either the X or Y axis, or both. That is because the Spearman rank
coefficient limits the outlier to the value of its rank.

In Example 3, for instance, the Spearman correlation reacts much less to the outliers around
X = 12 than does the Pearson correlation.

ggplot(correx3, aes(x = x3, y = y3)) +
geom_point(col = "blue") +
labs(title = "Spearman vs. Pearson, Example 3") +
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annotate("text", x = 5, y = -15, col = "blue",
label = paste("Pearson r = ",

round_half_up(cor(correx3$x3, correx3$y3,
use = "complete.obs"),2),

", Spearman r = ",
round_half_up(cor(correx3$x3, correx3$y3, method = "spearman",

use = "complete.obs"),2)))

Pearson r =  0.62 , Spearman r =  0.85
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Spearman vs. Pearson, Example 3

13.7.6 Spearman vs. Pearson Example 4

The use of a Spearman correlation is no substitute for looking at the data. For non-monotone
data like what we see in Example 4, neither the Spearman nor the Pearson correlation alone
provides much guidance, and just because they are (essentially) telling you the same thing,
that doesn’t mean what they’re telling you is all that helpful.

ggplot(correx3, aes(x = x4, y = y4)) +
geom_point(col = "purple") +
geom_smooth(method = "loess", formula = y ~ x, se = FALSE) +
labs(title = "Spearman vs. Pearson, Example 4") +
annotate("text", x = 10, y = 20, col = "purple",

label = paste("Pearson r = ",
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round_half_up(cor(correx3$x4, correx3$y4,
use = "complete.obs"),2),

", Spearman r = ",
round_half_up(cor(correx3$x4, correx3$y4, method = "spearman",

use = "complete.obs"),2)))

Pearson r =  −0.69 , Spearman r =  −0.7
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Spearman vs. Pearson, Example 4

13.8 Coming Up

Next, we’ll look at some options for improving the fit of a linear model to a scatterplot that
shows a strong, but not a linear association.
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14 Linearizing Transformations

14.1 Linearize The Association between Quantitative Variables

Confronted with a scatterplot describing a monotone association between two quantitative
variables, we may decide the data are not well approximated by a straight line, and thus, that
a least squares regression may not be not sufficiently useful. In these circumstances, we have
at least two options, which are not mutually exclusive:

a. Let the data be as they may, and summarize the scatterplot using tools like loess curves,
polynomial functions, or cubic splines to model the relationship.

b. Consider re-expressing the data (often we start with re-expressions of the outcome data
[the Y variable]) using a transformation so that the transformed data may be modeled
effectively using a straight line.

14.2 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(car)
library(patchwork)
library(tidyverse)

theme_set(theme_bw())

14.3 The Box-Cox Plot

As before, Tukey’s ladder of power transformations can guide our exploration.

Power (𝜆) -2 -1 -1/2 0 1/2 1 2
Transformation 1/y2 1/y 1/√𝑦 log y √𝑦 y y2
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The Box-Cox plot, from the boxCox function in the car package, sifts through the lad-
der of options to suggest a transformation (for Y) to best linearize the outcome-predictor(s)
relationship.

14.3.1 A Few Caveats

1. These methods work well with monotone data, where a smooth function of Y is either
strictly increasing, or strictly decreasing, as X increases.

2. Some of these transformations require the data to be positive. We can rescale the Y data
by adding a constant to every observation in a data set without changing shape.

3. We can use a natural logarithm (log in R), a base 10 logarithm (log10) or even some-
times a base 2 logarithm (log2) to good effect in Tukey’s ladder. All affect the associa-
tion’s shape in the same way, so we’ll stick with log (base e).

4. Some re-expressions don’t lead to easily interpretable results. Not many things that
make sense in their original units also make sense in inverse square roots. There are
times when we won’t care, but often, we will.

5. If our primary interest is in making predictions, we’ll generally be more interested in
getting good predictions back on the original scale, and we can back-transform the point
and interval estimates to accomplish this.

14.4 A Simulated Example

set.seed(999);
x.rand <- rbeta(80, 2, 5) * 20 + 3

set.seed(1000);
y.rand <- abs(50 + 0.75*x.rand^(3)

- 0.65*x.rand + rnorm(80, 0, 200))

scatter1 <- tibble(x = x.rand, y = y.rand)
rm(x.rand, y.rand)

ggplot(scatter1, aes(x = x, y = y)) +
geom_point(shape = 1, size = 3) +
## add loess smooth
geom_smooth(method = "loess", se = FALSE,

col = "dodgerblue", formula = y ~ x) +
## then add linear fit
geom_smooth(method = "lm", se = FALSE,

col = "red", formula = y ~ x, linetype = "dashed") +
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labs(title = "Simulated scatter1 example: Y vs. X")
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Simulated scatter1 example: Y vs. X

Having simulated data that produces a curved scatterplot, I will now use the Box-Cox plot
to lead my choice of an appropriate power transformation for Y in order to “linearize” the
association of Y and X.

boxCox(scatter1$y ~ scatter1$x)
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powerTransform(scatter1$y ~ scatter1$x)

Estimated transformation parameter
Y1

0.4368753

The Box-Cox plot peaks at the value 𝜆 = 0.44, which is pretty close to 𝜆 = 0.5. Now, 0.44
isn’t on Tukey’s ladder, but 0.5 is.

Power (𝜆) -2 -1 -1/2 0 1/2 1 2
Transformation 1/y2 1/y 1/√𝑦 log y √𝑦 y y2

If we use 𝜆 = 0.5, on Tukey’s ladder of power transformations, it suggests we look at the
relationship between the square root of Y and X, as shown next.

p1 <- ggplot(scatter1, aes(x = x, y = y)) +
geom_point(size = 2) +
geom_smooth(method = "loess", se = FALSE,

formula = y ~ x, col = "dodgerblue") +
geom_smooth(method = "lm", se = FALSE,
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formula = y ~ x, col = "red", linetype = "dashed") +
labs(title = "scatter1: Y vs. X")

p2 <- ggplot(scatter1, aes(x = x, y = sqrt(y))) +
geom_point(size = 2) +
geom_smooth(method = "loess", se = FALSE,

formula = y ~ x, col = "dodgerblue") +
geom_smooth(method = "lm", se = FALSE,

formula = y ~ x, col = "red", linetype = "dashed") +
labs(title = "scatter1: Square Root of Y vs. X")
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By eye, I think the square root plot better matches the linear fit.

14.5 Checking on a Transformation or Re-Expression

In addition to plotting the impact of the transformation, we can do at least two other things
to check on our transformation.

• We can calculate the correlation of our original and re-expressed associations.
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• We can go ahead and fit the regression models using each approach and compare the
plots of studentized residuals against fitted values from the data to see if the re-expression
reduces the curve in that residual plot, as well.

The last of these options is by far the most important in practice, and it’s the one we’ll focus
on going forward, but we’ll demonstrate both of these new approaches here.

14.5.1 Checking the Correlation Coefficients

Here, we calculate the correlation of original and re-expressed associations.

cor(scatter1$y, scatter1$x)

[1] 0.891198

cor(sqrt(scatter1$y), scatter1$x)

[1] 0.9144307

The Pearson correlation is a little stronger after the transformation. as we’d expect.

14.5.2 Comparing the Residual Plots

We can fit the regression models, obtain plots of residuals against fitted values, and compare
them to see which one has less indication of a curve in the residuals.

model.orig <- lm(scatter1$y ~ scatter1$x)
model.sqrt <- lm(sqrt(scatter1$y) ~ scatter1$x)

p1 <- ggplot(augment(model.orig), aes(x = scatter1$x, y = .resid)) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x, se = FALSE) +
geom_smooth(method = "lm", formula = y ~ x, se = FALSE, col = "red") +
labs(title = "Y vs X Residual Plot")

p2 <- ggplot(augment(model.sqrt), aes(x = scatter1$x, y = .resid)) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x, se = FALSE) +
geom_smooth(method = "lm", formula = y ~ x, se = FALSE, col = "red") +
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labs(title = "Square Root Model Residuals")
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What we’re looking for in such a plot is the absence of a curve, among other things, we want
to see “fuzzy football” shapes.

As compared to the original residual plot, the square root version, is a modest improvement
in this regard. It does look a bit less curved, and a bit more like a random cluster of points,
so that’s nice. Usually, we can do a little better in real data, as shown in the next example
from the NNYFS data we introduced in Chapter 10.

14.6 An Example from the NNYFS data

nnyfs <- read_rds("data/nnyfs.Rds")
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Using the subjects in the nnyfs data with complete data on the two variables of interest, let’s
look at the relationship between arm circumference (the outcome, shown on the Y axis) and
arm length (the predictor, shown on the X axis.)

nnyfs_c <- nnyfs |>
filter(complete.cases(arm_circ, arm_length)) |>
select(SEQN, arm_circ, arm_length)

14.6.1 Pearson correlation and scatterplot

Here is the Pearson correlation between these two variables.

nnyfs_c |> select(arm_length, arm_circ) |> cor()

arm_length arm_circ
arm_length 1.0000000 0.8120242
arm_circ 0.8120242 1.0000000

Here’s the resulting scatterplot.

ggplot(nnyfs_c, aes(x = arm_length, y = arm_circ)) +
geom_point(alpha = 0.2) +
geom_smooth(method = "loess", formula = y ~ x,

se = FALSE, color = "blue") +
geom_smooth(method = "lm", formula = y ~ x,

se = FALSE, color = "red")
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While the Pearson correlation is still quite strong, note that the loess smooth (shown in blue)
bends up from the straight line model (shown in red) at both the low and high end of arm
length.

Note also the use of alpha = 0.2 to show the points with greater transparency than they
would be shown normally (the default setting is no transparency with alpha = 1.)

14.6.2 Plotting the Residuals

Now, let’s build a plot of residuals from the straight line model plotted against the arm length.
We can obtain these residuals using the augment() function from the broom package.

m1 <- lm(arm_circ ~ arm_length, data = nnyfs_c)

nnyfs_c_aug1 <- augment(m1, data = nnyfs_c)

nnyfs_c_aug1

# A tibble: 1,511 x 9
SEQN arm_circ arm_length .fitted .resid .hat .sigma .cooksd .std.resid

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
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1 71918 25.4 27.7 21.9 3.51 0.000695 3.21 0.000416 1.09
2 71919 26 38.4 30.4 -4.38 0.00253 3.21 0.00237 -1.37
3 71920 37.9 35.9 28.4 9.50 0.00167 3.20 0.00735 2.96
4 71921 15.1 18.3 14.4 0.669 0.00304 3.21 0.0000663 0.209
5 71922 29.5 34.2 27.0 2.45 0.00124 3.21 0.000362 0.764
6 71923 27.9 33 26.1 1.80 0.00100 3.21 0.000159 0.562
7 71924 17.6 26.5 20.9 -3.34 0.000788 3.21 0.000427 -1.04
8 71925 17.7 24.2 19.1 -1.41 0.00113 3.21 0.000110 -0.441
9 71926 19.9 26 20.5 -0.642 0.000844 3.21 0.0000169 -0.200
10 71927 17.3 20 15.8 1.52 0.00234 3.21 0.000263 0.474
# i 1,501 more rows

OK. So the residuals are now stored in the .resid variable. We can create a residual plot, as
follows.

ggplot(nnyfs_c_aug1, aes(x = arm_length, y = .resid)) +
geom_point(alpha = 0.2) +
geom_smooth(method = "loess", col = "purple",

formula = y ~ x, se = FALSE) +
labs(title = "Residuals show a curve.")
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14.6.3 Using the Box-Cox approach to identify a transformation

boxCox(nnyfs_c$arm_circ ~ nnyfs_c$arm_length)
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powerTransform(nnyfs_c$arm_circ ~ nnyfs_c$arm_length)

Estimated transformation parameter
Y1

-0.9783135

This suggests that we should transform the arm_circ data by taking its inverse (power = -1.)
Let’s take a look at that result.

14.6.4 Plots after Inverse Transformation

Let’s build (on the left) the revised scatterplot and (on the right) the revised residual plot
after transforming the outcome (arm_circ) by taking its inverse.
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nnyfs_c <- nnyfs_c |>
mutate(inv_arm_circ = 1/arm_circ)

p1 <- ggplot(nnyfs_c, aes(x = arm_length, y = inv_arm_circ)) +
geom_point(alpha = 0.2) +
geom_smooth(method = "loess", formula = y ~ x,

se = FALSE, color = "blue") +
geom_smooth(method = "lm", formula = y ~ x,

se = FALSE, color = "red") +
labs(title = "Transformation reduces curve")

m2 <- lm(inv_arm_circ ~ arm_length, data = nnyfs_c)

nnyfs_c_aug2 <- augment(m2, data = nnyfs_c)

p2 <- ggplot(nnyfs_c_aug2, aes(x = arm_length, y = .resid)) +
geom_point(alpha = 0.2) +
geom_smooth(method = "loess", col = "purple",

formula = y ~ x, se = FALSE) +
labs(title = "Residuals much improved")

p1 + p2 +
plot_annotation(title = "Evaluating the Inverse Transformation")
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Evaluating the Inverse Transformation

14.7 Coming Up

The rest of Part A of these Course Notes walk through additional case studies, showing some
new ideas, but primarily providing context for some tools we’ve already seen.
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15 Studying Crab Claws

For our next example, we’ll consider a study from zoology, specifically carcinology - the study
of crustaceans. My source for these data is Chapter 7 in Ramsey and Schafer (2002) which
drew the data from a figure in Yamada and Boulding (1998).

15.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(broom)
library(knitr)
library(tidyverse)

theme_set(theme_bw())

We will also use the describe function from the psych package.

15.2 The Data

The available data are the mean closing forces (in Newtons) and the propodus heights (mm)
of the claws on 38 crabs that came from three different species. The propodus is the segment
of the crab’s clawed leg with an immovable finger and palm.
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This was part of a study of the effects that predatory intertidal crab species have on populations
of snails. The three crab species under study are:

• 14 Hemigraspus nudus, also called the purple shore crab (14 crabs)
• 12 Lophopanopeus bellus, also called the black-clawed pebble crab, and
• 12 Cancer productus, one of several species of red rock crabs (12)

crabs <- read_csv("data/crabs.csv", show_col_types = FALSE)

crabs

# A tibble: 38 x 4
crab species force height

<dbl> <chr> <dbl> <dbl>
1 1 Hemigraspus nudus 4 8
2 2 Lophopanopeus bellus 15.1 7.9
3 3 Cancer productus 5 6.7
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4 4 Lophopanopeus bellus 2.9 6.6
5 5 Hemigraspus nudus 3.2 5
6 6 Hemigraspus nudus 9.5 7.9
7 7 Cancer productus 22.5 9.4
8 8 Hemigraspus nudus 7.4 8.3
9 9 Cancer productus 14.6 11.2
10 10 Lophopanopeus bellus 8.7 8.6
# i 28 more rows

The species information is stored here as a character variable. How many different crabs are
we talking about in each species?

crabs |> tabyl(species)

species n percent
Cancer productus 12 0.3157895
Hemigraspus nudus 14 0.3684211

Lophopanopeus bellus 12 0.3157895

As it turns out, we’re going to want to treat the species information as a factor with three
levels, rather than as a character variable.

crabs <- crabs |>
mutate(species = factor(species))

Here’s a quick summary of the data. Take care to note the useless results for the first two
variables. At least the function flags with a * those variables it thinks are non-numeric.

psych::describe(crabs)

vars n mean sd median trimmed mad min max range skew kurtosis
crab 1 38 19.50 11.11 19.50 19.50 14.08 1 38.0 37.0 0.00 -1.30
species* 2 38 2.00 0.81 2.00 2.00 1.48 1 3.0 2.0 0.00 -1.50
force 3 38 12.13 8.98 8.70 11.53 9.04 2 29.4 27.4 0.47 -1.25
height 4 38 8.81 2.23 8.25 8.78 2.52 5 13.1 8.1 0.19 -1.14

se
crab 1.80
species* 0.13
force 1.46
height 0.36
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Actually, we’re more interested in these results after grouping by species.

crabs |>
group_by(species) |>
summarise(n = n(), median(force), median(height))

# A tibble: 3 x 4
species n `median(force)` `median(height)`
<fct> <int> <dbl> <dbl>

1 Cancer productus 12 19.7 11.0
2 Hemigraspus nudus 14 3.7 7.9
3 Lophopanopeus bellus 12 14.8 8.15

15.3 Association of Size and Force

Suppose we want to describe force on the basis of height, across all 38 crabs. We’ll add titles
and identify the three species of crab, using shape and color.

ggplot(crabs, aes(x = height, y = force, color = species, shape = species)) +
geom_point(size = 3) +
labs(title = "Crab Claw Force by Size",

x = "Claw's propodus height (mm)", y = "Mean closing force (N)")
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A faceted plot for each species really highlights the difference in force between the Hemigraspus
nudus and the other two species of crab.

ggplot(crabs, aes(x = height, y = force, color = species)) +
geom_point(size = 3) +
facet_wrap(~ species) +
guides(color = "none") +
labs(title = "Crab Claw Force by Size",

x = "Claw's propodus height (mm)", y = "Mean closing force (N)")
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15.4 The loess smooth

We can obtain a smoothed curve (using several different approaches) to summarize the pattern
presented by the data in any scatterplot. For instance, we might build such a plot for the
complete set of 38 crabs, adding in a non-linear smooth function (called a loess smooth.)

ggplot(crabs, aes(x = height, y = force)) +
geom_point() +
geom_smooth(method = "loess", se = FALSE, formula = y ~ x) +
labs(title = "Crab Claw Force by Size",

x = "Claw's propodus height (mm)", y = "Mean closing force (N)")
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As we have discussed previously, a loess smooth fits a curve to data by tracking (at point
x) the points within a neighborhood of point x, with more emphasis given to points near x. It
can be adjusted by tweaking the span and degree parameters.

In addition to the curve, smoothing procedures can also provide confidence intervals around
their main fitted line. Consider the following plot of the crabs information, which adjusts the
span (from its default of 0.75) and also adds in the confidence intervals.

ggplot(crabs, aes(x = height, y = force)) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x, span = 0.5, se = TRUE) +
labs(title = "Crab Claw Force by Size",

x = "Claw's propodus height (mm)", y = "Mean closing force (N)")
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By reducing the size of the span, our resulting picture shows a much less smooth function that
we generated previously.

15.4.1 Smoothing within Species

We can, of course, produce the plot above with separate smooths for each of the three species
of crab.

ggplot(crabs, aes(x = height, y = force, group = species, color = species)) +
geom_point(size = 3) +
geom_smooth(method = "loess", formula = y ~ x, se = FALSE) +
labs(title = "Crab Claw Force by Size",

x = "Claw's propodus height (mm)", y = "Mean closing force (N)")
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If we want to add in the confidence intervals (here I’ll show them at 90% rather than the
default of 95%) then this plot should be faceted. Note that by default, what is displayed when
se = TRUE are 95% prediction intervals - the level function in stat_smooth [which can be
used in place of geom_smooth] is used here to change the coverage percentage from 95% to
90%.

ggplot(crabs, aes(x = height, y = force, group = species, color = species)) +
geom_point() +
stat_smooth(method = "loess", formula = y ~ x, level = 0.90, se = TRUE) +
guides(color = "none") +
labs(title = "Crab Claw Force by Size",

caption = "with loess smooths and 90% confidence intervals",
x = "Claw's propodus height (mm)", y = "Mean closing force (N)") +

facet_wrap(~ species)
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More on these and other confidence intervals later, especially in part B.

15.5 Fitting a Linear Regression Model

Suppose we plan to use a simple (least squares) linear regression model to describe force as a
function of height. Is a least squares model likely to be an effective choice here?

The plot below shows the regression line predicting closing force as a function of propodus
height. Here we annotate the plot to show the actual fitted regression line, which required
fitting it with the lm statement prior to developing the graph.

mod <- lm(force ~ height, data = crabs)

ggplot(crabs, aes(x = height, y = force)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, color = "red") +
labs(title = "Crab Claw Force by Size with Linear Regression Model",

x = "Claw's propodus height (mm)", y = "Mean closing force (N)") +
annotate("text", x = 11, y = 0, color = "red", fontface = "italic",

label = paste( "Force = ", round_half_up(coef(mod)[1],3), " + ",
round_half_up(coef(mod)[2],3), " Height" ))
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The lm function, again, specifies the linear model we fit to predict force using height. Here’s
the summary.

summary(lm(force ~ height, data = crabs))

Call:
lm(formula = force ~ height, data = crabs)

Residuals:
Min 1Q Median 3Q Max

-16.7945 -3.8113 -0.2394 4.1444 16.8814

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -11.0869 4.6224 -2.399 0.0218 *
height 2.6348 0.5089 5.177 8.73e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.892 on 36 degrees of freedom
Multiple R-squared: 0.4268, Adjusted R-squared: 0.4109
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F-statistic: 26.8 on 1 and 36 DF, p-value: 8.73e-06

Again, the key things to realize are:

• The outcome variable in this model is force, and the predictor variable is height.
• The straight line model for these data fitted by least squares is force = -11.087 + 2.635

height.
• The slope of height is positive, which indicates that as height increases, we expect that

force will also increase. Specifically, we expect that for every additional mm of height,
the force will increase by 2.635 Newtons.

• The multiple R-squared (squared correlation coefficient) is 0.427, which implies that
42.7% of the variation in force is explained using this linear model with height. It also
implies that the Pearson correlation between force and height is the square root of 0.427,
or 0.653.

15.6 Is a Linear Model Appropriate?

The zoology (at least as described in Ramsey and Schafer (2002)) suggests that the actual
nature of the relationship would be represented by a log-log relationship, where the log of
force is predicted by the log of height.

This log-log model is an appropriate model when we think that percentage increases in X
(height, here) lead to constant percentage increases in Y (here, force).

To see the log-log model in action, we plot the log of force against the log of height. We could
use either base 10 (log10 in R) or natural (log in R) logarithms.

ggplot(crabs, aes(x = log(height), y = log(force))) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x) +
labs(title = "Log-Log Model for Crabs data")
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The correlations between the raw force and height and between their logarithms turn out to be
quite similar, and because the log transformation is monotone in these data, there’s actually
no change at all in the Spearman correlations.

Correlation of Pearson r Spearman r
force and height 0.653 0.657

log(force) and log(height) 0.662 0.657

15.6.1 The log-log model

crab_loglog <- lm(log(force) ~ log(height), data = crabs)

summary(crab_loglog)

Call:
lm(formula = log(force) ~ log(height), data = crabs)

Residuals:
Min 1Q Median 3Q Max
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-1.5657 -0.4450 0.1884 0.4798 1.2422

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.7104 0.9251 -2.930 0.00585 **
log(height) 2.2711 0.4284 5.302 5.96e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6748 on 36 degrees of freedom
Multiple R-squared: 0.4384, Adjusted R-squared: 0.4228
F-statistic: 28.11 on 1 and 36 DF, p-value: 5.96e-06

Our regression equation is log(force) = -2.71 + 2.271 log(height).

So, for example, if we found a crab with propodus height = 10 mm, our prediction for that
crab’s claw force (in Newtons) based on this log-log model would be…

• log(force) = -2.71 + 2.271 log(10)
• log(force) = -2.71 + 2.271 x 2.3025851
• log(force) = 2.5190953
• and so predicted force = exp(2.5190953) = 12.4173582 Newtons, which, naturally, we

would round to 12.417 Newtons to match the data set’s level of precision.

15.6.2 How does this compare to our original linear model?

crab_linear <- lm(force ~ height, data = crabs)

summary(crab_linear)

Call:
lm(formula = force ~ height, data = crabs)

Residuals:
Min 1Q Median 3Q Max

-16.7945 -3.8113 -0.2394 4.1444 16.8814

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -11.0869 4.6224 -2.399 0.0218 *
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height 2.6348 0.5089 5.177 8.73e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.892 on 36 degrees of freedom
Multiple R-squared: 0.4268, Adjusted R-squared: 0.4109
F-statistic: 26.8 on 1 and 36 DF, p-value: 8.73e-06

The linear regression equation is force = -11.087 + 2.635 height.

So, for example, if we found a crab with propodus height = 10 mm, our prediction for that
crab’s claw force (in Newtons) based on this linear model would be…

• force = -11.0869025 + 2.6348232 x 10
• force = -11.0869025 + 26.3482321
• so predicted force = 15.2613297, which we would round to 15.261 Newtons.

So, it looks like the two models give meaningfully different predictions.

15.7 Making Predictions with a Model

The broom package’s augment function provides us with a consistent method for obtaining
predictions (also called fitted values) for a new crab or for our original data. Suppose we want
to predict the force level for two new crabs: one with height = 10 mm, and another with
height = 12 mm.

newcrab <- tibble(crab = c("Crab_A", "Crab_B"), height = c(10, 12))

augment(crab_linear, newdata = newcrab)

# A tibble: 2 x 3
crab height .fitted
<chr> <dbl> <dbl>

1 Crab_A 10 15.3
2 Crab_B 12 20.5

Should we want to obtain a prediction interval, we can use the predict function:

predict(crab_linear, newdata = newcrab, interval = "prediction", level = 0.95)
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fit lwr upr
1 15.26133 1.048691 29.47397
2 20.53098 5.994208 35.06774

We’d interpret this result as saying that the linear model’s predicted force associated with a
single new crab claw with propodus height 10 mm is 15.3 Newtons, and that a 95% prediction
interval for the true value of such a force for such a claw is between 1.0 and 29.5 Newtons.
More on prediction intervals later.

15.7.1 Predictions After a Transformation

We can also get predictions from the log-log model. The default choice is a 95% prediction
interval.

predict(crab_loglog, newdata = newcrab, interval = "prediction")

fit lwr upr
1 2.519095 1.125900 3.912291
2 2.933174 1.515548 4.350800

Of course, these predictions describe the log(force) for such a crab claw. To get the prediction
in terms of simple force, we’d need to back out of the logarithm, by exponentiating our point
estimate and the prediction interval endpoints.

exp(predict(crab_loglog, newdata = newcrab, interval = "prediction"))

fit lwr upr
1 12.41736 3.082989 50.01341
2 18.78716 4.551916 77.54044

We’d interpret this result as saying, for the first new crab, that the log-log model’s predicted
force associated with a single new crab claw with propodus height 10 mm is 12.4 Newtons,
and that a 95% prediction interval for the true value of such a force for such a claw is between
3.1 and 50.0 Newtons.
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15.7.2 Comparing Model Predictions

Suppose we wish to build a plot of force vs height with a straight line for the linear model’s
predictions, and a new curve for the log-log model’s predictions, so that we can compare and
contrast the implications of the two models on a common scale. The predict function, when
not given a new data frame, will use the existing predictor values that are in our crabs data.
Such predictions are often called fitted values.

To put the two sets of predictions on the same scale despite the differing outcomes in the
two models, we’ll exponentiate the results of the log-log model, and build a little data frame
containing the heights and the predicted forces from that model.

loglogdat <- tibble(height = crabs$height, force = exp(predict(crab_loglog)))

A cleaner way to do this might be to use the augment function directly from broom:

augment(crab_loglog)

# A tibble: 38 x 8
`log(force)` `log(height)` .fitted .resid .hat .sigma .cooksd .std.resid

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1.39 2.08 2.01 -6.26e-1 0.0280 0.676 1.28e- 2 -0.941
2 2.71 2.07 1.98 7.31e-1 0.0287 0.673 1.79e- 2 1.10
3 1.61 1.90 1.61 -1.15e-4 0.0499 0.684 8.06e-10 -0.000175
4 1.06 1.89 1.58 -5.11e-1 0.0530 0.679 1.69e- 2 -0.778
5 1.16 1.61 0.945 2.18e-1 0.142 0.683 1.01e- 2 0.349
6 2.25 2.07 1.98 2.68e-1 0.0287 0.683 2.39e- 3 0.402
7 3.11 2.24 2.38 7.35e-1 0.0301 0.673 1.90e- 2 1.11
8 2.00 2.12 2.10 -9.44e-2 0.0266 0.684 2.75e- 4 -0.142
9 2.68 2.42 2.78 -9.55e-2 0.0561 0.684 6.30e- 4 -0.146
10 2.16 2.15 2.18 -1.32e-2 0.0263 0.684 5.34e- 6 -0.0199
# i 28 more rows

Now, we’re ready to use the geom_smooth approach to plot the linear fit, and geom_line
(which also fits curves) to display the log-log fit.

ggplot(crabs, aes(x = height, y = force)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE,

formula = y ~ x, col="blue", linetype = 2) +
geom_line(data = loglogdat, col = "red", linetype = 2, size = 1) +
annotate("text", 7, 12, label = "Linear Model", col = "blue") +
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annotate("text", 10, 8, label = "Log-Log Model", col = "red") +
labs(title = "Comparing the Linear and Log-Log Models for Crab Claw data")

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.
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Comparing the Linear and Log−Log Models for Crab Claw data

Based on these 38 crabs, we see some modest differences between the predictions of the two
models, with the log-log model predicting generally lower closing force for a given propodus
height than would be predicted by a linear model.
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16 Dehydration Recovery

16.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(knitr)
library(broom)
library(GGally)
library(ggstance)
library(kableExtra)
library(modelsummary)
library(patchwork)
library(tidyverse)

theme_set(theme_bw())

We will also use the favstats function from the mosaic package.

16.2 The Data

The hydrate data describe the degree of recovery that takes place 90 minutes following treat-
ment of moderate to severe dehydration, for 36 children diagnosed at a hospital’s main pediatric
clinic.

Upon diagnosis and study entry, patients were treated with an electrolytic solution at one of
seven dose levels (0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 mEq/l) in a frozen, flavored, ice popsicle. The
degree of rehydration was determined using a subjective scale based on physical examination
and parental input, converted to a 0 to 100 point scale, representing the percent of recovery
(recov.score). Each child’s age (in years) and weight (in pounds) are also available.

First, we’ll check ranges (and for missing data) in the hydrate file.
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hydrate <- read_csv("data/hydrate.csv")

summary(hydrate)

id recov.score dose age
Min. : 1.00 Min. : 44.00 Min. :0.000 Min. : 3.000
1st Qu.: 9.75 1st Qu.: 61.50 1st Qu.:1.000 1st Qu.: 5.000
Median :18.50 Median : 71.50 Median :1.500 Median : 6.500
Mean :18.50 Mean : 71.56 Mean :1.569 Mean : 6.667
3rd Qu.:27.25 3rd Qu.: 80.00 3rd Qu.:2.500 3rd Qu.: 8.000
Max. :36.00 Max. :100.00 Max. :3.000 Max. :11.000

weight
Min. :22.00
1st Qu.:34.50
Median :47.50
Mean :46.89
3rd Qu.:57.25
Max. :76.00

There are no missing values, and all of the ranges make sense. There are no especially egregious
problems to report.

16.3 A Scatterplot Matrix

Next, we’ll use a scatterplot matrix to summarize relationships between the outcome
recov.score and the key predictor dose as well as the ancillary predictors age and weight,
which are of less interest, but are expected to be related to our outcome. The one below uses
the ggpairs function in the GGally package, as introduced in Part A of the Notes. We place
the outcome in the bottom row, and the key predictor immediately above it, with age and
weight in the top rows, using the select function within the ‘ggpairs call.

hydrate |>
select(age, weight, dose, recov.score) |>
ggpairs()
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What can we conclude here?

• It looks like recov.score has a moderately strong negative relationship with both age
and weight (with correlations in each case around -0.5), but a positive relationship with
dose (correlation = 0.36).

• The distribution of recov.score looks to be pretty close to Normal. No potential
predictors (age, weight and dose) show substantial non-Normality.

• age and weight, as we’d expect, show a very strong and positive linear relationship,
with r = 0.94

• Neither age nor weight shows a meaningful relationship with dose. (r = 0.16)

16.4 Are the recovery scores well described by a Normal model?

Next, we’ll do a more thorough graphical summary of our outcome, recovery score.

p1 <- ggplot(hydrate, aes(sample = recov.score)) +
geom_qq(col = '#440154') + geom_qq_line(col = "red") +
theme(aspect.ratio = 1) +
labs(title = "Normal Q-Q plot: hydrate")

p2 <- ggplot(hydrate, aes(x = recov.score)) +
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geom_histogram(aes(y = stat(density)),
bins = 10, fill = '#440154', col = '#FDE725') +

stat_function(fun = dnorm,
args = list(mean = mean(hydrate$recov.score),

sd = sd(hydrate$recov.score)),
col = "red", lwd = 1.5) +

labs(title = "Density Function: hydrate")

p3 <- ggplot(hydrate, aes(x = recov.score, y = "")) +
geom_boxplot(fill = '#440154', outlier.color = '#440154') +
labs(title = "Boxplot: hydrate", y = "")

p1 + (p2 / p3 + plot_layout(heights = c(4,1)))

Warning: `stat(density)` was deprecated in ggplot2 3.4.0.
i Please use `after_stat(density)` instead.
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mosaic::favstats(~ recov.score, data = hydrate) |> kable(digits = 1)

min Q1 median Q3 max mean sd n missing
44 61.5 71.5 80 100 71.6 12.9 36 0
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I see no serious problems with assuming Normality for these recovery scores. Our outcome
variable doesn’t in any way need to follow a Normal distribution, but it’s nice when it does,
because summaries involving means and standard deviations make sense.

16.5 Simple Regression: Using Dose to predict Recovery

To start, consider a simple (one predictor) regression model using dose alone to predict the
% Recovery (recov.score). Ignoring the age and weight covariates, what can we conclude
about this relationship?

16.6 The Scatterplot, with fitted Linear Model

ggplot(hydrate, aes(x = dose, y = recov.score)) +
geom_point(size = 2) +
geom_smooth(method = "lm", formula = y ~ x, col = "red") +
labs(title = "Simple Regression model for the hydrate data",

x = "Dose (mEq/l)", y = "Recovery Score (points)")
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Simple Regression model for the hydrate data
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16.7 The Fitted Linear Model

To obtain the fitted linear regression model, we use the lm function:

m1 <- lm(recov.score ~ dose, data = hydrate)

tidy(m1) |> kbl(digits = 2)

term estimate std.error statistic p.value
(Intercept) 63.90 3.97 16.09 0.00
dose 4.88 2.17 2.25 0.03

So, our fitted regression model (prediction model) is recov.score = 63.9 + 4.88 dose.

16.7.1 Confidence Intervals

We can obtain confidence intervals around the coefficients of our fitted model with tidy, too.

tidy(m1, conf.int = TRUE, conf.level = 0.90) |>
kbl(digits = 2)

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 63.90 3.97 16.09 0.00 57.18 70.61
dose 4.88 2.17 2.25 0.03 1.21 8.55

So, our 90% confidence interval for the slope of dose ranges from 1.21 to 8.55.

16.8 Coefficient Plots with modelplot

The modelplot() function from the modelsummary package can provide us with one potential
graph.

modelplot(m1, conf_level = 0.90)
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16.9 Coefficient Plots with ggstance

The tidy method makes it easy to construct coefficient plots using ggplot2, and we’ll also
make use of the geom_crossbarh function from the ggstance package.

td <- tidy(m1, conf.int = TRUE, conf.level = 0.90)

ggplot(td, aes(x = estimate, y = term, col = term)) +
geom_point() +
geom_crossbarh(aes(xmin = conf.low, xmax = conf.high)) +
geom_vline(xintercept = 0) +
guides(col = "none") +
labs(title = "Estimates with 90% confidence intervals from m1 in hydrate")

Warning: Using the `size` aesthetic with geom_polygon was deprecated in ggplot2 3.4.0.
i Please use the `linewidth` aesthetic instead.

Warning: Using the `size` aesthetic with geom_segment was deprecated in ggplot2 3.4.0.
i Please use the `linewidth` aesthetic instead.
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Another option would be to use geom_errorbarh in this setting, perhaps with a different color
scheme…

td <- tidy(m1, conf.int = TRUE, conf.level = 0.90)
ggplot(td, aes(x = estimate, y = term, col = term)) +
geom_point() +
geom_errorbarh(aes(xmin = conf.low, xmax = conf.high)) +
geom_vline(xintercept = 0) +
scale_color_viridis_d(end = 0.5) +
guides(col = "none") +
labs(title = "Estimates with 90% confidence intervals from m1 in hydrate")

Warning: Using the `size` aesthetic with geom_path was deprecated in ggplot2 3.4.0.
i Please use the `linewidth` aesthetic instead.
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16.10 The Summary Output

To get a more complete understanding of the fitted model, we’ll summarize it.

summary(lm(recov.score ~ dose, data = hydrate))

Call:
lm(formula = recov.score ~ dose, data = hydrate)

Residuals:
Min 1Q Median 3Q Max

-22.3360 -7.2763 0.0632 8.4233 23.9028

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 63.896 3.970 16.093 <2e-16 ***
dose 4.881 2.172 2.247 0.0313 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 12.21 on 34 degrees of freedom
Multiple R-squared: 0.1293, Adjusted R-squared: 0.1037
F-statistic: 5.047 on 1 and 34 DF, p-value: 0.03127

16.10.1 Model Specification

1. The first part of the output specifies the model that has been fit.

• Here, we have a simple regression model that predicts recov.score on the basis of
dose.

• Notice that we’re treating dose here as a quantitative variable. If we wanted dose
to be treated as a factor, we’d have specified that in the model.

16.10.2 Residual Summary

2. The second part of the output summarizes the regression residuals across the subjects
involved in fitting the model.

• The residual is defined as the Actual value of our outcome minus the predicted
value of that outcome fitted by the model.

• In our case, the residual for a given child is their actual recov.score minus the
predicted recov.score according to our model, for that child.

• The residual summary gives us a sense of how “incorrect” our predictions are for
the hydrate observations.

– A positive residual means that the observed value was higher than the predicted
value from the linear regression model, so the prediction was too low.

– A negative residual means that the observed value was lower than the predicted
value from the linear regression model, so the prediction was too high.

– The residuals will center near 0 (the ordinary least squares model fitting process
is designed so the mean of the residuals will always be zero)

– We hope to see the median of the residuals also be near zero, generally. In this
case, the median prediction is 0.06 point too low.

– The minimum and maximum show us the largest prediction errors, made in the
subjects used to fit this model.

– Here, we predicted a recovery score that was 22.3 points too high for one patient,
and another of our predicted recovery scores was 23.9 points too low.

– The middle half of our predictions were between 8.4 points too low and 7.3
points too high.
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16.10.3 Coefficients Output

3. The Coefficients output begins with a table of the estimated coefficients from the
regression equation.

• Generally, we write a simple regression model as 𝑦 = 𝛽0 + 𝛽1𝑥.
• In the hydrate model, we have recov.score = 𝛽0 + 𝛽1 dose.
• The first column of the table gives the estimated 𝛽 coefficients for our model

– Here the estimated intercept ̂𝛽0 = 63.9
– The estimated slope of dose ̂𝛽1 = 4.88
– Thus, our model is recov.score= 63.9 + 4.88 dose

We interpret these coefficients as follows:

• The intercept (63.9) is the predicted recov.score for a patient receiving a dose of 0
mEq/l of the electrolytic solution.

• The slope (4.88) of the dose is the predicted change in recov.score associated with a
1 mEq/l increase in the dose of electrolytic solution.

– Essentially, if we have two children like the ones studied here, and we give Roger
a popsicle with dose X and Sarah a popsicle with dose X + 1, then this model
predicts that Sarah will have a recovery score that is 4.88 points higher than will
Roger.

– From the confidence interval output we saw previously with the function
confint(lm(recov.score ~ dose)), we are 95% confident that the true slope
for dose is between (0.47, 9.30) mEq/l. We are also 95% confident that the true
intercept is between (55.8, 72.0).

16.10.4 Correlation and Slope

If we like, we can use the cor function to specify the Pearson correlation of recov.score and
dose, which turns out to be 0.36. - Note that the slope in a simple regression model will
follow the sign of the Pearson correlation coefficient, in this case, both will be positive.

hydrate |> select(recov.score, dose) |> cor()

recov.score dose
recov.score 1.000000 0.359528
dose 0.359528 1.000000
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16.10.5 Coefficient Testing

summary(lm(recov.score ~ dose, data = hydrate))

Call:
lm(formula = recov.score ~ dose, data = hydrate)

Residuals:
Min 1Q Median 3Q Max

-22.3360 -7.2763 0.0632 8.4233 23.9028

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 63.896 3.970 16.093 <2e-16 ***
dose 4.881 2.172 2.247 0.0313 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12.21 on 34 degrees of freedom
Multiple R-squared: 0.1293, Adjusted R-squared: 0.1037
F-statistic: 5.047 on 1 and 34 DF, p-value: 0.03127

Next to each coefficient in the summary regression table is its estimated standard error, fol-
lowed by the coefficient’s t value (the coefficient value divided by the standard error), and the
associated two-tailed p value for the test of:

• 𝐻0: This coefficient’s 𝛽 value = 0 vs.
• 𝐻𝐴: This coefficient’s 𝛽 value ≠ 0.

For the slope coefficient, we can interpret this choice as:

• 𝐻0: This predictor adds minimal detectable predictive value to the model vs.
• 𝐻𝐴: This predictor adds some predictive value to the model.

In the hydrate simple regression model, by running either tidy with or just the confint
function shown below, we can establish a confidence interval for each of the estimated regression
coefficients.

tidy(m1, conf.int = TRUE, conf.level = 0.95) |> kable(digits = 2)
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term estimate std.error statistic p.value conf.low conf.high
(Intercept) 63.90 3.97 16.09 0.00 55.83 71.96
dose 4.88 2.17 2.25 0.03 0.47 9.30

confint(m1, level = .95)

2.5 % 97.5 %
(Intercept) 55.826922 71.964589
dose 0.465695 9.295466

If the slope of dose was in fact zero, then this would mean that knowing the dose information
would be of no additional value in predicting the outcome over just guessing the mean of
recov.score for every subject.

So, since the confidence interval for the slope of dose does not include zero, it appears that
there is at least some evidence that the model m1 is more effective than a model that ignores
the dose information (and simply predicts the mean of recov.score for each subject.) That’s
not saying much, actually.

16.10.6 Summarizing the Quality of Fit

4. The next part of the regression summary output is a summary of fit quality.

The residual standard error estimates the standard deviation of the prediction errors made
by the model.

• If assumptions hold, the model will produce residuals that follow a Normal distribution
with mean 0 and standard deviation equal to this residual standard error.

– So we’d expect roughly 95% of our residuals to fall between -2(12.21) and +2(12.21),
or roughly -24.4 to +24.4 and that we’d see virtually no residuals outside the range
of -3(12.21) to +3(12.21), or roughly -36.6 to +36.6.

– The output at the top of the summary tells us about the observed regression resid-
uals, and that they actually range from -22 to +24.

– In context, it’s hard to know whether or not we should be happy about this. On
a scale from 0 to 100, rarely missing by more than 24 seems OK to me, but not
terrific.

• The degrees of freedom here are the same as the denominator degrees of freedom in
the ANOVA to follow. The calculation is 𝑛 − 𝑘, where 𝑛 = the number of observations
and 𝑘 is the number of coefficients estimated by the regression (including the intercept
and any slopes).
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– Here, there are 36 observations in the model, and we fit k = 2 coefficients; the slope
and the intercept, as in any simple regression model, so df = 36 - 2 = 34.

The multiple R-squared value is usually just referred to as R-squared.

• This is interpreted as the proportion of variation in the outcome variable that has been
accounted for by our regression model.

– Here, we’ve accounted for just under 13% of the variation in % Recovery using
Dose.

• The R in multiple R-squared is the Pearson correlation of recov.score and dose, which
in this case is 0.3595.

– Squaring this value gives the R-squared for this simple regression.
– (0.3595)^2 = 0.129

R-squared is greedy.

• R-squared will always suggest that we make our models as big as possible, often including
variables of dubious predictive value.

• As a result, there are various methods for adjusting or penalizing R-squared so that we
wind up with smaller models.

• The adjusted R-squared is often a useful way to compare multiple models for the
same response.

– 𝑅2
𝑎𝑑𝑗 = 1 − (1−𝑅2)(𝑛−1)

𝑛−𝑘 , where 𝑛 = the number of observations and 𝑘 is the number
of coefficients estimated by the regression (including the intercept and any slopes).

– So, in this case, 𝑅2
𝑎𝑑𝑗 = 1 − (1−0.1293)(35)

34 = 0.1037
– The adjusted R-squared value is not, technically, a proportion of anything, but it

is comparable across models for the same outcome.
– The adjusted R-squared will always be less than the (unadjusted) R-squared.

16.10.7 ANOVA F test

5. The last part of the standard summary of a regression model is the overall ANOVA F
test.

The hypotheses for this test are:

• H0: Each of the coefficients in the model (other than the intercept) has 𝛽 = 0 vs.
• HA: At least one regression slope has 𝛽 ≠ 0

Since we are doing a simple regression with just one predictor, the ANOVA F test hypotheses
are exactly the same as the t test for dose:
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• H0: The slope for dose has 𝛽 = 0 vs.
• HA: The slope for dose has 𝛽 ≠ 0

In this case, we have an F statistic of 5.05 on 1 and 34 degrees of freedom, yielding p = 0.03

This provides some evidence that “something” in our model (here, dose is the only predictor)
predicts the outcome to a degree beyond that easily attributed to chance alone. This is not
actually surprising, nor is it especially interesting. The confidence interval for the slope is
definitely more interesting than this.

• In simple regression (regression with only one predictor), the t test for the slope (dose)
always provides the same p value as the ANOVA F test.

– The F test statistic in a simple regression is always by definition just the square of
the slope’s t test statistic.

– Here, F = 5.047, and this is the square of t = 2.247 from the Coefficients output

This test is basically just a combination of the R-squared value (13%) and the sample size.
We don’t learn much from it that’s practically interesting or useful.

16.11 Viewing the complete ANOVA table

We can obtain the complete ANOVA table associated with this particular model, and the
details behind this F test using the anova function:

anova(lm(recov.score ~ dose, data = hydrate))

Analysis of Variance Table

Response: recov.score
Df Sum Sq Mean Sq F value Pr(>F)

dose 1 752.2 752.15 5.0473 0.03127 *
Residuals 34 5066.7 149.02
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• The R-squared for our regression model is equal to the 𝜂2 for this ANOVA model.

– If we divide SS(dose) = 752.2 by the total sum of squares (752.2 + 5066.7), we’ll
get the multiple R-squared [0.1293]

• Note that this is not the same ANOVA model we would get if we treated dose as a factor
with seven levels, rather than as a quantitative variable.
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16.12 Using glance to summarize the model’s fit

When applied to a linear model, the glance function from the broom package summarizes 12
characteristics of the model’s fit.

Let’s look at the eight of these that we’ve already addressed.

glance(m1) |> select(r.squared:df, df.residual, nobs) |>
kbl(digits = c(3, 3, 1, 2, 3, 0, 0, 0))

r.squared adj.r.squared sigma statistic p.value df df.residual nobs
0.129 0.104 12.2 5.05 0.031 1 34 36

• We’ve discussed the R-square value, shown in r.squared.
• We’ve also discussed the adjusted R-square value, in adj.r.squared
• sigma is the residual standard error.
• statistic is the ANOVA F statistic.
• p.value is the p value associated with the ANOVA F statistic.
• df is the numerator degrees of freedom (here, the df associated with dose) for the

ANOVA test associated with this model.
• df.residual is the denominator degrees of freedom (here the df associated with

residual) for that same ANOVA test.
• Remember that the F-statistic at the bottom of the summary output provides these last

four statistics, as well.
• nobs is the number of observations (rows) used to fit the model.

Now, let’s look at the remaining four summaries:

glance(m1) |> select(logLik:deviance) |>
kbl(digits = 1)

logLik AIC BIC deviance
-140.1 286.3 291 5066.7

• logLik is the log-likelihood value for the model, and is most commonly used for a model
(like the ordinary least squares model fit by lm that is fit using the method of maximum
likelihood). Thus, the log-likelihood value will be maximized in this fit.

• AIC is the Akaike Information Criterion for the model. When comparing models fitted
by maximum likelihood to the same outcome variable (using the same transformation,
for example), the smaller the AIC, the better the fit.
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• BIC is the Bayes Information Criterion for the model. When comparing models fitted by
maximum likelihood to the same outcome variable (using the same transformation, for
example), the smaller the BIC, the better the fit. BIC often prefers models with fewer
coefficients to estimate than does AIC.

– AIC and BIC can be estimated using several different approaches in R, but we’ll
need to use the same one across multiple models if we’re comparing the results,
because the concepts are only defined up to a constant.

• deviance is the fitted model’s deviance, a measure of lack of fit. It is a generalization of
the residual sum of squares seen in the ANOVA table, and takes the same value in the
case of a simple linear regression model fit with lm as we have here. For some generalized
linear models, we’ll use this for hypothesis testing, just as the ANOVA table does in the
linear model case.

16.13 Plotting Residuals vs. Fitted Values

To save the residuals and predicted (fitted) values from this simple regression model, we can
use the resid and fitted commands, respectively, or we can use the augment function in the
broom package to obtain a tidy data set containing these objects and others.

aug_m1 <- augment(m1)

ggplot(aug_m1, aes(x = .fitted, y = .resid)) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x, se = F) +
geom_smooth(method = "lm", formula = y ~ x, se = F, col = "red") +
labs(title = "Residuals vs. Fitted values for Model m1")
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We can also obtain a plot of residuals vs. fitted values for m1 using the following code from
base R.

plot(m1, which = 1)
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We hope in this plot to see a generally random scatter of points, perhaps looking like a
“fuzzy football”. Since we only have seven possible dose values, we obtain only seven distinct
predicted values, which explains the seven vertical lines in the plot. Here, the smooth red line
indicates a gentle curve, but no evidence of a strong curve, or any other regular pattern in this
residual plot.
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17 The WCGS

17.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(GGally)
library(ggridges)
library(janitor)
library(kableExtra)
library(patchwork)
library(tidyverse)

theme_set(theme_bw())

We will also use the favstats function from the mosaic package, even though I won’t load
mosaic here.

17.2 The Western Collaborative Group Study (wcgs)

Vittinghoff et al. (2012) explore data from the Western Collaborative Group Study (WCGS)
in some detail1. We’ll touch lightly on some key issues in this Chapter.

The Western Collaborative Group Study (WCGS) was designed to test the hy-
pothesis that the so-called Type A behavior pattern (TABP) - “characterized par-
ticularly by excessive drive, aggressiveness, and ambition, frequently in association
with a relatively greater preoccupation with competitive activity, vocational dead-
lines, and similar pressures” - is a cause of coronary heart disease (CHD). Two
additional goals, developed later in the study, were (1) to investigate the compa-
rability of formulas developed in WCGS and in the Framingham Study (FS) for
prediction of CHD risk, and (2) to determine how addition of TABP to an existing

1For more on the WCGS, you might look at http://www.epi.umn.edu/cvdepi/study-synopsis/western-
collaborative-group-study/
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multivariate prediction formula affects ability to select subjects for intervention
programs.

The study enrolled over 3,000 men ages 39-59 who were employed in San Francisco or Los
Angeles, during 1960 and 1961.

In the code chunk below, after importing the data and creating a tibble with read_csv, I
used mutate(across(where(is.character), as_factor) to convert all variables containing
character data into factors.

wcgs <- read_csv("data/wcgs.csv") |>
mutate(across(where(is.character), as_factor))

wcgs

# A tibble: 3,154 x 22
id age agec height weight lnwght wghtcat bmi sbp lnsbp dbp chol

<dbl> <dbl> <fct> <dbl> <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2343 50 46-50 67 200 5.30 170-200 31.3 132 4.88 90 249
2 3656 51 51-55 73 192 5.26 170-200 25.3 120 4.79 74 194
3 3526 59 56-60 70 200 5.30 170-200 28.7 158 5.06 94 258
4 22057 51 51-55 69 150 5.01 140-170 22.1 126 4.84 80 173
5 12927 44 41-45 71 160 5.08 140-170 22.3 126 4.84 80 214
6 16029 47 46-50 64 158 5.06 140-170 27.1 116 4.75 76 206
7 3894 40 35-40 70 162 5.09 140-170 23.2 122 4.80 78 190
8 11389 41 41-45 70 160 5.08 140-170 23.0 130 4.87 84 212
9 12681 50 46-50 71 195 5.27 170-200 27.2 112 4.72 70 130
10 10005 43 41-45 68 187 5.23 170-200 28.4 120 4.79 80 233
# i 3,144 more rows
# i 10 more variables: behpat <fct>, dibpat <fct>, smoke <fct>, ncigs <dbl>,
# arcus <dbl>, chd69 <fct>, typchd69 <dbl>, time169 <dbl>, t1 <dbl>,
# uni <dbl>

Here, we have 3154 rows (subjects) and 22 columns (variables).

17.2.1 Structure of wcgs

We can specify the (sometimes terrible) variable names, through the names function, or we
can add other elements of the structure, so that we can identify items of particular interest.

str(wcgs)
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tibble [3,154 x 22] (S3: tbl_df/tbl/data.frame)
$ id : num [1:3154] 2343 3656 3526 22057 12927 ...
$ age : num [1:3154] 50 51 59 51 44 47 40 41 50 43 ...
$ agec : Factor w/ 5 levels "46-50","51-55",..: 1 2 3 2 4 1 5 4 1 4 ...
$ height : num [1:3154] 67 73 70 69 71 64 70 70 71 68 ...
$ weight : num [1:3154] 200 192 200 150 160 158 162 160 195 187 ...
$ lnwght : num [1:3154] 5.3 5.26 5.3 5.01 5.08 ...
$ wghtcat : Factor w/ 4 levels "170-200","140-170",..: 1 1 1 2 2 2 2 2 1 1 ...
$ bmi : num [1:3154] 31.3 25.3 28.7 22.1 22.3 ...
$ sbp : num [1:3154] 132 120 158 126 126 116 122 130 112 120 ...
$ lnsbp : num [1:3154] 4.88 4.79 5.06 4.84 4.84 ...
$ dbp : num [1:3154] 90 74 94 80 80 76 78 84 70 80 ...
$ chol : num [1:3154] 249 194 258 173 214 206 190 212 130 233 ...
$ behpat : Factor w/ 4 levels "A1","A2","B3",..: 1 1 1 1 1 1 1 1 1 1 ...
$ dibpat : Factor w/ 2 levels "Type A","Type B": 1 1 1 1 1 1 1 1 1 1 ...
$ smoke : Factor w/ 2 levels "Yes","No": 1 1 2 2 2 1 2 1 2 1 ...
$ ncigs : num [1:3154] 25 25 0 0 0 80 0 25 0 25 ...
$ arcus : num [1:3154] 1 0 1 1 0 0 0 0 1 0 ...
$ chd69 : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
$ typchd69: num [1:3154] 0 0 0 0 0 0 0 0 0 0 ...
$ time169 : num [1:3154] 1367 2991 2960 3069 3081 ...
$ t1 : num [1:3154] -1.63 -4.06 0.64 1.12 2.43 ...
$ uni : num [1:3154] 0.486 0.186 0.728 0.624 0.379 ...

17.2.2 Codebook for wcgs

This table was lovingly hand-crafted, and involved a lot of typing. We’ll look for better ways
in 432.

Name Stored As Type Details (units, levels, etc.)
id integer (nominal) ID #, nominal and uninteresting
age integer quantitative age, in years - no decimal places

agec factor (5) (ordinal) age: 35-40, 41-45, 46-50, 51-55, 56-60
height integer quantitative height, in inches
weight integer quantitative weight, in pounds
lnwght number quantitative natural logarithm of weight
wghtcat factor (4) (ordinal) wt: < 140, 140-170, 170-200, > 200

bmi number quantitative body-mass index: 703 * weight in lb /
(height in in)2

sbp integer quantitative systolic blood pressure, in mm Hg
lnsbp number quantitative natural logarithm of sbp
dbp integer quantitative diastolic blood pressure, mm Hg
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Name Stored As Type Details (units, levels, etc.)
chol integer quantitative total cholesterol, mg/dL

behpat factor (4) (nominal) behavioral pattern: A1, A2, B3 or B4
dibpat factor (2) (binary) behavioral pattern: A or B
smoke factor (2) (binary) cigarette smoker: Yes or No
ncigs integer quantitative number of cigarettes smoked per day
arcus integer (nominal) arcus senilis present (1) or absent (0)
chd69 factor (2) (binary) CHD event: Yes or No

typchd69 integer (4 levels) event: 0 = no CHD, 1 = MI or SD, 2 =
silent MI, 3 = angina

time169 integer quantitative follow-up time in days
t1 number quantitative heavy-tailed (random draws)
uni number quantitative light-tailed (random draws)

17.2.3 Quick Summary

summary(wcgs)

id age agec height weight
Min. : 2001 Min. :39.00 46-50: 750 Min. :60.00 Min. : 78
1st Qu.: 3741 1st Qu.:42.00 51-55: 528 1st Qu.:68.00 1st Qu.:155
Median :11406 Median :45.00 56-60: 242 Median :70.00 Median :170
Mean :10478 Mean :46.28 41-45:1091 Mean :69.78 Mean :170
3rd Qu.:13115 3rd Qu.:50.00 35-40: 543 3rd Qu.:72.00 3rd Qu.:182
Max. :22101 Max. :59.00 Max. :78.00 Max. :320

lnwght wghtcat bmi sbp lnsbp
Min. :4.357 170-200:1171 Min. :11.19 Min. : 98.0 Min. :4.585
1st Qu.:5.043 140-170:1538 1st Qu.:22.96 1st Qu.:120.0 1st Qu.:4.787
Median :5.136 > 200 : 213 Median :24.39 Median :126.0 Median :4.836
Mean :5.128 < 140 : 232 Mean :24.52 Mean :128.6 Mean :4.850
3rd Qu.:5.204 3rd Qu.:25.84 3rd Qu.:136.0 3rd Qu.:4.913
Max. :5.768 Max. :38.95 Max. :230.0 Max. :5.438

dbp chol behpat dibpat smoke
Min. : 58.00 Min. :103.0 A1: 264 Type A:1589 Yes:1502
1st Qu.: 76.00 1st Qu.:197.2 A2:1325 Type B:1565 No :1652
Median : 80.00 Median :223.0 B3:1216
Mean : 82.02 Mean :226.4 B4: 349
3rd Qu.: 86.00 3rd Qu.:253.0
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Max. :150.00 Max. :645.0
NA's :12

ncigs arcus chd69 typchd69 time169
Min. : 0.0 Min. :0.0000 No :2897 Min. :0.0000 Min. : 18
1st Qu.: 0.0 1st Qu.:0.0000 Yes: 257 1st Qu.:0.0000 1st Qu.:2842
Median : 0.0 Median :0.0000 Median :0.0000 Median :2942
Mean :11.6 Mean :0.2985 Mean :0.1363 Mean :2684
3rd Qu.:20.0 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:3037
Max. :99.0 Max. :1.0000 Max. :3.0000 Max. :3430

NA's :2
t1 uni

Min. :-47.43147 Min. :0.0007097
1st Qu.: -1.00337 1st Qu.:0.2573755
Median : 0.00748 Median :0.5157779
Mean : -0.03336 Mean :0.5052159
3rd Qu.: 0.97575 3rd Qu.:0.7559902
Max. : 47.01623 Max. :0.9994496
NA's :39

For a more detailed description, we might consider Hmisc::describe, psych::describe,
mosaic::inspect, etc., as we’ve done (for instance) in Chapter 3 and Chapter 7.

17.3 Are the SBPs Normally Distributed?

Consider the question of whether the distribution of the systolic blood pressure results is
well-approximated by the Normal, where we’ll make use of tools based on our discussion in
Chapter 11.

res <- mosaic::favstats(~ sbp, data = wcgs)

Registered S3 method overwritten by 'mosaic':
method from
fortify.SpatialPolygonsDataFrame ggplot2

bin_w <- 5 # specify binwidth

ggplot(wcgs, aes(x = sbp)) +
geom_histogram(binwidth = bin_w,

fill = "orchid",
col = "blue") +
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stat_function(
fun = function(x) dnorm(x, mean = res$mean,

sd = res$sd) *
res$n * bin_w,

col = "navy") +
labs(title = "Systolic BP for `wcgs` subjects",
x = "Systolic BP (mm Hg)", y = "",
caption = "Superimposed Normal model")
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Systolic BP for `wcgs` subjects

Superimposed Normal model

Since the data contain both sbp and lnsbp (its natural logarithm), let’s compare them. Note
that in preparing the graph, we’ll need to change the location for the text annotation.

res <- mosaic::favstats(~ lnsbp, data = wcgs)
bin_w <- 0.05 # specify binwidth

ggplot(wcgs, aes(x = lnsbp)) +
geom_histogram(binwidth = bin_w,

fill = "orange",
col = "blue") +

stat_function(
fun = function(x) dnorm(x, mean = res$mean,
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sd = res$sd) *
res$n * bin_w,

col = "navy") +
labs(title = "ln(Systolic BP) for `wcgs` subjects",
x = "ln(Systolic BP)", y = "",
caption = "Superimposed Normal model")
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ln(Systolic BP) for `wcgs` subjects

Superimposed Normal model

We can also look at Normal Q-Q plots, for instance…

p1 <- ggplot(wcgs, aes(sample = sbp)) +
geom_qq(color = "orchid") +
geom_qq_line(color = "red") +
labs(y = "Ordered SBP", title = "sbp in wcgs")

p2 <- ggplot(wcgs, aes(sample = lnsbp)) +
geom_qq(color = "orange") +
geom_qq_line(color = "red") +
labs(y = "Ordered ln(SBP)", title = "ln(sbp) in wcgs")

## next step requires library(patchwork)
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p1 + p2 +
plot_annotation(title = "Normal Q-Q plots of SBP and ln(SBP) in wcgs")
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Normal Q−Q plots of SBP and ln(SBP) in wcgs

There’s at best a small improvement from sbp to lnsbp in terms of approximation by a Normal
distribution.

17.4 Identifying and Describing SBP outliers

It looks like there’s an outlier (or a series of them) in the SBP data.

ggplot(wcgs, aes(x = "", y = sbp)) +
geom_violin() +
geom_boxplot(width = 0.3, fill = "royalblue",

outlier.color = "royalblue") +
labs(title = "Boxplot with Violin of SBP in `wcgs` data",

y = "Systolic Blood Pressure (mm Hg)",
x = "") +

coord_flip()
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mosaic::favstats(wcgs$sbp)

min Q1 median Q3 max mean sd n missing
98 120 126 136 230 128.6328 15.11773 3154 0

Hmisc::describe(wcgs$sbp)

wcgs$sbp
n missing distinct Info Mean Gmd .05 .10

3154 0 62 0.996 128.6 16.25 110 112
.25 .50 .75 .90 .95
120 126 136 148 156

lowest : 98 100 102 104 106, highest: 200 208 210 212 230

The maximum value here is 230, and is clearly the most extreme value in the data set. One
way to gauge this is to describe that observation’s Z score, the number of standard deviations
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away from the mean that the observation falls. Here, the maximum value, 230 is 6.71 standard
deviations above the mean, and thus has a Z score of 6.7.

A negative Z score would indicate a point below the mean, while a positive Z score indicates, as
we’ve seen, a point above the mean. The minimum systolic blood pressure, 98 is 2.03 standard
deviations below the mean, so it has a Z score of -2.

Recall that the Empirical Rule (described in Chapter 11) suggests that if a variable follows
a Normal distribution, it would have approximately 95% of its observations falling inside a Z
score of (-2, 2), and 99.74% falling inside a Z score range of (-3, 3). Do the systolic blood
pressures appear Normally distributed?

17.5 Does Weight Category Relate to SBP?

The data are collected into four groups based on the subject’s weight (in pounds).

ggplot(wcgs, aes(x = wghtcat, y = sbp)) +
geom_violin() +
geom_boxplot(aes(fill = wghtcat), width = 0.3, notch = TRUE) +
scale_fill_viridis_d() +
guides(fill = "none") +
labs(title = "Boxplot of Systolic BP by Weight Category in WCGS",

x = "Weight Category", y = "Systolic Blood Pressure")
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17.6 Re-Leveling a Factor

Well, that’s not so good. We really want those weight categories (the levels) to be ordered
more sensibly.

wcgs |> tabyl(wghtcat)

wghtcat n percent
170-200 1171 0.37127457
140-170 1538 0.48763475
> 200 213 0.06753329
< 140 232 0.07355739

Like all factor variables in R, the categories are specified as levels. We want to change the
order of the levels in a new version of this factor variable so they make sense. There are
multiple ways to do this, but I prefer the fct_relevel function from the forcats package
(part of the tidyverse.) Which order is more appropriate?

I’ll add a new variable to the wcgs data called weight_f that relevels the wghtcat data.
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wcgs <- wcgs |>
mutate(weight_f = fct_relevel(wghtcat, "< 140", "140-170", "170-200", "> 200"))

wcgs |> tabyl(weight_f)

weight_f n percent
< 140 232 0.07355739

140-170 1538 0.48763475
170-200 1171 0.37127457

> 200 213 0.06753329

For more on the forcats package, check out Hadley Wickham and Grolemund (2023), espe-
cially its section on Factors.

17.6.1 SBP by Weight Category

ggplot(wcgs, aes(x = weight_f, y = sbp, fill = weight_f)) +
geom_boxplot(notch = TRUE) +
scale_fill_viridis_d() +
guides(fill = "none") +
labs(title = "Systolic Blood Pressure by Reordered Weight Category in WCGS",

x = "Weight Category", y = "Systolic Blood Pressure")
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We might see some details well with a ridgeline plot, too.

ggplot(wcgs, aes(x = sbp, y = weight_f, fill = weight_f, height = ..density..)) +
ggridges::geom_density_ridges(scale = 2) +
scale_fill_viridis_d() +
guides(fill = "none") +
labs(title = "SBP by Weight Category (wcgs)",

x = "Systolic Blood Pressure",
y = "Weight Category")

Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
i Please use `after_stat(density)` instead.

Picking joint bandwidth of 3.74
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As the plots suggest, patients in the heavier groups generally had higher systolic blood pres-
sures.

mosaic::favstats(sbp ~ weight_f, data = wcgs)

weight_f min Q1 median Q3 max mean sd n missing
1 < 140 98 112 120 130 196 123.1379 14.73394 232 0
2 140-170 100 118 124 134 192 126.2939 13.65294 1538 0
3 170-200 100 120 130 140 230 131.1136 15.57024 1171 0
4 > 200 110 126 132 150 212 137.8685 16.75522 213 0

17.7 Are Weight and SBP Linked?

Let’s build a scatter plot of SBP (Outcome) by Weight (Predictor), rather than breaking down
into categories.

ggplot(wcgs, aes(x = weight, y = sbp)) +
geom_point(size=3, shape=1, color="forestgreen") + ## default size = 2
geom_smooth(method = "lm", se = FALSE, col = "red", formula = y ~ x) +
geom_smooth(method = "loess", col = "blue", formula = y ~ x) +
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ggtitle("SBP vs. Weight in 3,154 WCGS Subjects")
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SBP vs. Weight in 3,154 WCGS Subjects

• The mass of the data is hidden from us - showing 3154 points in one plot can produce
little more than a blur where there are lots of points on top of each other.

• Here the least squares regression line (in red), and loess scatterplot smoother, (in blue)
can help.

The relationship between systolic blood pressure and weight appears to be very close to linear,
but of course there is considerable scatter around that generally linear relationship. It turns
out that the Pearson correlation of these two variables is 0.253.

17.8 SBP and Weight by Arcus Senilis groups?

An issue of interest to us will be to assess whether the SBP-Weight relationship we see above is
similar among subjects who have been diagnosed with arcus senilis and those who have not.

Arcus senilis is an old age syndrome where there is a white, grey, or blue opaque
ring in the corneal margin (peripheral corneal opacity), or white ring in front of
the periphery of the iris. It is present at birth but then fades; however, it is quite
commonly present in the elderly. It can also appear earlier in life as a result of
hypercholesterolemia.
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Wikipedia article on Arcus Senilis, retrieved 2017-08-15

Let’s start with a quick look at the arcus data.

wcgs |> tabyl(arcus)

arcus n percent valid_percent
0 2211 0.7010145847 0.7014594
1 941 0.2983512999 0.2985406
NA 2 0.0006341154 NA

We have 2 missing values, so we probably want to do something about that before plotting
the data, and we may also want to create a factor variable with more meaningful labels than
1 (which means yes, arcus senilis is present) and 0 (which means no, it isn’t.)

wcgs <- wcgs |>
mutate(arcus_f = fct_recode(factor(arcus),

"Arcus senilis" = "1",
"No arcus senilis" = "0"),

arcus_f = fct_relevel(arcus_f, "Arcus senilis"))

wcgs |> tabyl(arcus_f, arcus)

arcus_f 0 1 NA_
Arcus senilis 0 941 0

No arcus senilis 2211 0 0
<NA> 0 0 2

Let’s build a version of the wcgs data that eliminates all missing data in the variables of
immediate interest, and then plot the SBP-weight relationship in groups of patients with and
without arcus senilis.

wcgs_temp <- wcgs |>
filter(complete.cases(arcus_f, sbp, weight))

ggplot(wcgs_temp, aes(x = weight, y = sbp, group = arcus_f)) +
geom_point(shape = 1) +
geom_smooth(method = "lm", col = "red", formula = y ~ x) +
geom_smooth(method = "loess", se = FALSE, col = "blue", formula = y ~ x) +
labs(title = "SBP vs. Weight by Arcus Senilis status",
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term estimate std.error statistic p.value
(Intercept) 95.92 2.56 37.54 0
weight 0.19 0.01 12.77 0

caption = "3,152 WCGS with known arcus senilis status") +
facet_wrap(~ arcus_f)
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SBP vs. Weight by Arcus Senilis status

3,152 WCGS with known arcus senilis status

17.9 Linear Model for SBP-Weight Relationship: subjects without
Arcus Senilis

model.noarcus <-
lm(sbp ~ weight, data = filter(wcgs, arcus == 0))

tidy(model.noarcus) |>
kbl(digits = 2) |>
kable_styling(full_width = FALSE)
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r.squared adj.r.squared sigma statistic p.value AIC
0.069 0.068 14.8 163 0 18194

glance(model.noarcus) |>
select(r.squared:p.value, AIC) |>
kbl(digits = c(3, 3, 1, 1, 3, 0)) |>
kable_styling(full_width = FALSE)

summary(model.noarcus)

Call:
lm(formula = sbp ~ weight, data = filter(wcgs, arcus == 0))

Residuals:
Min 1Q Median 3Q Max

-29.011 -10.251 -2.447 7.553 99.848

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 95.9219 2.5552 37.54 <2e-16 ***
weight 0.1902 0.0149 12.77 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14.8 on 2209 degrees of freedom
Multiple R-squared: 0.0687, Adjusted R-squared: 0.06828
F-statistic: 163 on 1 and 2209 DF, p-value: < 2.2e-16

The linear model for the 2211 patients without Arcus Senilis has R-squared = 6.87%.

• The regression equation is 95.92 - 0.19 weight, for those patients without Arcus Senilis.
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term estimate std.error statistic p.value
(Intercept) 101.88 3.76 27.13 0
weight 0.16 0.02 7.39 0

r.squared adj.r.squared sigma statistic p.value AIC
0.055 0.054 14.2 54.6 0 7667

17.10 Linear Model for SBP-Weight Relationship: subjects with
Arcus Senilis

model.witharcus <-
lm(sbp ~ weight, data = filter(wcgs, arcus == 1))

tidy(model.witharcus) |>
kbl(digits = 2) |>
kable_styling(full_width = FALSE)

glance(model.witharcus) |>
select(r.squared:p.value, AIC) |>
kbl(digits = c(3, 3, 1, 1, 3, 0)) |>
kable_styling(full_width = FALSE)

summary(model.witharcus)

Call:
lm(formula = sbp ~ weight, data = filter(wcgs, arcus == 1))

Residuals:
Min 1Q Median 3Q Max

-30.335 -9.636 -1.961 7.973 76.738

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 101.87847 3.75572 27.126 < 2e-16 ***
weight 0.16261 0.02201 7.388 3.29e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14.19 on 939 degrees of freedom
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term estimate std.error statistic p.value
(Intercept) 95.92 2.52 38.00 0.00
weight 0.19 0.01 12.92 0.00
arcus 5.96 4.62 1.29 0.20
weight:arcus -0.03 0.03 -1.02 0.31

r.squared adj.r.squared sigma statistic p.value AIC
0.066 0.065 14.6 74.1 0 25861

Multiple R-squared: 0.05494, Adjusted R-squared: 0.05393
F-statistic: 54.58 on 1 and 939 DF, p-value: 3.29e-13

The linear model for the 941 patients with Arcus Senilis has R-squared = 5.49%.

• The regression equation is 101.88 - 0.163 weight, for those patients with Arcus Senilis.

17.11 Including Arcus Status in the model

model3 <- lm(sbp ~ weight * arcus, data = filter(wcgs, !is.na(arcus)))

tidy(model3) |>
kbl(digits = 2) |>
kable_styling(full_width = FALSE)

glance(model3) |>
select(r.squared:p.value, AIC) |>
kbl(digits = c(3, 3, 1, 1, 3, 0)) |>
kable_styling(full_width = FALSE)

summary(model3)

Call:
lm(formula = sbp ~ weight * arcus, data = filter(wcgs, !is.na(arcus)))

Residuals:
Min 1Q Median 3Q Max

-30.335 -10.152 -2.349 7.669 99.848
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 95.92190 2.52440 37.998 <2e-16 ***
weight 0.19017 0.01472 12.921 <2e-16 ***
arcus 5.95657 4.61972 1.289 0.197
weight:arcus -0.02756 0.02703 -1.019 0.308
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14.62 on 3148 degrees of freedom
Multiple R-squared: 0.06595, Adjusted R-squared: 0.06506
F-statistic: 74.09 on 3 and 3148 DF, p-value: < 2.2e-16

The actual regression equation in this setting includes both weight, and an indicator variable
(1 = yes, 0 = no) for arcus senilis status, and the product term combining weight and that
1/0 indicator. In 432, we’ll spend substantial time and energy discussing these product terms,
but we’ll not do much of that in 431.

• Note the use of the product term weight*arcus in the setup of the model to allow both
the slope of weight and the intercept term in the model to change depending on arcus
senilis status.

– For a patient who has arcus, the regression equation is SBP = 95.92 + 0.19 weight
+ 5.96 (1) - 0.028 weight (1) = 101.88 + 0.162 weight.

– For a patient without arcus senilis, the regression equation is SBP = 95.92 + 0.19
weight + 5.96 (0) - 0.028 weight (0) = 95.92 + 0.19 weight.

The linear model including the interaction of weight and arcus to predict sbp for the 3152 pa-
tients with known Arcus Senilis status has R-squared = 6.6%. Again, we’ll discuss interaction
more substantially in 432.

17.12 Predictions from these Linear Models

What is our predicted SBP for a subject weighing 175 pounds?

How does that change if our subject weighs 200 pounds?

Recall that

• Without Arcus Senilis, linear model for SBP = 95.9 + 0.19 x weight
• With Arcus Senilis, linear model for SBP = 101.9 + 0.16 x weight

So the predictions for a 175 pound subject are:
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• 95.9 + 0.19 x 175 = 129 mm Hg without Arcus Senilis, and

• 101.9 + 0.16 x 175 = 130 mm Hg with Arcus Senilis.

And thus, the predictions for a 200 pound subject are:

• 95.9 + 0.19 x 200 = 134 mm Hg without Arcus Senilis, and

• 101.9 + 0.16 x 200 = 134.4 mm Hg with Arcus Senilis.

17.13 Scatterplots with Facets Across a Categorical Variable

We can use facets in ggplot2 to show scatterplots across the levels of a categorical variable,
like behpat.

ggplot(wcgs, aes(x = weight, y = sbp, col = behpat)) +
geom_point() +
facet_wrap(~ behpat) +
geom_smooth(method = "lm", se = FALSE,

formula = y ~ x, col = "black") +
guides(color = "none") +
theme(strip.text = element_text(face="bold", size=rel(1.25), color="white"),

strip.background = element_rect(fill="royalblue")) +
labs(title = "Scatterplots of SBP vs. Weight within Behavior Pattern")
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17.14 Scatterplot and Correlation Matrices

A scatterplot matrix can be very helpful in understanding relationships between multiple
variables simultaneously. There are several ways to build such a thing, including the pairs
function…

pairs (~ sbp + age + weight + height, data=wcgs,
main="Simple Scatterplot Matrix")
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17.14.1 Displaying a Correlation Matrix

wcgs |>
select(sbp, age, weight, height) |>
cor() |>
kbl(digits = 3) |>
kable_styling(full_width = FALSE)
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sbp age weight height
sbp 1.000 0.166 0.253 0.018
age 0.166 1.000 -0.034 -0.095
weight 0.253 -0.034 1.000 0.533
height 0.018 -0.095 0.533 1.000

17.14.2 Using the GGally package

The ggplot2 system doesn’t have a built-in scatterplot system. There are some nice add-ins
in the world, though. One option I sort of like is in the GGally package, which can produce
both correlation matrices and scatterplot matrices.

The ggpairs function provides a density plot on each diagonal, Pearson correlations on the
upper right and scatterplots on the lower left of the matrix.

ggpairs(wcgs |>
select(sbp, age, weight, height),

title = "Scatterplot Matrix via ggpairs")

Corr:
0.166***

Corr:
0.253***

Corr:

−0.034.

Corr:
0.018

Corr:

−0.095***

Corr:

0.533***
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Part II

Part B. Comparing Summaries
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18 Hypothesis Testing: What is it good for?

18.1 Introduction

Hypothesis testing uses sample data to attempt to reject the hypothesis that nothing inter-
esting is happening – that is, to reject the notion that chance alone can explain the sample
results1. We can, in many settings, use confidence intervals to summarize the results, as well,
and confidence intervals and hypothesis tests are closely connected.

In particular, it’s worth stressing that:

• A significant effect is not necessarily the same thing as an interesting effect.
For example, results calculated from large samples are nearly always “significant” even
when the effects are quite small in magnitude. Before doing a test, always ask if the
effect is large enough to be of any practical interest. If not, why do the test?

• A non-significant effect is not necessarily the same thing as no difference.
A large effect of real practical interest may still produce a non-significant result simply
because the sample is too small.

• There are assumptions behind all statistical inferences. Checking assumptions
is crucial to validating the inference made by any test or confidence interval.

18.2 Five Steps in any Hypothesis Test

1. Specify the null hypothesis, 𝐻0 (which usually indicates that there is no difference or no
association between the results in various groups of subjects)

2. Specify the research or alternative hypothesis, 𝐻𝐴, sometimes called 𝐻1 (which usually
indicates that there is some difference or some association between the results in those
same groups of subjects).

3. Specify the test procedure or test statistic to be used to make inferences to the population
based on sample data. Here is where we usually specify 𝛼, the probability of incorrectly
rejecting 𝐻0 that we are willing to accept. In the absence of other information, we often
use 𝛼 = 0.05

1Some of this is adapted from @GoodHardin, and @Utts1999
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4. Obtain the data, and summarize it to obtain the relevant test statistic, which gets
summarized as a 𝑝 value.

5. Use the 𝑝 value to either

• reject 𝐻0 in favor of the alternative 𝐻𝐴 (concluding that there is a statistically
significant difference/association at the 𝛼 significance level) or

• retain 𝐻0 (and conclude that there is no statistically significant differ-
ence/association at the 𝛼 significance level)

18.3 Type I and Type II Error

Once we know how unlikely the results would have been if the null hypothesis were true, we
must make one of two choices:

1. The p value is not small enough to convincingly rule out chance. Therefore, we cannot
reject the null hypothesis as an explanation for the results.

2. The p value was small enough to convincingly rule out chance. We reject the null
hypothesis and accept the alternative hypothesis.

How small must the p value be in order to rule out the null hypothesis? The standard choice
is 5%. This standardization has some substantial disadvantages2. It is simply a convention
that has become accepted over the years, and there are many situations for which a 5% cutoff
is unwise. While it does give a specific level to keep in mind, it suggests a rather mindless
cutpoint having nothing to do with the importance of the decision nor the costs or losses
associated with outcomes.

18.4 The Courtroom Analogy

Consider the analogy of the jury in a courtroom.

1. The evidence is not strong enough to convincingly rule out that the defendant is innocent.
Therefore, we cannot reject the null hypothesis, or innocence of the defendant.

2. The evidence was strong enough that we are willing to rule out the possibility that an
innocent person (as stated in the null hypothesis) produced the observed data. We reject
the null hypothesis, that the defendant is innocent, and assert the alternative hypothesis.

Consistent with our thinking in hypothesis testing, in many cases we would not accept the
hypothesis that the defendant is innocent. We would simply conclude that the evidence was
not strong enough to rule out the possibility of innocence.

2Ingelfinger JA, Mosteller F, Thibodeau LA and Ware JH (1987) Biostatistics in Clinical Medicine, 2nd
Edition, New York: MacMillan. pp. 156-157.

374



The p value is the probability of getting a result as extreme or more extreme than the one
observed if the proposed null hypothesis is true. Notice that it is not valid to actually accept
that the null hypothesis is true. To do so would be to say that we are essentially convinced
that chance alone produced the observed results – a common mistake.

18.5 Significance vs. Importance

Remember that a statistically significant relationship or difference does not necessarily mean
an important one. A result that is significant in the statistical meaning of the word may
not be significant clinically. Statistical significance is a technical term. Findings can be both
statistically significant and practically significant or either or neither.

When we have large samples, we will regularly find small differences that have a small p value
even though they have no practical importance. At the other extreme, with small samples,
even large differences will often not be large enough to create a small p value. The notion of
statistical significance has not helped science, and we won’t perpetuate it any further.

18.6 What does Dr. Love dislike about p values and “statistical
significance”?

A lot of things. A major issue is that I believe that p values are impossible to explain in a
way that is both [a] technically correct and [b] straightforward at the same time. As evidence
of this, you might want to look at this article and associated video by Christie Aschwanden
at 538.com

The notion of a p value was an incredibly impressive achievement back when Wald and others
were doing the work they were doing in the 1940s, and might still have been useful as recently
as 10 years ago. But the notion of a p value relies on a lot of flawed assumptions, and null
hypothesis significance testing is fraught with difficulties. Nonetheless, researchers use p values
every day.

18.7 The ASA Articles in 2016 and 2019 on Statistical Significance
and P-Values

However, my primary motivation for taking the approach I’m taking comes from the pieces in
two key reference collections we’ll read and discuss more thoroughly in 431 and 432.

1. The American Statistical Association’s 2016 Statement on p-Values: Context, Process
and Purpose.
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The ASA Statement on p-Values and Statistical Significance (Wasserstein and
Lazar 2016) was developed primarily because after decades, warnings about the
don’ts had gone mostly unheeded. The statement was about what not to do,
because there is widespread agreement about the don’ts.

2. Statistical Inference in the 21st Century: A World Beyond p < 0.05 from 2019 in The
American Statistician

This is a world where researchers are free to treat “p = 0.051” and “p = 0.049”
as not being categorically different, where authors no longer find themselves con-
strained to selectively publish their results based on a single magic number. In
this world, where studies with “p < 0.05” and studies with “p > 0.05” are not
automatically in conflict, researchers will see their results more easily replicated-
and, even when not, they will better understand why. As we venture down this
path, we will begin to see fewer false alarms, fewer overlooked discoveries, and the
development of more customized statistical strategies. Researchers will be free to
communicate all their findings in all their glorious uncertainty, knowing their work
is to be judged by the quality and effective communication of their science, and
not by their p-values. As “statistical significance” is used less, statistical thinking
will be used more. The ASA Statement on P-Values and Statistical Significance
started moving us toward this world…. Now we must go further.

The ASA Statement on P-Values and Statistical Significance stopped just short
of recommending that declarations of “statistical significance” be abandoned. We
take that step here. We conclude, based on our review of the articles in this special
issue and the broader literature, that it is time to stop using the term “statistically
significant” entirely. Nor should variants such as “significantly different,” “p <
0.05,” and “nonsignificant” survive, whether expressed in words, by asterisks in a
table, or in some other way…. Regardless of whether it was ever useful, a declaration
of “statistical significance” has today become meaningless.

For the moment, I will say this. I emphasize confidence intervals over p values, which is at
best a partial solution. But …

1. Very rarely does a situation emerge in which a p value can be available in which looking
at the associated confidence interval isn’t far more helpful for making a comparison of
interest.

2. The use of a p value requires making at least as many assumptions about the population,
sample, individuals and data as does a confidence interval.

3. Most null hypotheses are clearly not exactly true prior to data collection, and so the test
summarized by a p value is of questionable value most of the time.

4. No one has a truly adequate definition of a p value, in terms of both precision and
parsimony. Brief, understandable definitions always fail to be technically accurate.

5. Bayesian approaches avoid some of these pitfalls, but come with their own issues.
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6. Many smart people agree with me, and have sworn off of p values whenever they can.

Again, we’ll look at these issues in greater depth later in the course.

18.8 Errors in Hypothesis Testing

In testing hypotheses, there are two potential decisions and each one brings with it the possi-
bility that a mistake has been made.

Let’s use the courtroom analogy. Here are the potential choices and associated potential errors.
Although the seriousness of errors depends on the seriousness of the crime and punishment,
the potential error for choice 2 is usually more serious.

1. We cannot rule out that the defendant is innocent, so (s)he is set free without penalty.
• Potential Error: A criminal has been erroneously freed.

2. We believe that there is enough evidence to conclude that the defendant is guilty.
• Potential Error: An innocent person is convicted / penalized and a guilty person

remains free.

As another example, consider being tested for disease. Most tests for diseases are not 100%
accurate. The lab technician or physician must make a choice:

1. In the opinion of the medical practitioner, you are healthy. The test result was weak
enough to be called “negative” for the disease.
• Potential Error: You actually have the disease but have been told that you do not.

This is called a false negative.
2. In the opinion of the medical practitioner, you have the disease. The test results were

strong enough to be called “positive” for the disease.
• Potential Error: You are actually healthy but have been told you have the disease.

This is called a false positive.

18.9 The Two Types of Hypothesis Testing Errors

– 𝐻𝐴 is true 𝐻0 is true
Test Rejects 𝐻0 Correct Decision Type I Error (False Positive)
Test Retains 𝐻0 Type II Error (False Negative) Correct Decision

• A Type I error can only be made if the null hypothesis is actually true.
• A Type II error can only be made if the alternative hypothesis is actually true.
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18.10 The Significance Level is the Probability of a Type I Error

If the null hypothesis is true, the p value is the probability of making an error by choosing
the alternative hypothesis instead. Alpha (𝛼) is defined as the probability of rejecting the
null hypothesis when the null hypothesis is actually true, creating a Type I error. This is
also called the significance level, so that 100(1-𝛼) is the confidence level – the probability of
correctly concluding that there is no difference (retaining 𝐻0) when the null hypothesis is
true.

18.11 The Probability of avoiding a Type II Error is called Power

A Type II error is made if the alternative hypothesis is true, but you fail to choose it. The
probability depends on exactly which part of the alternative hypothesis is true, so that com-
puting the probability of making a Type II error is not feasible. The power of a test is the
probability of making the correct decision when the alternative hypothesis is true. Beta (𝛽) is
defined as the probability of concluding that there was no difference, when in fact there was
one (a Type II error). Power is then just 1 - 𝛽, the probability of concluding that there was a
difference, when, in fact, there was one.

Traditionally, people like the power of a test to be at least 80%, meaning that 𝛽 is at most
0.20. Often, I’ll be arguing for 90% as a minimum power requirement, or we’ll be presenting
a range of power calculations for a variety of sample size choices.

18.12 Incorporating the Costs of Various Types of Errors

Which error is more serious in medical testing, where we think of our 𝐻0: patient is healthy
vs. 𝐻𝐴: disease is present?

It depends on the disease and on the consequences of a negative or positive test result. A false
negative in a screening test for cancer could lead to a fatal delay in treatment, whereas a false
positive would probably lead to a retest. A more troublesome example occurs in testing for
an infectious disease. Inevitably, there is a trade-off between the two types of errors. It all
depends on the consequences.

It would be nice if we could specify the probability that we were making an error with each
potential decision. We could then weigh the consequence of the error against its probability.
Unfortunately, in most cases, we can only specify the conditional probability of making a Type
I error, given that the null hypothesis is true.

In deciding whether to reject a null hypothesis, we will need to consider the consequences of
the two potential types of errors. If a Type I error is very serious, then you should reject the
null hypothesis only if the p value is very small. Conversely, if a Type II error is more serious,
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you should be willing to reject the null hypothesis with a larger p value, perhaps 0.10 or 0.20,
instead of 0.05.

• 𝛼 is the probability of rejecting 𝐻0 when 𝐻0 is true.

– So 1 - 𝛼, the confidence level, is the probability of retaining 𝐻0 when that’s the
right thing to do.

• 𝛽 is the probability of retaining 𝐻0 when 𝐻𝐴 is true.

– So 1 - 𝛽, the power, is the probability of rejecting 𝐻0 when that’s the right thing
to do.

– 𝐻𝐴 is True 𝐻0 is True
Test
Re-
jects
𝐻0

Correct Decision (1 - 𝛽) Type I Error (𝛼)

Test
Re-
tains
𝐻0

Type II Error (𝛽) Correct Decision (1 - 𝛼)

18.13 Power and Sample Size Considerations

For most statistical tests, it is theoretically possible to estimate the power of the test in the
design stage, (before any data are collected) for various sample sizes, so we can hone in on a
sample size choice which will enable us to collect data only on as many subjects as are truly
necessary.

A power calculation is likely the most common element of an scientific grant proposal on which
a statistician is consulted. This is a fine idea in theory, but in practice…

• The tests that have power calculations worked out in intensive detail using R are mostly
those with more substantial assumptions. Examples include t tests that assume popu-
lation normality, common population variance and balanced designs in the independent
samples setting, or paired t tests that assume population normality in the paired samples
setting.

• These power calculations are also usually based on tests rather than confidence intervals,
which would be much more useful in most settings. Simulation is your friend here.

• Even more unfortunately, this process of doing power and related calculations is far
more of an art than a science.
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• As a result, the value of many power calculations is negligible, since the assumptions
being made are so arbitrary and poorly connected to real data.

• On several occasions, I have stood in front of a large audience of medical statisticians
actively engaged in clinical trials and other studies that require power calculations for
funding. When I ask for a show of hands of people who have had power calculations
prior to such a study whose assumptions matched the eventual data perfectly, I get lots
of laughs. It doesn’t happen.

• Even the underlying framework that assumes a power of 80% with a significance level of
5% is sufficient for most studies is pretty silly.

All that said, I feel obliged to show you some examples of power calculations done using R,
and provide some insight on how to make some of the key assumptions in a way that won’t
alert reviewers too much to the silliness of the enterprise, and so I will do so in Chapter 22.
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19 Confidence Intervals for a Mean

19.1 Setup: Packages Used Here

In this part of the course, we’ll make use of a few scripts I’ve gathered for you, in the Love-boost
R script.

knitr::opts_chunk$set(comment = NA)

source("data/Love-boost.R")
library(boot)
library(broom)
library(Hmisc)
library(janitor)
library(kableExtra)
library(patchwork)
library(psych)
library(tidyverse)

theme_set(theme_bw())

We will also use the favstats function from the mosaic package.

19.2 Introduction

The basic theory of estimation can be used to indicate the probable accuracy and potential
for bias in estimating based on limited samples. A point estimate provides a single best guess
as to the value of a population or process parameter.

A confidence interval is a particularly useful way to convey to people just how much error one
must allow for in a given estimate. In particular, a confidence interval allows us to quantify
just how close we expect, for instance, the sample mean to be to the population or process
mean. The computer will do the calculations; we need to interpret the results.

The key things that we will need to trade off are cost vs. precision, and precision vs. confidence
in the correctness of the statement. Often, if we are dissatisfied with the width of the confidence
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interval and want to make it smaller, we have little choice but to reconsider the sample – larger
samples produce shorter intervals.

19.3 This Chapter’s Goals

Suppose that we are interested in learning something about a population or process, from which
we can obtain a sample that consists of a subset of potential results from that population or
process. The main goal for many of the parametric models that are a large part of statistics
is to estimate population parameters, like a population mean, or regression coefficient, on
the basis of a sample. When we do this, we want to describe not only our best guess at the
parameter (referred to as a point estimate) but also say something useful about the uncertainty
in our estimate, to let us more completely assess what the data have to tell us. A key tool for
doing this is a confidence interval.

Essentially every textbook on introductory statistics describes the development of a confidence
interval, at least for a mean. Good supplemental resources are highlighted in the references
I’ve provided in the course syllabus.

We’ll develop confidence intervals to compare parameters about two populations (either
through matched pairs or independent samples) with confidence intervals soon. Here, we’ll
consider the problem of estimating a confidence interval to describe the mean (or median) of
the population represented by a single sample of quantitative data.

19.4 Serum Zinc Levels in 462 Teenage Males (serzinc)

The serzinc data include serum zinc levels in micrograms per deciliter that have been gathered
for a sample of 462 males aged 15-17, My source for these data is Appendix B1 of Pagano and
Gauvreau (2000). Serum zinc deficiency has been associated with anemia, loss of strength and
endurance, and it is thought that 25% of the world’s population is at risk of zinc deficiency.
Such a deficiency can indicate poor nutrition, and can affect growth and vision, for instance.
“Typical” values1 are said to be 0.66-1.10 mcg/ml, which is 66 - 110 micrograms per deciliter.

serzinc <- read_csv("data/serzinc.csv", show_col_types = FALSE)

names(serzinc)

[1] "ID" "zinc"

1Reference values for those over the age of 10 years at http://www.mayomedicallaboratories.com/test-
catalog/Clinical+and+Interpretive/8620 , visited 2019-09-17.
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min Q1 median Q3 max mean sd n missing
50 76 86 98 153 87.94 16 462 0

mosaic::favstats(~ zinc, data = serzinc) |>
kbl(digits = 2) |>
kable_styling()

19.5 Our Goal: A Confidence Interval for the Population Mean

After we assess the data a bit, and are satisfied that we understand it, our first inferential
goal will be to produce a confidence interval for the true (population) mean of males
age 15-17 based on this sample, assuming that these 462 males are a random sample from the
population of interest, that each serum zinc level is drawn independently from an identical
distribution describing that population.

To do this, we will have several different procedures available, including:

1. A confidence interval for the population mean based on a t distribution, when we assume
that the data are drawn from an approximately Normal distribution, using the sample
standard deviation. (Interval corresponding to a t test, and it will be a good choice when
the data really are approximately Normally distributed.)

2. A resampling approach to generate a bootstrap confidence interval for the population
mean, which does not require that we assume either that the population standard devia-
tion is known, nor that the data are drawn from an approximately Normal distribution,
but which has some other weaknesses.

3. A rank-based procedure called the Wilcoxon signed rank test can also be used to yield
a confidence interval statement about the population pseudo-median, a measure of the
population distribution’s center (but not the population’s mean).

19.6 Exploratory Data Analysis for Serum Zinc

19.6.1 Graphical Summaries

The code presented below builds:

• a histogram (with Normal model superimposed),
• a boxplot (with median notch) and
• a Normal Q-Q plot (with guiding straight line through the quartiles)
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for the zinc results from the serzinc tibble.

p1 <- ggplot(serzinc, aes(sample = zinc)) +
geom_qq(col = "dodgerblue") + geom_qq_line(col = "navy") +
theme(aspect.ratio = 1) +
labs(title = "Normal Q-Q plot")

p2 <- ggplot(serzinc, aes(x = zinc)) +
geom_histogram(aes(y = stat(density)),

bins = 10, fill = "dodgerblue", col = "white") +
stat_function(fun = dnorm,

args = list(mean = mean(serzinc$zinc),
sd = sd(serzinc$zinc)),

col = "navy", lwd = 1.5) +
labs(title = "Histogram and Normal Density")

p3 <- ggplot(serzinc, aes(x = zinc, y = "")) +
geom_boxplot(fill = "dodgerblue", outlier.color = "dodgerblue") +
stat_summary(fun = "mean", geom = "point",

shape = 23, size = 3, fill = "white") +
labs(title = "Boxplot", y = "")

p1 + (p2 / p3 + plot_layout(heights = c(4,1))) +
plot_annotation(title = "Serum Zinc (micrograms per deciliter) for 462 Teenage Males")

Warning: `stat(density)` was deprecated in ggplot2 3.4.0.
i Please use `after_stat(density)` instead.
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vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 462 87.94 16 86 87.17 16.31 50 153 103 0.62 0.87 0.74
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These results include some of the more useful plots and numerical summaries when assessing
shape, center and spread. The zinc data in the serzinc data frame appear to be slightly
right skewed, with five outlier values on the high end of the scale, in particular.

19.6.2 Numerical Summaries

This section describes some numerical summaries of interest to augment the plots in
summarizing the center, spread and shape of the distribution of serum zinc among these
462 teenage males. Note that I use summarise here to be sure that the dplyr package’s
summarise/summarize function is used, rather than the one contained in Hmisc. I could also
have used dplyr::summarize() to accomplish the same goal.

describe(serzinc$zinc) |> # from psych package
kbl(digits = 2) |> kable_styling()

serzinc |>
summarise(mean(zinc), median(zinc), sd(zinc),
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mean(zinc) median(zinc) sd(zinc) skew1
87.94 86 16 0.12

skew1 = (mean(zinc) - median(zinc))/sd(zinc)) |>
kbl(digits = 2) |> kable_styling()

The skew1 value here (mean - median divided by the standard deviation) backs up our graphical
assessment, that the data are slightly right skewed.

Rounded to two decimal places, the standard deviation of the serum zinc data turns out to
be 16, and so the standard error of the mean, shown as se in the psych::describe output,
is 16 divided by the square root of the sample size, n = 462. This standard error is about to
become quite important to us in building statistical inferences about the mean of the entire
population of teenage males based on this sample.

19.7 Defining a Confidence Interval

A confidence interval for a population or process mean uses data from a sample (and perhaps
some additional information) to identify a range of potential values for the population mean,
which, if certain assumptions hold, can be assumed to provide a reasonable estimate for the
true population mean. A confidence interval consists of:

1. An interval estimate describing the population parameter of interest (here the population
mean), and

2. A probability statement, expressed in terms of a confidence level.

19.8 Estimating the Population Mean from the Serum Zinc data

As an example, suppose that we are willing to assume that the mean serum zinc level across
the entire population of teenage males, 𝜇, follows a Normal distribution (and so, summarizing
it with a mean is a rational thing to do.) Suppose that we are also willing to assume that the
462 teenage males contained in the serzinc tibble are a random sample from that complete
population. While we know the mean of the sample of 462 boys, we don’t know 𝜇, the mean
across all teenage males. So we need to estimate it.

Earlier we estimated that a 90% confidence interval for the mean serum zinc level (𝜇) across
the entire population of teenage males was (86.71, 89.16) micrograms per deciliter. How should
we interpret this result?

• Some people think this means that there is a 90% chance that the true mean of the
population, 𝜇, falls between 86.71 and 89.16 micrograms per deciliter. That’s not correct.
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• The population mean is a constant parameter of the population of interest. That
constant is not a random variable, and does not change. So the actual probability of the
population mean falling inside that range is either 0 or 1.

• Our confidence is in our process.

– It’s in the sampling method (random sampling) used to generate the data, and in
the assumption that the population follows a Normal distribution.

– It’s captured in our accounting for one particular type of error (called sampling
error) in developing our interval estimate, while assuming all other potential sources
of error are negligible.

So, what’s closer to the truth is:

• If we used this same method to sample data from the true population of teenage males,
and built 100 such 90% confidence intervals, then about 90 of them would contain the
true population mean.

19.9 Confidence vs. Significance Level

We’ve estimated a 90% confidence interval for the population mean serum zinc level among
teenage boys using the serzinc data.

• We call 100(1-𝛼)%, here, 90%, or 0.90, the confidence level, and
• 𝛼 = 10%, or 0.10 is called the significance level.

If we had instead built a series of 100 different 95% confidence intervals, then about 95 of them
would contain the true value of 𝜇.
Let’s look more closely at the issue of estimating a population mean based on a sample
of observations. We will need three critical pieces - the sample, the confidence level, and the
margin of error, which is based on the standard error of a sample mean, when we are estimating
a population mean.

19.10 The Standard Error of a Sample Mean

The standard error, generally, is the name we give to the standard deviation associated with
any particular parameter estimate.

• If we are using a sample mean based on a sample of size 𝑛 to estimate a population
mean, the standard error of that sample mean is the standard deviation of the
measurements in the population, divided by the square root of the sample size.
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• We often estimate this particular standard error with 𝑠 (the sample standard deviation)
divided by the square root of the sample size.

• Other statistics have different standard errors.

– √𝑝(1 − 𝑝)/𝑛 is the standard error of the sample proportion 𝑝 estimated using a
sample of size 𝑛.

– √1−𝑟2
𝑛−2 is the standard error of the sample Pearson correlation 𝑟 estimated using 𝑛

pairs of observations.
– √𝑆𝐷2

1
𝑛1

+ 𝑆𝐷2
2

𝑛2
is the standard error of the difference between two means ̄𝑥1 and ̄𝑥2,

estimated using samples of sizes 𝑛1 and 𝑛2 with sample standard devistions 𝑆𝐷1
and 𝑆𝐷2, respectively.

In developing a confidence interval for a population mean, we may be willing to assume that
the data in our sample are drawn from a Normally distributed population. If so, the most
common and useful means of building a confidence interval makes use of the t distribution
(sometimes called Student’s t) and the notion of a standard error.

19.11 The t distribution and CIs for a Mean

In practical settings, we will use the t distribution to estimate a confidence interval from a
population mean whenever we:

• are willing to assume that the sample is drawn at random from a population or process
with a Normal distribution,

• are using our sample to estimate both the mean and standard deviation, and
• have a small sample size.

19.11.1 The Formula

The two-sided 100(1 − 𝛼)% confidence interval (based on a 𝑡 test) is:

̄𝑥 ± 𝑡𝛼/2,𝑛−1(𝑠/√𝑛)

where 𝑡𝛼/2,𝑛−1 is the value that cuts off the top 𝛼/2 percent of the 𝑡 distribution, with 𝑛 − 1
degrees of freedom.

We obtain the relevant cutoff value in R by substituting in values for alphaover2 and n-1
into the following line of R code:

qt(alphaover2, df = n-1, lower.tail=FALSE)
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19.11.2 Student’s t distribution

Student’s t distribution looks a lot like a Normal distribution, when the sample size is large.
Unlike the normal distribution, which is specified by two parameters, the mean and the stan-
dard deviation, the t distribution is specified by one parameter, the degrees of freedom.

• t distributions with large numbers of degrees of freedom are more or less indistinguishable
from the standard Normal distribution.

• t distributions with smaller degrees of freedom (say, with df < 30, in particular) are still
symmetric, but are more outlier-prone than a Normal distribution

p1 <- ggplot(data.frame(x = c(-3, 3)), aes(x)) +
stat_function(fun = dt, args = list(df = 1)) +
stat_function(fun = dnorm, col = "red") +
labs(title = "t with 1 df", y = "Density", x = "")

p2 <- ggplot(data.frame(x = c(-3, 3)), aes(x)) +
stat_function(fun = dt, args = list(df = 3)) +
stat_function(fun = dnorm, col = "red") +
labs(title = "t with 3 df", y = "Density", x = "")

p3 <- ggplot(data.frame(x = c(-3, 3)), aes(x)) +
stat_function(fun = dt, args = list(df = 5)) +
stat_function(fun = dnorm, col = "red") +
labs(title = "t with 5 df", y = "Density", x = "")

p4 <- ggplot(data.frame(x = c(-3, 3)), aes(x)) +
stat_function(fun = dt, args = list(df = 10)) +
stat_function(fun = dnorm, col = "red") +
labs(title = "t with 10 df", y = "Density", x = "")

p5 <- ggplot(data.frame(x = c(-3, 3)), aes(x)) +
stat_function(fun = dt, args = list(df = 20)) +
stat_function(fun = dnorm, col = "red") +
labs(title = "t with 20 df", y = "Density", x = "")

p6 <- ggplot(data.frame(x = c(-3, 3)), aes(x)) +
stat_function(fun = dt, args = list(df = 30)) +
stat_function(fun = dnorm, col = "red") +
labs(title = "t with 30 df", y = "Density", x = "")

(p1 + p2 + p3) / (p4 + p5 + p6) +
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plot_annotation(
title = "Various t distributions and the Standard Normal",
caption = "In each plot, the Standard Normal distribution is in red")
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19.12 Building the CI in R

Suppose we wish to build a 90% confidence interval for the true mean serum zinc level across
the entire population of teenage males. The confidence level will be 90%, or 0.90, and so the
𝛼 value, which is 1 - confidence = 0.10.

So what we know going in is that:

• We want 𝛼 = 0.10, because we’re creating a 90% confidence interval.
• The sample size n = 462 serum zinc measurements.
• The sample mean of those measurements, ̄𝑥 = 87.937 micrograms per deciliter.
• The sample standard deviation of those measurements, s = 16.005 micrograms per

deciliter.
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19.13 Using an intercept-only regression model

in the context of fitting an intercept-only linear regression model. An intercept-only model
is fitted by putting the number 1 on the right hand side of our linear model. The resulting
model simply fits the overall mean of the data as a prediction for all subjects.

model_zinc <- lm(zinc ~ 1, data = serzinc)

summary(model_zinc)

Call:
lm(formula = zinc ~ 1, data = serzinc)

Residuals:
Min 1Q Median 3Q Max

-37.937 -11.937 -1.937 10.063 65.063

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 87.9372 0.7446 118.1 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16 on 461 degrees of freedom

confint(model_zinc, level = 0.90)

5 % 95 %
(Intercept) 86.71 89.16446

Generally, though, I’ll use the tidy() function in the broom package to obtain the key infor-
mation from a model like this:

tidy(model_zinc, conf.int = TRUE, conf = 0.90) |>
kbl(digits = 2) |> kable_styling()

As an alternative, we could also use the t.test function, which can build (in this case) a
two-sided confidence interval for the zinc levels like this:
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term estimate std.error statistic p.value conf.low conf.high
(Intercept) 87.94 0.74 118.1 0 86.71 89.16

estimate statistic p.value parameter conf.low conf.high method alternative
87.94 118.1 0 461 86.71 89.16 One Sample t-test two.sided

tt <- t.test(serzinc$zinc,
conf.level = 0.90,
alternative = "two.sided")

tt

One Sample t-test

data: serzinc$zinc
t = 118.1, df = 461, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
90 percent confidence interval:
86.71000 89.16446
sample estimates:
mean of x
87.93723

and the tidy() function from the broom package works here, too.

tidy(tt, conf.int = TRUE, conf = 0.90) |>
kbl(digits = 2) |> kable_styling()

And again, our 90% confidence interval for the true population mean serum zinc level, based
on our sample of 462 patients, is (86.71, 89.16) micrograms per deciliter2.

19.14 Interpreting the Result

An appropriate interpretation of the 90% two-sided confidence interval above follows:

• (86.71, 89.16) micrograms per deciliter is a 90% two-sided confidence interval for the
population mean serum zinc level among teenage males.

2Since the measured zinc levels appear as integers, we should probably be rounding even further in our
confidence interval, down to perhaps one decimal place.
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term estimate std.error statistic p.value conf.low conf.high
(Intercept) 87.94 0.74 118.1 0 86.47 89.4

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 87.94 0.74 118.1 0 86.01 89.86

• Our point estimate for the true population mean serum zinc level is 87.94. The values
in the interval (86.71, 89.16) represent a reasonable range of estimates for the true
population mean serum zinc level, and we are 90% confident that this method of creating
a confidence interval will produce a result containing the true population mean serum
zinc level.

• Were we to draw 100 samples of size 462 from the population described by this sample,
and use each such sample to produce a confidence interval in this manner, approximately
90 of those confidence intervals would cover the true population mean serum zinc level.

19.15 What if we want a 95% or 99% confidence interval instead?

We can obtain them using tidy and the same modeling approach.

tidy(model_zinc, conf.int = TRUE, conf.level = 0.95) |>
kbl(digits = 2) |> kable_styling()

tidy(model_zinc, conf.int = TRUE, conf.level = 0.99) |>
kbl(digits = 2) |> kable_styling()

19.16 Using the broom package with the t test

The broom package takes the messy output of built-in functions in R, such as lm, t.test or
wilcox.test, and turns them into tidy data frames. A detailed description of the package
and three of its key functions is found at https://github.com/tidyverse/broom.

For example, we can use the tidy function within broom to create a single-row tibble of the
key results from a t test.

tt <- t.test(serzinc$zinc, conf.level = 0.95, alternative = "two.sided")
tidy(tt) |> kbl(digits = 2) |> kable_styling()
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estimate statistic p.value parameter conf.low conf.high method alternative
87.94 118.1 0 461 86.47 89.4 One Sample t-test two.sided

We can thus pull the endpoints of a 95% confidence interval directly from this output. broom
also has a glance function, which returns the same information as tidy in the case of a
t-test.

19.16.1 Effect of Changing the Confidence Level

Below, we see two-sided confidence intervals for various levels of 𝛼.

Confidence Level 𝛼

Two-Sided Interval Estimate
for Zinc Level Population

Mean, 𝜇 Point Estimate of 𝜇
80% or 0.80 0.20 (87, 88.9) 87.9
90% or 0.90 0.10 (86.7, 89.2) 87.9
95% or 0.95 0.05 (86.5, 89.4) 87.9
99% or 0.99 0.01 (86, 89.9) 87.9

What happens to the width of the confidence interval in this table as the confidence level
changes?

19.17 One-sided vs. Two-sided Confidence Intervals

Occasionally, we want to estimate either an upper limit for the population mean 𝜇, or a lower
limit for 𝜇, but not both.

t.test(serzinc$zinc, conf.level = 0.90, alternative = "greater")

One Sample t-test

data: serzinc$zinc
t = 118.1, df = 461, p-value < 2.2e-16
alternative hypothesis: true mean is greater than 0
90 percent confidence interval:
86.98161 Inf
sample estimates:
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mean of x
87.93723

t.test(serzinc$zinc, conf.level = 0.90, alternative = "less")

One Sample t-test

data: serzinc$zinc
t = 118.1, df = 461, p-value = 1
alternative hypothesis: true mean is less than 0
90 percent confidence interval:

-Inf 88.89285
sample estimates:
mean of x
87.93723

Note the relationship between the two-sided 80% confidence interval, and the one-sided 90%
confidence intervals.

Confidence 𝛼 Type of Interval
Interval Estimate for Zinc Level

Population Mean, 𝜇
80% (.80) 0.20 Two-Sided (86.98, 88.89)
90% (.90) 0.10 One-Sided (Less Than) 𝜇 < 88.89.
90% (.90) 0.10 One-Sided (Greater Than) 𝜇 > 86.98.

Why does this happen? The 80% two-sided interval is placed so as to cut off the top 10% of
the distribution with its upper bound, and the bottom 10% of the distribution with its lower
bound. The 90% “less than” one-sided interval is placed so as to have its lower bound cut off
the top 10% of the distribution.

The same issue appears when we consider two-sided 90% and one-sided 95% confidence inter-
vals.

Confidence 𝛼 Type of Interval
Interval Estimate for Zinc Level

Population Mean, 𝜇
90% (.90) 0.10 Two-Sided (86.71, 89.16)
95% (.95) 0.05 One-Sided (Less Than) 𝜇 < 89.16.
95% (.95) 0.05 One-Sided (Greater Than) 𝜇 > 86.71.
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Again, the 90% two-sided interval cuts off the top 5% and bottom 5% of the distribution with
its bounds. The 95% “less than” one-sided interval also has its lower bound cut off the top
5% of the distribution.

19.18 Bootstrap Confidence Intervals

The bootstrap (and in particular, what’s known as bootstrap resampling) is a really good idea
that you should know a little bit about.

If we want to know how accurately a sample mean estimates the population mean, we would
ideally like to take a very, very large sample, because if we did so, we could conclude with
something that would eventually approach mathematical certainty that the sample mean would
be very close to the population mean.

But we can rarely draw enormous samples. So what can we do?

19.19 Resampling is A Big Idea

One way to find out how precise our estimates are is to run them on multiple samples of the
same size. This resampling approach was codified originally by Brad Efron in 1979.

Oversimplifying a lot, the idea is that if we sample (with replacement) from our current sample,
we can draw a new sample of the same size as our original.

• And if we repeat this many times, we can generate as many samples of, say, 462 zinc
levels, as we like.

• Then we take these thousands of samples and calculate (for instance) the sample mean
for each, and plot a histogram of those means.

• If we then cut off the top and bottom 5% of these sample means, we obtain a reasonable
90% confidence interval for the population mean.

19.20 When is a Bootstrap Confidence Interval Reasonable?

A bootstrapped interval estimate for the population mean, 𝜇, will be reasonable as long as
we’re willing to believe that:

• the original sample was a random sample (or at least a completely representative sample)
from a population,

• and that the samples are independent of each other,
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even if the population of interest doesn’t follow a Normal, or even a symmetric distribution.

A downside of the bootstrap is that you and I will get (somewhat) different answers if we
resample from the same data without setting the same random seed.

19.21 Bootstrap confidence interval for the mean: Process

To avoid the Normality assumption, and take advantage of modern computing power, we use
R to obtain a bootstrap confidence interval for the population mean based on a sample.

What the computer does:

1. Re-sample the data with replacement, until it obtains a new sample that is equal in size
to the original data set.

2. Calculates the statistic of interest (here, a sample mean.)
3. Repeat the steps above many times (the default is 1,000 using our approach) to obtain

a set of 1,000 sample means.
4. Sort those 1,000 sample means in order, and estimate the 95% confidence interval for

the population mean based on the middle 95% of the 1,000 bootstrap samples.
5. Send us a result, containing the sample mean, and a 95% confidence interval for the

population mean

19.22 Using R to estimate a bootstrap CI

The command that we use to obtain a Confidence Interval for 𝜇 using the basic nonparametric
bootstrap and without assuming a Normally distributed population, is smean.cl.boot, a part
of the Hmisc package in R.

set.seed(431)
smean.cl.boot(serzinc$zinc, B = 1000, conf.int = 0.90) ## from Hmisc

Mean Lower Upper
87.93723 86.76775 89.20617

• Remember that the t-based 90% CI for 𝜇 was (86.71, 89.16), according to the following
output…

tidy(lm(zinc ~ 1, data = serzinc), conf.int = TRUE, conf.level = 0.90)
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# A tibble: 1 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 87.9 0.745 118. 0 86.7 89.2

19.23 Comparing Bootstrap and T-Based Confidence Intervals

• The smean.cl.boot function (unlike most R functions) deletes missing data automat-
ically, as does the smean.cl.normal function, which can also be used to produce the
t-based confidence interval.

set.seed(431)
smean.cl.boot(serzinc$zinc, B = 1000, conf.int = 0.90)

Mean Lower Upper
87.93723 86.76775 89.20617

smean.cl.normal(serzinc$zinc, conf.int = 0.90)

Mean Lower Upper
87.93723 86.71000 89.16446

Bootstrap resampling confidence intervals do not follow the general confidence interval strategy
using a point estimate plus or minus a margin for error.

• A bootstrap interval is often asymmetric, and while it will generally have the point esti-
mate (the sample mean) near its center, for highly skewed data, this will not necessarily
be the case.

• We will usually use either 1,000 (the default) or 10,000 bootstrap replications for building
confidence intervals – practically, it makes little difference.

19.23.1 Bootstrap Resampling: Advantages and Caveats

The bootstrap may seem like the solution to all estimation problems. In theory, we could use
the same approach to find a confidence interval for any other parameter – it’s not perfect,
but it is very useful. Bootstrap procedures exist for virtually any statistical comparison - the
t-test analog is just one of many possibilities, and bootstrap methods are rapidly gaining on
more traditional approaches in the literature thanks mostly to faster computers.
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The great advantage of the bootstrap is its relative simplicity, but don’t forget that many of
the original assumptions of the t-based confidence interval still hold.

• Using a bootstrap does eliminate the need to worry about the Normality assumption in
small sample size settings, but it still requires independent and identically distributed
samples from the population of interest.

The bootstrap produces clean and robust inferences (such as confidence intervals) in many
tricky situations. It is still possible that the results can be both:

• inaccurate (i.e. they can include the true value of the unknown population mean less
often than the stated confidence probability) and

• imprecise (i.e., they can include more extraneous values of the unknown population
mean than is desirable).

19.24 Using the Bootstrap to develop other CIs

19.24.1 Changing the Confidence Level

What if we wanted to change the confidence level?

set.seed(431654)
smean.cl.boot(serzinc$zinc, B = 1000, conf.int = 0.95)

Mean Lower Upper
87.93723 86.51066 89.42002

set.seed(431321)
smean.cl.boot(serzinc$zinc, B = 1000, conf.int = 0.99)

Mean Lower Upper
87.93723 86.20657 89.68619

19.25 One-Tailed Bootstrap Confidence Intervals

If you want to estimate a one tailed confidence interval for the population mean using the
bootstrap, then the procedure is as follows:
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1. Determine 𝛼, the significance level you want to use in your one-sided confidence interval.
Remember that 𝛼 is 1 minus the confidence level. Let’s assume we want a 90% one-sided
interval, so 𝛼 = 0.10.

2. Double 𝛼 to determine the significance level we will use in the next step to fit a two-sided
confidence interval.

3. Fit a two-sided confidence interval with confidence level 100(1 − 2 ∗ 𝛼). Let the bounds
of this interval be (a, b).

4. The one-sided (greater than) confidence interval will have a as its lower bound.
5. The one-sided (less than) confidence interval will have b as its upper bound.

Suppose that we want to find a 95% one-sided upper bound for the population mean serum
zinc level among teenage males, 𝜇, using the bootstrap.

Since we want a 95% confidence interval, we have 𝛼 = 0.05. We double that to get 𝛼 = 0.10,
which implies we need to instead fit a two-sided 90% confidence interval.

set.seed(43101)
smean.cl.boot(serzinc$zinc, B = 1000, conf.int = 0.90) ## from Hmisc package

Mean Lower Upper
87.93723 86.70509 89.11266

The upper bound of this two-sided 90% CI will also be the upper bound for a 95% one-sided
CI.

19.25.1 Bootstrap CI for the Population Median

If we are willing to do a small amount of programming work in R, we can obtain bootstrap
confidence intervals for other population parameters besides the mean. One statistic of com-
mon interest is the median. How do we find a confidence interval for the population median
using a bootstrap approach? The easiest way I know of makes use of the boot package, as
follows.

In step 1, we specify a new function to capture the medians from our sample.

f.median <- function(y, id)
{ median ( y[id]) }

In step 2, we call the boot.ci function from the boot package.

set.seed(431787)
boot.ci(boot(serzinc$zinc, f.median, 1000), conf=0.90, type="basic")
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min Q1 median Q3 max mean sd n missing
50 76 86 98 153 87.94 16 462 0

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = boot(serzinc$zinc, f.median, 1000), conf = 0.9,

type = "basic")

Intervals :
Level Basic
90% (84, 87 )
Calculations and Intervals on Original Scale

This yields a 90% confidence interval for the population median serum zinc level. Recall
that the sample median for the serum zinc levels in our sample of 462 teenage males was 86
micrograms per deciliter.

mosaic::favstats(~ zinc, data = serzinc) |>
kbl(digits = 2) |> kable_styling()

Actually, the boot.ci function can provide up to five different types of confidence interval (see
the help file) if we change to type="all", and some of those other versions have attractive
properties. However, we’ll stick with the basic approach in 431.

19.25.2 Bootstrap CI for the IQR

If for some reason, we want to find a 95% confidence interval for the population value of the
inter-quartile range via the bootstrap, we can do it.

IQR(serzinc$zinc)

[1] 22

f.IQR <- function(y, id)
{ IQR (y[id]) }

set.seed(431207)
boot.ci(boot(serzinc$zinc, f.IQR, 1000),

401



conf=0.95, type="basic")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = boot(serzinc$zinc, f.IQR, 1000), conf = 0.95,

type = "basic")

Intervals :
Level Basic
95% (20.00, 24.24 )
Calculations and Intervals on Original Scale

19.26 Wilcoxon Signed Rank Procedure for CIs

It turns out to be difficult, without the bootstrap, to estimate an appropriate confidence
interval for the median of a population, which might be an appealing thing to do, particularly
if the sample data are clearly not Normally distributed, so that a median seems like a better
summary of the center of the data. Bootstrap procedures are available to perform the task.

The Wilcoxon signed rank approach can be used as an alternative to t-based procedures to
build interval estimates for the population pseudo-median when the population cannot be
assumed to follow a Normal distribution.

As it turns out, if you’re willing to assume the population is symmetric (but not necessarily
Normally distributed) then the pseudo-median is actually equal to the population median.

19.26.1 What is a Pseudo-Median?

The pseudo-median of a particular distribution G is the median of the distribution of (u +
v)/2, where both u and v have the same distribution (G).

• If the distribution G is symmetric, then the pseudomedian is equal to the median.
• If the distribution is skewed, then the pseudomedian is not the same as the median.
• For any sample, the pseudomedian is defined as the median of all of the midpoints of

pairs of observations in the sample.
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estimate statistic p.value conf.low conf.high method alternative
87.5 106953 0 86 88.5 Wilcoxon signed rank test with continuity correction two.sided

19.27 Wilcoxon Signed Rank-based CI in R

wilcox.test(serzinc$zinc, conf.int = TRUE, conf.level = 0.95)

Wilcoxon signed rank test with continuity correction

data: serzinc$zinc
V = 106953, p-value < 2.2e-16
alternative hypothesis: true location is not equal to 0
95 percent confidence interval:
85.99997 88.50002
sample estimates:
(pseudo)median

87.49996

19.27.1 Interpreting the Wilcoxon CI for the Population Median

If we’re willing to believe the zinc levels come from a population with a symmetric distribution,
the 95% Confidence Interval for the population median would be (86, 88.5)

For a non-symmetric population, this only applies to the pseudo-median.

Note that the pseudo-median (87.5) is actually closer here to the sample mean (87.9) than it
is to the sample median (86).

19.27.2 Using the broom package with the Wilcoxon test

We can also use the tidy function within broom to create a single-row tibble of the key results
from a Wilcoxon test, so long as we run wilcox.test specifying that we want a confidence
interval.

wt <- wilcox.test(serzinc$zinc, conf.int = TRUE, conf.level = 0.95)
tidy(wt) |> kbl(digits = 2) |> kable_styling()

403



19.28 General Advice

We have described several approaches to estimating a confidence interval for the center of a
distribution of quantitative data.

1. The most commonly used approach uses the t distribution to estimate a confidence
interval for a population/process mean. This requires some extra assumptions, most
particularly that the underlying distribution of the population values is at least approxi-
mately Normally distributed. This is identical to the result we get from an intercept-only
linear regression model.

2. A more modern and very general approach uses the idea of the bootstrap to estimate
a confidence for a population/process parameter, which could be a mean, median or
other summary statistic. The bootstrap, and the underlying notion of resampling is an
important idea that lets us avoid some of the assumptions (in particular Normality) that
are required by other methods. Bootstrap confidence intervals involve random sampling,
so that the actual values obtained will differ a bit across replications.

3. Finally, the Wilcoxon signed-rank method is one of a number of inferential tools which
transform the data to their ranks before estimating a confidence interval. This avoids
some assumptions, but yields inferences about a less-familiar parameter - the pseudo-
median.

Most of the time, the bootstrap provides a reasonably adequate confidence interval estimate
of the population value of a parameter (mean or median, most commonly) from a distribution
when our data consists of a single sample of quantitative information.
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20 Ibuprofen in Sepsis

20.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

source("data/Love-boost.R")
library(broom)
library(Epi)
library(ggridges)
library(Hmisc)
library(kableExtra)
library(janitor)
library(tidyverse)

theme_set(theme_bw())

In addition to the Love-boost.R script, we will also use the favstats function from the
mosaic package.

20.2 The Trial

Our next study is a randomized controlled trial comparing ibuprofen vs. placebo in patients
with sepsis, which uses an independent samples design to compare two samples of quantitative
data. We will be working with a sample from the Ibuprofen in Sepsis study, which is also
studied in Dupont (2002). Quoting the abstract from Bernard et al. (1997):

Ibuprofen has been shown to have effects on sepsis in humans, but because of their
small samples (fewer than 30 patients), previous studies have been inadequate to
assess effects on mortality. We sought to determine whether ibuprofen can alter
rates of organ failure and mortality in patients with the sepsis syndrome, how
the drug affects the increased metabolic demand in sepsis (e.g., fever, tachypnea,
tachycardia, hypoxemia, and lactic acidosis), and what potential adverse effects
the drug has in the sepsis syndrome.
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In this study, patients meeting specific criteria (including elevated temperature) for a diagnosis
of sepsis were recruited if they fulfilled an additional set of study criteria in the intensive care
unit at one of seven participating centers.

The full trial involved 455 patients, of which our sample includes 300. 150 of our patients were
randomly assigned to the Ibuprofen group and 150 to the Placebo group1. I picked the sepsis
sample we will work with excluding patients with missing values for our outcome of interest,
and then selected a random sample of 150 Ibuprofen and 150 Placebo patients from the rest
of the group, and converted the temperatures and changes from Fahrenheit to Celsius. The
data are gathered in the sepsis data file.

sepsis <- read_csv("data/sepsis.csv", show_col_types = FALSE)

For the moment, we focus on two variables:

• treat, which specifies the treatment group (intravenous Ibuprofen or intravenous
Placebo), which was assigned via randomization to each patient, and

• temp_drop, the outcome of interest, measured as the change from baseline to 2 hours
later in degrees Celsius. Positive values indicate improvement, that is, a drop in temper-
ature over the 2 hours following the baseline measurement.

The sepsis.csv file also contains each subject’s

• id, which is just a code
• race (three levels: White, AfricanA or Other)
• apache = baseline APACHE II score, a severity of disease score ranging from 0 to 71

with higher scores indicating more severe disease and a higher mortality risk
• temp_0 = baseline temperature, degrees Celsius.

but for the moment, we won’t worry about those.

sepsis <- sepsis |>
mutate(treat = factor(treat),

race = factor(race))

summary(sepsis)

id treat race apache
Length:300 Ibuprofen:150 AfricanA: 80 Min. : 0.0
Class :character Placebo :150 Other : 23 1st Qu.:10.0
Mode :character White :197 Median :14.0

1This was a double-blind study, where neither the patients nor their care providers know, during the execution
of the trial, what intervention group was assigned to each patient.
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Mean :15.4
3rd Qu.:20.0
Max. :35.0

temp_0 temp_drop
Min. :33.10 Min. :-2.7000
1st Qu.:37.48 1st Qu.:-0.1000
Median :38.20 Median : 0.3000
Mean :38.00 Mean : 0.3083
3rd Qu.:38.70 3rd Qu.: 0.7000
Max. :41.70 Max. : 3.1000

20.3 Comparing Two Groups

In making a choice between two alternatives, questions such as the following become
paramount.

• Is there a status quo?
• Is there a standard approach?
• What are the costs of incorrect decisions?
• Are such costs balanced?

The process of comparing the means/medians/proportions/rates of the populations repre-
sented by two independently obtained samples can be challenging, and such an approach is
not always the best choice. Often, specially designed experiments can be more informative
at lower cost (i.e. smaller sample size). As one might expect, using these more sophisticated
procedures introduces trade-offs, but the costs are typically small relative to the gain in infor-
mation.

When faced with such a comparison of two alternatives, a test based on paired data is often
much better than a test based on two distinct, independent samples. Why? If we have done
our experiment properly, the pairing lets us eliminate background variation that otherwise
hides meaningful differences.

20.3.1 Model-Based Comparisons and ANOVA/Regression

Comparisons based on independent samples of quantitative variables are also frequently ac-
complished through other equivalent methods, including the analysis of variance approach and
dummy variable regression, both of which produce identical confidence intervals to the pooled
variance t test for the same comparison.

We will also discuss some of the main ideas in developing, designing and analyzing statistical
experiments, specifically in terms of making comparisons. The ideas we will present in this
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section allow for the comparison of more than two populations in terms of their population
means. The statistical techniques employed analyze the sample variance in order to test and
estimate the population means and for this reason the method is called the analysis of variance
(ANOVA), and we will discuss this approach alone, and within the context of a linear regression
model using dummy or indicator variables.

20.4 Key Questions for Comparing with Independent Samples

20.4.1 What is the population under study?

• All patients in the intensive care unit with sepsis who meet the inclusion and exclusion
criteria of the study, at the entire population of health centers like the ones included in
the trial.

20.4.2 What is the sample? Is it representative of the population?

• The sample consists of 300 patients. It is a convenient sample from the population under
study.

• This is a randomized clinical trial. 150 of the patients were assigned to Ibuprofen, and
the rest to Placebo. It is this treatment assignment that is randomized, not the selection
of the sample as a whole.

• In expectation, randomization of individuals to treatments, as in this study, should be
expected to eliminate treatment selection bias.

20.4.3 Who are the subjects / individuals within the sample?

• 150 patients who received Ibuprofen and a completely different set of 150 patients who
received Placebo.

• There is no match or link between the patients. They are best thought of as independent
samples.

20.4.4 What data are available on each individual?

• The key variables are the treatment indicator (Ibuprofen or Placebo) and the outcome
(drop in temperature in the 2 hours following administration of the randomly assigned
treatment.)

408



20.4.5 RCT Caveats

The placebo-controlled, double-blind randomized clinical trial, especially if pre-registered, is
often considered the best feasible study for assessing the effectiveness of a treatment. While
that’s not always true, it is a very solid design. The primary caveat is that the patients who
are included in such trials are rarely excellent representations of the population of potentially
affected patients as a whole.

20.5 Exploratory Data Analysis

Consider the following boxplot with violin of the temp_drop data within each treat group.

ggplot(sepsis, aes(x = treat, y = temp_drop, fill = treat)) +
geom_violin() +
geom_boxplot(width = 0.3, fill = "white") +
scale_fill_viridis_d() +
guides(fill = "none") +
labs(title = "Boxplot of Temperature Drop in Sepsis Patients",

x = "", y = "Drop in Temperature (degrees C)") +
coord_flip()

Ibuprofen

Placebo

−2 −1 0 1 2 3
Drop in Temperature (degrees C)

Boxplot of Temperature Drop in Sepsis Patients
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Next, we’ll consider faceted histograms of the data.

ggplot(sepsis, aes(x = temp_drop, fill = treat, color = treat)) +
geom_histogram(bins = 20) +
scale_fill_viridis_d() +
scale_color_viridis_d(direction = -1) +
guides(fill = "none", color = "none") +
labs(title = "Histograms of Temperature Drop in Sepsis Patients",

x = "Drop in Temperature (degrees Celsius") +
facet_wrap(~ treat)

Ibuprofen Placebo
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Here’s a pair of Normal Q-Q plots. It’s not hard to use a Normal model to approximate the
Ibuprofen data, but such a model is probably not a good choice for the Placebo results.

ggplot(sepsis, aes(sample = temp_drop)) +
geom_qq() + geom_qq_line(col = "red") +
facet_wrap(~ treat) +
labs(y = "Temperature Drop Values (in degrees C)")
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We’ll could perhaps also look at a ridgeline plot, with some extra functions and theming from
the ggridges package.

ggplot(sepsis, aes(x = temp_drop, y = treat, fill = treat)) +
geom_density_ridges(scale = 0.9) +
guides(fill = "none") +
labs(title = "Temperature Drop in Sepsis Patients",

x = "Drop in Temperature (degrees Celsius)", y = "") +
theme_ridges()

Picking joint bandwidth of 0.182
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Ibuprofen

Placebo

−2 0 2

Drop in Temperature (degrees Celsius)

Temperature Drop in Sepsis Patients

The center of the ibuprofen distribution is shifted a bit towards the more positive (greater
improvement) direction, it seems, than is the distribution for the placebo patients. This con-
clusion matches what we see in some key numerical summaries, within the treatment groups.

mosaic::favstats(temp_drop ~ treat, data = sepsis)

treat min Q1 median Q3 max mean sd n missing
1 Ibuprofen -1.5 0.000 0.5 0.9 3.1 0.4640000 0.6877919 150 0
2 Placebo -2.7 -0.175 0.1 0.4 1.9 0.1526667 0.5709637 150 0

20.6 Estimating the Difference in Population Means

Next, we will build a point estimate and 90% confidence interval for the difference between the
mean temp_drop if treated with Ibuprofen and the mean temp_drop if treated with Placebo.
We’ll use a regression model with a single predictor (the treat group) to do this.

model_sep <- lm(temp_drop ~ treat == "Ibuprofen", data = sepsis)

tidy(model_sep, conf.int = TRUE, conf.level = 0.90) |>
kbl(digits = 3) |> kable_styling()
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term estimate std.error statistic p.value conf.low conf.high
(Intercept) 0.153 0.052 2.958 0.003 0.068 0.238
treat == ”Ibuprofen”TRUE 0.311 0.073 4.266 0.000 0.191 0.432

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 0.464 0.052 8.991 0 0.379 0.549
treatPlacebo -0.311 0.073 -4.266 0 -0.432 -0.191

The point estimate for the “Ibuprofen - Placebo” difference in population means is 0.311
degrees C, and the 90% confidence interval is (0.191, 0.432) degrees C.

We could also have run the model like this:

model_sep2 <- lm(temp_drop ~ treat, data = sepsis)

tidy(model_sep2, conf.int = TRUE, conf.level = 0.90) |>
kbl(digits = 3) |> kable_styling()

and would therefore conclude that the Placebo - Ibuprofen difference was estimated as -0.311,
with 90% confidence interval (-0.432, -0.191), which is of course equivalent to our previous
estimate.

Fundamentally, this regression model approach is identical to a two-sample t test, assuming
equal population variances, also called a pooled t test. This is just one possible way for
us to estimate the difference between population means, as it turns out.

20.7 t-based CI for population mean1 - mean2 difference

20.7.1 The Pooled t procedure

The most commonly used t-procedure for building a confidence interval assumes not only that
each of the two populations being compared follows a Normal distribution, but also that they
have the same population variance. This is the pooled t-test, and it is what people usually
mean when they describe a two-sample t test.

t.test(temp_drop ~ treat,
data = sepsis,
conf.level = 0.90,
alt = "two.sided",
var.equal = TRUE)
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estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high method alternative
0.31 0.46 0.15 4.27 0 298 0.19 0.43 Two Sample t-test two.sided

Two Sample t-test

data: temp_drop by treat
t = 4.2656, df = 298, p-value = 2.68e-05
alternative hypothesis: true difference in means between group Ibuprofen and group Placebo is not equal to 0
90 percent confidence interval:
0.1909066 0.4317600
sample estimates:
mean in group Ibuprofen mean in group Placebo

0.4640000 0.1526667

Or, we can use tidy on this object:

tt1 <- t.test(temp_drop ~ treat,
data = sepsis,
conf.level = 0.90,
alt = "two.sided",
var.equal = TRUE)

tidy(tt1) |> kbl(digits = 2) |> kable_styling()

20.7.2 Using linear regression to obtain a pooled t confidence interval

As we’ve seen, and will demonstrate again below, a linear regression model, using the same
outcome and predictor (group) as the pooled t procedure, produces the same confidence inter-
val, again, under the assumption that the two populations we are comparing follow a Normal
distribution with the same (population) variance.

model1 <- lm(temp_drop ~ treat, data = sepsis)

tidy(model1, conf.int = TRUE, conf.level = 0.90)

# A tibble: 2 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.464 0.0516 8.99 2.91e-17 0.379 0.549
2 treatPlacebo -0.311 0.0730 -4.27 2.68e- 5 -0.432 -0.191
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term estimate std.error statistic p.value conf.low conf.high
(Intercept) 0.464 0.052 8.991 0 0.362 0.566
treatPlacebo -0.311 0.073 -4.266 0 -0.455 -0.168

We see that our point estimate from the linear regression model is that the difference in
temp_drop is -0.3113333, where Ibuprofen subjects have higher temp_drop values than do
Placebo subjects, and that the 90% confidence interval for this difference ranges from -0.43176
to -0.1909066.

We can obtain a t-based confidence interval for each of the parameter estimates in a linear
model directly using tidy from the broom package. Linear models usually summarize only the
estimate and standard error. Remember that a reasonable approximation in large samples to
a 95% confidence interval for a regression estimate (slope or intercept) can be obtained from
estimate plus or minus two times the standard error.

tidy(model1, conf.int = TRUE, conf.level = 0.95) |>
kbl(digits = 3) |> kable_styling()

So, in the case of the treatPlacebo estimate, we can obtain an approximate 95% confidence
interval with (-0.457, -0.165). Compare this to the 95% confidence interval available from the
model directly, shown in the tidied output above, or with the confint command below, and
you’ll see only a small difference.

Note that we can also use summary and confint to build our estimates.

summary(model1)

Call:
lm(formula = temp_drop ~ treat, data = sepsis)

Residuals:
Min 1Q Median 3Q Max

-2.85267 -0.36400 -0.05267 0.34733 2.63600

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.46400 0.05161 8.991 < 2e-16 ***
treatPlacebo -0.31133 0.07299 -4.266 2.68e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 0.6321 on 298 degrees of freedom
Multiple R-squared: 0.05755, Adjusted R-squared: 0.05438
F-statistic: 18.2 on 1 and 298 DF, p-value: 2.68e-05

confint(model1, level = 0.95)

2.5 % 97.5 %
(Intercept) 0.3624351 0.5655649
treatPlacebo -0.4549679 -0.1676988

20.7.3 The Welch t procedure

The default confidence interval based on the t test for independent samples in R uses something
called the Welch test, in which the two populations being compared are not assumed to have
the same variance. Each population is assumed to follow a Normal distribution.

t.test(temp_drop ~ treat, data = sepsis, conf.level = 0.90, alt = "two.sided")

Welch Two Sample t-test

data: temp_drop by treat
t = 4.2656, df = 288.24, p-value = 2.706e-05
alternative hypothesis: true difference in means between group Ibuprofen and group Placebo is not equal to 0
90 percent confidence interval:
0.1908939 0.4317728
sample estimates:
mean in group Ibuprofen mean in group Placebo

0.4640000 0.1526667

Tidying works in this situation, too.

tt0 <- t.test(temp_drop ~ treat,
data = sepsis, conf.level = 0.90, alt = "two.sided")

tidy(tt0) |> kbl(digits = 2) |> kable_styling()

When there is a balanced design, that is, when the same number of observations appear in
each of the two samples, then the Welch t test and the Pooled t test produce the same
confidence interval. Differences appear if the sample sizes in the two groups being compared
are different.
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estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high method alternative
0.31 0.46 0.15 4.27 0 288.24 0.19 0.43 Welch Two Sample t-test two.sided

estimate statistic p.value conf.low conf.high method alternative
0.3 14614.5 0 0.2 0.4 Wilcoxon rank sum test with continuity correction two.sided

20.8 Wilcoxon-Mann-Whitney “Rank Sum” CI

As in the one-sample case, a rank-based alternative attributed to Wilcoxon (and sometimes
to Mann and Whitney) provides a two-sample comparison of the pseudomedians in the two
treat groups in terms of temp_drop. This is called a rank sum test, rather than the Wilcoxon
signed rank test that is used for inference about a single sample. Here’s the resulting 90%
confidence interval for the difference in pseudomedians.

wt <- wilcox.test(temp_drop ~ treat, data = sepsis,
conf.int = TRUE, conf.level = 0.90,
alt = "two.sided")

wt

Wilcoxon rank sum test with continuity correction

data: temp_drop by treat
W = 14614, p-value = 7.281e-06
alternative hypothesis: true location shift is not equal to 0
90 percent confidence interval:
0.1999699 0.4000330
sample estimates:
difference in location

0.3000368

tidy(wt) |> kbl(digits = 2) |> kable_styling()

20.9 Bootstrapping: A More Robust Approach

Within a script called Love-boost.R, I have provided the following R code to create a function
called bootdif.
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bootdif <-
function(y, g, conf.level=0.95, B.reps = 2000) {

lowq = (1 - conf.level)/2
g <- as.factor(g)
a <- attr(Hmisc::smean.cl.boot(y[g==levels(g)[1]], B=B.reps, reps=TRUE),'reps')
b <- attr(Hmisc::smean.cl.boot(y[g==levels(g)[2]], B=B.reps, reps=TRUE),'reps')
meandif <- diff(tapply(y, g, mean, na.rm=TRUE))
a.b <- quantile(b-a, c(lowq,1-lowq))
res <- c(meandif, a.b)
names(res) <- c('Mean Difference',lowq, 1-lowq)
res

}

Running this code will place a new function called bootdif in your environment, which will
help us calculate an appropriate confidence interval using a bootstrap procedure. The bootdif
function contained in the Love-boost.R script is a slightly edited version of the function at
http://biostat.mc.vanderbilt.edu/wiki/Main/BootstrapMeansSoftware.

20.9.1 Bootstrap CI for the Sepsis study

Note that this approach uses a comma to separate the outcome variable (here, temp_drop)
from the variable identifying the exposure groups (here, treat).

set.seed(431212)

bootdif(sepsis$temp_drop, sepsis$treat, conf.level = 0.90)

Mean Difference 0.05 0.95
-0.3113333 -0.4313667 -0.1833000

This approach calculates a 90% confidence interval for the difference in means between the
two treatment groups. Note that the sign is in the opposite direction from what we’ve seen
in our previous work. We can tell from the mean difference (and the summarized means from
the data in each group) that this approach is finding a confidence interval using a bootstrap
procedure for the Placebo - Ibuprofen difference, specifically (-0.431, -0.183).

mosaic::favstats(temp_drop ~ treat, data = sepsis)

treat min Q1 median Q3 max mean sd n missing
1 Ibuprofen -1.5 0.000 0.5 0.9 3.1 0.4640000 0.6877919 150 0
2 Placebo -2.7 -0.175 0.1 0.4 1.9 0.1526667 0.5709637 150 0
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To find a confidence interval using this bootstrap approach for the Ibuprofen - Placebo dif-
ference, we just need to switch the signs, and conclude that the 90% bootstrap confidence
interval for that difference would be (0.183, 0.431).

20.10 Summary: Specifying A Two-Sample Study Design

These questions will help specify the details of the study design involved in any comparison of
two populations on a quantitative outcome, perhaps with means.

1. What is the outcome under study?
2. What are the (in this case, two) treatment/exposure groups?
3. Were the data collected using matched / paired samples or independent samples?
4. Are the data a random sample from the population(s) of interest? Or is there at least a

reasonable argument for generalizing from the sample to the population(s)?
5. What is the significance level (or, the confidence level) we require here?
6. Are we doing one-sided or two-sided testing/confidence interval generation?
7. If we have paired samples, did pairing help reduce nuisance variation?
8. If we have paired samples, what does the distribution of sample paired differences tell

us about which inferential procedure to use?
9. If we have independent samples, what does the distribution of each individual sample

tell us about which inferential procedure to use?

20.11 Results for the sepsis study

1. The outcome is temp_drop, the change in body temperature (in ∘C) from baseline to 2
hours later, so that positive numbers indicate drops in temperature (a good outcome.)

2. The groups are Ibuprofen and Placebo as contained in the treat variable in the
sepsis tibble.

3. The data were collected using independent samples. The Ibuprofen subjects are not
matched or linked to individual Placebo subjects - they are separate groups.

4. The subjects of the study aren’t drawn from a random sample of the population of
interest, but they are randomly assigned to their respective treatments (Ibuprofen and
Placebo) which will provide the reasoned basis for our inferences.

5. We’ll use a 10% significance level (or 90% confidence level) in this setting, as we did in
our previous work on these data.

6. We’ll use a two-sided testing and confidence interval approach.

Questions 7 and 8 don’t apply, because these are independent samples of data, rather than
paired samples.
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To address question 9, we’ll need to look at the data in each sample, as we did previously to
allow us to assess the Normality of the distributions of (separately) the temp_drop results in
the Ibuprofen and Placebo groups. We’ll repeat those below.

ggplot(sepsis, aes(x = treat, y = temp_drop, fill = treat)) +
geom_violin() +
geom_boxplot(width = 0.3, fill = "white") +
stat_summary(fun = "mean", geom = "point",

shape = 23, size = 3, fill = "red") +
scale_fill_viridis_d(alpha = 0.3) +
guides(fill = "none") +
labs(title = "Boxplot of Temperature Drop in Sepsis Patients",

x = "", y = "Drop in Temperature (degrees C)") +
coord_flip()

Ibuprofen

Placebo

−2 −1 0 1 2 3
Drop in Temperature (degrees C)

Boxplot of Temperature Drop in Sepsis Patients

ggplot(sepsis, aes(sample = temp_drop)) +
geom_qq() + geom_qq_line(col = "red") +
facet_wrap(~ treat) +
labs(y = "Temperature Drop Values (in degrees C)")
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From these plots we conclude that the data in the Ibuprofen sample follow a reasonably Normal
distribution, but this isn’t quite as true for the Placebo sample. It’s hard to know whether
the apparent Placebo group outliers will affect whether the Normal distribution assumption
is reasonable, so we can see if the confidence intervals change much when we don’t assume
Normality (for instance, comparing the bootstrap to the t-based approaches), as a way of
understanding whether a Normal model has a large impact on our conclusions.

20.11.1 Sepsis Estimation Results

Here’s a set of confidence interval estimates (we’ll use 90% confidence here) using the methods
discussed in this Chapter.

mosaic::favstats(temp_drop ~ treat, data = sepsis)

treat min Q1 median Q3 max mean sd n missing
1 Ibuprofen -1.5 0.000 0.5 0.9 3.1 0.4640000 0.6877919 150 0
2 Placebo -2.7 -0.175 0.1 0.4 1.9 0.1526667 0.5709637 150 0

s_pooled_t_test <- t.test(temp_drop ~ treat, data = sepsis, conf.level = 0.90,
alt = "two.sided", var.equal = TRUE)
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tidy(s_pooled_t_test) |>
select(conf.low, conf.high)

# A tibble: 1 x 2
conf.low conf.high

<dbl> <dbl>
1 0.191 0.432

s_welch_t_test <- t.test(temp_drop ~ treat, data = sepsis, conf.level = 0.90,
alt = "two.sided", var.equal = FALSE)

tidy(s_welch_t_test) |>
select(estimate, conf.low, conf.high)

# A tibble: 1 x 3
estimate conf.low conf.high

<dbl> <dbl> <dbl>
1 0.311 0.191 0.432

s_wilcoxon_test <- wilcox.test(temp_drop ~ treat, data = sepsis,
conf.int = TRUE, conf.level = 0.90,
alt = "two.sided")

tidy(s_wilcoxon_test) |>
select(estimate, conf.low, conf.high)

# A tibble: 1 x 3
estimate conf.low conf.high

<dbl> <dbl> <dbl>
1 0.300 0.200 0.400

set.seed(431212)
s_bootstrap <- bootdif(sepsis$temp_drop, sepsis$treat, conf.level = 0.90)

s_bootstrap

Mean Difference 0.05 0.95
-0.3113333 -0.4313667 -0.1833000

422



Procedure Compares… Point Estimate 90% CI
Pooled t Means 0.311 (0.191, 0.432)
Welch t Means 0.311 (0.191, 0.432)

Bootstrap Means 0.311 (0.183, 0.431)
Wilcoxon rank sum Pseudo-Medians 0.3 (0.2, 0.4)

What conclusions can we draw in this setting?

20.12 Categorizing the Outcome and Comparing Rates

Suppose we were interested in comparing the percentage of patients in each arm of the trial
(Ibuprofen vs. Placebo) that showed an improvement in their temperature (temp_drop > 0).
To build the cross-tabulation of interest, we could create a new variable, called dropped which
indicates whether the subject’s temperature dropped, and then use tabyl.

sepsis <- sepsis |>
mutate(dropped = ifelse(temp_drop > 0, "Drop", "No Drop"))

sepsis |> tabyl(treat, dropped)

treat Drop No Drop
Ibuprofen 107 43
Placebo 80 70

Our primary interest is in comparing the percentage of Ibuprofen patients whose temperature
dropped to the percentage of Placebo patients whose temperature dropped.

sepsis |> tabyl(treat, dropped) |>
adorn_totals() |>
adorn_percentages(denom = "row") |>
adorn_pct_formatting(digits = 1) |>
adorn_ns(position = "front")

treat Drop No Drop
Ibuprofen 107 (71.3%) 43 (28.7%)
Placebo 80 (53.3%) 70 (46.7%)

Total 187 (62.3%) 113 (37.7%)
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20.13 Estimating the Difference in Proportions

In our sample, 71.3% of the Ibuprofen subjects, and 53.3% of the Placebo subjects, experienced
a drop in temperature. So our point estimate of the difference in percentages would be 18.0
percentage points, but we will usually set this instead in terms of proportions, so that the
difference is 0.180.

Now, we’ll find a confidence interval for that difference, which we can do in several ways,
including the twoby2 function in the Epi package.

table(sepsis$treat, sepsis$dropped) |> twoby2(alpha = 0.10)

2 by 2 table analysis:
------------------------------------------------------
Outcome : Drop
Comparing : Ibuprofen vs. Placebo

Drop No Drop P(Drop) 90% conf. interval
Ibuprofen 107 43 0.7133 0.6490 0.7701
Placebo 80 70 0.5333 0.4661 0.5993

90% conf. interval
Relative Risk: 1.3375 1.1492 1.5567

Sample Odds Ratio: 2.1773 1.4583 3.2509
Conditional MLE Odds Ratio: 2.1716 1.4177 3.3437

Probability difference: 0.1800 0.0881 0.2677

Exact P-value: 0.0019
Asymptotic P-value: 0.0014

------------------------------------------------------

While there is a lot of additional output here, we’ll look for now just at the Probability
difference row, where we see the point estimate (0.180) and the 90% confidence interval estimate
for the difference in proportions (0.088, 0.268) comparing Ibuprofen vs. Placebo for the outcome
of Dropping in Temperature.

More on estimation of the difference in population proportions will be found later.
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21 Comparing Means with Paired Samples

Here, we’ll consider the problem of estimating a confidence interval to describe the difference
in population means (or medians) based on a comparison of two samples of quantitative data,
gathered using a matched pairs design.

Specifically, we’ll use as our example the Lead in the Blood of Children study, described
below.

21.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

source("data/Love-boost.R")
library(kableExtra)
library(broom)
library(ggridges)
library(Hmisc)
library(patchwork)
library(tidyverse)

theme_set(theme_bw())

In addition to the Love-boost.R script, we will also use the favstats function from the
mosaic package.

21.2 Lead in the Blood of Children

One of the best ways to eliminate a source of variation and the errors of interpre-
tation associated with it is through the use of matched pairs. Each subject in one
group is matched as closely as possible by a subject in the other group. If a 45-
year-old African-American male with hypertension is given a [treatment designed
to lower their blood pressure], then we give a second, similarly built 45-year old
African-American male with hypertension a placebo.
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• Good (2005), section 5.2.4

21.3 The Lead in the Blood of Children Study

Morton et al. (1982) studied the absorption of lead into the blood of children. This was a
matched-sample study, where the exposed group of interest contained 33 children of parents
who worked in a battery manufacturing factory (where lead was used) in the state of Oklahoma.
Specifically, each child with a lead-exposed parent was matched to another child of the same
age, exposure to traffic, and living in the same neighborhood whose parents did not work in
lead-related industries. So the complete study had 66 children, arranged in 33 matched pairs.
The outcome of interest, gathered from a sample of whole blood from each of the children,
was lead content, measured in mg/dl.

One motivation for doing this study is captured in the Abstract from Morton et al. (1982).

It has been repeatedly reported that children of employees in a lead-related industry
are at increased risk of lead absorption because of the high levels of lead found in
the household dust of these workers.

The data are available in several places, including Table 5 of Pruzek and Helmreich (2009), in
the BloodLead data set within the PairedData package in R, but we also make them available
in the bloodlead.csv file. A table of the first few pairs of observations (blood lead levels for
one child exposed to lead and the matched control) is shown below.

bloodlead <- read_csv("data/bloodlead.csv", show_col_types = FALSE)

bloodlead

# A tibble: 33 x 3
pair exposed control
<chr> <dbl> <dbl>

1 P01 38 16
2 P02 23 18
3 P03 41 18
4 P04 18 24
5 P05 37 19
6 P06 36 11
7 P07 23 10
8 P08 62 15
9 P09 31 16
10 P10 34 18
# i 23 more rows
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• In each pair, one child was exposed (to having a parent working in the factory) and the
other was not.

• Otherwise, though, each child was very similar to its matched partner.
• The data under exposed and control are the blood lead content, in mg/dl.

Our primary goal will be to estimate the difference in lead content between the exposed and
control children, and then use that sample estimate to make inferences about the difference
in lead content between the population of all children like those in the exposed group and the
population of all children like those in the control group.

21.3.1 Our Key Questions for a Paired Samples Comparison

1. What is the population under study?

• All pairs of children living in Oklahoma near the factory in question, in which one had
a parent working in a factory that exposed them to lead, and the other did not.

2. What is the sample? Is it representative of the population?

• The sample consists of 33 pairs of one exposed and one control child.
• This is a case-control study, where the children were carefully enrolled to meet the design

criteria. Absent any other information, we’re likely to assume that there is no serious bias
associated with these pairs, and that assuming they represent the population effectively
(and perhaps the broader population of kids whose parents work in lead-based industries
more generally) may well be at least as reasonable as assuming they don’t.

3. Who are the subjects / individuals within the sample?

• Each of our 33 pairs of children includes one exposed child and one unexposed (control)
child.

4. What data are available on each individual?

• The blood lead content, as measured in mg/dl of whole blood.

21.3.2 Lead Study Caveats

Note that the children were not randomly selected from general populations of kids whose
parents did and did not work in lead-based industries.

• To make inferences to those populations, we must make strong assumptions to believe,
for instance, that the sample of exposed children is as representative as a random sample
of children with similar exposures across the world would be.
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• The researchers did have a detailed theory about how the exposed children might be at
increased risk of lead absorption, and in fact as part of the study gathered additional
information about whether a possible explanation might be related to the quality of
hygiene of the parents (all of them were fathers, actually) who worked in the factory.

• This is an observational study, so that the estimation of a causal effect between parental
work in a lead-based industry and children’s blood lead content can be made, without
substantial (and perhaps heroic) assumptions.

21.4 Exploratory Data Analysis for Paired Samples

We’ll begin by adjusting the data in two ways.

• We’d like that first variable (pair) to be a factor rather than a character type in R,
because we want to be able to summarize it more effectively. So we’ll make that change.

• Also, we’d like to calculate the difference in lead content between the exposed and the
control children in each pair, and we’ll save that within-pair difference in a variable called
lead_diff. We’ll take lead_diff = exposed - control so that positive values indicate
increased lead in the exposed child.

bloodlead_original <- bloodlead

bloodlead <- bloodlead_original |>
mutate(pair = factor(pair),

lead_diff = exposed - control)

bloodlead

# A tibble: 33 x 4
pair exposed control lead_diff
<fct> <dbl> <dbl> <dbl>

1 P01 38 16 22
2 P02 23 18 5
3 P03 41 18 23
4 P04 18 24 -6
5 P05 37 19 18
6 P06 36 11 25
7 P07 23 10 13
8 P08 62 15 47
9 P09 31 16 15
10 P10 34 18 16
# i 23 more rows
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21.4.1 The Paired Differences

To begin, we focus on lead_diff for our exploratory work, which is the exposed - control
difference in lead content within each of the 33 pairs. So, we’ll have 33 observations, as
compared to the 462 in the serum zinc data, but most of the same tools are still helpful.

p1 <- ggplot(bloodlead, aes(sample = lead_diff)) +
geom_qq(col = "steelblue") + geom_qq_line(col = "navy") +
theme(aspect.ratio = 1) +
labs(title = "Normal Q-Q plot")

p2 <- ggplot(bloodlead, aes(x = lead_diff)) +
geom_histogram(aes(y = stat(density)),

binwidth = 5, fill = "steelblue", col = "white") +
stat_function(fun = dnorm,

args = list(mean = mean(bloodlead$lead_diff),
sd = sd(bloodlead$lead_diff)),

col = "navy", lwd = 1.5) +
labs(title = "Histogram with Normal Density")

p3 <- ggplot(bloodlead, aes(x = lead_diff, y = "")) +
geom_boxplot(fill = "steelblue", outlier.color = "steelblue") +
stat_summary(fun = "mean", geom = "point",

shape = 23, size = 3, fill = "white") +
labs(title = "Boxplot", y = "")

p1 + (p2 / p3 + plot_layout(heights = c(4,1))) +
plot_annotation(title = "Difference in Blood Lead Content (mg/dl) for 33 Pairs of Children")

Warning: `stat(density)` was deprecated in ggplot2 3.4.0.
i Please use `after_stat(density)` instead.
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min Q1 median Q3 max mean sd n missing
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Note that in all of this work, I plotted the paired differences. One obvious way to tell if you
have paired samples is that you can pair every single subject from one exposure group to a
unique subject in the other exposure group. Everyone has to be paired, so the sample sizes
will always be the same in the two groups.

Here’s a summary of the paired differences.

mosaic::favstats(~ lead_diff, data = bloodlead) |>
kbl(digits = 2) |> kable_styling()

bloodlead |> summarise(skew1 =
(mean(lead_diff) - median(lead_diff)) /
sd(lead_diff))

# A tibble: 1 x 1
skew1
<dbl>

1 0.0611
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21.4.2 Impact of Matching - Scatterplot and Correlation

Here, the data are paired by the study through matching on neighborhood, age and exposure
to traffic. Each individual child’s outcome value is part of a pair with the outcome value
for his/her matching partner. We can see this pairing in several ways, perhaps by drawing a
scatterplot of the pairs.

ggplot(bloodlead, aes(x = control, y = exposed)) +
geom_point(size = 2) +
geom_smooth(method = "lm", formula = y ~ x, se = FALSE) +
geom_text(x = 20, y = 65, col = "blue",

label =
paste("Pearson r = ",

round(cor(bloodlead$control, bloodlead$exposed),2))) +
labs(title = "Paired Samples in Blood Lead study",

x = "Blood Lead Content (mg/dl) in Control Child",
y = "Blood Lead Content (mg/dl) in Exposed Child")

Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18Pearson r =  −0.18
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Each point here represents a pair of observations, one from a control child, and one from
the matched exposed child. If there is a strong linear relationship (usually with a positive
slope, thus positive correlation) between the paired outcomes, then the pairing will be more
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helpful in terms of improving statistical power of the estimates we build than if there is a weak
relationship.

• The stronger the Pearson correlation coefficient, the more helpful pairing will be.
• Here, a straight line model using the control child’s blood lead content accounts for about

3.2% of the variation in blood lead content in the exposed child.
• As it turns out, pairing will have only a modest impact here on the inferences we draw

in the study. We still will treat the data as paired, despite this.

21.5 Looking at Separate Samples: Using pivot_longer

For the purpose of estimating the difference between the exposed and control children, the
summaries of the paired differences are what we’ll need.

In some settings, however, we might also look at a boxplot, or violin plot, or ridgeline plot
that showed the distributions of exposed and control children separately. But we will run into
trouble because one variable (blood lead content) is spread across multiple columns (control
and exposed.) The solution is to “pivot” the tibble from its current format to build a new,
tidy tibble. Because the data aren’t tidied here, so that we have one row for each subject and
one column for each variable, we have to do some work to get them in that form for our usual
plotting strategy to work well.

• pivot_longer() “lengthens” the data, increasing the number of rows and decreasing
the number of columns.

• pivot_wider() performs the inverse of that transformation, “widening” the data.

In our original bloodlead data, if we drop the lead_diff addition we made, we have wide
data, with each row representing two different subjects.

head(bloodlead_original, 3)

# A tibble: 3 x 3
pair exposed control
<chr> <dbl> <dbl>

1 P01 38 16
2 P02 23 18
3 P03 41 18

And what we want to accomplish is to have one row for each subject, instead of one row for
each pair of subjects. So we want to make the data longer.
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bloodlead_longer <- bloodlead_original |>
pivot_longer(

cols = -c(pair),
names_to = "status",
values_to = "lead_level")

bloodlead_longer

# A tibble: 66 x 3
pair status lead_level
<chr> <chr> <dbl>

1 P01 exposed 38
2 P01 control 16
3 P02 exposed 23
4 P02 control 18
5 P03 exposed 41
6 P03 control 18
7 P04 exposed 18
8 P04 control 24
9 P05 exposed 37
10 P05 control 19
# i 56 more rows

For more on this approach (in this case, we’re making the data “longer” and its opposite would
be be making the data “wider”), visit the Tidy data chapter in Hadley Wickham and Grole-
mund (2023) and the tidyr repository on Github at https://github.com/tidyverse/tidyr.

And now, we can plot as usual to compare the two samples.

First, we’ll look at a boxplot, showing all of the data.

ggplot(bloodlead_longer, aes(x = status, y = lead_level)) +
geom_violin() +
geom_boxplot(aes(fill = status), width = 0.2) +
stat_summary(fun = "mean", geom = "point",

shape = 23, size = 3, fill = "blue") +
scale_fill_viridis_d(alpha = 0.5) +
guides(fill = "none") +
coord_flip() +
labs(title = "Boxplot of Lead Content in Exposed and Control kids")
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We’ll also look at a ridgeline plot, because Dr. Love likes them, even though they’re really
more useful when we’re comparing more than two samples.

ggplot(bloodlead_longer, aes(x = lead_level, y = status, fill = status)) +
geom_density_ridges(scale = 0.9) +
guides(fill = "none") +
labs(title = "Lead Content in Exposed and Control kids") +
theme_ridges()

Picking joint bandwidth of 4.01
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status min Q1 median Q3 max mean sd n missing
control 7 13 16 19 25 15.88 4.54 33 0
exposed 10 21 34 39 73 31.85 14.41 33 0
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Both the center and the spread of the distribution are substantially larger in the exposed group
than in the controls. Of course, numerical summaries show these patterns, too.

mosaic::favstats(lead_level ~ status, data = bloodlead_longer) |>
kbl(digits = 2) |> kable_styling()

21.6 Estimating the Difference in Means with Paired Samples

Suppose we want to estimate the difference in the mean blood level across the population of
children represented by the sample taken in this study. To do so, we must take advantage of
the matched samples design, and complete our estimation on the paired differences, treating
them as if they were a single sample of data.

One way to accomplish this is simply to run the usual intercept-only linear regression model
on the paired differences.
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term estimate std.error statistic p.value conf.low conf.high
(Intercept) 15.97 2.76 5.78 0 11.29 20.65

model_lead <- lm(lead_diff ~ 1, data = bloodlead)

tidy(model_lead, conf.int = TRUE, conf.level = 0.90) |>
kbl(digits = 2) |> kable_styling()

Our point estimate for the difference (exposed - control) in lead levels is 15.97 mg/dl, and our
90% confidence interval is (11.29, 20.65) mg/dl.

21.6.1 Paired Data in Longer Format?

If we had the data in “longer” format, as in bloodlead_longer, with the pairs identified by
the pair variable, then we could obtained the same confidence interval using:

model2_lead <- lm(lead_level ~ status + factor(pair), data = bloodlead_longer)

tidy(model2_lead, conf.int = TRUE, conf.level = 0.90) |>
kbl(digits = 2) |> kable_styling()

and the key elements are found in the statusexposed row, which we can focus on nicely (since
the output of the tidy() function is always a tibble) with:

tidy(model2_lead, conf.int = TRUE, conf.level = 0.90) |>
filter(term == "statusexposed") |>
kbl(digits = 2) |> kable_styling()

and again, we have our 90% confidence interval estimate of the population mean difference
between exposed and control children.

21.7 Matched Pairs vs. Two Independent Samples

These data were NOT obtained from two independent samples, but rather from matched
pairs.

• We only have matched pairs if each individual observation in the “treatment” group is
matched to one and only one observation in the “control” group by the way in which the
data were gathered. Paired (or matched) data can arise in several ways.
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term estimate std.error statistic p.value conf.low conf.high
(Intercept) 19.02 8.05 2.36 0.02 5.38 32.65
statusexposed 15.97 2.76 5.78 0.00 11.29 20.65
factor(pair)P02 -6.50 11.22 -0.58 0.57 -25.50 12.50
factor(pair)P03 2.50 11.22 0.22 0.83 -16.50 21.50
factor(pair)P04 -6.00 11.22 -0.53 0.60 -25.00 13.00
factor(pair)P05 1.00 11.22 0.09 0.93 -18.00 20.00
factor(pair)P06 -3.50 11.22 -0.31 0.76 -22.50 15.50
factor(pair)P07 -10.50 11.22 -0.94 0.36 -29.50 8.50
factor(pair)P08 11.50 11.22 1.03 0.31 -7.50 30.50
factor(pair)P09 -3.50 11.22 -0.31 0.76 -22.50 15.50
factor(pair)P10 -1.00 11.22 -0.09 0.93 -20.00 18.00
factor(pair)P11 -6.00 11.22 -0.53 0.60 -25.00 13.00
factor(pair)P12 -13.50 11.22 -1.20 0.24 -32.50 5.50
factor(pair)P13 -7.00 11.22 -0.62 0.54 -26.00 12.00
factor(pair)P14 -13.50 11.22 -1.20 0.24 -32.50 5.50
factor(pair)P15 -11.00 11.22 -0.98 0.33 -30.00 8.00
factor(pair)P16 -9.00 11.22 -0.80 0.43 -28.00 10.00
factor(pair)P17 -7.50 11.22 -0.67 0.51 -26.50 11.50
factor(pair)P18 -15.50 11.22 -1.38 0.18 -34.50 3.50
factor(pair)P19 0.00 11.22 0.00 1.00 -19.00 19.00
factor(pair)P20 -0.50 11.22 -0.04 0.96 -19.50 18.50
factor(pair)P21 -5.50 11.22 -0.49 0.63 -24.50 13.50
factor(pair)P22 0.00 11.22 0.00 1.00 -19.00 19.00
factor(pair)P23 1.00 11.22 0.09 0.93 -18.00 20.00
factor(pair)P24 6.00 11.22 0.53 0.60 -13.00 25.00
factor(pair)P25 4.50 11.22 0.40 0.69 -14.50 23.50
factor(pair)P26 -3.50 11.22 -0.31 0.76 -22.50 15.50
factor(pair)P27 0.00 11.22 0.00 1.00 -19.00 19.00
factor(pair)P28 3.50 11.22 0.31 0.76 -15.50 22.50
factor(pair)P29 2.50 11.22 0.22 0.83 -16.50 21.50
factor(pair)P30 -12.50 11.22 -1.11 0.27 -31.50 6.50
factor(pair)P31 16.00 11.22 1.43 0.16 -3.00 35.00
factor(pair)P32 -9.00 11.22 -0.80 0.43 -28.00 10.00
factor(pair)P33 -7.00 11.22 -0.62 0.54 -26.00 12.00

term estimate std.error statistic p.value conf.low conf.high
statusexposed 15.97 2.76 5.78 0 11.29 20.65
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– The most common is a “pre-post” study where subjects are measured both before
and after an exposure happens.

– In observational studies, we often match up subjects who did and did not receive
an exposure so as to account for differences on things like age, sex, race and other
covariates. This is what happens in the Lead in the Blood of Children study.

• If the data are from paired samples, we should (and in fact) must form paired differences,
with no subject left unpaired.

– If we cannot line up the data comparing two samples of quantitative data so that the
links between the individual “treated” and “control” observations to form matched
pairs are evident, then the data are not paired.

– If the sample sizes were different, we’d know we have independent samples, because
matched pairs requires that each subject in the “treated” group be matched to a
single, unique member of the “control” group, and thus that we have exactly as
many “treated” as “control” subjects.

– But having as many subjects in one treatment group as the other (which is called
a balanced design) is only necessary, and not sufficient, for us to conclude that
matched pairs are used.

As Bock, Velleman, and De Veaux (2004) suggest,

… if you know the data are paired, you can take advantage of that fact - in fact,
you must take advantage of it. … You must decide whether the data are paired
from understanding how they were collected and what they mean. … There is no
test to determine whether the data are paired.

21.8 Estimating the Population Mean of the Paired Differences

There are two main approaches used frequently to estimate the population mean of paired
differences.

• Estimation using the t distribution (and assuming at least an approximately Normal
distribution for the paired differences)

• Estimation using the bootstrap (which doesn’t require the Normal assumption)

In addition, we might consider estimating an alternate statistic when the data don’t follow a
symmetric distribution, like the median, with the bootstrap. In other settings, a rank-based
alternative called the Wilcoxon signed rank test is available to estimate a psuedo-median. All
of these approaches mirror what we did with a single sample, earlier in these Notes.
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estimate statistic p.value parameter conf.low conf.high method alternative
15.97 5.78 0 32 11.29 20.65 One Sample t-test two.sided

21.9 t-based CI for Population Mean of Paired Differences

In R, there are at least five different methods for obtaining the t-based confidence interval
for the population difference in means between paired samples. They are all mathematically
identical. The key idea is to calculate the paired differences (exposed - control, for example)
in each pair, and then treat the result as if it were a single sample and apply the methods
developed for that situation earlier in these Notes.

21.9.1 Method 1

We can use the single-sample approach, applied to the variable containing the paired dif-
ferences. Let’s build a 90% two-sided confidence interval for the population mean of the
difference in blood lead content across all possible pairs of an exposed (parent works in a
lead-based industry) and a control (parent does not) child.

tt1 <- t.test(bloodlead$lead_diff, conf.level = 0.90,
alt = "two.sided")

tt1

One Sample t-test

data: bloodlead$lead_diff
t = 5.783, df = 32, p-value = 2.036e-06
alternative hypothesis: true mean is not equal to 0
90 percent confidence interval:
11.29201 20.64738
sample estimates:
mean of x
15.9697

tidy(tt1) |> kbl(digits = 2) |> kable_styling()

The 90% confidence interval is (11.29, 20.65) according to this t-based procedure. An appro-
priate interpretation of the 90% two-sided confidence interval would be:

439



estimate statistic p.value parameter conf.low conf.high method alternative
15.97 5.78 0 32 10.34 21.59 One Sample t-test two.sided

• (11.29, 20.65) milligrams per deciliter is a 90% two-sided confidence interval for the
population mean difference in blood lead content between exposed and control children.

• Our point estimate for the true population difference in mean blood lead content is 15.97
mg.dl. The values in the interval (11.29, 20.65) mg/dl represent a reasonable range of
estimates for the true population difference in mean blood lead content, and we are
90% confident that this method of creating a confidence interval will produce a result
containing the true population mean difference.

• Were we to draw 100 samples of 33 matched pairs from the population described by
this sample, and use each such sample to produce a confidence interval in this manner,
approximately 90 of those confidence intervals would cover the true population mean
difference in blood lead content levels.

21.9.2 Method 2

Or, we can apply the single-sample approach to a calculated difference in blood lead content
between the exposed and control groups. Here, we’ll get a 95% two-sided confidence interval
for that difference, instead of the 90% interval we obtained above.

tt2 <- t.test(bloodlead$exposed - bloodlead$control,
conf.level = 0.95, alt = "two.sided")

tt2

One Sample t-test

data: bloodlead$exposed - bloodlead$control
t = 5.783, df = 32, p-value = 2.036e-06
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
10.34469 21.59470
sample estimates:
mean of x
15.9697

tidy(tt2) |> kbl(digits = 2) |> kable_styling()
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estimate statistic p.value parameter conf.low conf.high method alternative
15.97 5.78 0 32 9.21 Inf Paired t-test greater

21.9.3 Method 3

Or, we can provide R with two separate samples (unaffected and affected) and specify that
the samples are paired. Here, we’ll get a 99% one-sided confidence interval (lower bound)
for the population mean difference in blood lead content.

tt3 <- t.test(bloodlead$exposed, bloodlead$control, conf.level = 0.99,
paired = TRUE, alt = "greater")

tt3

Paired t-test

data: bloodlead$exposed and bloodlead$control
t = 5.783, df = 32, p-value = 1.018e-06
alternative hypothesis: true mean difference is greater than 0
99 percent confidence interval:
9.207658 Inf
sample estimates:
mean difference

15.9697

tidy(tt3) |> kbl(digits = 2) |> kable_styling()

Again, the three different methods using t.test for paired samples will all produce identical
results if we feed them the same confidence level and type of interval (two-sided, greater than
or less than).

21.9.4 Method 4

We can also use an intercept-only linear regression model to estimate the population mean of
the paired differences with a two-tailed confidence interval, by creating a variable containing
those paired differences.

model_lead <- lm(lead_diff ~ 1, data = bloodlead)
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term estimate std.error statistic p.value conf.low conf.high
(Intercept) 15.97 2.76 5.78 0 10.34 21.59

term estimate std.error statistic p.value conf.low conf.high
statusexposed 15.97 2.76 5.78 0 10.34 21.59

tidy(model_lead, conf.int = TRUE, conf.level = 0.95) |>
kbl(digits = 2) |> kable_styling()

21.9.5 Method 5

If we have the data in a longer format, with a variable identifying the matched pairs, we can
use a different specification for a linear model to obtain the same estimate.

model2_lead <- lm(lead_level ~ status + factor(pair), data = bloodlead_longer)

tidy(model2_lead, conf.int = TRUE, conf.level = 0.95) |>
filter(term == "statusexposed") |> kbl(digits = 2) |> kable_styling()

21.9.6 Assumptions

If we are building a confidence interval based on a sample of observations drawn from a
population, then we must pay close attention to the assumptions of those procedures. The
confidence interval procedure for the population mean paired difference using the t distribution
assumes that:

1. We want to estimate the population mean paired difference.
2. We have drawn a sample of paired differences at random from the population of interest.
3. The sampled paired differences are drawn from the population set of paired differences

independently and have identical distributions.
4. The population follows a Normal distribution. At the very least, the sample itself is

approximately Normal.

21.10 Bootstrap CI for mean difference using paired samples

The same bootstrap approach is used for paired differences as for a single sample. We use the
smean.cl.boot() function in the Hmisc package to obtain bootstrap confidence intervals for
the population mean of the paired differences in blood lead content.
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set.seed(431555)
smean.cl.boot(bloodlead$lead_diff, B = 1000, conf.int = 0.95)

Mean Lower Upper
15.96970 10.81742 21.48788

Note that in this case, the confidence interval for the difference in means is a bit less wide than
the 95% confidence interval generated by the t test, which was (10.34, 21.59). It’s common for
the bootstrap to produce a narrower range (i.e. an apparently more precise estimate) for the
population mean, but it’s not automatic that the endpoints from the bootstrap will be inside
those provided by the t test, either.

For example, this bootstrap CI doesn’t contain the t-test based interval, since its upper bound
exceeds that of the t-based interval:

set.seed(431002)
smean.cl.boot(bloodlead$lead_diff, B = 1000, conf.int = 0.95)

Mean Lower Upper
15.96970 10.81667 21.66667

This demonstration aside, the appropriate thing to do when applying the bootstrap to specify
a confidence interval is select a seed and the number (B = 1,000 or 10,000, usually) of desired
bootstrap replications, then run the bootstrap just once and move on, rather than repeating
the process multiple times looking for a particular result.

21.10.1 Assumptions

The bootstrap confidence interval procedure for the population mean (or median) of a set of
paired differences assumes that:

1. We want to estimate the population mean of the paired differences (or the population
median).

2. We have drawn a sample of observations at random from the population of interest.
3. The sampled observations are drawn from the population of paired differences indepen-

dently and have identical distributions.
4. We are willing to put up with the fact that different people (not using the same random

seed) will get somewhat different confidence interval estimates using the same data.

As we’ve seen, a major part of the bootstrap’s appeal is the ability to relax some assumptions.
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estimate statistic p.value conf.low conf.high method alternative
15.5 499 0 11 20.5 Wilcoxon signed rank test with continuity correction two.sided

21.11 Wilcoxon Signed Rank-based CI for paired samples

We could also use the Wilcoxon signed rank procedure to generate a CI for the pseudo-median
of the paired differences.

wt <- wilcox.test(bloodlead$lead_diff, conf.int = TRUE,
conf.level = 0.90, exact = FALSE)

wt

Wilcoxon signed rank test with continuity correction

data: bloodlead$lead_diff
V = 499, p-value = 1.155e-05
alternative hypothesis: true location is not equal to 0
90 percent confidence interval:
10.99992 20.49998
sample estimates:
(pseudo)median

15.49996

tidy(wt) |> kbl(digits = 2) |> kable_styling()

As in the one sample case, we can revise this code slightly to specify a different confidence
level, or gather a one-sided rather than a two-sided confidence interval.

21.11.1 Assumptions

The Wilcoxon signed rank confidence interval procedure in working with paired differences
assumes that:

1. We want to estimate the population pseudo-median of the paired differences.
2. We have drawn a sample of observations at random from the population of paired dif-

ferences of interest.
3. The sampled observations are drawn from the population of paired differences indepen-

dently and have identical distributions.
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4. The population follows a symmetric distribution. At the very least, the sample itself
shows no substantial skew, so that the sample pseudo-median is a reasonable estimate
for the population median.

21.12 Choosing a Confidence Interval Approach

Suppose we want to find a confidence interval for the population mean difference between two
populations based on matched pairs.

1. If we are willing to assume that the population distribution is Normal

• we usually use a t-based CI.

2. If we are unwilling to assume that the population is Normal,

• use a bootstrap procedure to get a CI for the population mean, or even the median
• but are willing to assume the population is symmetric, consider a Wilcoxon signed

rank procedure to get a CI for the median, rather than the mean.

The two methods you’ll use most often are the bootstrap (especially if the data don’t appear
to be at least pretty well fit by a Normal model) and the t-based confidence intervals (if the
data do appear to fit a Normal model reasonably well.)

21.13 Conclusions for the bloodlead study

Using any of these procedures, we would conclude that the null hypothesis (that the true mean
of the paired Exposed - Control differences is 0 mg/dl) is not consonant with what we see in
the 90% confidence interval.

Procedure Comparing 90% CI
Paired t Means 11.3, 20.6

Wilcoxon signed rank Pseudo-medians 11, 20.5
Bootstrap CI Means 11.6, 20.6

Note that one-sided or one-tailed hypothesis testing procedures work the same way for
paired samples as they did for a single sample.
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21.14 The Sign test

The sign test is something we’ve skipped in our discussion so far. It is a test for consistent
differences between pairs of observations, just as the paired t, Wilcoxon signed rank and
bootstrap for paired samples can provide. It has the advantage that it is relatively easy
to calculate by hand, and that it doesn’t require the paired differences to follow a Normal
distribution. In fact, it will even work if the data are substantially skewed.

• Calculate the paired difference for each pair, and drop those with difference = 0.
• Let N be the number of pairs that remain, so there are 2N data points.
• Let W, the test statistic, be the number of pairs (out of N) in which the difference is

positive.
• Assuming that H0 is true, then W follows a binomial distribution with probability 0.5

on N trials.

For example, consider our data on blood lead content:

bloodlead$lead_diff

[1] 22 5 23 -6 18 25 13 47 15 16 6 1 2 7 0 4 -9 -3 36 25 1 16 42 30 25
[26] 23 32 17 9 -3 60 14 14

Difference # of Pairs
Greater than zero 28

Equal to zero 1
Less than zero 4

So we have N = 32 pairs, with 𝑊 = 28 that are positive. We then use the binom.test
approach in R:

binom.test(x = 28, n = 32, p = 0.5,
alternative = "two.sided")

Exact binomial test

data: 28 and 32
number of successes = 28, number of trials = 32, p-value = 1.93e-05
alternative hypothesis: true probability of success is not equal to 0.5
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95 percent confidence interval:
0.7100516 0.9648693
sample estimates:
probability of success

0.875

• A one-tailed test can be obtained by substituting in “less” or “greater” as the alternative
of interest.

• The confidence interval provided doesn’t relate back to our original population means.
It’s just showing the confidence interval around the probability of the exposed mean
being greater than the control mean for a pair of children.

21.15 Paired (Dependent) vs. Independent Samples

One area that consistently trips students up in this course is the thought process involved in
distinguishing studies comparing means that should be analyzed using dependent (i.e. paired
or matched) samples and those which should be analyzed using independent samples. A de-
pendent samples analysis uses additional information about the sample to pair/match subjects
receiving the various exposures. That additional information is not part of an independent
samples analysis (unpaired testing situation.) The reasons to do this are to (a) increase sta-
tistical power, and/or (b) reduce the effect of confounding. Here are a few thoughts on the
subject.

In the design of experiments, blocking is the term often used for the process of arranging
subjects into groups (blocks) that are similar to one another. Typically, a blocking factor is a
source of variability that is not of primary interest to the researcher An example of a blocking
factor might be the sex of a patient; by blocking on sex, this source of variability is controlled
for, thus leading to greater accuracy.

1. If the sample sizes are not balanced (not equal), the samples must be treated as inde-
pendent, since there would be no way to precisely link all subjects. So, if we have 10
subjects receiving exposure A and 12 subjects receiving exposure B, a dependent samples
analysis (such as a paired t test) is not correct.

2. The key element is a meaningful link between each observation in one exposure group and
a specific observation in the other exposure group. Given a balanced design, the most
common strategy indicating dependent samples involves two or more repeated measures
on the same subjects. For example, if we are comparing outcomes before and after the
application of an exposure, and we have, say, 20 subjects who provide us data both before
and after the exposure, then the comparison of results before and after exposure should
use a dependent samples analysis. The link between the subjects is the subject itself -
each exposed subject serves as its own control.
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3. The second most common strategy indicating dependent samples involves deliberate
matching of subjects receiving the two exposures. A matched set of observations (often
a pair, but it could be a trio or quartet, etc.) is determined using baseline information
and then (if a pair is involved) one subject receives exposure A while the other member
of the pair receives exposure B, so that by calculating the paired difference, we learn
about the effect of the exposure, while controlling for the variables made similar across
the two subjects by the matching process.

4. In order for a dependent samples analysis to be used, we need (a) a link between each
observation across the exposure groups based on the way the data were collected, and
(b) a consistent measure (with the same units of measurement) so that paired differences
can be calculated and interpreted sensibly.

5. If the samples are collected to facilitate a dependent samples analysis, the correlation
of the outcome measurements across the groups will often be moderately strong and
positive. If that’s the case, then the use of a dependent samples analysis will reduce
the effect of baseline differences between the exposure groups, and thus provide a more
precise estimate. But even if the correlation is quite small, a dependent samples analysis
should provide a more powerful estimate of the impact of the exposure on the outcome
than would an independent samples analysis with the same number of observations.

21.15.1 Three “Tricky” Examples

1. Suppose we take a convenient sample of 200 patients from the population of patients
who complete a blood test in April 2017 including a check of triglycerides, and who have
a triglyceride level in the high category (200 to 499 mg/dl). Next, we select a patient
at random from this group of 200 patients, and then identify another patient from the
group of 200 who is the same age (to within 2 years) and also the same sex. We then
randomly assign our intervention to one of these two patients and usual care without
our intervention to the other patient. We then set these two patients aside and return
to our original sample, repeating the process until we cannot find any more patients in
the same age range and of the same gender. This generates a total of 77 patients who
receive the intervention and 77 who do not. If we are trying to assess the effect of our
intervention on triglyceride level in October 2017 using this sample of 154 people, should
we use dependent (paired) or independent samples?

2. Suppose we take a convenient sample of 77 patients from the population of patients who
complete a blood test in April 2017 including a check of triglycerides, and who have a
triglyceride level in the high category (200 to 499 mg/dl). Next, we take a convenient
sample of 77 patients from the population of patients who complete a blood test in May
2017 including a check of triglycerides, and who have a triglyceride level in the high
category (200 to 499 mg/dl). We flip a coin to determine whether the intervention will
be given to each of the 77 patients from April 2017 (if the coin comes up “HEADS”)
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or instead to each of the 77 patients from May 2017 (if the coin comes up “TAILS”).
Then, we assign our intervention to the patients seen in the month specified by the coin
and assign usual care without our intervention to the patients seen in the other month.
If we are trying to assess the effect of our intervention on triglyceride level in October
2017 using this sample of 154 people, should we use dependent (paired) or independent
samples?

3. Suppose we take a convenient sample of 200 patients from the population of patients
who complete a blood test in April 2017 including a check of triglycerides, and who
have a triglyceride level in the high category (200 to 499 mg/dl). For each patient,
we re-measure them again in October 2017, again checking their triglyceride level. But
in between, we take the first 77 of the patients in a randomly sorted list and assign
them to our intervention (which takes place from June through September 2017) and
take an additional group of 77 patients from the remaining part of the list and assign
them to usual care without our intervention over the same time period. If we are trying
to assess the effect of our intervention on each individual’s change in triglyceride level
(from April/May to October) using this sample of 154 people, should we use dependent
(paired) or independent samples?

Answers to these “tricky” examples appear at the end of this Chapter.

21.16 A More Complete Decision Support Tool: Comparing Means

1. Are these paired or independent samples?

2. If paired samples, then are the paired differences approximately Normally distributed?

a. If yes, then a paired t test or confidence interval is likely the best choice.
b. If no, is the main concern outliers (with generally symmetric data), or skew?

1. If the paired differences appear to be generally symmetric but with substantial
outliers, a Wilcoxon signed rank test is an appropriate choice, as is a bootstrap
confidence interval for the population mean of the paired differences.

2. If the paired differences appear to be seriously skewed, then we’ll usually build
a bootstrap confidence interval, although a sign test is another reasonable pos-
sibility, although it doesn’t provide a confidence interval for the population
mean of the paired differences.

3. If independent, is each sample Normally distributed?

a. No –> use Wilcoxon-Mann-Whitney rank sum test or bootstrap via bootdif.
b. Yes –> are sample sizes equal?

1. Balanced Design (equal sample sizes) - use pooled t test
2. Unbalanced Design - use Welch test

449



21.16.1 Answers for the Three “Tricky” Examples

Answer for 1. Our first task is to identify the outcome and the exposure groups. Here, we are
comparing the distribution of our outcome (triglyceride level in October) across two exposures:
(a) receiving the intervention and (b) not receiving the intervention. We have a sample of 77
patients receiving the intervention, and a different sample of 77 patients receiving usual care.
Each of the 77 subjects receiving the intervention is matched (on age and sex) to a specific
subject not receiving the intervention. So, we can calculate paired differences by taking the
triglyceride level for the exposed member of each pair and subtracting the triglyceride level
for the usual care member of that same pair. Thus our comparison of the exposure groups
should be accomplished using a dependent samples analysis, such as a paired t test.

Answer for 2. Again, we begin by identifying the outcome (triglyceride level in October) and
the exposure groups. Here, we compare two exposures: (a) receiving the intervention and
(b) receiving usual care. We have a sample of 77 patients receiving the intervention, and
a different sample of 77 patients receiving usual care. But there is no pairing or matching
involved. There is no connection implied by the way that the data were collected that implies
that, for example, patient 1 in the intervention group is linked to any particular subject in the
usual care group. So we need to analyze the data using independent samples.

Answer for 3. Once again, we identify the outcome (now it is the within-subject change in
triglyceride level from April to October) and the exposure groups. Here again, we compare two
exposures: (a) receiving the intervention and (b) receiving usual care. We have a sample of 77
patients receiving the intervention, and a different sample of 77 patients receiving usual care.
But again, there is no pairing or matching between the patients receiving the intervention
and the patients receiving usual care. While each outcome value is a difference (or change)
in triglyceride levels, there’s no connection implied by the way that the data were collected
that implies that, for example, patient 1 in the intervention group is linked to any particular
subject in the usual care group. So, again, we need to analyze the data using independent
samples.

For more background and fundamental material, you might consider the Wikipedia pages on
Paired Difference Test and on Blocking (statistics).
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22 Sample Size and Power for Means

22.1 Setup: Package Used Here

knitr::opts_chunk$set(comment = NA)

library(pwr)

22.2 Power and Sample Size Considerations

I’ll begin here by repeating some of the material first shared in Chapter 18. For most statistical
tests, it is theoretically possible to estimate the power of the test in the design stage, (before
any data are collected) for various sample sizes, so we can hone in on a sample size choice
which will enable us to collect data only on as many subjects as are truly necessary.

A power calculation is likely the most common element of an scientific grant proposal on which
a statistician is consulted. This is a fine idea in theory, but in practice…

• The tests that have power calculations worked out in intensive detail using R are mostly
those with more substantial assumptions. Examples include t tests that assume popu-
lation normality, common population variance and balanced designs in the independent
samples setting, or paired t tests that assume population normality in the paired samples
setting.

• These power calculations are also usually based on tests rather than confidence intervals,
which would be much more useful in most settings. Simulation is your friend here.

• Even more unfortunately, this process of doing power and related calculations is far
more of an art than a science.

• As a result, the value of many power calculations is negligible, since the assumptions
being made are so arbitrary and poorly connected to real data.

• On several occasions, I have stood in front of a large audience of medical statisticians
actively engaged in clinical trials and other studies that require power calculations for
funding. When I ask for a show of hands of people who have had power calculations
prior to such a study whose assumptions matched the eventual data perfectly, I get lots
of laughs. It doesn’t happen.
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• Even the underlying framework that assumes a power of 80% with a significance level of
5% is sufficient for most studies is pretty silly.

All that said, I feel obliged to show you some examples of power calculations done using R,
and provide some insight on how to make some of the key assumptions in a way that won’t
alert reviewers too much to the silliness of the enterprise. All of the situations described in
this Chapter are toy problems, but they may be instructive about some fundamental ideas.

22.3 Sample Size in a One-Sample t test

For a t test, R can estimate any one of the following elements, given the other four, using the
power.t.test command, for either a one-tailed or two-tailed single-sample t test…

• n = the sample size
• 𝛿 = delta = the true difference in population means between the null hypothesis value

and a particular alternative
• s = sd = the true standard deviation of the population
• 𝛼 = sig.level = the significance level for the test (maximum acceptable risk of Type I

error)
• 1 - 𝛽 = power = the power of the t test to detect the effect of size 𝛿

22.3.1 A Toy Example

Suppose that in a recent health survey, the average beef consumption in the U.S. per person
was 90 pounds per year. Suppose you are planning a new study to see if beef consumption levels
have changed. You plan to take a random sample of 25 people to build your new estimate,
and test whether the current pounds of beef consumed per year is 90. Suppose you want to
do a two-sided (two-tailed) test at 95% confidence (so 𝛼 = 0.05), and that you expect that the
true difference will need to be at least 𝛿 = 5 pounds (i.e. 85 or less or 95 or more) in order
for the result to be of any real, practical interest. Suppose also that you are willing to assume
that the true standard deviation of the measurements in the population is 10 pounds.

That is, of course, a lot to suppose.

Now, we want to know what power the proposed experiment will have to detect a change
of 5 pounds (or more) away from the original 90 pounds, with these specifications, and how
tweaking these specifications will affect the power of the study.

So, we have - n = 25 data points to be collected - 𝛿 = 5 pounds is the minimum clinically
meaningful effect size - s = 10 is the assumed population standard deviation, in pounds per
year - 𝛼 is 0.05, and we’ll do a two-sided test
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22.3.2 Using the power.t.test function

power.t.test(n = 25, delta = 5, sd = 10, sig.level = 0.05,
type="one.sample", alternative="two.sided")

One-sample t test power calculation

n = 25
delta = 5

sd = 10
sig.level = 0.05

power = 0.6697014
alternative = two.sided

So, under this study design, we would expect to detect an effect of size 𝛿 = 5 pounds with
just under 67% power, i.e. with a probability of incorrect retention of 𝐻0 of just about 1/3.
Most of the time, we’d like to improve this power, and to do so, we’d need to adjust our
assumptions.

22.4 Changing Assumptions

We made assumptions about the sample size n, the minimum clinically meaningful effect size
(change in the population mean) 𝛿, the population standard deviation s, and the significance
level 𝛼, not to mention decisions about the test, like that we’d do a one-sample t test, rather
than another sort of test for a single sample, and that we’d do a two-tailed, or two-sided
test. Often, these assumptions are tweaked a bit to make the power look more like what a
reviewer/funder is hoping to see.

22.4.1 Increasing Sample Size Increases Power

Suppose, we committed to using more resources and gathering data from 40 subjects instead
of the 25 we assumed initially – what effect would this have on our power?

power.t.test(n = 40, delta = 5, sd = 10, sig.level = 0.05,
type="one.sample", alternative="two.sided")
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One-sample t test power calculation

n = 40
delta = 5

sd = 10
sig.level = 0.05

power = 0.8693979
alternative = two.sided

With more samples, we should have a more powerful test, able to detect the difference with
greater probability. In fact, a sample of 40 paired differences yields 87% power. As it turns
out, we would need at least 44 observations with this scenario to get to 90% power, as shown
in the calculation below, which puts the power in, but leaves out the sample size.

power.t.test(power=0.9, delta = 5, sd = 10, sig.level = 0.05,
type="one.sample", alternative="two.sided")

One-sample t test power calculation

n = 43.99552
delta = 5

sd = 10
sig.level = 0.05

power = 0.9
alternative = two.sided

We see that we would need at least 44 observations to achieve 90% power. Note: we al-
ways round the sample size up in doing a power calculation – if this calculation had actually
suggested n = 43.1 paired differences were needed, we would still have rounded up to 44.

22.4.2 Increasing Effect Size will increase Power

A larger effect should be easier to detect. If we go back to our original calculation, which had
67% power to detect an effect of size 𝛿 = 5, and now change the desired effect size to 𝛿 = 6
pounds (i.e. a value of 84 or less or 96 or more), we should obtain a more powerful design.

power.t.test(n = 25, delta = 6, sd = 10, sig.level = 0.05,
type="one.sample", alternative="two.sided")
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One-sample t test power calculation

n = 25
delta = 6

sd = 10
sig.level = 0.05

power = 0.8207213
alternative = two.sided

We see that this change in effect size from 5 to 6, leaving everything else the same, increases
our power from 67% to 82%. To reach 90% power, we’d need to increase the effect size we
were trying to detect to at least 6.76 pounds.

power.t.test(n = 25, power = 0.9, sd = 10, sig.level = 0.05,
type="one.sample", alternative="two.sided")

One-sample t test power calculation

n = 25
delta = 6.759051

sd = 10
sig.level = 0.05

power = 0.9
alternative = two.sided

• Again, note that I am rounding up here.
• Using 𝛿 = 6.75 would not quite make it to 90.00% power.
• Using 𝛿 = 6.76 guarantees that the power will be 90% or more, and not just round up

to 90%.

22.4.3 Decreasing the Standard Deviation will increase Power

The choice of standard deviation is usually motivated by a pilot study, or else pulled out of
thin air - it’s relatively easy to convince yourself that the true standard deviation might be a
little smaller than you’d guessed initially. Let’s see what happens to the power if we reduce
the sample standard deviation from 10 pounds to 9. This should make the effect of 5 pounds
easier to detect, because it will have smaller variation associated with it.
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power.t.test(n = 25, delta = 5, sd = 9, sig.level = 0.05,
type="one.sample", alternative="two.sided")

One-sample t test power calculation

n = 25
delta = 5

sd = 9
sig.level = 0.05

power = 0.759672
alternative = two.sided

This change in standard deviation from 10 to 9, leaving everything else the same, increases
our power from 67% to nearly 76%. To reach 90% power, we’d need to decrease the standard
deviation of the population paired differences to no more than 7.39 pounds.

power.t.test(n = 25, delta = 5, sd = NULL, power = 0.9, sig.level = 0.05,
type="one.sample", alternative="two.sided")

One-sample t test power calculation

n = 25
delta = 5

sd = 7.397486
sig.level = 0.05

power = 0.9
alternative = two.sided

Note I am rounding down here.

• Using s = 7.4 pounds would not quite make it to 90.00% power.

Note also that in order to get R to treat the standard debviation as unknown, I must specify
it as NULL in the formula.
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22.4.4 Larger Significance Level increases Power

We can trade off some of our Type II error (lack of power) for Type I error. If we are willing to
trade off some Type I error (as described by the 𝛼), we can improve the power. For instance,
suppose we decided to run the original test with 90% confidence.

power.t.test(n = 25, delta = 5, sd = 10, sig.level = 0.1,
type="one.sample", alternative="two.sided")

One-sample t test power calculation

n = 25
delta = 5

sd = 10
sig.level = 0.1

power = 0.7833861
alternative = two.sided

The calculation suggests that our power would thus increase from 67% to just over 78%.

22.5 Paired Sample t Tests and Power/Sample Size

For a paired-samples t test, R can estimate any one of the following elements, given the other
four, using the power.t.test command, for either a one-tailed or two-tailed paired t test…

• n = the sample size (# of pairs) being compared
• 𝛿 = delta = the true difference in means between the two groups
• s = sd = the true standard deviation of the paired differences
• 𝛼 = sig.level = the significance level for the comparison (maximum acceptable risk of

Type I error)
• 1 - 𝛽 = power = the power of the paired t test to detect the effect of size 𝛿

22.5.1 A Toy Example

As a toy example, suppose you are planning a paired samples experiment involving n = 30
subjects who will each provide a “Before” and an “After” result, which is measured in days.

Suppose you want to do a two-sided (two-tailed) test at 95% confidence (so 𝛼 = 0.05), and
that you expect that the true difference between the “Before” and “After” groups will have to
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be at least 𝛿 = 5 days to be of any real interest. Suppose also that you are willing to assume
that the true standard deviation of those paired differences will be 10 days.

That is, of course, a lot to suppose.

Now, we want to know what power the proposed experiment will have to detect this difference
with these specifications, and how tweaking these specifications will affect the power of the
study.

So, we have - n = 30 paired differences will be collected - 𝛿 = 5 days is the minimum clinically
meaningful difference - s = 10 days is the assumed population standard deviation of the paired
differences - 𝛼 is 0.05, and we’ll do a two-sided test

22.5.2 Using the power.t.test function

power.t.test(n = 30, delta = 5, sd = 10, sig.level = 0.05,
type="paired", alternative="two.sided")

Paired t test power calculation

n = 30
delta = 5

sd = 10
sig.level = 0.05

power = 0.7539627
alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs

So, under this study design, we would expect to detect an effect of size 𝛿 = 5 days with 75%
power, i.e. with a probability of incorrect retention of 𝐻0 of 0.25. Most of the time, we’d like
to improve this power, and to do so, we’d need to adjust our assumptions.

22.5.3 Changing Assumptions in a Power Calculation

We made assumptions about the sample size n, the minimum clinically meaningful difference
in means 𝛿, the population standard deviation s, and the significance level 𝛼, not to mention
decisions about the test, like that we’d do a paired t test, rather than another sort of test for
paired samples, or use an independent samples approach, and that we’d do a two-tailed, or
two-sided test. Often, these assumptions are tweaked a bit to make the power look more like
what a reviewer/funder is hoping to see.
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22.5.4 Changing the Sample Size

Suppose, we committed to using more resources and gathering “Before” and “After” data
from 40 subjects instead of the 30 we assumed initially – what effect would this have on our
power?

power.t.test(n = 40, delta = 5, sd = 10, sig.level = 0.05,
type="paired", alternative="two.sided")

Paired t test power calculation

n = 40
delta = 5

sd = 10
sig.level = 0.05

power = 0.8693979
alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs

With more samples, we should have a more powerful test, able to detect the difference with
greater probability. In fact, a sample of 40 paired differences yields 87% power. As it turns
out, we would need at least 44 paired differences with this scenario to get to 90% power, as
shown in the calculation below, which puts the power in, but leaves out the sample size.

power.t.test(power=0.9, delta = 5, sd = 10, sig.level = 0.05,
type="paired", alternative="two.sided")

Paired t test power calculation

n = 43.99552
delta = 5

sd = 10
sig.level = 0.05

power = 0.9
alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs
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We see that we would need at least 44 paired differences to achieve 90% power. Note: we
always round the sample size up in doing a power calculation – if this calculation had actually
suggested n = 43.1 paired differences were needed, we would still have rounded up to 44.

22.5.5 Changing the Effect Size

A larger effect should be easier to detect. If we go back to our original calculation, which had
75% power to detect an effect (i.e. a true population mean difference) of size 𝛿 = 5, and now
change the desired effect size to 𝛿 = 6, we should obtain a more powerful design.

power.t.test(n = 30, delta = 6, sd = 10, sig.level = 0.05,
type="paired", alternative="two.sided")

Paired t test power calculation

n = 30
delta = 6

sd = 10
sig.level = 0.05

power = 0.887962
alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs

We see that this change in effect size from 5 to 6, leaving everything else the same, increases
our power from 75% to nearly 89%. To reach 90% power, we’d need to increase the effect size
we were trying to detect to at least 6.13 days.

• Again, note that I am rounding up here.
• Using 𝛿 = 6.12 would not quite make it to 90.00% power.
• Using 𝛿 = 6.13 guarantees that the power will be 90% or more, and not just round up

to 90%..

22.5.6 Changing the Standard Deviation

The choice of standard deviation is usually motivated by a pilot study, or else pulled out of
thin air. It’s relatively easy to convince yourself that the true standard deviation might be a
little smaller than you’d guessed initially. Let’s see what happens to the power if we reduce
the sample standard deviation from 10 days to 9 days. This should make the effect of 5 days
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easier to detect as being different from the null hypothesized value of 0, because it will have
smaller variation associated with it.

power.t.test(n = 30, delta = 5, sd = 9, sig.level = 0.05,
type="paired", alternative="two.sided")

Paired t test power calculation

n = 30
delta = 5

sd = 9
sig.level = 0.05

power = 0.8366514
alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs

This change in standard deviation from 10 to 9, leaving everything else the same, increases
our power from 75% to nearly 84%. To reach 90% power, we’d need to decrease the standard
deviation of the population paired differences to no more than 8.16 days.

Note I am rounding down here, because using 𝑠 = 8.17 days would not quite make it to 90.00%
power. Note also that in order to get R to treat the sd as unknown, I must specify it as NULL
in the formula…

power.t.test(n = 30, delta = 5, sd = NULL, power = 0.9,
sig.level = 0.05, type="paired", alternative="two.sided")

Paired t test power calculation

n = 30
delta = 5

sd = 8.163989
sig.level = 0.05

power = 0.9
alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs
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22.5.7 Changing the Significance Level

We can trade off some of our Type II error (lack of power) for Type I error. If we are willing to
trade off some Type I error (as described by the 𝛼), we can improve the power. For instance,
suppose we decided to run the original test with 90% confidence.

power.t.test(n = 30, delta = 5, sd = 10, sig.level = 0.1,
type="paired", alternative="two.sided")

Paired t test power calculation

n = 30
delta = 5

sd = 10
sig.level = 0.1

power = 0.8482542
alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs

The calculation suggests that our power would thus increase from 75% to nearly 85%.

22.6 Two Independent Samples: Power for t Tests

For an independent-samples t test, with a balanced design (so that 𝑛1 = 𝑛2), R can estimate
any one of the following elements, given the other four, using the power.t.test command,
for either a one-tailed or two-tailed t test…

• n = the sample size in each of the two groups being compared
• 𝛿 = delta = the true difference in means between the two groups
• s = sd = the true standard deviation of the individual values in each group (assumed to

be constant – since we assume equal population variances)
• 𝛼 = sig.level = the significance level for the comparison (maximum acceptable risk of

Type I error)
• 1 - 𝛽 = power = the power of the t test to detect the effect of size 𝛿

This method only produces power calculations for balanced designs – where the sample size is
equal in the two groups. If you want a two-sample power calculation for an unbalanced design,
you will need to use a different library and function in R, as we’ll see.
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22.7 A New Example

Suppose we plan a study of the time to relapse for patients in a drug trial, where subjects
will be assigned randomly to a (new) treatment or to a placebo. Suppose we anticipate that
the placebo group will have a mean of about 9 months, and want to detect an improvement
(increase) in time to relapse of 50%, so that the treatment group would have a mean of at
least 13.5 months. We’ll use 𝛼 = .10 and 𝛽 = .10, as well. Assume we’d do a two-sided test,
with an equal number of observations in each group, and we’ll assume the observed standard
deviation of 9 months in a pilot study will hold here, as well.

We want the sample size required by the test under a two sample setting where:

• 𝛼 = .10,
• with 90% power (so that 𝛽 = .10),
• and where we will have equal numbers of samples in the placebo group (group 1) and

the treatment group (group 2).

• We’ll plug in the observed standard deviation of 9 months.
• We’ll look at detecting a change from 9 [the average in the placebo group] to 13.5 (a

difference of 50%, giving delta = 4.5)
• using a two-sided pooled t-test.

The appropriate R command is:

power.t.test(delta = 4.5, sd = 9,
sig.level = 0.10, power = 0.9,
type="two.sample",
alternative="two.sided")

Two-sample t test power calculation

n = 69.19782
delta = 4.5

sd = 9
sig.level = 0.1

power = 0.9
alternative = two.sided

NOTE: n is number in *each* group

This suggests that we will need a sample of at least 70 subjects in the treated group and an
additional 70 subjects in the placebo group, for a total of 140 subjects.
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22.7.1 Another Scenario

What if resources are sparse, and we’ll be forced to do the study with no more than 120
subjects, overall? If we require 90% confidence in a two-sided test, what power will we have?

power.t.test(n = 60, delta = 4.5, sd = 9,
sig.level = 0.10,
type="two.sample",
alternative="two.sided")

Two-sample t test power calculation

n = 60
delta = 4.5

sd = 9
sig.level = 0.1

power = 0.859484
alternative = two.sided

NOTE: n is number in *each* group

It looks like the power under those circumstances would be just under 86%. Note that the n
= 60 refers to half of the total sample size, since we’ll need 60 drug and 60 placebo subjects
in this balanced design.

22.8 Power for Independent Sample T tests with Unbalanced
Designs

Using the pwr package, R can do sample size calculations that describe the power of a two-
sample t test that does not require a balanced design using the pwr.t2n.test command.

Suppose we wanted to do the same study as we described above, using 100 “treated” patients
but as few “placebo” patients as possible. What sample size would be required to maintain
90% power? There is one change here – the effect size d in the pwr.t2n.test command is
specified using the difference in means 𝛿 that we used previously, divided by the standard
deviation s that we used previously. So, in our old setup, we assumed delta = 4.5, sd = 9, so
now we’ll assume d = 4.5/9 instead.
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pwr.t2n.test(n1 = 100, d = 4.5/9,
sig.level = 0.1, power = 0.9,
alternative="two.sided")

t test power calculation

n1 = 100
n2 = 52.82433
d = 0.5

sig.level = 0.1
power = 0.9

alternative = two.sided

We would need at least 53 subjects in the “placebo” group.

22.8.1 The most efficient design for an independent samples comparison will be
balanced.

• Note that if we use 𝑛1 = 100 subjects in the treated group, we need at least 𝑛2 = 53 in
the placebo group to achieve 90% power, and a total of 153 subjects.

• Compare this to the balanced design, where we needed 70 subjects in each group to
achieve the same power, thus, a total of 140 subjects.

We saw earlier that a test with 60 subjects in each group would yield just under 86% power.
Suppose we instead built a test with 80 subjects in the treated group, and 40 in the placebo
group, then what would our power be?

pwr.t2n.test(n1 = 80, n2 = 40, d = 4.5/9,
sig.level = 0.10,
alternative="two.sided")

t test power calculation

n1 = 80
n2 = 40
d = 0.5

sig.level = 0.1
power = 0.821823

alternative = two.sided
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As we’d expect, the power is stronger for a balanced design than for an unbalanced design
with the same overall sample size.

Note that I used a two-sided test to establish my power calculation – in general, this is the
most conservative and defensible approach for any such calculation, unless there is a strong
and specific reason to use a one-sided approach in building a power calculation,
don’t.
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23 Two Examples Comparing Means

23.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

source("data/Love-boost.R")
library(kableExtra)
library(patchwork)
library(tidyverse)

theme_set(theme_bw())

In addition to the Love-boost.R script, we will also use the favstats function from the
mosaic package.

23.2 A Study of Battery Life

Should you buy generic rather than brand-name batteries? Bock, Velleman, and De Veaux
(2004) descibe a designed experiment to test battery life. A (male) student obtained six pairs
of AA alkaline batteries from two major battery manufacturers; a well-known brand name and
a generic brand, so that battery brand was the factor of interest.

To estimate the difference in mean lifetimes across the two manufacturers, the student kept a
battery-powered CD player with the same CD running continuously, with the volume control
fixed at 5, and measured the time until no more music was heard through the headphones.
(He ran an initial trial to find out approximately how long that would take, so he didn’t have
to spend the first 3 hours of each run listening to the same CD.) The outcome was the time in
minutes until the sound stopped. To account for changes in the CD player’s performance over
time, he randomized the run order by choosing pairs of batteries (the CD-player required two
batteries to run) at random.

Here are the results for the 6 brand name and 6 generic tests, in minutes, found in the
battery.csv data file, where run indicates the order in which the tests were run…
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battery <- read_csv("data/battery.csv",
show_col_types = FALSE)

battery

# A tibble: 12 x 4
run test type time

<dbl> <dbl> <chr> <dbl>
1 1 1 brand name 191.
2 2 2 brand name 206.
3 6 3 brand name 199.
4 8 4 brand name 172.
5 9 5 brand name 184
6 12 6 brand name 170.
7 3 1 generic 194
8 4 2 generic 204.
9 5 3 generic 204.
10 7 4 generic 206.
11 10 5 generic 222.
12 11 6 generic 209.

23.2.1 Question 1. What is the outcome under study?

We are studying battery lifetimes (time until the sound stopped) in minutes.

23.2.2 Question 2. What are the treatment/exposure groups?

We are comparing the two brands of batteries: the well-known vs. the generic.

23.2.3 Question 3. Are the data collected using paired or independent samples?

Of course, if we had different numbers of samples in the two groups, then we’d know without
further thought that independent samples were required. Since we have 6 observations in the
brand name group, and also have 6 observations in the generic group, i.e. a balanced design,
we need to pause now to decide whether paired or independent samples testing is appropriate
in this setting.

Two samples are paired if each data point in one sample is naturally linked to a specific data
point in the other sample. So, do we have paired or independent samples?
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• Despite the way I’ve set up the data table, there is no particular reason to pair, say, run
#1 (a brand name run) with any particular experimental run in the generic group. So
the samples are independent. This is not a matched-pairs design.

• In each trial, the student either used two of the well-known batteries, or two of the
generic batteries.

• Any of the tests/confidence intervals for the independent samples methods suggests a
statistically significant (at the 5% level) difference between the generic and brand name
batteries.

23.2.4 Question 4. Are the data a random sample from the population of
interest?

Probably not. The data are likely to come from a convenient sample of batteries. I don’t know
how this might bias the study, though. It seems unlikely that there would be a particular bias
unless, for example, the well-known batteries were substantially older or younger than the
generic.

23.2.5 Question 5. What significance level will we use?

We have no reason not to use a 95% confidence level.

23.2.6 Question 6. Are we using a one-sided or two-sided comparison?

We could argue for a one-sided comparison, but I’ll be safe and use the two-sided version.

23.2.7 Question 9. What does the distribution of outcomes in each group tell us?

ggplot(battery, aes(x = type, y = time, fill = type)) +
geom_jitter(alpha = 0.75, width = 0.125) +
geom_boxplot(alpha = 0.5) +
stat_summary(fun = "mean", geom = "point",

shape = 23, size = 3, fill = "white") +
coord_flip() +
guides(fill = "none", col = "none") +
labs(title = "Battery Running Time, by Manufacturer",

y = "Running Time (minutes)", x = "Manufacturer")
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We can generate histograms, too, but that’s an issue, because we have so few observations.

ggplot(battery, aes(x = time, fill = type)) +
geom_histogram(bins = 6, col = "white") +
facet_wrap(~ type) +
guides(fill = "none") +
labs(title = "Battery Running Time, by Manufacturer")
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type min Q1 median Q3 max mean sd n missing
brand name 169.5 175.3 187.35 197.07 205.5 186.88 14.37 6 0
generic 194.0 203.5 205.00 208.68 222.5 206.57 9.37 6 0

brand name generic
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Battery Running Time, by Manufacturer

mosaic::favstats(time ~ type, data = battery) |>
kbl(digits = 2) |> kable_styling()

It sure looks like the generic batteries lasted longer. And they also look like they were more
consistent. The sample means are 206.6 for the generic group, 186.9 minutes for brand name,
so the point estimate of the difference is 19.7 minutes.

The question is: can we be confident that the difference we observe here is more than just
random fluctuation, at a 5% significance level?

23.2.8 Inferential Results for the Battery Study

In the table below, I have summarized the two-sided testing results for most of the ways in
which we have looked at a two sample comparison so far, with 95% confidence intervals. If the
samples really are paired, then we must choose from the paired samples comparisons described
in the table. If the samples really are independent, then we must choose from the independent
samples comparisons.
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23.2.9 Paired Samples Approaches

Method p Value 95% CI for Generic - Brand Name
Paired t 0.058 -1.0, 40.4

Wilcoxon signed rank 0.063 -2.0, 39.9
Bootstrap via smean.cl.boot – 6.7, 33.0

23.2.10 Independent Samples Approaches

Method p Value 95% CI for Generic - Brand Name
Pooled t 0.018 4.1, 35.3
Welch’s t 0.021 3.7, 35.6

Wilcoxon Mann Whitney rank sum 0.030 3.3, 37.0
Bootstrap via bootdif – 7.7, 32.2

23.3 The Breakfast Study: Does Oat Bran Cereal Lower Serum
LDL Cholesterol?

Norman and Streiner (2014) describe a crossover study that was conducted to investigate
whether oat bran cereal helps to lower serum cholesterol levels in hypercholesterolemic males.
Fourteen such individuals were randomly placed on a diet that included either oat bran or corn
flakes; after two weeks, their low-density lipoprotein (LDL) cholesterol levels, in mmol/l were
recorded. Each subject was then switched to the alternative diet. After a second two-week
period, the LDL cholesterol level of each subject was again recorded.

breakfast <- read_csv("data/breakfast.csv",
show_col_types = FALSE)

breakfast

# A tibble: 14 x 3
subject cornflakes oatbran

<dbl> <dbl> <dbl>
1 1 4.61 3.84
2 2 6.42 5.57
3 3 5.4 5.85
4 4 4.54 4.8
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5 5 3.98 3.68
6 6 3.82 2.96
7 7 5.01 4.41
8 8 4.34 3.72
9 9 3.8 3.49

10 10 4.56 3.84
11 11 5.35 5.26
12 12 3.89 3.73
13 13 2.25 1.84
14 14 4.24 4.14

23.3.1 Question 1. What is the outcome under study?

We are studying levels of LDL cholesterol, in mmol/l. Note that if we wanted to convert to a
more familiar scale, specifically mg/dl, we would multiply the mmol/l by 18, as it turns out.

23.3.2 Question 2. What are the treatment/exposure groups?

We are comparing subjects after two weeks of eating corn flakes to the same subjects after two
weeks of eating oat bran.

23.3.3 Question 3. Are the data collected using paired or independent samples?

These are matched pairs, paired by subject. Each subject produced an oat bran result and a
corn flakes result.

23.3.4 Question 4. Are the data a random sample from the population of
interest?

Probably not. The data are likely to come from a convenient sample of 14 individuals but
they were randomly assigned to cornflakes first or to oat bran first, then crossed over.

23.3.5 Question 5. What significance level will we use?

We have no reason not to use our usual 95% confidence level, so alpha = 0.05

23.3.6 Question 6. Are we using a one-sided or two-sided comparison?

We could argue for a one-sided comparison, but I’ll be safe and use the two-sided version.
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23.3.7 Question 7. Did pairing help reduce nuisance variation?

After we drop the breakfast.csv file into the breakfast data frame, we look at the correlation
of cornflakes and oatbran results across our 14 subjects.

cor(breakfast$cornflakes, breakfast$oatbran)

[1] 0.9233247

The sample Pearson correlation coefficient is very strong and positive at 0.92, so the paired
samples approach will use these data far more effectively than the (incorrect) independent
samples approach.

23.3.8 Question 8. What does the distribution of paired differences tell us?

We summarize the distribution of the paired differences (cornflakes - oatbran) below.

breakfast <- breakfast |>
mutate(diffs = cornflakes - oatbran)

p1 <- ggplot(breakfast, aes(sample = diffs)) +
geom_qq(col = "darkslategray") + geom_qq_line(col = "navy") +
theme(aspect.ratio = 1) +
labs(title = "Normal Q-Q plot")

p2 <- ggplot(breakfast, aes(x = diffs)) +
geom_histogram(aes(y = stat(density)),

bins = 5, fill = "darkslategray", col = "white") +
stat_function(fun = dnorm,

args = list(mean = mean(breakfast$diffs),
sd = sd(breakfast$diffs)),

col = "navy", lwd = 1.5) +
labs(title = "Histogram with Normal Density")

p3 <- ggplot(breakfast, aes(x = diffs, y = "")) +
geom_boxplot(fill = "darkslategray", outlier.color = "darkslategray") +
stat_summary(fun = "mean", geom = "point",

shape = 23, size = 3, fill = "white") +
labs(title = "Boxplot", y = "")

p1 + (p2 / p3 + plot_layout(heights = c(4,1))) +
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plot_annotation(title = "Difference in LDL (Corn Flakes - Oat Bran)")

Warning: `stat(density)` was deprecated in ggplot2 3.4.0.
i Please use `after_stat(density)` instead.
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The Normal distribution doesn’t look too ridiculous in this case for the paired (cornflakes-
oatbran) differences. Suppose we assume Normality and run the paired t test.

t.test(breakfast$cornflakes - breakfast$oatbran)

One Sample t-test

data: breakfast$cornflakes - breakfast$oatbran
t = 3.3444, df = 13, p-value = 0.005278
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.1284606 0.5972537
sample estimates:
mean of x
0.3628571
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Based on this sample of 14 subjects in the crossover study, we observe a 95% confidence interval
for the difference between the LDL cholesterol levels after eating corn flakes and eating oat
bran that is entirely positive, suggesting that LDL levels were detectably higher (according to
this t test procedure) after eating corn flakes than after eating oat bran.

23.4 Power, Sample Size and the Breakfast Study

As a preview of what’s next to come, let’s investigate these promising results a bit further.
Suppose that in a new study, you wish to be able to detect a difference in LDL cholesterol
between two exposures: subjects who eat cornflakes (as in the original study) and subjects
who continue to eat cornflakes but also take a supplemental dosage of what you believe to be
the crucial ingredient in oatbran.

Suppose you believe that the effect of taking the new supplement will be about half the size
of the effect you observed in the original breakfast study on hypercholesterolemic males, but
that males generally may be more likely to take your supplement regularly than switch from
cornflakes to a less appetizing breakfast choice, making your supplement attractive.

What sample size will be required to yield 90% power to detect an effect half the size of the
effect we observed in the breakfast study, in a new paired samples study using a two-tailed 5%
significance level? What if we only required 80% power?

23.4.1 The Setup

We want to know n, the minimum required sample size for the new study, and we have:

• A specified effect size of half of what we saw in the breakfast study, where the sample
mean difference between cornflakes and oatbran was 0.36 mmol/l, so our effect size is
assumed to be delta = 0.18 mmol/l.

• An assumed standard deviation equal to the standard deviation of the differences in the
pilot breakfast study, which turns out to have been s = 0.41 mmol/l.

• We also have a pre-specified alpha = 0.05 using a two-tailed test.
• We also want the power to be at least 90% for our new study.

23.4.2 The R Calculations

Question 1. What sample size will be required to yield 90% power to detect an effect half
the size of the effect we observed in the breakfast study, in a new paired samples study using
a two-tailed 5% significance level?
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power.t.test(delta = 0.18, sd = 0.41, sig.level = 0.05,
power = 0.9, type="paired", alternative="two.sided")

Paired t test power calculation

n = 56.47119
delta = 0.18

sd = 0.41
sig.level = 0.05

power = 0.9
alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs

And so our new study will require at least 57 subjects (each measured in two circumstances,
so 114 total measurements) in order to achieve at least 90% power to detect the difference of
0.18 mmol/l while meeting these specifications.

Question 2. What if we were willing to accept only 80% power?

power.t.test(delta = 0.18, sd = 0.41, sig.level = 0.05,
power = 0.8, type="paired", alternative="two.sided")

Paired t test power calculation

n = 42.68269
delta = 0.18

sd = 0.41
sig.level = 0.05

power = 0.8
alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs

It turns out that this would require at least 43 subjects.

477



23.4.3 Independent samples, instead of paired samples?

What would happen if, instead of doing a paired samples study, we did one using independent
samples? Assuming we used a balanced design, and assigned the same number of different
people at random to either the oatbran supplement or regular cornflakes alone, we could do
such a study, but it would require many more people to obtain similar power to the paired
samples study.

power.t.test(delta = 0.18, sd = 0.41, sig.level = 0.05,
power = 0.9, type="two.sample", alternative="two.sided")

Two-sample t test power calculation

n = 110
delta = 0.18

sd = 0.41
sig.level = 0.05

power = 0.9
alternative = two.sided

NOTE: n is number in *each* group

In all, 220 people would be required in the independent samples study (110 in each exposure
group), as compared to only 57 people (each measured twice) in the paired study.
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24 Analysis of Variance

24.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(ggridges)
library(janitor)
library(mosaic)
library(tidyverse)

theme_set(theme_bw())

24.2 National Youth Fitness Survey

Recall the National Youth Fitness Survey, which we explored a small piece of in Chapter 10.
We’ll look at a different part of the same survey here - specifically the 280 children whose data
are captured in the nyfs2 file.

nyfs2 <- read_csv("data/nyfs2.csv", show_col_types = FALSE) |>
clean_names()

nyfs2

# A tibble: 280 x 21
subject_id sex age_exam race_eth english income_cat3 income_detail

<dbl> <chr> <dbl> <chr> <dbl> <chr> <chr>
1 73228 Male 4 5 Other or Mult~ 1 Low (below~ 0 to 4999
2 72393 Male 4 2 Non-Hispanic ~ 1 Low (below~ 0 to 4999
3 73303 Male 3 2 Non-Hispanic ~ 1 Low (below~ 0 to 4999
4 72786 Male 5 1 Non-Hispanic ~ 1 Low (below~ 0 to 4999
5 73048 Male 3 2 Non-Hispanic ~ 1 Low (below~ 0 to 4999
6 72556 Female 4 2 Non-Hispanic ~ 1 Low (below~ 0 to 4999
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7 72580 Female 5 2 Non-Hispanic ~ 1 Low (below~ 0 to 4999
8 72532 Female 4 4 Other Hispanic 0 Low (below~ 0 to 4999
9 73012 Male 4 1 Non-Hispanic ~ 1 Low (below~ 0 to 4999

10 72099 Male 6 1 Non-Hispanic ~ 1 Low (below~ 0 to 4999
# i 270 more rows
# i 14 more variables: inc_to_pov <dbl>, weight_kg <dbl>, height_cm <dbl>,
# bmi <dbl>, bmi_group <dbl>, bmi_cat <chr>, arm_length <dbl>,
# arm_circ <dbl>, waist_circ <dbl>, calf_circ <dbl>, calf_skinfold <dbl>,
# triceps_skinfold <dbl>, subscap_skinfold <dbl>, gmq <dbl>

24.3 Comparing Gross Motor Quotient Scores by Income Level (3
Categories)

nyfs2a <- nyfs2 |>
select(subject_id, income_cat3, gmq) |>
arrange(subject_id)

In this first analysis, we’ll compare the population mean on the Gross Motor Quotient eval-
uation of these kids across three groups defined by income level. Higher values of this GMQ
measure indicate improved levels of gross motor development, both in terms of locomotor and
object control. See https://wwwn.cdc.gov/Nchs/Nnyfs/Y_GMX.htm for more details.

nyfs2a |>
group_by(income_cat3) |>
summarise(n = n(), mean(gmq), median(gmq))

# A tibble: 3 x 4
income_cat3 n `mean(gmq)` `median(gmq)`
<chr> <int> <dbl> <dbl>

1 High (65K or more) 92 95.7 97
2 Low (below 25K) 98 97.0 97
3 Middle (25 - 64K) 90 95.4 94

Uh, oh. We should rearrange those income categories to match a natural order from low to
high.

nyfs2a <- nyfs2a |>
mutate(income_cat3 = fct_relevel(income_cat3,

"Low (below 25K)", "Middle (25 - 64K)", "High (65K or more)"))
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When working with three independent samples, I use graphs analogous to those we built for
two independent samples.

ggplot(nyfs2a, aes(x = income_cat3, y = gmq, fill = income_cat3)) +
geom_violin(aes(col = income_cat3), alpha = 0.5) +
geom_boxplot(notch = TRUE, alpha = 0.75, width = 0.3) +
stat_summary(fun = "mean", geom = "point",

shape = 23, size = 3, fill = "white") +
coord_flip() +
guides(fill = "none", col = "none") +
labs(title = "GMQ Scores for 280 Children in NNYFS",

y = "GMQ Score, in points", x = "Income Category")
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GMQ Scores for 280 Children in NNYFS

In addition to this comparison boxplot, we might consider faceted histograms.

ggplot(nyfs2a, aes(x = gmq, fill = income_cat3)) +
geom_histogram(bins = 15, col = "white") +
guides(fill = "none") +
facet_wrap(~ income_cat3)
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Or, if we want to ignore the (modest) sample size differences, we might consider density
functions, perhaps through a ridgeline plot.

ggplot(nyfs2a, aes(x = gmq, y = income_cat3, fill = income_cat3)) +
geom_density_ridges(scale = 0.9) +
guides(fill = "none") +
labs(title = "GMQ Score (in points) by Income Group",

x = "GMQ Score", y = "") +
theme_ridges()

Picking joint bandwidth of 4.7
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by(nyfs2a$gmq, nyfs2a$income_cat3, favstats)

nyfs2a$income_cat3: Low (below 25K)
min Q1 median Q3 max mean sd n missing
55 91 97 106 130 97.03061 14.79444 98 0

------------------------------------------------------------
nyfs2a$income_cat3: Middle (25 - 64K)
min Q1 median Q3 max mean sd n missing
67 85 94 106 136 95.36667 14.15123 90 0

------------------------------------------------------------
nyfs2a$income_cat3: High (65K or more)
min Q1 median Q3 max mean sd n missing
64 85 97 103 145 95.72826 14.49525 92 0

24.4 Alternative Procedures for Comparing More Than Two Means

Now, if we only had two independent samples, we’d be choosing between a pooled t test, a
Welch t test, and a non-parametric procedure like the Wilcoxon-Mann-Whitney rank sum test,
or even perhaps a bootstrap alternative.

483



In the case of more than two independent samples, we have methods analogous to the Welch
test, and the rank sum test, and even the bootstrap, but we’re going to be far more likely
to select the analysis of variance (ANOVA) or an equivalent regression-based approach.
These are the extensions of the pooled t test. Unless the sample outcome data are very
clearly not Normally distributed, and no transformation is available which makes them appear
approximately Normal in all of the groups we are comparing, we will stick with ANOVA.

24.4.1 Extending the Welch Test to > 2 Independent Samples

It is possible to extend the Welch two-sample t test (not assuming equal population variances)
into an analogous one-factor analysis for comparing population means based on independent
samples from more than two groups.

If we want to compare the population mean GMQ levels across those three income groups
without assuming equal population variances, oneway.test is up to the task. The hypotheses
being tested here are:

• H0: All three means are the same vs.
• HA: At least one of the population means is different than the others.

oneway.test(gmq ~ income_cat3, data = nyfs2a)

One-way analysis of means (not assuming equal variances)

data: gmq and income_cat3
F = 0.3416, num df = 2.00, denom df = 184.41, p-value = 0.7111

We get a p value, but this isn’t much help, though, because we don’t have any measure of effect
size, nor do we have any confidence intervals. Like the analogous Welch t test, this approach
allows us to forego the assumption of equal population variances in each of the three income
groups, but it still requires us to assume that the populations are Normally distributed.

That said, most of the time when we have more than two levels of the factor of interest, we won’t
bother worrying about the equal population variance assumption, and will just use the one-
factor ANOVA approach (with pooled variances) described below, to make the comparisons
of interest.
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24.4.2 Extending the Rank Sum Test to > 2 Independent Samples

It is also possible to extend the Wilcoxon-Mann-Whitney two-sample test into an analogous
one-factor analysis called the Kruskal-Wallis test for comparing population measures of
location based on independent samples from more than two groups.

If we want to compare the centers of the distributions of population GMQ score across our
three income groups without assuming Normality, we can use kruskal.test.

The hypotheses being tested here are still as before, but for a measure of location other than
the population mean

kruskal.test(gmq ~ income_cat3, data = nyfs2a)

Kruskal-Wallis rank sum test

data: gmq by income_cat3
Kruskal-Wallis chi-squared = 2.3202, df = 2, p-value = 0.3135

Again, note that this isn’t much help, though, because we don’t have any measure of effect
size, nor do we have any confidence intervals.

That said, most of the time when we have more than two levels of the factor of interest, we
won’t bother worrying about potential violations of the Normality assumption unless they
are glaring, and will just use the usual one-factor ANOVA approach (with pooled variances)
described below, to make the comparisons of interest.

24.4.3 Can we use the bootstrap to compare more than two means?

Sure. There are both ANOVA and ANCOVA analogues using the bootstrap, and in fact, there
are power calculations based on the bootstrap, too. If you want to see some example code, look
at https://sammancuso.com/2017/11/01/model-based-bootstrapped-anova-and-ancova/

24.5 The Analysis of Variance

Extending the two-sample t test (assuming equal population variances) into a comparison of
more than two samples uses the analysis of variance or ANOVA.

This is an analysis of a continuous outcome variable on the basis of a single categorical factor,
in fact, it’s often called one-factor ANOVA or one-way ANOVA to indicate that the outcome
is being split up into the groups defined by a single factor.
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The null hypothesis is that the population means are all the same, and the alternative is that
this is not the case. When there are just two groups, then this boils down to an F test that is
equivalent to the Pooled t test.

24.5.1 The oneway.test approach

R will produce some elements of a one-factor ANOVA using the oneway.test command:

oneway.test(gmq ~ income_cat3, data = nyfs2a, var.equal=TRUE)

One-way analysis of means

data: gmq and income_cat3
F = 0.34687, num df = 2, denom df = 277, p-value = 0.7072

This isn’t the full analysis, though, which would require a more complete ANOVA table. There
are two equivalent approaches to obtaining the full ANOVA table when comparing a series of
2 or more population means based on independent samples.

24.5.2 Using the aov approach and the summary function

Here’s one possible ANOVA table, which doesn’t require directly fitting a linear model.

summary(aov(gmq ~ income_cat3, data = nyfs2a))

Df Sum Sq Mean Sq F value Pr(>F)
income_cat3 2 146 72.85 0.347 0.707
Residuals 277 58174 210.01

24.5.3 Using the anova function after fitting a linear model

An equivalent way to get identical results in a slightly different format runs the linear model
behind the ANOVA approach directly.

anova(lm(gmq ~ income_cat3, data = nyfs2a))
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Analysis of Variance Table

Response: gmq
Df Sum Sq Mean Sq F value Pr(>F)

income_cat3 2 146 72.848 0.3469 0.7072
Residuals 277 58174 210.014

24.6 Interpreting the ANOVA Table

24.6.1 What are we Testing?

The null hypothesis for the ANOVA table is that the population means of the outcome across
the various levels of the factor of interest are all the same, against a two-sided alternative
hypothesis that the level-specific population means are not all the same.

Specifically, if we have a grouping factor with k levels, then we are testing:

• H0: All k population means are the same.
• HA: At least one of the population means is different from the others.

24.6.2 Elements of the ANOVA Table

The ANOVA table breaks down the variation in the outcome explained by the k levels of the
factor of interest, and the variation in the outcome which remains (the Residual, or Error).

Specifically, the elements of the ANOVA table are:

1. the degrees of freedom (labeled Df) for the factor of interest and for the Residuals
2. the sums of squares (labeled Sum Sq) for the factor of interest and for the Residuals
3. the mean square (labeled Mean Sq) for the factor of interest and for the Residuals
4. the ANOVA F test statistic (labeled F value), which is used to generate
5. the p value for the comparison assessed by the ANOVA model, labeled Pr(>F)

24.6.3 The Degrees of Freedom

anova(lm(gmq ~ income_cat3, data = nyfs2a))
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Analysis of Variance Table

Response: gmq
Df Sum Sq Mean Sq F value Pr(>F)

income_cat3 2 146 72.848 0.3469 0.7072
Residuals 277 58174 210.014

• The degrees of freedom attributable to the factor of interest (here, Income category)
is the number of levels of the factor minus 1. Here, we have three Income categories
(levels), so df(income_cat3) = 2.

• The total degrees of freedom are the number of observations (across all levels of the
factor) minus 1. We have 280 GMQ scores in the nyfs2a data, so the df(Total) must be
279, although the Total row isn’t shown by R in its output.

• The Residual degrees of freedom are the Total df - Factor df. So, here, that’s 279 - 2 =
277.

24.6.4 The Sums of Squares

anova(lm(gmq ~ income_cat3, data = nyfs2a))

Analysis of Variance Table

Response: gmq
Df Sum Sq Mean Sq F value Pr(>F)

income_cat3 2 146 72.848 0.3469 0.7072
Residuals 277 58174 210.014

• The sum of squares (often abbreviated SS or Sum Sq) represents variation explained.
• The factor SS is the sum across all levels of the factor of the sample size for the level

multiplied by the squared difference between the level mean and the overall mean across
all levels. Here, SS(income_cat3) = 146

• The total SS is the sum across all observations of the square of the difference between
the individual values and the overall mean. Here, that is 146 + 58174 = 58320

• Residual SS = Total SS - Factor SS.
• Also of interest is a calculation called 𝜂2, (“eta-squared”), which is equivalent to 𝑅2 in

a linear model.

– SS(Factor) / SS(Total) = the proportion of variation in our outcome (here, GMQ)
explained by the variation between groups (here, income groups)

– In our case, 𝜂2 = 146 / (146 + 58174) = 146 / 58320 = 0.0025
– So, Income Category alone accounts for about 0.25% of the variation in GMQ levels

observed in these data.
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24.6.5 The Mean Square

anova(lm(gmq ~ income_cat3, data = nyfs2a))

Analysis of Variance Table

Response: gmq
Df Sum Sq Mean Sq F value Pr(>F)

income_cat3 2 146 72.848 0.3469 0.7072
Residuals 277 58174 210.014

• The Mean Square is the Sum of Squares divided by the degrees of freedom, so MS(Factor)
= SS(Factor)/df(Factor).

• In our case, MS(income_cat3) = SS(income_cat3)/df(income_cat3) = 146 / 2 = 72.848
(notice that R maintains more decimal places than it shows for these calculations) and

• MS(Residuals) = SS(Residuals) / df(Residuals) = 58174 / 277 = 210.014.

– MS(Residuals) or MS(Error) is an estimate of the residual variance which corre-
sponds to 𝜎2 in the underlying linear model for the outcome of interest, here GMQ.

24.6.6 The F Test Statistic and p Value

anova(lm(gmq ~ income_cat3, data = nyfs2a))

Analysis of Variance Table

Response: gmq
Df Sum Sq Mean Sq F value Pr(>F)

income_cat3 2 146 72.848 0.3469 0.7072
Residuals 277 58174 210.014

• The ANOVA F test is obtained by calculating MS(Factor) / MS(Residuals). So in our
case, F = 72.848 / 210.014 = 0.3469

• The F test statistic is then compared to a specific F distribution to obtain a p value,
which is shown here to be 0.7072

• Specifically, the observed F test statistic is compared to an F distribution with numerator
df = Factor df, and denominator df = Residual df to obtain the p value.

– Here, we have SS(Factor) = 146 (approximately), and df(Factor) = 2, leaving
MS(Factor) = 72.848
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– We have SS(Residual) = 58174, and df(Residual) = 277, leaving MS(Residual) =
210.014

– MS(Factor) / MS(Residual) = F value = 0.3469, which, when compared to an F
distribution with 2 and 277 degrees of freedom, yields a p value of 0.7072

24.7 The Residual Standard Error

The residual standard error is simply the square root of the variance estimate MS(Residual).
Here, MS(Residual) = 210.014, so the Residual standard error = 14.49 points.

24.8 The Proportion of Variance Explained by the Factor

We will often summarize the proportion of the variation explained by the factor. The summary
statistic is called eta-squared (𝜂2), and is equivalent to the 𝑅2 value we have seen previously
in linear regression models.

Again, 𝜂2 = SS(Factor) / SS(Total)

Here, we have - SS(income_cat3) = 146 and SS(Residuals) = 58174, so SS(Total) = 58320 -
Thus, 𝜂2 = SS(Factor)/SS(Total) = 146/58320 = 0.0025

The income category accounts for 0.25% of the variation in GMQ levels: only a tiny fraction.

24.9 The Regression Approach to Compare Population Means
based on Independent Samples

This approach is equivalent to the ANOVA approach, and thus also (when there are just
two samples to compare) to the pooled-variance t test. We run a linear regression model to
predict the outcome (here, GMQ) on the basis of the categorical factor with three levels (here,
income_cat3)

summary(lm(gmq ~ income_cat3, data=nyfs2a))

Call:
lm(formula = gmq ~ income_cat3, data = nyfs2a)

Residuals:
Min 1Q Median 3Q Max
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-42.031 -9.031 -0.031 8.969 49.272

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 97.031 1.464 66.282 <2e-16 ***
income_cat3Middle (25 - 64K) -1.664 2.116 -0.786 0.432
income_cat3High (65K or more) -1.302 2.104 -0.619 0.536
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14.49 on 277 degrees of freedom
Multiple R-squared: 0.002498, Adjusted R-squared: -0.004704
F-statistic: 0.3469 on 2 and 277 DF, p-value: 0.7072

24.9.1 Interpreting the Regression Output

This output tells us many things, but for now, we’ll focus just on the coefficients output, which
tells us that:

• the point estimate for the population mean GMQ score across “Low” income subjects is
97.03

• the point estimate (sample mean difference) for the difference in population mean GMQ
level between the “Middle” and “Low” income subjects is -1.66 (in words, the Middle
income kids have lower GMQ scores than the Low income kids by 1.66 points on average.)

• the point estimate (sample mean difference) for the difference in population mean GMQ
level between the “High” and “Low” income subjects is -1.30 (in words, the High income
kids have lower GMQ scores than the Low income kids by 1.30 points on average.)

Of course, we knew all of this already from a summary of the sample means.

nyfs2a |>
group_by(income_cat3) |>
summarise(n = n(), mean(gmq))

# A tibble: 3 x 3
income_cat3 n `mean(gmq)`
<fct> <int> <dbl>

1 Low (below 25K) 98 97.0
2 Middle (25 - 64K) 90 95.4
3 High (65K or more) 92 95.7

491



The model for predicting GMQ is based on two binary (1/0) indicator variables, specifically,
we have:

• Estimated GMQ = 97.03 - 1.66 x [1 if Middle income or 0 if not] - 1.30 x [1 if High
income or 0 if not]

The coefficients section also provides a standard error and t statistic and two-sided p value for
each coefficient.

24.9.2 The Full ANOVA Table

To see the full ANOVA table corresponding to any linear regression model, we run…

anova(lm(gmq ~ income_cat3, data=nyfs2a))

Analysis of Variance Table

Response: gmq
Df Sum Sq Mean Sq F value Pr(>F)

income_cat3 2 146 72.848 0.3469 0.7072
Residuals 277 58174 210.014

24.9.3 ANOVA Assumptions

The assumptions behind analysis of variance are the same as those behind a linear model. Of
specific interest are:

• The samples obtained from each group are independent.
• Ideally, the samples from each group are a random sample from the population described

by that group.
• In the population, the variance of the outcome in each group is equal. (This is less of an

issue if our study involves a balanced design.)
• In the population, we have Normal distributions of the outcome in each group.

Happily, the F test is fairly robust to violations of the Normality assumption.
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24.10 Equivalent approach to get ANOVA Results

summary(aov(gmq ~ income_cat3, data = nyfs2a))

Df Sum Sq Mean Sq F value Pr(>F)
income_cat3 2 146 72.85 0.347 0.707
Residuals 277 58174 210.01

So which of the pairs of means are driving the differences we see?

24.11 The Problem of Multiple Comparisons

1. Suppose we compare High to Low, using a test with 𝛼 = 0.05
2. Then we compare Middle to Low on the same outcome, also using 𝛼 = 0.05
3. Then we compare High to Middle, also with 𝛼 = 0.05

What is our overall 𝛼 level across these three comparisons?

• It could be as bad as 0.05 + 0.05 + 0.05, or 0.15.
• Rather than our nominal 95% confidence, we have something as low as 85% confidence

across this set of simultaneous comparisons.

24.11.1 The Bonferroni solution

1. Suppose we compare High to Low, using a test with 𝛼 = 0.05/3
2. Then we compare Middle to Low on the same outcome, also using 𝛼 = 0.05/3
3. Then we compare High to Middle, also with 𝛼 = 0.05/3

Then across these three comparisons, our overall 𝛼 can be (at worst)

• 0.05/3 + 0.05/3 + 0.05/3 = 0.05
• So by changing our nominal confidence level from 95% to 98.333% in each comparison,

we wind up with at least 95% confidence across this set of simultaneous comparisons.
• This is a conservative (worst case) approach.

Goal: Simultaneous comparisons of White vs AA, AA vs Other and White vs Other

pairwise.t.test(nyfs2a$gmq, nyfs2a$income_cat3, p.adjust="bonferroni")
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Pairwise comparisons using t tests with pooled SD

data: nyfs2a$gmq and nyfs2a$income_cat3

Low (below 25K) Middle (25 - 64K)
Middle (25 - 64K) 1 -
High (65K or more) 1 1

P value adjustment method: bonferroni

These p values are very large.

24.11.2 Pairwise Comparisons using Tukey’s HSD Method

Goal: Simultaneous (less conservative) confidence intervals and p values for our three pairwise
comparisons (High vs. Low, High vs. Middle, Middle vs. Low)

TukeyHSD(aov(gmq ~ income_cat3, data = nyfs2a))

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = gmq ~ income_cat3, data = nyfs2a)

$income_cat3
diff lwr upr p adj

Middle (25 - 64K)-Low (below 25K) -1.6639456 -6.649518 3.321627 0.7116745
High (65K or more)-Low (below 25K) -1.3023514 -6.259595 3.654892 0.8098084
High (65K or more)-Middle (25 - 64K) 0.3615942 -4.701208 5.424396 0.9845073

24.11.3 Plotting the Tukey HSD results

plot(TukeyHSD(aov(gmq ~ income_cat3, data = nyfs2a)))
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Note that the default positioning of the y axis in the plot of Tukey HSD results can be
problematic. If we have longer names, in particular, for the levels of our factor, R will leave out
some of the labels. We can alleviate that problem either by using the fct_recode function in
the forcats package to rename the factor levels, or we can use the following code to reconfigure
the margins of the plot.

mar.default <- c(5,6,4,2) + 0.1 # save default plotting margins

par(mar = mar.default + c(0, 12, 0, 0))
plot(TukeyHSD(aov(gmq ~ income_cat3, data = nyfs2a)), las = 2)
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par(mar = mar.default) # return to normal plotting margins

24.12 What if we consider another outcome, BMI?

We’ll look at the full data set in nyfs2 now, so we can look at BMI as a function of income.

nyfs2$income_cat3 <-
fct_relevel(nyfs2$income_cat3,

"Low (below 25K)", "Middle (25 - 64K)", "High (65K or more)")

ggplot(nyfs2, aes(x = bmi, y = income_cat3, fill = income_cat3)) +
geom_density_ridges(scale = 0.9) +
guides(fill = "none") +
labs(title = "Body-Mass Index by Income Group",

x = "Body-Mass Index", y = "") +
theme_ridges()
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High (65K or more)
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Body−Mass Index

Body−Mass Index by Income Group

ggplot(nyfs2, aes(x = income_cat3, y = bmi, fill = income_cat3)) +
geom_violin(aes(col = income_cat3), alpha = 0.5) +
geom_boxplot(width = 0.3, notch = TRUE, alpha = 0.75) +
stat_summary(fun = "mean", geom = "point",

shape = 23, size = 3, fill = "white") +
coord_flip() +
guides(fill = "none", col = "none") +
labs(title = "BMI for 280 Children in NNYFS",

y = "Body-Mass Index", x = "Income Category")
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Here are the descriptive numerical summaries:

mosaic::favstats(bmi ~ income_cat3, data = nyfs2)

income_cat3 min Q1 median Q3 max mean sd n missing
1 Low (below 25K) 13.8 15.500 16.50 17.9 25.2 16.98163 2.194574 98 0
2 Middle (25 - 64K) 13.7 15.225 16.05 16.9 24.1 16.37111 1.898920 90 0
3 High (65K or more) 13.8 15.300 15.85 17.2 21.8 16.27065 1.614395 92 0

Here is the ANOVA table.

anova(lm(bmi ~ income_cat3, data = nyfs2))

Analysis of Variance Table

Response: bmi
Df Sum Sq Mean Sq F value Pr(>F)

income_cat3 2 28.32 14.1583 3.8252 0.02298 *
Residuals 277 1025.26 3.7013
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Let’s consider the Tukey HSD results. First, we’ll create a factor with shorter labels.

nyfs2$inc.new <-
fct_recode(nyfs2$income_cat3,

"Low" = "Low (below 25K)", "Middle" = "Middle (25 - 64K)",
"High" = "High (65K or more)")

plot(TukeyHSD(aov(bmi ~ inc.new, data = nyfs2),
conf.level = 0.90))
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Differences in mean levels of inc.new

It appears that there is a detectable difference between the bmi means of the “Low” group
and both the “High” and “Middle” group at the 90% confidence level, but no detectable
difference between “Middle” and “High.” Details of those confidence intervals for those pairwise
comparisons follow.

TukeyHSD(aov(bmi ~ inc.new, data = nyfs2),
conf.level = 0.90)

Tukey multiple comparisons of means
90% family-wise confidence level

Fit: aov(formula = bmi ~ inc.new, data = nyfs2)
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$inc.new
diff lwr upr p adj

Middle-Low -0.6105215 -1.1893722 -0.03167084 0.0775491
High-Low -0.7109805 -1.2865420 -0.13541892 0.0306639
High-Middle -0.1004589 -0.6882764 0.48735849 0.9339289

500



25 Estimating a Population Proportion

We’ve focused on creating statistical inferences about a population mean, or difference between
means, where we care about a quantitative outcome. Now, we’ll tackle categorical outcomes,
by estimating a confidence interval around a population proportion.

25.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

source("data/Love-boost.R")
library(janitor)
library(kableExtra)
library(mosaic)
library(broom)
library(tidyverse)

theme_set(theme_bw())

25.2 A First Example: Serum Zinc in the “Normal” Range?

Recall that in the serum zinc study discussed in Chapter 19, we have 462 teenage male subjects,
of whom 395 (or 85.5%) fell in the “normal range” of 66 to 110 micrograms per deciliter.

serzinc <- read_csv("data/serzinc.csv", show_col_types = FALSE)

serzinc <- serzinc |>
mutate(in_range = ifelse(zinc >= 66 & zinc <= 110, 1, 0))

serzinc |> tabyl(in_range) |>
adorn_totals() |> adorn_pct_formatting()
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term estimate std.error statistic p.value conf.low conf.high
(Intercept) 0.855 0.016 52.133 0 0.828 0.882

in_range n percent
0 67 14.5%
1 395 85.5%

Total 462 100.0%

Previously, we estimated a confidence interval for the mean of the population zinc levels. Now,
we want to estimate a confidence interval for the proportion of the population whose serum
zinc levels are in the range of 66 to 110. We want to build both a point estimate for the
population proportion, and a confidence interval for the population proportion.

Now, let’s identify a 95% confidence interval for the proportion of the population whose zinc
levels are within the “normal” range. We have seen that 395 / 462 subjects (or a proportion of
0.855) fall in the “normal range” in our sample. For now, that will also be our point estimate
of the proportion in the “normal range” across the entire population of teenagers like those in
our sample.

serzinc <- serzinc |>
mutate(in_range = ifelse(zinc > 65 & zinc < 111, 1, 0))

serzinc |> tabyl(in_range)

in_range n percent
0 67 0.1450216
1 395 0.8549784

Once we’ve created this 0-1 variable, there are several available approaches for wrapping a
confidence interval around this proportion.

25.2.1 Using an Intercept-Only Regression Again?

We might consider taking the same approach as we did with the population mean earlier:

model_zincprop <- lm(in_range ~ 1, data = serzinc)

tidy(model_zincprop, conf.int = TRUE, conf = 0.90) |>
kbl(digits = 3) |> kable_minimal()

502



While there are more powerful approaches to estimate a confidence interval around this pro-
portion, this simple approach turns out not to be too bad, so long as the sample proportion
isn’t very close to either 0 or 1.

25.2.2 A 100(1-𝛼)% Confidence Interval for a Population Proportion

Suppose we want to estimate a confidence interval for an unknown population proportion, 𝜋,
on the basis of a random sample of n observations from that population which yields a sample
proportion of p. Note that this p is the sample proportion – it’s not a p value.

• In our serum zinc example, we have n = 462 observations, with a sample proportion (“in
range”) of p = 0.855.

A 100(1-𝛼)% confidence interval for the population proportion 𝜋 can be created by using the
standard normal distribution, the sample proportion, p, and the standard error of a sample
proportion, which is defined as the square root of p multiplied by (1-p) divided by the sample
size, n.

• So the standard error is estimated in our serum zinc example as:

√𝑝(1 − 𝑝)
𝑛 = √0.855(1 − 0.855)

462 =
√

0.000268 = 0.016

And thus, our confidence interval is 𝑝 ± 𝑍𝛼/2√𝑝(1−𝑝)
𝑛

where 𝑍𝛼/2 = the value from a standard Normal distribution cutting off the top 𝛼/2 of the
distribution, obtained in R by substituting the desired 𝛼/2 value into the following command:
qnorm(alpha/2, lower.tail=FALSE).

Note: This interval is reasonably accurate so long as np and n(1-p) are each at least 5.

• For the serum zinc data, we have np = (462)(0.855) = 395 and n(1-p) = 462(1 - 0.855)
= 67, so this should be ok.

• For 𝛼 = 0.05, we have 𝑍𝛼/2 = 1.96, approximately.

qnorm(0.025, lower.tail = FALSE)

[1] 1.959964

• Thus, for the serum zinc estimate, this confidence interval would be:
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𝑝 ± 𝑍𝛼/2√𝑝(1 − 𝑝)
𝑛 = 395

462 ± 1.96√0.855(1 − 0.855)
462 = 0.855 ± 0.032

or (0.823, 0.887).

25.3 Using binom.test from the mosaic package

I am aware of at least seven different procedures for estimating a confidence interval for a
population proportion using R. All have minor weaknesses: none is importantly different
from the others in many practical situations. Five of these methods are available using the
binom.test function from the mosaic package in R.

The general format for using the binom.test function is as follows:

binom.test(x = 395, # substitute in number of successes
n = 462, # substitute in number of trials
conf.level = 0.95, # default confidence level
p = 0.5, # default null hypothesis proportion
ci.method = "XXX") # see below for XXX options

where the appropriate ci.method is obtained from the table below.

Approach ci.method to be used
Wald “Wald”
Clopper-Pearson “Clopper-Pearson” or “binom.test”
Score “Score” or “prop.test”
Agresti-Coull “agresti-coull”
Plus4 “plus4”

25.3.1 The Wald test approach

The Wald approach can be used to establish a very similar confidence interval to the one we
calculated above, based on something called the Wald test.

Here, we specify the x and n values. n is the total number of observations, and x is the number
where the event of interest (in this case, serum zinc levels in the normal range) occurs. So x
= 395 and n = 462.
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estimate conf.low conf.high statistic parameter
0.855 0.823 0.887 395 462

method alternative p.value
Exact binomial test (Wald CI) two.sided 0

m_wald <- binom.test(x = 395, n = 462,
conf.level = 0.95,
ci.method = "Wald")

m_wald

Exact binomial test (Wald CI)

data: 395 out of 462
number of successes = 395, number of trials = 462, p-value < 2.2e-16
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.8228698 0.8870869
sample estimates:
probability of success

0.8549784

The Wald confidence interval is always symmetric around our point estimate, and can dip
below 0 or above 1.

When I fit intervals using the approaches in mosaic::binom_test() I will usually tidy them.

tidy(m_wald) |>
select(estimate, conf.low, conf.high, statistic, parameter) |>
kbl(digits = 3) |> kable_classic(full_width = F)

The other elements of the tidied result are shown below.

tidy(m_wald) |>
select(method, alternative, p.value) |>
kbl(digits = 3) |> kable_classic(full_width = F)
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estimate conf.low conf.high statistic parameter
0.855 0.82 0.886 395 462

25.3.2 The Clopper-Pearson approach

The binom.test command can be used to establish an “exact” confidence interval. This uses
the method of Clopper and Pearson from 1934, and is exact in the sense that it guarantees,
for instance, that the confidence level associated with the interval is at least as large as the
nominal level of 95%, but not that the interval isn’t wider than perhaps it needs to be.

m_clopper <- binom.test(x = 395, n = 462,
conf.level = 0.95,
ci.method = "Clopper-Pearson")

m_clopper

data: 395 out of 462
number of successes = 395, number of trials = 462, p-value < 2.2e-16
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.8195187 0.8858100
sample estimates:
probability of success

0.8549784

Clopper-Pearson is used by stats::binom.test() in R as well. Again, it guarantees coverage
at least as large as the nominal coverage rate, but may produce wider intervals than the other
methods we’ll see. The 95% confidence interval by this method is (0.820, 0.886), which is in
the same general range as our previous estimates.

tidy(m_clopper) |>
select(estimate, conf.low, conf.high, statistic, parameter) |>
kbl(digits = 3) |> kable_classic(full_width = F)
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estimate conf.low conf.high statistic parameter
0.855 0.82 0.884 395 462

25.3.3 The Score approach

m_score <- mosaic::binom.test(x = 395, n = 462,
conf.level = 0.95,
ci.method = "Score")

m_score

Exact binomial test (Score CI without continuity correction)

data: 395 out of 462
number of successes = 395, number of trials = 462, p-value < 2.2e-16
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.8199415 0.8841607
sample estimates:
probability of success

0.8549784

The Score approach is also used by stats::prop.test() and creates CIs by inverting p-values
from score tests. It can be applied with a continuity correction (use ci.method = “prop.test”)
or without.

In this case, we see that the Score approach and the Clopper-Pearson approach give very
similar results.

tidy(m_score) |>
select(estimate, conf.low, conf.high, statistic, parameter) |>
kbl(digits = 3) |> kable_classic_2(full_width = F)

As mentioned, the score test can also be run incorporating something called a continuity
correction, since we are using a Normal approximation to the exact binomial distribution to
establish our margin for error. R, by default, includes this continuity correction for the Score
test when we use prop.test to collect it.

m_score_cor <- binom.test(x = 395, n = 462,
conf.level = 0.95,
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estimate conf.low conf.high statistic parameter
0.855 0.819 0.885 395 462

ci.method = "prop.test")

m_score_cor

Exact binomial test (Score CI with continuity correction)

data: 395 out of 462
number of successes = 395, number of trials = 462, p-value < 2.2e-16
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.8187706 0.8851359
sample estimates:
probability of success

0.8549784

tidy(m_score_cor) |>
select(estimate, conf.low, conf.high, statistic, parameter) |>
kbl(digits = 3) |> kable_paper(full_width = F)

25.3.4 The Agresti-Coull Approach

m_agresti <- binom.test(x = 395, n = 462,
conf.level = 0.95,
ci.method = "agresti-coull")

m_agresti

Exact binomial test (Agresti-Coull CI)

data: 395 out of 462
number of successes = 395, number of trials = 462, p-value < 2.2e-16
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
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estimate conf.low conf.high statistic parameter
0.855 0.82 0.884 395 462

0.8198094 0.8842928
sample estimates:
probability of success

0.8549784

The Agresti-Coull approach is the Wald method after adding Z successes and Z failures to the
data, where Z is the appropriate quantile for a standard Normal distribution (1.96 for a 95%
CI).

tidy(m_agresti) |>
select(estimate, conf.low, conf.high, statistic, parameter) |>
kbl(digits = 3) |> kable_paper(full_width = F)

25.3.5 The “Plus 4” approach

This approach is just the Wald method after adding 2 successes and 2 failures (so 4 observa-
tions) to the data. It will be very similar to the Agresti-Coull method if we are working with
a 95% confidence interval.

m_plus4 <- binom.test(x = 395, n = 462,
conf.level = 0.95,
ci.method = "plus4")

m_plus4

Exact binomial test (Plus 4 CI)

data: 395 out of 462
number of successes = 395, number of trials = 462, p-value < 2.2e-16
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.8196844 0.8841783
sample estimates:
probability of success

0.8549784
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estimate conf.low conf.high statistic parameter
0.855 0.82 0.884 395 462

tidy(m_plus4) |>
select(estimate, conf.low, conf.high, statistic, parameter) |>
kbl(digits = 3) |> kable_paper(full_width = F)

25.3.6 SAIFS: single augmentation with an imaginary failure or success

SAIFS stands for “single augmentation with an imaginary failure or success” and the method
I’ll describe is one of several similar approaches. The next subsection describes the R code for
calculating the relevant confidence interval.

An approach I like for the estimation of a confidence interval for a single population propor-
tion/rate1 is to estimate the lower bound of a confidence interval with an imaginary failure
added to the observed data, and estimate the upper bound of a confidence interval with an
imaginary success added to the data.

Suppose we have X successes in n trials, and we want to establish a confidence interval for the
population proportion of successes.

Let 𝑝1 = (𝑋 + 0)/(𝑛 + 1), 𝑝2 = (𝑋 + 1)/(𝑛 + 1), 𝑞1 = 1 − 𝑝1, 𝑞2 = 1 − 𝑝2

• The lower bound of a 100(1-𝛼)% confidence interval for the population proportion of
successes using the SAIFS procedure is then 𝐿𝐵𝑆𝐴𝐼𝐹𝑆(𝑥, 𝑛, 𝛼) = 𝑝1 − 𝑡𝛼/2,𝑛−1√𝑝1𝑞1

𝑛

• The upper bound of that same 100(1-𝛼)% confidence interval for the population propor-
tion of successes using the SAIFS procedure is 𝑈𝐵𝑆𝐴𝐼𝐹𝑆(𝑥, 𝑛, 𝛼) = 𝑝2 + 𝑡𝛼/2,𝑛−1√𝑝2𝑞2

𝑛

Returning to the serum zinc example, we’ve got 395 “successes” (value in the normal range)
out of 462 “trials” (values measured), so that X = 395 and n = 462

So we have 𝑝1 = 𝑋+0
𝑛+1 = 395

463 = 0.8531, 𝑝2 = 𝑋+1
𝑛+1 = 396

463 = 0.8553, and 𝑞1 = 1 − 𝑝1 = 0.1469
and 𝑞2 = 1 − 𝑝2 = 0.1447
We have 𝑛 = 462 so if we want a 95% confidence interval (𝛼 = 0.05), then we have 𝑡𝛼/2,𝑛−1 =
𝑡0.025,461 = 1.9651, which I determined using R’s qt function:

qt(0.025, df = 461, lower.tail=FALSE)

1See Borkowf CB (2006) Constructing binomial confidence intervals with near nominal coverage by adding a
single imaginary failure or success. Statistics in Medicine. 25(21): 3679-3695. doi: 10.1002/sim.2469, or get
the whole PDF of the paper at http://onlinelibrary.wiley.com/doi/10.1002/sim.2469/pdf
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[1] 1.965123

• Thus, our lower bound for a 95% confidence interval is 𝑝1 − 𝑡𝛼/2,𝑛−1√𝑝1𝑞1
𝑛 , or 0.8531 −

1.9651√0.8531(0.1469)
462 , which is 0.8531 - 0.0324 or 0.8207.

• Our upper bound is 𝑝2 +𝑡𝛼/2,𝑛−1√𝑝2𝑞2
𝑛 , or 0.8553−1.9651√0.8553(0.1447)

462 , which is 0.8553
+ 0.0323, or 0.8876.

So the 95% SAIFS confidence interval estimate for the population proportion, 𝜋, of teenage
males whose serum zinc levels fall within the “normal range” is (0.821, 0.888).

25.3.7 A Function in R to Calculate the SAIFS Confidence Interval

I built an R function, called saifs.ci and contained in the Markdown for this document as
well as the Love-boost.R script on the web site, which takes as its arguments a value for X =
the number of successes, n = the number of trials, and conf.level = the confidence level, and
produces the sample proportion, the SAIFS lower bound and upper bound for the specified
two-sided confidence interval for the population proportion, using the equations above.

Here, for instance, are 95%, 90% and 99% confidence intervals for the population proportion
𝜋 that we have been studying in the serum zinc data.

saifs.ci(x = 395, n = 462)

Sample Proportion 0.025 0.975
0.855 0.821 0.887

saifs.ci(x = 395, n = 462, conf=0.9)

Sample Proportion 0.05 0.95
0.855 0.826 0.882

saifs.ci(x = 395, n = 462, conf=0.99, dig=5)

Sample Proportion 0.005 0.995
0.85498 0.81054 0.89763

Note that in the final interval, I asked the machine to round to five digits rather than the
default of three. On my desktop (and probably yours), doing so results in this output:
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Sample Proportion 0.005 0.995
0.85498 0.81054 0.89763

I’ve got some setting wrong in my bookdown work so that this doesn’t show up above when
the function is called. Sorry!

25.3.8 The saifs.ci function in R

`saifs.ci` <-
function(x, n, conf.level=0.95, dig=3)
{

p.sample <- round(x/n, digits=dig)

p1 <- x / (n+1)
p2 <- (x+1) / (n+1)

var1 <- (p1*(1-p1))/n
se1 <- sqrt(var1)
var2 <- (p2*(1-p2))/n
se2 <- sqrt(var2)

lowq = (1 - conf.level)/2
tcut <- qt(lowq, df=n-1, lower.tail=FALSE)

lower.bound <- round(p1 - tcut*se1, digits=dig)
upper.bound <- round(p2 + tcut*se2, digits=dig)
res <- c(p.sample, lower.bound, upper.bound)
names(res) <- c('Sample Proportion',lowq, 1-lowq)
res

}

25.4 A Second Example: Ebola Mortality Rates through 9 Months
of the Epidemic

The World Health Organization’s Ebola Response Team published an article2 in the October
16, 2014 issue of the New England Journal of Medicine, which contained some data I will use
in this example, focusing on materials from their Table 2.

2WHO Ebola Response Team (2014) Ebola virus disease in West Africa: The first 9 months of the epidemic
and forward projections. New Engl J Med 371: 1481-1495 doi: 10.1056/NEJMoa1411100
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As of September 14, 2014, a total of 4,507 confirmed and probable cases of Ebola virus disease
(EVD) had been reported from West Africa. In our example, we will look at a set of 1,737
cases, with definitive outcomes, reported in Guinea, Liberia, Nigeria and Sierra Leone.

Across these 1,737 cases, a total of 1,229 cases led to death. Based on these sample data,
what can be said about the case fatality rate in the population of EVD cases with definitive
outcomes for this epidemic?

25.4.1 Working through the Ebola Virus Disease Example

We have n = 1,737 subjects, of whom we observed death in 1,229, for a sample proportion of
𝑝 = 1229

1737 = 0.708. The standard error of that sample proportion will be

𝑆𝐸(𝑝) = √𝑝(1−𝑝)
𝑛 = √0.708(1−0.708)

1737 = 0.011
And our 95% confidence interval (so that we’ll use 𝛼 = 0.05) for the true population propor-
tion, 𝜋, of EVD cases with definitive outcomes, who will die is 𝑝 ± 𝑍.025√𝑝(1−𝑝)

𝑛 , or 0.708 ±
1.96(0.011) = 0.708 ± 0.022, or (0.686, 0.730)
Note that I simply recalled from our prior work that 𝑍0.025 = 1.96, but we can verify this:

qnorm(0.025, lower.tail=FALSE)

[1] 1.959964

Since both np=(1737)(0.708)=1230 and n(1-p)=(1737)(1-0.708)=507 are substantially greater
than 5, this should be a reasonably accurate confidence interval.

We have 95% confidence in an interval estimate for the true population proportion that falls
between 0.686 and 0.730. Equivalently, we could say that we’re 95% confident that the true
case fatality rate expressed as a percentage rather than a proportion, is between 68.6% and
73.0%.

25.4.2 Using R to estimate the CI for our Ebola example

ebola_wald <- binom.test(x = 1229, n = 1737, conf.level = 0.95,
ci.method = "Wald") |>

tidy() |> select(estimate, conf.low, conf.high)
ebola_clop <- binom.test(x = 1229, n = 1737, conf.level = 0.95,

ci.method = "Clopper-Pearson") |>
tidy() |> select(estimate, conf.low, conf.high)
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estimate conf.low conf.high approach
0.707542 0.686150 0.728934 Wald
0.707542 0.685524 0.728856 Clopper-Pearson
0.707542 0.685710 0.728457 Score
0.707542 0.685705 0.728462 Agresti-Coull
0.707542 0.685687 0.728443 Plus4

ebola_scor <- binom.test(x = 1229, n = 1737, conf.level = 0.95,
ci.method = "Score") |>

tidy() |> select(estimate, conf.low, conf.high)
ebola_agco <- binom.test(x = 1229, n = 1737, conf.level = 0.95,

ci.method = "agresti-coull") |>
tidy() |> select(estimate, conf.low, conf.high)

ebola_plus <- binom.test(x = 1229, n = 1737, conf.level = 0.95,
ci.method = "plus4") |>

tidy() |> select(estimate, conf.low, conf.high)

ebola_res <- bind_rows(ebola_wald, ebola_clop, ebola_scor,
ebola_agco, ebola_plus) |>

mutate(approach = c("Wald", "Clopper-Pearson", "Score",
"Agresti-Coull", "Plus4"))

ebola_res |> kbl(digits = 6) |> kable_classic(full_width = FALSE)

This is way more precision than we can really justify, but I just want you to see that the five
results are all (slightly) different.

25.4.3 Plotting the Confidence Intervals for the Ebola Virus Disease Example

ggplot(ebola_res, aes(x = approach, y = estimate)) +
geom_point() +
geom_errorbar(aes(ymin = conf.low, ymax = conf.high)) +
coord_flip() +
labs(title = "95% CIs for x = 1229, n = 1737")
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So in this case, it really doesn’t matter which one you choose. With a smaller sample, we may
not come to the same conclusion about the relative merits of these different approaches.

25.4.4 What about the saifs.ci() result?

saifs.ci(x = 1229, n = 1737, conf.level=0.95)

Sample Proportion 0.025 0.975
0.708 0.686 0.729

25.5 Can the Choice of Confidence Interval Method Matter?

Yes. This will especially be the case when we have a small sample size, and a probability of
“success” that is close to either 0 or 1. For instance, suppose we run 10 trials, and obtain a
single success, then use these data to estimate the true proportion of success, 𝜋.
The 90% confidence intervals under this circumstance are very different.
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approach estimate conf.low conf.high
Wald 0.1 -0.056 0.256
Clopper-Pearson 0.1 0.005 0.394
Score 0.1 0.023 0.348
Agresti-Coull 0.1 0.006 0.364
Plus4 0.1 0.034 0.395

tidy1 <- binom.test(x = 1, n = 10, conf.level = 0.90,
ci.method = "Wald") |> tidy()

tidy2 <- binom.test(x = 1, n = 10, conf.level = 0.90,
ci.method = "Clopper-Pearson") |> tidy()

tidy3 <- binom.test(x = 1, n = 10, conf.level = 0.90,
ci.method = "Score") |> tidy()

tidy4 <- binom.test(x = 1, n = 10, conf.level = 0.90,
ci.method = "agresti-coull") |> tidy()

tidy5 <- binom.test(x = 1, n = 10, conf.level = 0.90,
ci.method = "plus4") |> tidy()

res <- bind_rows(tidy1, tidy2, tidy3, tidy4, tidy5) |>
mutate(approach = c("Wald", "Clopper-Pearson", "Score",

"Agresti-Coull", "Plus4")) |>
select(approach, estimate, conf.low, conf.high)

res |> kbl(digits = 3) |> kable_paper(full_width = F)

Note that the Wald procedure doesn’t force the confidence interval to appear in the (0, 1)
range.

ggplot(res, aes(x = approach, y = estimate)) +
geom_point() +
geom_errorbar(aes(ymin = conf.low, ymax = conf.high)) +
geom_hline(aes(yintercept = 0), col = "red", lty = "dashed") +
coord_flip() +
labs(title = "90% CIs for x = 1, n = 10")
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None of these three approaches is always better than any of the others. When
we have a sample size below 100, or the sample proportion of success is either below 0.10 or
above 0.90, caution is warranted, although in many cases, the various methods give similar
responses.
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26 Comparing Proportions with Two
Independent Samples

Often, when analyzing data from an independent samples design, we are interested in compar-
ing the proportions of subjects that achieve some outcome, across two levels of an exposure,
or treatment. In this circumstance, we will first summarize the available data in terms of a
2x2 cross-tabulation, and then apply a series of inferential methods for 2x2 tables to obtain
point and interval estimates of interest.

26.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

source("data/Love-boost.R")
library(janitor)
library(mosaic)
library(tidyverse)

theme_set(theme_bw())

26.2 A First Example: Ibuprofen and Sepsis Trial

As we saw in Chapter 20, we are interested in comparing the percentage of patients in each
arm of the trial (Ibuprofen vs. Placebo) that showed an improvement in their temperature
(temp_drop > 0). Our primary interest is in comparing the percentage of Ibuprofen pa-
tients whose temperature dropped to the percentage of Placebo patients whose temperature
dropped.

• We can summarize the data behind the two proportions we are comparing in a contin-
gency table with two rows which identify the exposure or treatment of interest, and two
columns to represent the outcomes of interest.
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• In this case, we are comparing two groups of subjects based on treatment (treat): those
who received Ibuprofen and those who received a placebo. The outcome of interest is
whether the subject’s temperature dropped (temp_drop > 0), or not.

• In the table, we place the frequency for each combination of a row and a column.
• The rows need to be mutually exclusive and collectively exhaustive: each patient must

either receive Ibuprofen or Placebo. Similarly, the columns must meet the same standard:
every patient’s temperature either drops or does not drop.

Here’s the contingency table.

sepsis <- read_csv("data/sepsis.csv",
show_col_types = FALSE) |>

mutate(treat = factor(treat),
race = factor(race))

sepsis <- sepsis |>
mutate(dropped = ifelse(temp_drop > 0, "Drop", "No Drop"))

sepsis |> tabyl(treat, dropped) |>
adorn_totals() |>
adorn_percentages(denom = "row") |>
adorn_pct_formatting(digits = 1) |>
adorn_ns(position = "front")

treat Drop No Drop
Ibuprofen 107 (71.3%) 43 (28.7%)
Placebo 80 (53.3%) 70 (46.7%)

Total 187 (62.3%) 113 (37.7%)

In our sample, we observe 71.3% of the 150 Ibuprofen subjects with a positive temp_drop as
compared to 53.3% of the 150 Placebo subjects. We want to compare these two probabilities
(represented using proportions as 0.713 vs. 0.533) to estimate the size of the difference between
the proportions with a point estimate and 90% confidence interval.

But there are other comparisons we could make, too. The tricky part is that we have multiple
ways to describe the relationship between treatment and outcome. We might compare outcome
“risks” directly using the difference in probabilities, or the ratio of the two probabilities,
or we might convert the risks to odds, and compare the ratio of those odds. In any case,
we’ll get different point estimates and confidence intervals, all of which will help us make
conclusions about the evidence available in this trial speaking to differences between Ibuprofen
and Placebo.
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26.3 Relating a Treatment to an Outcome

The question of interest is whether the percentage of subjects whose temperature dropped
is different (and probably larger) in the subjects who received Ibuprofen than in those who
received the Placebo.

Treatment Arm Dropped
Did Not

Drop Total Proportion who dropped
Ibuprofen 107 43 150 0.713
Placebo 80 70 150 0.533

In other words, what is the relationship between the treatment and the outcome?

26.4 Definitions of Probability and Odds

• Proportion = Probability = Risk of the trait = number with trait / total
• Odds of having the trait = (number with the trait / number without the trait) to 1

If p is the proportion of subjects with a trait, then the odds of having the trait are 𝑝
1−𝑝 to

1.

So, the probability of a good result (temperature drop) in this case is 107
150 = 0.713 in the

Ibuprofen group. The odds of a good result are thus 0.713
1−0.713 = 2.484 to 1 in the Ibuprofen

group.

Treatment Arm Dropped
Did Not

Drop Total Pr(dropped) Odds(dropped)
Ibuprofen 107 43 150 0.713 2.484
Placebo 80 70 150 0.533 1.141

26.5 Defining the Relative Risk

Among the Ibuprofen subjects, the risk of a good outcome (drop in temperature) is 71.3%
or, stated as a proportion, 0.713. Among the Placebo subjects, the risk of a good outcome is
53.3% or, stated as a proportion, 0.533.

Our “crude” estimate of the relative risk of a good outcome for Ibuprofen subjects as com-
pared to Placebo subjects, is the ratio of these two risks, or 0.713/0.533 = 1.338
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• The fact that this relative risk is greater than 1 indicates that the probability of a good
outcome is higher for Ibuprofen subjects than for Placebo subjects.

• A relative risk of 1 would indicate that the probability of a good outcome is the same
for Ibuprofen subjects and for Placebo subjects.

• A relative risk less than 1 would indicate that the probability of a good outcome is lower
for Ibuprofen subjects than for Placebo subjects.

26.6 Defining the Risk Difference

Our “crude” estimate of the risk difference of a good outcome for Ibuprofen subjects as
compared to Placebo subjects, is 0.713 - 0.533 = 0.180 or 18.0 percentage points.

• The fact that this risk difference is greater than 0 indicates that the probability of a
good outcome is higher for Ibuprofen subjects than for Placebo subjects.

• A risk difference of 0 would indicate that the probability of a good outcome is the same
for Ibuprofen subjects and for Placebo subjects.

• A risk difference less than 0 would indicate that the probability of a good outcome is
lower for Ibuprofen subjects than for Placebo subjects.

26.7 Defining the Odds Ratio, or the Cross-Product Ratio

Among the Ibuprofen subjects, the odds of a good outcome (temperature drop) are 2.484.
Among the placebo subjects, the odds of a good outcome (temperature drop) are 1.141.

So our “crude” estimate of the odds ratio of a good outcome for Ibuprofen subjects as
compared to placebo subjects, is 2.484 / 1.141 = 2.18

Another way to calculate this odds ratio is to calculate the cross-product ratio, which is
equal to (a x d) / (b x c), for the 2 by 2 table with counts specified as shown:

A Generic Table Good Outcome Bad Outcome
Treatment Group 1 a b
Treatment Group 2 c d

So, for our table, we have a = 107, b = 43, c = 80, and d = 70, so the cross-product ratio is
107𝑥70
43𝑥80 = 7490

3440 = 2.18. As expected, this is the same as the “crude” odds ratio estimate.

• The fact that this odds ratio risk is greater than 1 indicates that the odds of a good
outcome are higher for Ibuprofen subjects than for Placebo subjects.
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• An odds ratio of 1 would indicate that the odds of a good outcome are the same for
Ibuprofen subjects and for Placebo subjects.

• An odds ratio less than 1 would indicate that the odds of a good outcome are lower for
Ibuprofen subjects than for Placebo subjects.

So, we have several different ways to compare the outcomes across the treatments. Are these
differences and ratios large enough to rule out chance?

26.8 Comparing Rates in a 2x2 Table

What is the relationship between the treatment (Ibuprofen vs. Placebo) and the outcome (drop
in temperature) in the following two-by-two table?

26.9 The twobytwo function in R

I built the twobytwo function in R (based on existing functions in the Epi library, which
you need to have in your installed packages list in order for this to work) to do the work for
this problem. All that is required is a single command, and a two-by-two table in standard
epidemiological format (with the outcomes in the columns, and the treatments in the rows.)

Treatment Arm Dropped Did Not Drop
Ibuprofen 107 43
Placebo 80 70

The command just requires you to read off the cells of the table, followed by the labels for
the two treatments, then the two outcomes, then a specification of the names of the rows
(exposures) and columns (outcomes) from the table, and a specification of the confidence level
you desire. We’ll use 90% here.

The resulting output follows.

twobytwo(107, 43, 80, 70,
"Ibuprofen", "Placebo", "Dropped", "No Drop",
conf.level = 0.90)

2 by 2 table analysis:
------------------------------------------------------
Outcome : Dropped
Comparing : Ibuprofen vs. Placebo
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Dropped No Drop P(Dropped) 90% conf. interval
Ibuprofen 107 43 0.7133 0.6490 0.7701
Placebo 80 70 0.5333 0.4661 0.5993

90% conf. interval
Relative Risk: 1.3375 1.1492 1.5567

Sample Odds Ratio: 2.1773 1.4583 3.2509
Conditional MLE Odds Ratio: 2.1716 1.4177 3.3437

Probability difference: 0.1800 0.0881 0.2677

Exact P-value: 0.0019
Asymptotic P-value: 0.0014

------------------------------------------------------

26.9.1 Standard Epidemiological Format

This table is in standard epidemiological format, which means that:

• The rows of the table describe the “treatment” (which we’ll take here to be treat). The
more interesting (sometimes also the more common) “treatment” is placed in the top
row. That’s Ibuprofen here.

• The columns of the table describe the “outcome” (which we’ll take here to be whether
the subject’s temperature dropped.) Typically, the more common “outcome” is placed
to the left.

26.9.2 Outcome Probabilities and Confidence Intervals Within the Treatment
Groups

The twobytwo output starts with estimates of the probability (risk) of a “Dropped” outcome
among subjects who fall into the two treatment groups (Ibuprofen or Placebo), along with
90% confidence intervals for each of these probabilities.

2 by 2 table analysis:
------------------------------------------------------
Outcome : Dropped
Comparing : Ibuprofen vs. Placebo

Dropped No Drop P(Dropped) 90% conf. interval
Ibuprofen 107 43 0.7133 0.6490 0.7701
Placebo 80 70 0.5333 0.4661 0.5993
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The conditional probability of a temperature drop given that the subject is in the Ibuprofen
group, is symbolized as Pr(Dropped | Ibuprofen) = 0.7133, and the 90% confidence interval
around that proportion is (0.6490, 0.7701).

• Note that these two confidence intervals fail to overlap, and so we expect to see a fairly
large difference in the estimated probability of a temperature drop when we compare
Ibuprofen to Placebo.

26.9.3 Relative Risk, Odds Ratio and Risk Difference, with Confidence Intervals

These elements are followed by estimates of the relative risk, odds ratio, and risk difference,
each with associated 90% confidence intervals.

90% conf. interval
Relative Risk: 1.3375 1.1492 1.5567

Sample Odds Ratio: 2.1773 1.4583 3.2509
Conditional MLE Odds Ratio: 2.1716 1.4177 3.3437

Probability difference: 0.1800 0.0881 0.2677

• The relative risk, or the ratio of P(Temperature Drop | Ibuprofen) to P(Temperature
Drop | Placebo), is shown first. Note that the 90% confidence interval is entirely greater
than 1.

• The odds ratio is presented using two different definitions (the sample odds ratio is the
cross-product ratio we mentioned earlier). Note that the 90% confidence interval using
either approach is entirely greater than 1.

• The probability (or risk) difference [P(Temperature Drop | Ibuprofen) -
P(Temperature Drop | Placebo)] is presented last. Note that the 90% confidence
interval is entirely greater than 0.

• Note carefully that if there had been no difference between Ibuprofen and Placebo, the
relative risk and odds ratios would be 1, but the probability difference would be zero.

26.10 Estimating a Rate More Accurately: Use (x + 2)/(n + 4)
rather than x/n

Suppose you have some data involving n independent tries, with x successes. A natural
estimate of the “success rate” in the data is x / n.

But, strangely enough, it turns out this isn’t an entirely satisfying estimator. Alan Agresti
provides substantial motivation for the (x + 2)/(n + 4) estimate as an alternative1. This is
sometimes called a Bayesian augmentation.

1This note comes largely from a May 15 2007 entry in Andrew Gelman’s blog at
http://andrewgelman.com/2007/05/15
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• The big problem with x / n is that it estimates p = 0 or p = 1 when x = 0 or x = n.
• It’s also tricky to compute confidence intervals at these extremes, since the usual standard

error for a proportion, √𝑛𝑝(1 − 𝑝), gives zero, which isn’t quite right.
• (x + 2)/(n + 4) is much cleaner, especially when you build a confidence interval for the

rate.
• The only place where (x + 2)/(n + 4) will go wrong is if n is small and the true probability

is very close to 0 or 1.

For example, if n = 10, and p is 1 in a million, then x will almost certainly be zero, and an
estimate of 1/12 is much worse than the simple 0/10. However, how big a deal is this? If p
might be 1 in a million, you’re not going to estimate it with a n = 10 experiment2.

Applying this method to our Ibuprofen and Sepsis Trial data, we would simply add two to
each frequency in the main four cells in our 2x2 table.

So instead of using

twobytwo(107, 43, 80, 70,
"Ibuprofen", "Placebo", "Dropped", "No Drop",
conf.level = 0.90)

the Bayesian augmentation would encourage us to look at

twobytwo(109, 45, 82, 72,
"Ibuprofen", "Placebo", "Dropped", "No Drop",
conf.level = 0.90)

2 by 2 table analysis:
------------------------------------------------------
Outcome : Dropped
Comparing : Ibuprofen vs. Placebo

Dropped No Drop P(Dropped) 90% conf. interval
Ibuprofen 109 45 0.7078 0.6441 0.7643
Placebo 82 72 0.5325 0.4662 0.5977

90% conf. interval
Relative Risk: 1.3293 1.1434 1.5453

Sample Odds Ratio: 2.1268 1.4337 3.1550
Conditional MLE Odds Ratio: 2.1215 1.3950 3.2421

Probability difference: 0.1753 0.0845 0.2622

2Andrew Gelman’s example is ”I’m not going to try ten 100-foot golf putts, miss all of them, and then estimate
my probability of success as 1/12.”
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Exact P-value: 0.0022
Asymptotic P-value: 0.0016

------------------------------------------------------

As you can see, the odds ratio and relative risk estimates are (a little) closer to 1, and the
probability difference is also a little closer to 0. The Bayesian augmentation provides a slightly
more conservative set of estimates of the impact of Ibuprofen as compared to Placebo.

It is likely that the augmented version is a more accurate estimate here, but the two estimates
will be comparable, generally, so long as either (a) the sample size in each exposure group is
more than, say, 30 subjects, and/or (b) the sample probability of the outcome is between 10%
and 90% in each exposure group.

26.11 A Second Example: Ebola Virus Disease Study, again

For instance, recall the Ebola Virus Disease study from the New England Journal of Medicine
that we described in Section 25.4. Suppose we want to compare the proportion of deaths
among cases that had a definitive outcome who were hospitalized to the proportion of deaths
among cases that had a definitive outcome who were not hospitalized.

The article suggests that of the 1,737 cases with a definitive outcome, there were 1,153 hos-
pitalized cases. Across those 1,153 hospitalized cases, 741 people (64.3%) died, which means
that across the remaining 584 non-hospitalized cases, 488 people (83.6%) died.

Here is the initial contingency table, using only the numbers from the previous paragraph.

Initial Ebola Table Deceased Alive Total
Hospitalized 741 – 1153

Not Hospitalized 488 – 584
Total 1737

Now, we can use arithmetic to complete the table, since the rows and the columns are each
mutually exclusive and collectively exhaustive.

Ebola 2x2 Table Deceased Alive Total
Hospitalized 741 412 1153

Not Hospitalized 488 96 584
Total 1229 508 1737
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We want to compare the fatality risk (probability of being in the deceased column) for the
population of people in the hospitalized row to the population of people in the not hospitalized
row.

We can run these data through R, using the Bayesian augmentation (adding a death and a
survival to the hospitalized and also to the not hospitalized groups.) We’ll use a 95% confidence
level this time.

twobytwo(741+2, 412+2, 488+2, 96+2,
"Hospitalized", "Not Hospitalized", "Deceased", "Alive",
conf.level = 0.95)

2 by 2 table analysis:
------------------------------------------------------
Outcome : Deceased
Comparing : Hospitalized vs. Not Hospitalized

Deceased Alive P(Deceased) 95% conf. interval
Hospitalized 743 414 0.6422 0.6141 0.6693
Not Hospitalized 490 98 0.8333 0.8010 0.8613

95% conf. interval
Relative Risk: 0.7706 0.7285 0.8151

Sample Odds Ratio: 0.3589 0.2801 0.4599
Conditional MLE Odds Ratio: 0.3591 0.2772 0.4624

Probability difference: -0.1912 -0.2307 -0.1490

Exact P-value: 0.0000
Asymptotic P-value: 0.0000

------------------------------------------------------

I’ll leave it as an exercise for you to interpret these results and draw some conclusions.
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27 Power and Proportions

27.1 Setup: Packages Used Here

source("data/Love-boost.R")

library(pwr)

We’ll use the Love-boost.R script for the twobytwo function.

27.2 Tuberculosis Prevalence Among IV Drug Users

Consider a study to investigate factors affecting tuberculosis prevalence among intravenous
drug users. The original data source is Graham NMH et al. (1992) Prevalence of Tuberculin
Positivity and Skin Test Anergy in HIV-1-Seropositive and Seronegative Intravenous Drug
Users. JAMA, 267, 369-373. Among 97 individuals who admit to sharing needles, 24 (24.7%)
had a positive tuberculin skin test result; among 161 drug users who deny sharing needles, 28
(17.4%) had a positive test result. To start, we’ll test the null hypothesis that the proportions
of intravenous drug users who have a positive tuberculin skin test result are identical for those
who share needles and those who do not.

twobytwo(24, 73, 28, 133,
"Sharing Needles", "Not Sharing",
"TB test+", "TB test-")

2 by 2 table analysis:
------------------------------------------------------
Outcome : TB test+
Comparing : Sharing Needles vs. Not Sharing

TB test+ TB test- P(TB test+) 95% conf. interval
Sharing Needles 24 73 0.2474 0.1717 0.3427
Not Sharing 28 133 0.1739 0.1229 0.2404
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95% conf. interval
Relative Risk: 1.4227 0.8772 2.3073

Sample Odds Ratio: 1.5616 0.8439 2.8898
Conditional MLE Odds Ratio: 1.5588 0.8014 3.0191

Probability difference: 0.0735 -0.0265 0.1807

Exact P-value: 0.1996
Asymptotic P-value: 0.1557

------------------------------------------------------

What conclusions should we draw?

27.3 Designing a New TB Study

Now, suppose we wanted to design a new study with as many non-sharers as needle-sharers
participating, and suppose that we wanted to detect any difference in the proportion of positive
skin test results between the two groups that was identical to the data presented above or
larger with at least 90% power, using a two-sided test and 𝛼 = .05. What sample size would
be required to accomplish these aims?

27.4 Using power.prop.test for Balanced Designs

Our constraints are that we want to find the sample size for a two-sample comparison of
proportions using a balanced design, we will use 𝛼 = .05, and power = .90, and that we
estimate that the non-sharers will have a .174 proportion of positive tests, and we will try to
detect a difference between this group and the needle sharers, who we estimate will have a
proportion of .247, using a two-sided hypothesis test.

power.prop.test(p1 = .174, p2 = .247, sig.level = 0.05, power = 0.90)

Two-sample comparison of proportions power calculation

n = 653.2876
p1 = 0.174
p2 = 0.247

sig.level = 0.05
power = 0.9
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alternative = two.sided

NOTE: n is number in *each* group

So, we’d need at least 654 non-sharing subjects, and 654 more who share needles to accomplish
the aims of the study.

27.5 How power.prop.test works

power.prop.test works much like the power.t.test we saw for means.

Again, we specify 4 of the following 5 elements of the comparison, and R calculates the fifth.

• The sample size (interpreted as the # in each group, so half the total sample size)
• The true probability in group 1
• The true probability in group 2
• The significance level (𝛼)
• The power (1 - 𝛽)

The big weakness with the power.prop.test tool is that it doesn’t allow you to work with
unbalanced designs.

27.6 A Revised Scenario

Suppose we can get exactly 800 subjects in total (400 sharing and 400 non-sharing). How
much power would we have to detect a difference in the proportion of positive skin test results
between the two groups that was identical to the data presented above or larger, using a
one-sided test, with 𝛼 = .10?

power.prop.test(n=400, p1=.174, p2=.247, sig.level = 0.10,
alternative="one.sided")

Two-sample comparison of proportions power calculation

n = 400
p1 = 0.174
p2 = 0.247

sig.level = 0.1
power = 0.8954262
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alternative = one.sided

NOTE: n is number in *each* group

We would have just under 90% power to detect such an effect.

27.7 Using the pwr package for Unbalanced Designs

The pwr.2p2n.test function in the pwr package can help assess the power of a test to deter-
mine a particular effect size using an unbalanced design, where 𝑛1 is not equal to 𝑛2.

As before, we specify four of the following five elements of the comparison, and R calculates
the fifth.

• n1 = The sample size in group 1
• n2 = The sample size in group 2
• sig.level = The significance level (𝛼)
• power = The power (1 - 𝛽)
• h= the effect size h, which can be calculated separately in R based on the two proportions

being compared: p1 and p2.

27.7.1 Calculating the Effect Size h

To calculate the effect size for a given set of proportions, just use ES.h(p1, p2) which is
available in the pwr package.

For instance, in our comparison, we have the following effect size.

ES.h(p1 = .174, p2 = .247)

[1] -0.1796783

27.8 Using pwr.2p2n.test in R

Suppose we can have 700 samples in group 1 (the not sharing group) but only half that many
in group 2 (the group of users who share needles). How much power would we have to detect
this same difference (𝑝1 = .174, 𝑝2 = .247) with a 5% significance level in a two-sided test?
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pwr.2p2n.test(h = ES.h(p1 = .174, p2 = .247),
n1 = 700, n2 = 350,
sig.level = 0.05)

difference of proportion power calculation for binomial distribution (arcsine transformation)

h = 0.1796783
n1 = 700
n2 = 350

sig.level = 0.05
power = 0.7836768

alternative = two.sided

NOTE: different sample sizes

Note that the headline for this output actually reads:

difference of proportion power calculation for binomial distribution
(arcsine transformation)

It appears we will have about 78% power under these circumstances.

27.8.1 Comparison to Balanced Design

How does this compare to the results with a balanced design using only 1000 drug users in
total, so that we have 500 patients in each group?

pwr.2p2n.test(h = ES.h(p1 = .174, p2 = .247),
n1 = 500, n2 = 500, sig.level = 0.05)

difference of proportion power calculation for binomial distribution (arcsine transformation)

h = 0.1796783
n1 = 500
n2 = 500

sig.level = 0.05
power = 0.8108416
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alternative = two.sided

NOTE: different sample sizes

or we could instead have used…

power.prop.test(p1 = .174, p2 = .247,
sig.level = 0.05, n = 500)

Two-sample comparison of proportions power calculation

n = 500
p1 = 0.174
p2 = 0.247

sig.level = 0.05
power = 0.8091808

alternative = two.sided

NOTE: n is number in *each* group

Note that these two sample size estimation approaches are approximations, and use slightly
different approaches, so it’s not surprising that the answers are similar, but not completely
identical.
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28 Larger Contingency Tables

What will we do with tables describing data from more than two categories at a time, returning
to the notion of independent (rather than paired or matched) samples? The chi-square tests we
have already seen in our twobytwo table output will extend nicely to this scenario, especially
the Pearson 𝜒2 (asymptotic) test.

28.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

source("data/Love-boost.R")
library(Epi)
library(janitor)
library(vcd)
library(tidyverse)

theme_set(theme_bw())

28.2 A 2x3 Table: Comparing Response to Active vs. Placebo

The table below, containing 2 rows and 3 columns of data (ignoring the marginal totals)
specifies the number of patients who show complete, partial, or no response after treatment
with either active medication or a placebo.

Group None Partial Complete
Active 16 26 29

Placebo 24 26 18

Is there a statistically significant association here? That is to say, is there a statistically
significant difference between the treatment groups in the distribution of responses?
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28.2.1 Getting the Table into R

To answer this, we’ll have to get the data from this contingency table into a matrix in R.
Here’s one approach…

T1 <- matrix(c(16,26,29,24,26,18), ncol=3, nrow=2, byrow=TRUE)
rownames(T1) <- c("Active", "Placebo")
colnames(T1) <- c("None", "Partial", "Complete")

T1

None Partial Complete
Active 16 26 29
Placebo 24 26 18

28.2.2 Manipulating the Table’s presentation

We can add margins to the matrix to get a table including row and column totals.

addmargins(T1)

None Partial Complete Sum
Active 16 26 29 71
Placebo 24 26 18 68
Sum 40 52 47 139

Instead of the counts, we can tabulate the proportion of all patients within each cell.

prop.table(T1)

None Partial Complete
Active 0.1151079 0.1870504 0.2086331
Placebo 0.1726619 0.1870504 0.1294964

Now, to actually obtain a p value and perform the significance test with 𝐻0: rows and columns
are independent vs. 𝐻𝐴: rows and columns are associated, we simply run a Pearson chi-square
test on T1 …

chisq.test(T1)
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Pearson's Chi-squared test

data: T1
X-squared = 4.1116, df = 2, p-value = 0.128

Thanks to a p-value of about 0.13 (using the Pearson chi-square test) our conclusion would be
to retain the null hypothesis of independence in this setting.

We could have run a Fisher’s exact test, too, if we needed it.

fisher.test(T1)

Fisher's Exact Test for Count Data

data: T1
p-value = 0.1346
alternative hypothesis: two.sided

The Fisher exact test p value is also 0.13. Either way, there is insufficient evidence to conclude
that there is a (true) difference in the distributions of responses.

28.3 Accuracy of Death Certificates (A 6x3 Table)

The table below compiles data from six studies designed to investigate the accuracy of death
certificates. The original citation is Kircher T, Nelson J, Burdo H (1985) The autopsy as a
measure of accuracy of the death certificate. NEJM, 313, 1263-1269. 5373 autopsies were
compared to the causes of death listed on the certificates. Of those, 3726 were confirmed to be
accurate, 783 either lacked information or contained inaccuracies but did not require recoding
of the underlying cause of death, and 864 were incorrect and required recoding. Do the results
across studies appear consistent?

Date of
Study

[Confirmed]
Accurate

[Inaccurate] No
Change [Incorrect] Recoding Total

1955-1965 2040 367 327 2734
1970 149 60 48 257

1970-1971 288 25 70 383
1975-1977 703 197 252 1152
1977-1978 425 62 88 575
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Date of
Study

[Confirmed]
Accurate

[Inaccurate] No
Change [Incorrect] Recoding Total

1980 121 72 79 272
Total 3726 783 864 5373

28.4 The Pearson Chi-Square Test of Independence

We can assess the homogeneity of the confirmation results (columns) we observe in the table
using a Pearson chi-squared test of independence.

• The null hypothesis is that the rows and columns are independent.
• The alternative hypothesis is that there is an association between the rows and the

columns.

death_table <- matrix(c(2040,367,327,149,60,48,288,25,70,703,
197,252,425,62,88,121,72,79), byrow=TRUE, nrow=6)

rownames(death_table) <- c("1955-65", "1970", "1970-71", "1975-77", "1977-78",
"1980")

colnames(death_table) <- c("Confirmed", "Inaccurate", "Incorrect")

addmargins(death_table)

Confirmed Inaccurate Incorrect Sum
1955-65 2040 367 327 2734
1970 149 60 48 257
1970-71 288 25 70 383
1975-77 703 197 252 1152
1977-78 425 62 88 575
1980 121 72 79 272
Sum 3726 783 864 5373

To see the potential heterogeneity across rows in these data, we should perhaps also look at
the proportions of autopsies in each of the three accuracy categories for each study.

addmargins(round_half_up(100*prop.table(death_table,1),1),2)

Confirmed Inaccurate Incorrect Sum
1955-65 74.6 13.4 12.0 100
1970 58.0 23.3 18.7 100
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1970-71 75.2 6.5 18.3 100
1975-77 61.0 17.1 21.9 100
1977-78 73.9 10.8 15.3 100
1980 44.5 26.5 29.0 100

In three of the studies, approximately 3/4 of the results were confirmed. In the other three,
45%, 58% and 61% were confirmed. It looks like there’s a fair amount of variation in results
across studies. To see if this is true, formally, we run Pearson’s chi-square test of independence,
where the null hypothesis is that the rows and columns are independent, and the alternative
hypothesis is that there is an association between the rows and the columns.

chisq.test(death_table)

Pearson's Chi-squared test

data: death_table
X-squared = 209.09, df = 10, p-value < 2.2e-16

The chi-square test statistic is 200 on 10 degrees of freedom, yielding p < 0.0001.

Autopsies are not performed at random; in fact, many are done because the cause of death
listed on the certificate is uncertain. What problems may arise if you attempt to use the results
of these studies to make inference about the population as a whole?

28.5 Three-Way Tables: A 2x2xK Table and a Mantel-Haenszel
Analysis

The material I discuss in this section is attributable to Jeff Simonoff and his book Analyzing
Categorical Data. The example is taken from Section 8.1 of that book.

A three-dimensional or three-way table of counts often reflects a situation where the rows and
columns refer to variables whose association is of primary interest to us, and the third factor
(a layer, or strata) describes a control variable, whose effect on our primary association is
something we are controlling for in the analysis.
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28.5.1 Smoking and Mortality in the UK

In the early 1970s and then again 20 years later, in Whickham, United Kingdom, surveys
yielded the following relationship between whether a person was a smoker at the time of the
original survey and whether they were still alive 20 years later1.

whickham1 <- matrix(c(502, 230, 443, 139), byrow=TRUE, nrow=2)
rownames(whickham1) <- c("Non-Smoker", "Smoker")
colnames(whickham1) <- c("Alive", "Dead")
addmargins(whickham1)

Alive Dead Sum
Non-Smoker 502 230 732
Smoker 443 139 582
Sum 945 369 1314

Here’s the two-by-two table analysis.

twoby2(whickham1)

2 by 2 table analysis:
------------------------------------------------------
Outcome : Alive
Comparing : Non-Smoker vs. Smoker

Alive Dead P(Alive) 95% conf. interval
Non-Smoker 502 230 0.6858 0.6512 0.7184
Smoker 443 139 0.7612 0.7248 0.7941

95% conf. interval
Relative Risk: 0.9010 0.8427 0.9633

Sample Odds Ratio: 0.6848 0.5353 0.8761
Conditional MLE Odds Ratio: 0.6850 0.5307 0.8822

Probability difference: -0.0754 -0.1230 -0.0266

Exact P-value: 0.0030
Asymptotic P-value: 0.0026

------------------------------------------------------

1See Appleton et al. 1996. Ignoring a Covariate: An Example of Simpson’s Paradox. The American Statisti-
cian, 50, 340-341.
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There is a detectable association between smoking and mortality, but it isn’t the one you might
expect.

• The odds ratio is 0.68, implying that the odds of having lived were only 68% as large for
non-smokers as for smokers.

• Does that mean that smoking is good for you?

Not likely. There is a key “lurking” variable here - a variable that is related to both smoking
and mortality that is obscuring the actual relationship - namely, age.

28.5.2 The whickham data with age, too

The table below gives the mortality experience separated into subtables by initial age group.

age <- c(rep("18-24", 4), rep("25-34", 4),
rep("35-44", 4), rep("45-54", 4),
rep("55-64", 4), rep("65-74", 4),
rep("75+", 4))

smoking <- c(rep(c("Smoker", "Smoker", "Non-Smoker", "Non-Smoker"), 7))
status <- c(rep(c("Alive", "Dead"), 14))
counts <- c(53, 2, 61, 1, 121, 3, 152, 5,

95, 14, 114, 7, 103, 27, 66, 12,
64, 51, 81, 40, 7, 29, 28, 101,
0, 13, 0, 64)

whickham2 <- tibble(smoking, status, age, counts) |>
mutate(smoking = factor(smoking),

status = factor(status),
age = factor(age))

whickham2

# A tibble: 28 x 4
smoking status age counts
<fct> <fct> <fct> <dbl>

1 Smoker Alive 18-24 53
2 Smoker Dead 18-24 2
3 Non-Smoker Alive 18-24 61
4 Non-Smoker Dead 18-24 1
5 Smoker Alive 25-34 121
6 Smoker Dead 25-34 3
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7 Non-Smoker Alive 25-34 152
8 Non-Smoker Dead 25-34 5
9 Smoker Alive 35-44 95
10 Smoker Dead 35-44 14
# i 18 more rows

whick_t2 <-
xtabs(counts ~ smoking + status + age, data = whickham2)

whick_t2

, , age = 18-24

status
smoking Alive Dead
Non-Smoker 61 1
Smoker 53 2

, , age = 25-34

status
smoking Alive Dead
Non-Smoker 152 5
Smoker 121 3

, , age = 35-44

status
smoking Alive Dead
Non-Smoker 114 7
Smoker 95 14

, , age = 45-54

status
smoking Alive Dead
Non-Smoker 66 12
Smoker 103 27

, , age = 55-64

status
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smoking Alive Dead
Non-Smoker 81 40
Smoker 64 51

, , age = 65-74

status
smoking Alive Dead
Non-Smoker 28 101
Smoker 7 29

, , age = 75+

status
smoking Alive Dead
Non-Smoker 0 64
Smoker 0 13

The sample odds ratios for remaining Alive comparing Non-Smokers to Smokers for each of
these subtables (except the last one, where the odds ratio is undefined because of the zero
cells) are calculated using the usual cross-product ratio approach, which yields the following
results.

Age Group Odds Ratio
18-24 2.30
25-34 0.75
35-44 2.40
45-54 1.44
55-64 1.61
65-74 1.15
75+ Undefined

Thus, for all age groups except 25-34 year olds, not smoking appears to be associated with
higher odds of remaining alive.

Why? Not surprisingly, there is a strong association between age and mortality, with mortality
rates being very low for young people (2.5% for 18-24 year olds) and increasing to 100% for
75+ year olds.

There is also an association between age and smoking, with smoking rates peaking in the 45-54
year old range and then falling off rapidly. In particular, respondents who were 65 and older
at the time of the first survey had very low smoking rates (25.4%) but very high mortality
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rates (85.5%). Smoking was hardly the cause, however, since even among the 65-74 year olds
mortality was higher among smokers (80.6%) than it was among non-smokers (78.3%). A flat
version of the table (ftable in R) can help us with these calculations.

ftable(whick_t2)

age 18-24 25-34 35-44 45-54 55-64 65-74 75+
smoking status
Non-Smoker Alive 61 152 114 66 81 28 0

Dead 1 5 7 12 40 101 64
Smoker Alive 53 121 95 103 64 7 0

Dead 2 3 14 27 51 29 13

28.5.3 Checking Assumptions: The Woolf test

We can also obtain a test (using the woolf_test function, in the vcd library) to see if the
common odds ratio estimated in the Mantel-Haenszel procedure is reasonable for all age groups.
In other words, the Woolf test is a test of the assumption of homogeneous odds ratios across
the six age groups.

If the Woolf test is significant, it suggests that the Cochran-Mantel-Haenszel test is not ap-
propriate, since the odds ratios for smoking and mortality vary too much in the sub-tables by
age group. Here, we have the following log odds ratios (estimated using conditional maximum
likelihood, rather than cross-product ratios) and the associated Woolf test.

## Next two results use the vcd package
oddsratio(whick_t2, log = TRUE)

log odds ratios for smoking and status by age

18-24 25-34 35-44 45-54 55-64 65-74
0.65018114 -0.22473479 0.84069420 0.34608770 0.47421763 0.09933253

75+
-1.56397554

woolf_test(whick_t2)

Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.)
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data: whick_t2
X-squared = 3.2061, df = 6, p-value = 0.7826

As you can see, the Woolf test is not close to our usual standards for statistically detectable
results, implying the common odds ratio is at least potentially reasonable for all age groups
(or at least the ones under ages 75, where some data are available.)

28.5.4 The Cochran-Mantel-Haenszel Test

So, the marginal table looking at smoking and mortality combining all age groups isn’t the
most meaningful summary of the relationship between smoking and mortality. Instead, we
need to look at the conditional association of smoking and mortality, given age, to address
our interests.

The null hypothesis would be that, in the population, smoking and mortality are independent
within strata formed by age group. In other words, 𝐻0 requires that smoking be of no value
in predicting mortality once age has been accounted for.

The alternative hypothesis would be that, in the population, smoking and mortality are asso-
ciated within the strata formed by age group. In other words, 𝐻𝐴 requires that smoking be
of at least some value in predicting mortality even after age has been accounted for.

We can consider the evidence that helps us choose between these two hypotheses with a
Cochran-Mantel-Haenszel test, which is obtained in R through the mantelhaen.test function.
This test requires us to assume that, in the population and within each age group, the smoking-
mortality odds ratio is the same. Essentially, this means that the association of smoking with
mortality is the same for older and younger people.

mantelhaen.test(whick_t2, conf.level = 0.90)

Mantel-Haenszel chi-squared test with continuity correction

data: whick_t2
Mantel-Haenszel X-squared = 5.435, df = 1, p-value = 0.01974
alternative hypothesis: true common odds ratio is not equal to 1
90 percent confidence interval:
1.143198 2.041872
sample estimates:
common odds ratio

1.52783
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• The Cochran-Mantel-Haenszel test statistic is a bit larger than 5 (after a continuity
correction) leading to a p value of 0.02, indicating strong rejection of the null hypothesis
of conditional independence of smoking and survival given age.

• The estimated common conditional odds ratio is 1.53. This implies that (adjusting for
age) being a non-smoker is associated with 53% higher odds of being alive 20 years later
than being a smoker.

• A 90% confidence interval for that common odds ratio is (1.14, 2.04), reinforcing rejection
of the null hypothesis of conditional independence (where the odds ratio would be 1).

28.5.5 Without the Continuity Correction

By default, R presents the Mantel-Haenszel test with a continuity correction, when used for
a 2x2xK table. In virtually all cases, go ahead and do this, but as you can see below, the
difference it makes in this case is modest.

mantelhaen.test(whick_t2, correct=FALSE, conf.level = 0.90)

Mantel-Haenszel chi-squared test without continuity correction

data: whick_t2
Mantel-Haenszel X-squared = 5.8443, df = 1, p-value = 0.01563
alternative hypothesis: true common odds ratio is not equal to 1
90 percent confidence interval:
1.143198 2.041872
sample estimates:
common odds ratio

1.52783
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Part III

Part C. Building Models
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29 Multiple Regression: Introduction

In Chapter 16, while working with a study of dehydration recovery in children, we discussed
many of the fundamental ideas of multiple regression. There, we provided code and insight
into the scatterplot and the scatterplot matrix, fit linear models and plotted the coefficients,
analyzed summary output from summary(), tidy() and glance() as well as the ANOVA
table, and plotted residuals vs. fitted values using the augment() function.

In the remaining chapters, we will build on that foundation in some examples, including…

• The wcgs data from the Western Collaborative Group Study, which we described in
Chapter 17.

• The emp_bmi data from a study published in BMJ Open of a nationally representative
sample of over 7000 participants in the Korean Longitudinal Study of Aging.

• The gala data, which describe features of the 30 Galapagos Islands.

29.1 Reminders of a few Key Concepts

1. Scatterplots We have often accompanied our scatterplots with regression lines esti-
mated by the method of least squares, and by loess smooths which permit local polyno-
mial functions to display curved relationships, and occasionally presented in the form of a
scatterplot matrix to enable simultaneous comparisons of multiple two-way associations.

2. Measures of Correlation/Association By far the most commonly used is the Pearson
correlation, which is a unitless (scale-free) measure of bivariate linear association for the
variables X and Y, symbolized by r, and ranging from -1 to +1. The Pearson correlation
is a function of the slope of the least squares regression line, divided by the product of the
standard deviations of X and Y. We have also mentioned the Spearman rank correlation
coefficient, which is obtained by using the usual formula for a Pearson correlation, but
on the ranks (1 = minimum, n = maximum, with average ranks are applied to the ties)
of the X and Y values. This approach (running a correlation of the orderings of the data)
substantially reduces the effect of outliers. The result still ranges from -1 to +1, with 0
indicating no linear association.

3. Fitting Linear Models We have fit several styles of linear model to date, including
both simple regressions, where our outcome Y is modeled as a linear function of a single
predictor X, and multiple regression models, where more than one predictor is used.
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Functions from the broom package can be used to yield several crucial results, in addition
to those we can obtain with a summary of the model. These include:

• (from tidy) the estimated coefficients (intercept and slope(s)) of the fitted model, and
• (from glance) the 𝑅2 or coefficient of determination, which specifies the proportion of

variation in our outcome accounted for by the linear model, and various other summaries
of the model’s quality of fit

• (from augment) fitted values, residuals and other summaries related to individual points
used to fit the model, or individual predictions made by the model, which will be helpful
for assessing predictive accuracy and for developing diagnostic tools for assessing the
assumptions of multiple regression.

29.2 What is important in 431?

In 431, my primary goal is to immerse you in several cases, which will demonstrate good
statistical practice in the analysis of data using multiple regression models. Often, we will
leave gaps for 432, but the principal goal is to get you to the point where you can do a solid
(if not quite complete) analysis of data for the modeling part (Study 2) of Project B.

Key topics regarding multiple regression we cover in 431 include:

1. Describing the multivariate relationship - Scatterplots and smoothing - Correlation co-
efficients, Correlation matrices

2. Transformations and Re-expression - The need for transformation - Using a Box-Cox
method to help identify effective transformation choices - Measuring and addressing
collinearity

3. Testing the significance of a multiple regression model - T tests for individual predic-
tors as last predictor in - Global F tests based on ANOVA to assess overall predictive
significance - Incremental and Sequential testing of groups of predictors

4. Interpreting the predictive value of a model - 𝑅2 and Adjusted 𝑅2, along with AIC and
BIC - Residual standard deviation and RMSE

5. Checking model assumptions - Residual Analysis including studentized residuals, and
the major plots - Identifying points with high Leverage - Assessing Influence numerically
and graphically

6. Model Selection - The importance of parsimony - Stepwise regression
7. Assessing Predictive Accuracy through Cross-Validation - Summaries of predictive error

- Plotting predictions across multiple models
8. Summarizing the Key Findings of the Model, briefly and accurately - Making the dis-

tinction between causal findings and associations - The importance of logic, theory and
empirical evidence. (LTE)
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30 Regression Diagnostics

30.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(car)
library(GGally)
library(ggrepel)
library(janitor)
library(kableExtra)
library(mosaic)
library(patchwork)
library(tidyverse)

theme_set(theme_bw())

30.2 Introduction

Some of this discussion comes from Bock, Velleman, and De Veaux (2004).

Multiple linear regression (also called ordinary least squares, or OLS) has four main assump-
tions that are derived from its model.

For a simple regression, the model underlying the regression line is 𝐸(𝑌 ) = 𝛽0 + 𝛽1𝑥

• where E(Y) = the expectation (mean) of the outcome Y,
• 𝛽0 is the intercept, and
• 𝛽1 is the slope

Now, if we have a multiple regression with three predictors 𝑥1, 𝑥2 and 𝑥3, then the model
becomes 𝐸(𝑌 ) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3.

Alternatively, we can write the model to relate individual y’s to the x’s by adding an individual
error term: 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝜖
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Of course, the multiple regression model is not limited to three predictors. We will often use k
to represent the number of coefficients (slopes plus intercept) in the model, and will also use
p to represent the number of predictors (usually p = k - 1).

30.3 Building an Example: 500 subjects from WCGS

To fix ideas, suppose we return to the Western Collaborative Group Study (WCGS) data we
studied in Chapter 17, which described 3154 men ages 39-59 who were free of heart disease
and were employees of one of 10 California companies in 1960-1961.

We are going to select a random sample of 500 of those men, with complete data on our
outcome of interest, which is total cholesterol in mg/dl (chol) and on our three predictors
of interest, which are systolic blood pressure in mm Hg (sbp), body mass index (bmi) and
behavioral pattern (dibpat), which is a two-category variable with levels “Type A” or “Type
B”.

• Individuals exhibiting a Type A behavior pattern show evidence of being competitive
and self-critical without feeling joy in their efforts or accomplishments, and are more
likely to have high work involvement, important life imbalance, and high blood pressure.

• Individuals exhibiting a Type B behavior pattern show evidence of being more reflective,
more relaxed, less competitive and less anxious then Type A individuals.

• There is substantial evidence to discredit the Type A Behavior Pattern theory in some
areas, and some scholars definitely argue that Type A behavior is not a good predictor
of coronary heart disease.

Below we create this sample of 500 subjects with complete data on our outcome and each of
our three predictors.

wcgs <- read_csv("data/wcgs.csv", show_col_types = FALSE)

set.seed(12345)

wcgs_500 <- wcgs |>
select(id, sbp, bmi, dibpat, chol) |>
filter(complete.cases(id, sbp, bmi, dibpat, chol)) |>
slice_sample(n = 500, replace = FALSE)

Next, we’ll look at a scatterplot matrix using ggpairs from the GGally package, placing our
outcome last, as usual.
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ggpairs(wcgs_500 |> select(sbp, bmi, dibpat, chol),
lower = list(combo = wrap("facethist", binwidth = 0.5)),
title = "Scatterplot Matrix for 500 WCGS subjects")

Corr:
0.291***

Corr:
0.099*

Corr:

−0.003
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Scatterplot Matrix for 500 WCGS subjects

Next, we create our planned linear model, and evaluate the coefficients and fit quality.

chol_m1 <- lm(chol ~ sbp + bmi + dibpat, data = wcgs_500)

summary(chol_m1)

Call:
lm(formula = chol ~ sbp + bmi + dibpat, data = wcgs_500)

Residuals:
Min 1Q Median 3Q Max

-113.133 -25.689 -1.932 24.036 186.390

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 214.5185 19.8825 10.789 < 2e-16 ***
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term estimate std.error conf.low conf.high p.value
(Intercept) 214.519 19.883 181.753 247.284 0.000
sbp 0.236 0.112 0.051 0.421 0.036
bmi -0.589 0.729 -1.791 0.612 0.419
dibpatType B -11.041 3.564 -16.915 -5.167 0.002

r.squared adj.r.squared sigma AIC BIC nobs
0.03 0.024 39.7 5105.3 5126.4 500

sbp 0.2361 0.1125 2.099 0.03634 *
bmi -0.5894 0.7290 -0.808 0.41921
dibpatType B -11.0408 3.5643 -3.098 0.00206 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 39.66 on 496 degrees of freedom
Multiple R-squared: 0.02954, Adjusted R-squared: 0.02367
F-statistic: 5.033 on 3 and 496 DF, p-value: 0.001915

As usual, we’ll use tidy and glance from the broom package (part of tidymodels) to evaluate
the coefficients in more detail, and summarize the quality of fit for our model.

tidy(chol_m1, conf.int = TRUE, conf.level = 0.90) |>
select(term, estimate, std.error, conf.low, conf.high, p.value) |>
kbl(digits = 3) |> kable_paper()

glance(chol_m1) |>
select(r.squared, adj.r.squared, sigma, AIC, BIC, nobs) |>
kbl(digits = c(3, 3, 1, 1, 1, 0)) |> kable_paper()

This isn’t a terrific model, accounting for only 3% (according to 𝑅2) of the variation in our
outcome, although some of the individual predictors show effects that meet our usual standards
for “detectable” results. Our goal, though, is to use this model as an example for studying
residual diagnostics to search for possible violations of regression assumptions.

To assess regression assumptions, we’ll have to look at residuals and fits for each of the indi-
vidual points, which we can obtain use the augment function from the broom package.

aug_chol1 <- augment(chol_m1, data = wcgs_500)

This augments the original data with several summaries of the quality of fit for our individual
rows in the wcgs_500 data. Here are the first few values for some of the elements of augment.
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id sbp bmi dibpat chol .fitted .resid
10155 120 18.162 Type B 294 221.104 72.896
3495 140 24.807 Type A 301 232.950 68.050
12634 124 21.616 Type A 196 231.054 -35.054
21354 114 25.381 Type A 176 226.474 -50.474
3085 190 22.349 Type A 241 246.203 -5.203
3589 140 23.054 Type B 268 222.943 45.057

id .std.resid .cooksd
10155 1.854 0.015
3495 1.720 0.003

12634 -0.887 0.001
21354 -1.277 0.003
3085 -0.134 0.000
3589 1.140 0.002

head(aug_chol1 |> select(id:.resid)) |>
kbl(digits = 3) |> kable_minimal()

This includes the original data, plus the model’s predicted value for chol, stored in .fitted
and the residual (actual chol - .fitted) stored in .resid. Here are the other elements of the
augment result.

head(aug_chol1 |> select(id, .std.resid:.cooksd)) |>
kbl(digits = 3) |> kable_minimal()

Here, we see:

• .std.resid the standardized residual, which is a measure of how poorly fit the point
is, scaled to have standard deviation 1 (the raw residuals, as well as these, already have
mean 0)

• .hat, the hat matrix value, which is a measurement of the leverage this point has on
the model. Leverage is, essentially, a measure of how unusual the point is in terms of
the predictors.

• .sigma, the value of the residual standard error .sigma that would emerge if this point
was deleted from the chol_m1 model, and

• .cooksd, Cook’s distance, or Cook’s d, which measures the influence of this point on
the model. A highly influential point (one with .cooksd greater than 0.5, for instance)
would be a point that, if removed from the chol_m1 model, would substantially change
the fit of the model or the coefficient estimates.
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30.4 The Four Key Regression Assumptions

The assumptions and conditions for a multiple regression model are nearly the same as those
for simple regression. The key assumptions that must be checked in a multiple regression
model are:

• Linearity Assumption
• Independence Assumption
• Equal Variance (Constant Variance / Homoscedasticity) Assumption
• Normality Assumption

Happily, R is well suited to provide us with multiple diagnostic tools to generate plots and
other summaries that will let us look more closely at each of these assumptions.

30.5 The Linearity Assumption

We are fitting a linear model.

• By linear, we mean that each predictor value, x, appears simply multiplied by its coeffi-
cient and added to the model.

• No x appears in an exponent or some other more complicated function.
• If the regression model is true, then the outcome y is linearly related to each of the x’s.

Unfortunately, assuming the model is true is not sufficient to prove that the linear model fits, so
we check what Bock, Velleman, and De Veaux (2004) call the “Straight Enough Condition”

30.5.1 Initial Scatterplots for the “Straight Enough” Condition

• Scatterplots of y against each of the predictors are reasonably straight.
• The scatterplots need not show a strong (or any!) slope; we just check that there isn’t a

bend or other nonlinearity.
• Any substantial curve is indicative of a potential problem.
• Modest bends are not usually worthy of serious attention.

For example, in the wcgs_500 data, here are the relevant scatterplots for the quantitative
predictors (in practice, I would simply look at the scatterplot matrix shown earlier) as well as
a boxplot with violin for the categorical predictor (dibpat).

p1 <- ggplot(wcgs_500, aes(x = sbp, y = chol)) +
geom_point() +
geom_smooth(method = "loess", se = FALSE, span = 2, formula = y ~ x) +
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geom_smooth(method = "lm", se = FALSE, col = "tomato", formula = y ~ x)

p2 <- ggplot(wcgs_500, aes(x = bmi, y = chol)) +
geom_point() +
geom_smooth(method = "loess", se = FALSE, span = 2, formula = y ~ x) +
geom_smooth(method = "lm", se = FALSE, col = "tomato", formula = y ~ x)

p3 <- ggplot(wcgs_500, aes(x = dibpat, y = chol)) +
geom_violin(aes(fill = dibpat)) +
geom_boxplot(width = 0.3) +
coord_flip() + guides(fill = "none")

(p1 + p2) / p3 +
plot_layout(heights = c(2,1)) +
plot_annotation(title = "WCGS_500 Cholesterol vs. Predictors")
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Here, I’ve simply placed recov.score on the vertical (Y) axis, plotted against each of the
predictors, in turn. I’ve added a straight line (OLS) fit [in tomato red] and a loess smooth [in
blue] to each plot to guide your assessment of the “straight enough” condition. Note the use
here of span = 2 in the loess smooths to produce lines that are less wiggly than they would
be using the default span = 0.75.
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• Each of these is “straight enough” for our purposes, in initially fitting the data.
• If one of these was not, we might consider a transformation of the relevant predictor, or,

if all were problematic, we might transform the outcome Y.

30.5.2 Residuals vs. Predicted Values to Check for Non-Linearity

The residuals should appear to have no pattern (no curve, for instance) with respect to the
predicted (fitted) values. It is a very good idea to plot the residuals against the fitted values
to check for patterns, especially bends or other indications of non-linearity. For a multiple
regression, the fitted values are a combination of the x’s given by the regression equation, so
they combine the effects of the x’s in a way that makes sense for our particular regression
model. That makes them a good choice to plot against. We’ll check for other things in this
plot, as well.

When you ask R to plot the result of a linear model, it will produce up to five separate plots:
the first of which is a plot of residuals vs. fitted values.

30.5.2.1 Using plot(model, which = 1)

To obtain this plot for the model including sbp, bmi and dibpat to predict chol we have
two options. The simpler approach uses the following code to indicate plot 1 using the which
command within the plot function.

plot(chol_m1, which=1)
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A smooth is again added (in red) to help you identify serious non-linearity. In this case, I
would conclude that there were no serious problems with linearity in these data.

The plot also, by default, identifies the three values1 with the largest (in absolute value)
residuals.

• Here, these are rows 29, 113 and 158, each of which has a positive residual (i.e. they
represent under-predictions by the model.) To identify these points in the data, use the
slice function.

slice(wcgs_500, c(29, 113, 158))

# A tibble: 3 x 5
id sbp bmi dibpat chol

<dbl> <dbl> <dbl> <chr> <dbl>
1 3604 124 29.4 Type A 346
2 2280 120 25.9 Type A 414
3 10360 140 23.4 Type B 349

These turn out to be the observations with id = 3604, 2280 and 10360, respectively.

1If you wanted to identify more or fewer points, you could, i.e. ‘plot(modelname, which=1, id.n = 2)‘
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30.5.2.2 Using ggplot2 to plot Residuals vs. Predicted Values

ggplot(aug_chol1, aes(x = .fitted, y = .resid)) +
geom_point() +
geom_point(data = aug_chol1 |>

slice_max(abs(.resid), n = 5),
col = "red", size = 2) +

geom_text_repel(data = aug_chol1 |>
slice_max(abs(.resid), n = 5),
aes(label = id), col = "red") +

geom_abline(intercept = 0, slope = 0, lty = "dashed") +
geom_smooth(method = "loess", formula = y ~ x, se = F) +
labs(title = "Residuals vs. Fitted Values from chol_m1",

caption = "5 largest |residuals| highlighted in red.",
x = "Fitted Total Cholesterol", y = "Residual") +

theme(aspect.ratio = 1)
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30.5.3 Residuals vs. Predictors To Further Check for Non-Linearity

If we do see evidence of non-linearity in the plot of residuals against fitted values, I usually
then proceed to look at residual plots against each of the individual predictors, in turn, to try
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to identify the specific predictor (or predictors) where we may need to use a transformation.

The appeal of such plots (as compared to the initial scatterplots we looked at of the outcome
against each predictor) is that they eliminate the distraction of the linear fit, and let us
look more closely at the non-linear part of the relationship between the outcome and each
quantitative predictor. We might also look at a boxplot of the relationship between the
outcome and a categorical predictor, although this is primarily for the purpose of assessing
the potential for non-constant variance, rather than non-linearity.

Although I don’t think you need them here, here are these plots for the residuals from our
chol_m1 model.

p1 <- ggplot(aug_chol1, aes(x = sbp, y = chol)) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x, span = 2, se = FALSE) +
geom_smooth(method = "lm", formula = y ~ x, se = FALSE, col = "tomato")

p2 <- ggplot(aug_chol1, aes(x = bmi, y = chol)) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x, span = 2, se = FALSE) +
geom_smooth(method = "lm", formula = y ~ x, se = FALSE, col = "tomato")

p3 <- ggplot(aug_chol1, aes(x = dibpat, y = chol)) +
geom_violin(aes(fill = dibpat)) + geom_boxplot(width = 0.3) +
coord_flip() + guides(fill = "none")

(p1 + p2) / p3 +
plot_layout(heights = c(2,1)) +
plot_annotation(title = "Residuals vs. Predictors in chol_m1 model")
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Again, I see no particularly problematic issues with the assumption of linearity in either of
the scatterplots here.

30.6 The Independence Assumption

The errors in the true underlying regression model must be mutually independent, but there
is no way to be sure that the independence assumption is true. Fortunately, although there
can be many predictor variables, there is only one outcome variable and only one set of errors.
The independence assumption concerns the errors, so we check the residuals.

Randomization condition. The data should arise from a random sample, or from a ran-
domized experiment.

• The residuals should appear to be randomly scattered and show no patterns, trends or
clumps when plotted against the predicted values.

• In the special case when an x-variable is related to time, make sure that the residuals do
not have a pattern when plotted against time.
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30.6.1 Residuals vs. Fitted Values to Check for Dependence

The wcgs_500 men were not related in any way to each other except that they were drawn
from the same 10 employers, and the data are cross-sectional here, so we can be pretty sure
that their measurements are independent. The residuals vs. fitted values plots we’ve already
seen show no clear trend, cycle or pattern which concerns us.

30.7 The Constant Variance Assumption

The variability of our outcome, y, should be about the same for all values of every predictor x.
Of course, we can’t check every combination of x values, so we look at scatterplots and check to
see if the plot shows a “fan” shape - in essence, the Does the plot thicken? Condition.

• Scatterplots of residuals against each x or against the predicted values, offer a visual
check.

• Be alert for a “fan” or a “funnel” shape showing growing/shrinking variability in one
part of the plot.

Reviewing the same plots we have previously seen, I can find no evidence of substantial “plot
thickening” in either the plot of residuals vs. fitted values or in any of the plots of the residuals
against each predictor separately.

30.7.1 The Scale-Location Plot to Check for Non-Constant Variance

R does provide an additional plot to help assess this issue as linear model diagnostic plot 3.
This one looks at the square root of the standardized residual plotted against the fitted values.
You want the loess smooth in this plot to be flat, rather than sloped.

plot(chol_m1, which=3)

561



215 220 225 230 235 240 245

0.
0

1.
0

2.
0

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(chol ~ sbp + bmi + dibpat)

Scale−Location
113

158 29

We can replicate this plot using ggplot2 as follows. With a loess smooth with span = 2,
there’s no suggestion of a meaningful trend up or down in this plot.

ggplot(aug_chol1, aes(x = .fitted, y = sqrt(abs(.std.resid)))) +
geom_point() +
geom_point(data = aug_chol1 |>

slice_max(sqrt(abs(.std.resid)), n = 3),
col = "red", size = 1) +

geom_text_repel(data = aug_chol1 |>
slice_max(sqrt(abs(.std.resid)), n = 3),
aes(label = id), col = "red") +

geom_smooth(method = "loess", formula = y ~ x, span = 2, se = F) +
labs(title = "Scale-Location Plot for chol_m1 model",

caption = "3 largest |Standardized Residual| in red.",
x = "Fitted Value of Total Cholesterol",
y = "Square Root of |Standardized Residual|") +

theme(aspect.ratio = 1)
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30.7.2 What does trouble look like?

It’s helpful to see how this works in practice. Here are three sets of plots for two settings, where
the left plots in each pair show simulated data that are homoscedastic (variance is constant
across the levels of the predictor) and the right plots show data that are heteroscedastic
(variance is not constant across predictor levels.) Source: This example is modified from
http://goo.gl/weMI0U [from stats.stackexchange.com]

Here, I’ll create a tibble containing fake data on a predictor (x) and two outcomes (y1 or
y2). The relationship between y1 and x is meant to show no problems with the assumption of
homoscedasticity. The relationship between y2 and x, on the other hand, should show severe
problems with this assumption.

set.seed(5)

N = 250 ## original n = 500
b0 = 3
b1 = 0.4

s2 = 5
g1 = 1.5 ## original g1 = 1.5
g2 = 0.02 ## original g2 = 0.015
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x = runif(N, min=0, max=100)
y1 = b0 + b1*x + rnorm(N, mean=0, sd=sqrt(s2 ))
y2 = b0 + b1*x + rnorm(N, mean=0, sd=sqrt(exp(g1 + g2*x)))

fake_1 <- tibble(id = 1:250, x, y1, y2)

First, we’ll fit our two models, and obtain augmented values.

fake_m1 <- lm(y1 ~ x, data = fake_1) # no problems
fake_m2 <- lm(y2 ~ x, data = fake_1) # non-constant variance

aug_fake1 <- augment(fake_m1, data = fake_1)
aug_fake2 <- augment(fake_m2, data = fake_1)

Now, let’s look at the plots, developed first using ggplot2.

First, here are the two scatterplots, for our fake_1 model with constant variance on the left,
and our fake_2 model with non-constant variance on the right.

p1a <- ggplot(fake_1, aes(x = x, y = y1)) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x, span = 2, se = F) +
geom_smooth(method = "lm", formula = y ~ x, se = F, col = "tomato") +
labs(title = "Constant Variance (fake_m1)",

subtitle = "Scatterplot of y1 vs. x")

p1b <- ggplot(fake_1, aes(x = x, y = y2)) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x, span = 2, se = F) +
geom_smooth(method = "lm", formula = y ~ x, se = F, col = "tomato") +
labs(title = "Non-Constant Variance (fake_m2)",

subtitle = "Scatterplot of y2 vs. x")

p1a + p1b
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Second, here are the two plots of residuals vs. fitted values, for our fake_1 model with constant
variance on the left, and our fake_2 model with non-constant variance on the right.

p2a <- ggplot(aug_fake1, aes(x = .fitted, y = .resid)) +
geom_point() +
geom_point(data = aug_fake1 |>

slice_max(abs(.resid), n = 5),
col = "red", size = 2) +

geom_text_repel(data = aug_fake1 |>
slice_max(abs(.resid), n = 5),

aes(label = id), col = "red") +
geom_abline(intercept = 0, slope = 0, lty = "dashed") +
geom_smooth(method = "loess", formula = y ~ x, se = F) +
labs(title = "Constant Variance (fake_m1)",

subtitle = "Residuals vs. Fitted Values",
caption = "5 largest |residuals| highlighted in red.",
x = "Fitted Value of y1", y = "Residual") +

theme(aspect.ratio = 1)

p2b <- ggplot(aug_fake2, aes(x = .fitted, y = .resid)) +
geom_point() +
geom_point(data = aug_fake2 |>
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slice_max(abs(.resid), n = 5),
col = "red", size = 2) +

geom_text_repel(data = aug_fake2 |>
slice_max(abs(.resid), n = 5),

aes(label = id), col = "red") +
geom_abline(intercept = 0, slope = 0, lty = "dashed") +
geom_smooth(method = "loess", formula = y ~ x, se = F) +
labs(title = "Non-Constant Variance (fake_m2)",

subtitle = "Residuals vs. Fitted Values",
caption = "5 largest |residuals| highlighted in red.",
x = "Fitted Value of y1", y = "Residual") +

theme(aspect.ratio = 1)

p2a + p2b
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Finally, here is the scale-location plot for each scenario.

p3a <- ggplot(aug_fake1, aes(x = .fitted, y = sqrt(abs(.std.resid)))) +
geom_point() +
geom_point(data = aug_fake1 |>

slice_max(sqrt(abs(.std.resid)), n = 3),
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col = "red", size = 1) +
geom_text_repel(data = aug_fake1 |>

slice_max(sqrt(abs(.std.resid)), n = 3),
aes(label = id), col = "red") +

geom_smooth(method = "loess", formula = y ~ x, span = 2, se = F) +
labs(title = "Constant Variance (fake_m1)",

subtitle = "Scale-Location Plot",
caption = "3 largest |Standardized Residual| in red.",
x = "Fitted Value",
y = "Square Root of |Standardized Residual|") +

theme(aspect.ratio = 1)

p3b <- ggplot(aug_fake2, aes(x = .fitted, y = sqrt(abs(.std.resid)))) +
geom_point() +
geom_point(data = aug_fake2 |>

slice_max(sqrt(abs(.std.resid)), n = 3),
col = "red", size = 1) +

geom_text_repel(data = aug_fake2 |>
slice_max(sqrt(abs(.std.resid)), n = 3),
aes(label = id), col = "red") +

geom_smooth(method = "loess", formula = y ~ x, span = 2, se = F) +
labs(title = "Non-Constant Variance (fake_m2)",

subtitle = "Scale-Location Plot",
caption = "3 largest |Standardized Residual| in red.",
x = "Fitted Value",
y = "Square Root of |Standardized Residual|") +

theme(aspect.ratio = 1)

p3a + p3b
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Note the funnel shape for the upper two heteroscedastic (non-constant variance) plots, and
the upward sloping loess line in the last one.

Here are the relevant plots for the same scenario using base R.

par(mfrow=c(3,2))
plot(y1 ~ x, data = fake_1, main="Constant Variance")
plot(y2 ~ x, data = fake_1, main="Non-Constant Variance")
plot(fake_m1, which=1)
plot(fake_m2, which=1)
plot(fake_m1, which=3)
plot(fake_m2, which=3)
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par(mfrow=c(1,1))

30.8 The Normality Assumption

If the plot is straight enough, the data are independent, and the plots don’t thicken, you can
now move on to the final assumption, that of Normality.

We assume that the errors around the idealized regression model at any specified values of the
x-variables follow a Normal model. We need this assumption so that we can use a Student’s
t-model for inference. As with other times when we’ve used Student’s t, we’ll settle for the
residuals satisfying the Nearly Normal condition. To assess this, we simply look at a
histogram or Normal probability plot of the residuals. Note that the Normality Assumption
also becomes less important as the sample size grows.

30.9 Outlier Diagnostics: Points with Unusual Residuals

A multiple regression model will always have a point which displays the most unusual residual
(that is, the residual furthest from zero in either a positive or negative direction.) As part of
our assessment of the normality assumption, we will often try to decide whether the residuals
follow a Normal distribution by creating a Q-Q plot of standardized residuals.

30.9.1 Standardized Residuals

Standardized residuals are scaled to have mean zero and a constant standard deviation of 1,
as a result of dividing the original (raw) residuals by an estimate of the standard deviation
that uses all of the data in the data set.

The augment function, when applied to a linear regression model, will generate the standard-
ized residuals and store them in the .std.resid column.

If multiple regression assumptions hold, then the standardized residuals (in addition to follow-
ing a Normal distribution in general) will also have mean zero and standard deviation 1, with
approximately 95% of values between -2 and +2, and approximately 99.74% of values between
-3 and +3.

A natural check, therefore, will be to identify the most extreme/unusual standardized residual
in our data set, and see whether its value is within the general bounds implied by the Empirical
Rule associated with the Normal distribution. If, for instance, we see a standardized residual
below -3 or above +3, this is likely to be a very poorly fit point (we would expect to see a
point like this about 2.6 times for every 1,000 observations.)
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A very poorly fitting point, especially if it also has high influence on the model (a concept
we’ll discuss shortly), may be sufficiently different from the rest of the points in the data set
to merit its removal before modeling. If we did remove such a point, we’d have to have a good
reason for this exclusion, and include that explanation in our report.

R’s general plot set for a linear model includes (as plot 2) a Normal Q-Q plot of the standardized
residuals from the model.

30.9.2 Checking the Normality Assumption with a Plot

plot(chol_m1, which=2)
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or we can use the ggplot2 version:

p1 <- ggplot(aug_chol1, aes(sample = .std.resid)) +
geom_qq() +
geom_qq_line(col = "red") +
labs(title = "Normal Q-Q plot",

y = "Standardized Residual from chol_m1",
x = "Standard Normal Quantiles") +

theme(aspect.ratio = 1)
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p2 <- ggplot(aug_chol1, aes(y = .std.resid, x = "")) +
geom_violin(fill = "dodgerblue") +
geom_boxplot(width = 0.3) +
labs(title = "Box and Violin Plot",

y = "Standardized Residual from chol_m1",
x = "mod_1")

p1 + p2 +
plot_layout(widths = c(2, 1)) +
plot_annotation(

title = "Normality of Standardized Residuals from mod_1",
caption = paste0("n = ",

nrow(aug_chol1 |> select(.std.resid)),
" residual values are plotted here."))
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n = 500 residual values are plotted here.

Normality of Standardized Residuals from mod_1

The Q-Q plot of standardized residuals shows one point (in row 113, according to the plot)
that is far away from our expectations under the Normal model. Let’s look at that point a
little more closely.
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id sbp bmi dibpat chol .fitted .resid .hat .sigma .cooksd .std.resid
2280 120 25.86 Type A 414 227.61 186.39 0.01 38.8 0.03 4.71

id sbp bmi dibpat chol .fitted .resid .hat .sigma .cooksd .std.resid
2280 120 25.86 Type A 414 227.61 186.39 0.01 38.8 0.03 4.71

aug_chol1 |> slice(113) |> select(id:.std.resid) |>
kbl(digits = 2) |> kable_classic_2()

The standardized residual here is 4.71. That seems excessively large, in a sample of 250
observations.

30.9.3 Assessing Standardized Residuals with an Outlier Test

Is a standardized residual of 4.71 particularly unusual in a sample of 250 such standardized
residuals, given that we are trying to assume that these are well modeled by a Normal distri-
bution, supposedly with mean 0 and standard deviation 1?

Yes. The car library has a test called outlierTest which can be applied to a linear model
to see if the most unusual studentized residual in absolute value is a surprise given the sample
size (the studentized residual is very similar to the standardized residual - it simply uses a
different estimate for the standard deviation for every point, in each case excluding the point
it is currently studying)

outlierTest(chol_m1)

rstudent unadjusted p-value Bonferroni p
113 4.816993 1.9404e-06 0.00097019

Our conclusion from the Bonferroni p value here is that there’s evidence to support the belief
that we could have a serious problem with Normality, in that a studentized residual of 4.82 is
out of the range we might reasonably expect to see given a Normal distribution of errors and
250 observations.

Which value is that? It’s the subject with id = 2280.

aug_chol1 |> slice(113) |>
select(id:.std.resid) |> kbl(digits = 2) |> kable_classic_2()

In terms of solutions, we could consider dropping the point, but this would leave us with the
vexing problem of how, exactly, to justify that choice. One question we might ask is whether
dropping that point (row 113, or id = 2280) from our chol_m1 model have a big impact?
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30.10 Outlier Diagnostics: Identifying Points with Unusually High
Leverage

An observation can be an outlier not just in terms of having an unusual residual, but also in
terms of having an unusual combination of predictor values. Such an observation is described
as having high leverage in a data set.

• The augment function stores the leverage for each point in the .hat variable.
• The average leverage value is equal to k/n, where n is the number of observations included

in the regression model, and k is the number of coefficients (slopes + intercept).
• Any point with a leverage value greater than 3 times the average leverage of a point in

the data set is one that should be investigated closely.

For instance, in the wcgs_500 data, we have 500 observations, so the average leverage will be
4/500 = 0.008 and a high leverage point would have leverage ≥ 12/500 or .024. We can check
this out directly, with a sorted list of leverage values.

aug_chol1 |> select(id:chol, .hat) |>
filter(.hat > 0.024) |>
arrange(desc(.hat))

# A tibble: 12 x 6
id sbp bmi dibpat chol .hat

<dbl> <dbl> <dbl> <chr> <dbl> <dbl>
1 19078 230 24.4 Type B 254 0.0884
2 10214 170 37.7 Type B 153 0.0600
3 22025 210 26.5 Type B 187 0.0548
4 10075 150 35.3 Type B 224 0.0401
5 16031 200 28.1 Type A 256 0.0392
6 11432 196 27.3 Type B 178 0.0384
7 3085 190 22.3 Type A 241 0.0383
8 13389 120 33.0 Type A 232 0.0303
9 12976 106 15.7 Type B 207 0.0287
10 3182 120 32.3 Type A 218 0.0262
11 19099 104 30.5 Type A 234 0.0252
12 3235 184 26.6 Type A 274 0.0248

Twelve of our 500 subjects meet the standard for large leverage values (.hat values exceeding
three times the average .hat value) but none of these are the outlier (id = 2280) we identified
as having an especially poor fit (large standardized residual.)
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aug_chol1 |>
filter(id == 2280) |>
select(id, .std.resid, .hat)

# A tibble: 1 x 3
id .std.resid .hat

<dbl> <dbl> <dbl>
1 2280 4.71 0.00555

Another way to understand the impact of leverage is to look at a plot of residuals vs. leverage,
which is diagnostic plot 5 for a linear model. Here’s the base R version for our chol_m1
model.

plot(chol_m1, which=5)

0.00 0.02 0.04 0.06 0.08

−
2

0
2

4

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(chol ~ sbp + bmi + dibpat)

Cook's distance

0.5

Residuals vs Leverage

131

113

29

Here is the ggplot2 version.

ggplot(aug_chol1, aes(x = .hat, y = .std.resid)) +
geom_point() +
geom_point(data = aug_chol1 |> filter(.cooksd >= 0.5),
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col = "red", size = 2) +
geom_text_repel(data = aug_chol1 |> filter(.cooksd >= 0.5),

aes(label = id), col = "red") +
geom_smooth(method = "loess", formula = y ~ x, span = 2, se = F) +
geom_vline(aes(xintercept = 3*mean(.hat)), lty = "dashed") +
labs(title = "Residuals vs. Leverage",

x = "Leverage", y = "Standardized Residual")

−2.5

0.0

2.5

5.0

0.000 0.025 0.050 0.075
Leverage

S
ta

nd
ar

di
ze

d 
R

es
id

ua
l

Residuals vs. Leverage

We see that the most highly leveraged points are shown furthest to the right in this plot (in
fact, I’ve inserted a dotted vertical line at the cutpoint of 3*mean(.hat)), but our problematic
standardized residual has a very typical leverage value (at the top left of this plot.)

Let’s look at our highest leveraged point (id = 19078 from our list above) and remember that
this just means that this point is unusual in terms of its predictor values.

aug_chol1 |> filter(id == 19078) |>
select(id, sbp, bmi, dibpat, .hat)

# A tibble: 1 x 5
id sbp bmi dibpat .hat

<dbl> <dbl> <dbl> <chr> <dbl>
1 19078 230 24.4 Type B 0.0884
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Compare these findings to what we see in the wcgs_500 data overall. Let’s focus on the
quantitative variables involved in our model, sbp and bmi, and use the df_stats() function
from the mosaic package.

df_stats(~ sbp + bmi, data = wcgs_500)

response min Q1 median Q3 max mean sd
1 sbp 100.0000 120.00000 126.0000 140.0000 230.00000 129.39800 16.548453
2 bmi 15.6605 23.03123 24.5412 26.1554 37.65281 24.65342 2.546486

n missing
1 500 0
2 500 0

Note that our highly leveraged point has the largest sbp of all 500 subjects, although a rather
typical bmi.

If you’re wondering about the rest of our chol_m1 model, there are only two possible values
of dibpat and so a point cannot really be an outlier on that variable.

wcgs_500 |> tabyl(dibpat)

dibpat n percent
Type A 259 0.518
Type B 241 0.482

Remember that 12 of the points in our chol_m1 model showed up with leverage values more
than three times higher than the mean leverage.

aug_chol1 |>
filter(.hat > 3 * mean(.hat)) |> nrow()

[1] 12

So, let’s look at a plot of the two quantitative predictors in our data to see which 12 points
show up as those with “high” leverage.

ggplot(aug_chol1, aes(x = sbp, y = bmi)) +
geom_point(col = "gray50") +
geom_point(data = aug_chol1 |>

slice_max(.hat, n = 12),
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col = "red", size = 2) +
labs(x = "Systolic BP", y = "Body Mass Index",

title = "Where are the highly leveraged points in our model?",
subtitle = "wcgs_500 model chol_1, 12 highest leverage points in red")
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Where are the highly leveraged points in our model?

The points with high leverage (large values of .hat) are simply those with an unusual combi-
nation of the two quantitative predictors.

30.11 Outlier Diagnostics: Identifying Points with High Influence
on the Model

A point in a regression model has high influence if the inclusion (or exclusion) of that point
will have substantial impact on the model, in terms of the estimated coefficients, and the
summaries of fit. The measure I routinely use to describe the level of influence a point has on
the model is called Cook’s distance.

As a general rule, a Cook’s distance greater than 1 indicates a point likely to have substantial
influence on the model, while a point in the 0.5 to 1.0 range is only occasionally worthy of
investigation. Observations with Cook’s distance below 0.5 are unlikely to influence the model
in any substantial way.
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30.11.1 Assessing the Value of Cook’s Distance

You can obtain information on Cook’s distance in several ways in R.

• My favorite is model diagnostic plot 5 (the residuals vs. leverage plot) which we’ve seen
before and which I repeat below. This plot uses red contours to indicate the value of
Cook’s distance.

– This is possible because influence, as measured by Cook’s distance, is a function of
both the observation’s standardized residual and its leverage.

plot(chol_m1, which=5)
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No points in this plot indicate substantial influence on our model. To do so, they’d have to
be outside the Cook’s distance contour shown at the top right of this plot (there is a similar
arc at the bottom right, but it’s too far away from the data to show up in the plot.)

30.11.2 Index Plot of Cook’s Distance

Model Diagnostic Plot 4 for a linear model is an index plot of Cook’s distance.
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plot(chol_m1, which=4)
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Or, if you like, run the ggplot2 version:

aug_chol1_ex <- aug_chol1 |>
mutate(obsnum = 1:nrow(aug_chol1 |> select(.cooksd)))

ggplot(aug_chol1_ex, aes(x = obsnum, y = .cooksd)) +
geom_point() +
geom_segment(aes(x = obsnum, xend = obsnum, y = 0, yend = .cooksd)) +
geom_text_repel(data = aug_chol1_ex |>

slice_max(.cooksd, n = 3),
aes(label = id)) +

labs(x = "Row Number",
y = "Cook's Distance",
title = "Cook's distance Index plot for chol_m1",
subtitle = "Subjects with the 3 largest Cook's d values are identified.")
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id .std.resid .hat .cooksd
10214 -1.779 0.060 0.051
2280 4.713 0.006 0.031
3604 3.033 0.012 0.029
22025 -1.308 0.055 0.025
11432 -1.432 0.038 0.020
12392 -2.661 0.010 0.017
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Subjects with the 3 largest Cook's d values are identified.

Cook's distance Index plot for chol_m1

It is clear from this plot that the largest Cook’s distance (somewhere between 0.05 and 0.06) is
for the observation in subject 10214 (or row 131 of the data set, depending on which version you
build. All of the Cook’s distance values are stored in the .cooksd variable in our augmented
results. Let’s look at the six largest Cook’s distance values.

aug_chol1 |> select(id, .std.resid, .hat, .cooksd) |>
arrange(desc(.cooksd)) |> head() |> kbl(digits = 3) |> kable_classic()

Remember that we’d need a Cook’s distance value to be at least 0.50 for us to worry about
it in a serious way. Here, the largest we see (0.05 for id = 10214) is still far away from that
standard.

What is the story on point 10214? Why is it unusual?
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id sbp bmi dibpat chol .fitted .std.resid .hat .cooksd
10214 170 37.65 Type B 153 221.42 -1.78 0.06 0.05

aug_chol1 |> filter(id == 10214) |>
select(id:.fitted, .std.resid, .hat, .cooksd) |>
kbl(digits = 2) |> kable_classic()

This turns out to be the subject with the largest BMI in the data, hence some leverage, and
a somewhat large (-1.78) but not enormous standardized residual. Hence the combination
suggests some influence on the model.

30.12 Running a Regression Model While Excluding A Point

Suppose that we wanted to remove the point with the most influence over the model. We
could fit a model to the data without id = 10214 to see the impact of this change. Let’s try
it.

summary(lm(chol ~ sbp + bmi + dibpat, data = wcgs_500 |> filter(id != 10214)))

Call:
lm(formula = chol ~ sbp + bmi + dibpat, data = filter(wcgs_500,

id != 10214))

Residuals:
Min 1Q Median 3Q Max

-113.062 -25.453 -2.469 23.954 186.200

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 206.3207 20.3647 10.131 < 2e-16 ***
sbp 0.2464 0.1124 2.192 0.02883 *
bmi -0.3127 0.7438 -0.420 0.67433
dibpatType B -10.6424 3.5635 -2.986 0.00296 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 39.57 on 495 degrees of freedom
Multiple R-squared: 0.02943, Adjusted R-squared: 0.02355
F-statistic: 5.003 on 3 and 495 DF, p-value: 0.001996
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Compare these results to those obtained with the full data set, shown below.

• How is the model affected by removing subject 10214?
• What is the impact on the slopes?
• On the summary measures? Residuals?

summary(lm(chol ~ sbp + bmi + dibpat, data = wcgs_500))

Call:
lm(formula = chol ~ sbp + bmi + dibpat, data = wcgs_500)

Residuals:
Min 1Q Median 3Q Max

-113.133 -25.689 -1.932 24.036 186.390

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 214.5185 19.8825 10.789 < 2e-16 ***
sbp 0.2361 0.1125 2.099 0.03634 *
bmi -0.5894 0.7290 -0.808 0.41921
dibpatType B -11.0408 3.5643 -3.098 0.00206 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 39.66 on 496 degrees of freedom
Multiple R-squared: 0.02954, Adjusted R-squared: 0.02367
F-statistic: 5.033 on 3 and 496 DF, p-value: 0.001915

While it is true that we can sometimes improve the performance of the model in some ways
by removing this point, there’s no good reason to do so. We can’t just remove a point from
the data set without a good reason (and, to be clear, “I ran my model and it doesn’t fit this
point well” is NOT a good reason). Good reasons would include:

• This observation was included in the sample in error, for instance, because the subject
was not eligible.

• An error was made in transcribing the value of this observation to the final data set.
• And, sometimes, even “This observation is part of a meaningful subgroup of patients

that I had always intended to model separately…” assuming that’s true.
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30.13 Summarizing Regression Diagnostics for 431

1. Check the “straight enough” condition with scatterplots of the y variable (outcome)
against each x-variable (predictor), usually via the top row of a scatterplot matrix.

2. If the data are straight enough (that is, if it looks like the regression model is plausible),
fit a regression model, to obtain residuals and influence measures.

• If not, consider using the Box-Cox approach to identify a possible transformation
for the outcome variable, and then recheck the straight enough condition.

The plot function for a fitted linear model builds five diagnostic plots.

3. [Plot 1] A scatterplot of the residuals against the fitted values.

• This plot should look patternless. Check in particular for any bend (which would
suggest that the data weren’t all that straight after all) and for any thickening,
which would indicate non-constant variance.

• If the data are measured over time, check especially for evidence of patterns that
might suggest they are not independent. For example, plot the residuals against
time to look for patterns.

• These values are stored as .resid and .fitted by the augment() function applied
to a linear model.

4. [Plot 3] A scale-location plot of the square root of the standardized residuals against the
fitted values to look for a non-flat loess smooth, which indicates non-constant variance.
Standardized residuals are obtained via augment and stored in the .std.resid variable.

5. [Plot 2] If the plots above look OK, then consider a Normal Q-Q plot of the standardized
residuals to check the nearly Normal condition.

6. [Plot 5] The final plot we often look at is the plot of residuals vs. leverage, with influence
contours. Sometimes, we’ll also look at [Plot 4] the index plot of the Cook’s distance
for each observation in the data set.

• To look for points with substantial leverage on the model by virtue of having
unusual values of the predictors - look for points whose leverage is at least 3 times
as large as the average leverage value.

– The average leverage is always k/n, where k is the number of coefficients fit
by the model (including the slopes and intercept), and n is the number of
observations in the model.

– To obtain the leverage values, use the augment() function which stores them
in .hat.
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• To look for points with substantial influence on the model, that is, removing them
from the model would change it substantially, consider the Cook’s distance, plotted
in contours in Plot 5, or in an index plot in Plot 4.

– Any Cook’s d > 1 will likely have a substantial impact on the model.
– Even points with Cook’s d > 0.5 may merit further investigation.
– Find the Cook’s distances using the augment() function, which stores them in

.cooksd.

30.14 Violated Assumptions: Problems with Linearity

So what do serious assumption violations look like, and what can we do about them?

Here is a simulated example that shows a clear problem with non-linearity.

set.seed(4311); x1 <- rnorm(n = 100, mean = 15, sd = 5)
set.seed(4312); x2 <- rnorm(n = 100, mean = 10, sd = 5)
set.seed(4313); e1 <- rnorm(n = 100, mean = 0, sd = 15)
y <- 15 + x1 + x2^2 + e1
viol1 <- data.frame(outcome = y, pred1 = x1, pred2 = x2) |> tibble()
model_1 <- lm(outcome ~ pred1 + pred2, data = viol1)
plot(model_1, which = 1)
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In light of this, I would be looking for a potential transformation of outcome. Does the Box-Cox
plot make any useful suggestions?

boxCox(model_1); powerTransform(model_1)
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Note that if the outcome was negative, we would have to add some constant value to every
outcome in order to get every outcome value to be positive, and Box-Cox to run. This suggests
fitting a new model, using the square root of the outcome.

model_2 <- lm(sqrt(outcome) ~ pred1 + pred2, data = viol1)
plot(model_2, which = 1)
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This is meaningfully better in terms of curve, but now looks a bit fan-shaped, indicating a
potential problem with heteroscedasticity. Let’s look at the scale-location plot for this model.

plot(model_2, which = 3)
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This definitely looks like there’s a trend down in this plot. So the square root transformation,
by itself, probably hasn’t resolved assumptions sufficiently well. We’ll have to be very careful
about our interpretation of the model.

30.15 Problems with Non-Normality: An Influential Point

With 100 observations, a single value with a standardized residual above 3 is very surprising.
In our initial model_1 here, we have a standardized residual value as large as 6, so we clearly
have a problem with that outlier.

plot(model_1, which = 2)
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Should we, perhaps, remove point 72, and try again? Only if we have a reason beyond “it was
poorly fit” to drop that point. Is point 72 highly leveraged or influential?

plot(model_1, which = 5)

589



0.00 0.02 0.04 0.06 0.08 0.10 0.12

−
2

0
2

4
6

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(outcome ~ pred1 + pred2)

Cook's distance

0.5

1

Residuals vs Leverage

72

977

What if we drop this point (72) and fit our linear model again. Does this resolve our difficulty
with the assumption of linearity?

model_1_no72 <- lm(outcome ~ pred1 + pred2, data = viol1[-72,])
par(mfrow=c(1,2))
plot(model_1, which = 1, caption = "With Point 72")
plot(model_1_no72, which = 1, caption = "Without Point 72")
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par(mfrow=c(1,1))

No, it doesn’t. But what if we combine our outcome transformation with dropping point 72?

model_2_no72 <- lm(sqrt(outcome) ~ pred1 + pred2, data = viol1[-72,])
par(mfrow=c(1,2))
plot(model_2_no72, which = c(1,3))
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par(mfrow=c(1,1))

Nope. That still doesn’t alleviate the problem of heteroscedasticity very well. At least, we no
longer have any especially influential points, nor do we have substantial non-Normality.

par(mfrow=c(1,2))
plot(model_2_no72, which = c(2,5))
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par(mfrow=c(1,1))

At this point, I would be considering potential transformations of the predictors, quite possibly
fitting some sort of polynomial term or cubic spline term in the predictors, but I’ll leave that
for discussion in 432.

30.16 Problems with Non-Normality: Skew

set.seed(4314); x1 <- rnorm(n = 100, mean = 15, sd = 5)
set.seed(4315); x2 <- rnorm(n = 100, mean = 10, sd = 5)
set.seed(4316); e2 <- rnorm(n = 100, mean = 3, sd = 5)
y2 <- 50 + x1 + x2 + e2^2
viol2 <- data.frame(outcome = y2, pred1 = x1, pred2 = x2) |> tibble()
model.3 <- lm(outcome ~ pred1 + pred2, data = viol2)
plot(model.3, which = 2)
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Skewed residuals often show up in strange patterns in the plot of residuals vs. fitted values,
too, as in this case.

plot(model.3, which = 1)
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Clearly, we have some larger residuals on the positive side, but not on the negative side. Would
an outcome transformation be suggested by Box-Cox?

boxCox(model.3); powerTransform(model.3)
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The suggested transformation looks like the inverse of our outcome.

model.4 <- lm(1/outcome ~ pred1 + pred2, data = viol2)
plot(model.4, which = 2)
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OK. That’s something of an improvement. How about the other residual plots with this
transformation?

plot(model.4, which = 1)
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The impact of the skew is reduced, at least. I might well be satisfied enough with this, in
practice.
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31 Building Prediction Models for wcgs

Sometimes, we use a regression model for description of a multivariate relationship which
requires only that we provide an adequate fit to the data at hand. Should we want to use the
model for prediction, then a more appropriate standard which requires us to fit a model that
does each of the following three things:

1. [fits well] Provides an adequate fit to the data at hand
2. [parsimonious] Includes only those predictors which actually have detectable predictive

value
3. [predicts well out of sample] Does a better job predicting our outcome in new data than

other alternative models

For now, we’ll focus on a pair of issues:

a. Given a set of predictors, how should we let the computer help us understand which
subsets of those predictors are most worthy of our additional attention?

b. Given a pair of models to compare, what tools should we use to determine which one
better predicts new data?

31.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(car)
library(GGally)
library(ggrepel)
library(janitor)
library(kableExtra)
library(patchwork)
library(tidyverse)

theme_set(theme_bw())

We’ll also use some functions from the Hmisc and rms packages.
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31.2 Predicting Cholesterol Level in WCGS, Again

To address these issues, I’ll again look at the wcgs data (Western Collaborative Group Study),
described in Chapter 17, then again in Chapter 30.

wcgs <- read_csv("data/wcgs.csv", show_col_types = FALSE)

This time, we’ll try to predict the variable chol on the basis of some subset of the following
six predictors: age, bmi, sbp, dbp, smoke and dibpat.

The steps we’ll take are as follows.

1. Check the wcgs data for missing or out-of-range values in the variables under study, so
we don’t regret it later. Make a decision about how to handle issues here.

2. Partition the wcgs data into a training (development) sample of 2000 observations, and
a test (holdout) sample of the remaining observations.

3. Using only the model development sample, fit three candidate models.

• Model A will predict chol using all six predictors.
• Model B will predict chol using five predictors, specifically age, bmi, dbp, dibpat

and smoke.
• Model C will predict chol using only three predictors, specifically age, dbp and

smoke

4. Compare the fit quality of these models in the development sample to see if any of them
is superior in terms of in-sample predictive quality.

5. Assess regression assumptions in each of these models in the development sample.
6. Finally moving to the holdout sample, compare the quality of predictions made by the

models in terms of several criteria to see if any of the models (A, B or C) is clearly
superior in terms of out-of-sample prediction.

31.3 Checking for Missing or Problematic Values

Suppose that after consulting with clinical experts, we want to ensure that:

• all age values are between 39 and 59 years
• all bmi are between 15 and 50
• all sbp are between 80 and 250 mm Hg
• all dbp are between 50 and 200 mm Hg
• all values of sbp-dbp are at least 10 and no more than 90 mm Hg
• all values of chol are between 100 and 400 mg/dl
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Hmisc::describe(wcgs |> select(age, bmi, sbp, dbp, smoke, dibpat, chol))

select(wcgs, age, bmi, sbp, dbp, smoke, dibpat, chol)

7 Variables 3154 Observations
--------------------------------------------------------------------------------
age

n missing distinct Info Mean Gmd .05 .10
3154 0 21 0.996 46.28 6.256 39 40
.25 .50 .75 .90 .95
42 45 50 55 57

lowest : 39 40 41 42 43, highest: 55 56 57 58 59
--------------------------------------------------------------------------------
bmi

n missing distinct Info Mean Gmd .05 .10
3154 0 679 1 24.52 2.803 20.59 21.52
.25 .50 .75 .90 .95

22.96 24.39 25.84 27.45 28.73

lowest : 11.1906 15.6605 16.872 17.2163 17.2224
highest: 36.0425 37.2297 37.2481 37.6528 38.9474
--------------------------------------------------------------------------------
sbp

n missing distinct Info Mean Gmd .05 .10
3154 0 62 0.996 128.6 16.25 110 112
.25 .50 .75 .90 .95
120 126 136 148 156

lowest : 98 100 102 104 106, highest: 200 208 210 212 230
--------------------------------------------------------------------------------
dbp

n missing distinct Info Mean Gmd .05 .10
3154 0 42 0.992 82.02 10.51 68 70
.25 .50 .75 .90 .95
76 80 86 94 100

lowest : 58 60 62 64 66, highest: 125 129 130 136 150
--------------------------------------------------------------------------------
smoke

n missing distinct
3154 0 2
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Value No Yes
Frequency 1652 1502
Proportion 0.524 0.476
--------------------------------------------------------------------------------
dibpat

n missing distinct
3154 0 2

Value Type A Type B
Frequency 1589 1565
Proportion 0.504 0.496
--------------------------------------------------------------------------------
chol

n missing distinct Info Mean Gmd .05 .10
3142 12 237 1 226.4 47.99 161.1 175.0
.25 .50 .75 .90 .95

197.2 223.0 253.0 280.0 302.0

lowest : 103 110 111 112 113, highest: 386 390 400 414 645
--------------------------------------------------------------------------------

Here are the issues I see:

• The (chol) total cholesterol levels include 12 missing values (so we need to decide what
to do about them) and values of 414 and 645 that I don’t think are plausible. Since chol
is our outcome, I’m inclined to delete those 14 subjects from our analyses.

• The bmi value of 11.9 is much smaller than all other values, and seems implausible, so
I’m inclined to delete that subject, as well.

• All of the age values are between 39 and 59, as they should be.
• The dibpat and smoke binary variables each appear to be reasonable given the timing

of the data collection (the early 1960s).
• The blood pressures, individually, for sbp and dbp appear reasonable in terms of their

ranges and have no missing data. It’s worth it to check to see that everyone has a sbp
meaningfully larger than their dbp.

wcgs |> mutate(bp_diff = sbp - dbp) |>
select(id, sbp, dbp, bp_diff) |>
slice_min(bp_diff, n = 3)

# A tibble: 3 x 4
id sbp dbp bp_diff
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<dbl> <dbl> <dbl> <dbl>
1 3822 120 100 20
2 11406 104 80 24
3 10204 110 86 24

This looks fine. Are any combinations out of line in the other direction, with a difference of
90 or more?

wcgs |> mutate(bp_diff = sbp - dbp) |>
select(id, sbp, dbp, bp_diff) |>
filter(bp_diff >= 90)

# A tibble: 8 x 4
id sbp dbp bp_diff

<dbl> <dbl> <dbl> <dbl>
1 2172 208 102 106
2 12453 196 86 110
3 12280 190 98 92
4 13268 170 80 90
5 3546 188 90 98
6 2078 188 86 102
7 19078 230 118 112
8 22025 210 108 102

This sbp - dbp value is called the pulse pressure. Given that these men did not (at enrollment)
have heart disease, it is surprising to see so many values separated by more than what would
be typical (about 40-60 mm Hg.)

I’ll be a little aggressive in my cleaning and also drop these 8 subjects with sbp - dbp of 90
or more mm Hg. So, we need to deal with the missingness in chol, the strange bmi value and
the strange chol value in addition to dropping subjects with sbp - dbp to get to a “clean”
data set here.

wcgs_ms <- wcgs |>
select(id, age, bmi, sbp, dbp, smoke, dibpat, chol) |>
filter(complete.cases(id, age, bmi, sbp,

dbp, smoke, dibpat, chol)) |> # drops 12 subjects
filter(bmi > 15) |> # drops 1 subject
filter(sbp - dbp < 90) |> # drops 7 more subjects
filter(chol <= 400) # drops 2 more subjects

nrow(wcgs); nrow(wcgs_ms)
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[1] 3154

[1] 3132

So we have dropped a total of 22 subjects from the data set. We could certainly consider
imputing missing values of chol, but I am uncomfortable doing that for an outcome.

31.4 Partitioning the wcgs_ms sample

2. Partition the wcgs_ms tibble into a training (development) sample of 2000 observations,
and a test (holdout) sample of the remaining observations.

Before we partition, it’s always a good idea to ensure that each of the subject identifiers (here,
id) are unique.

We could simply count the number of rows in the data set and make sure it matches the
number of distinct id values.

c(nrow(wcgs_ms), n_distinct(wcgs_ms |> select(id)))

[1] 3132 3132

Looks good. If you prefer, check directly with the identical() function, which should return
TRUE.

identical(nrow(wcgs_ms), n_distinct(wcgs_ms |> select(id)))

[1] TRUE

Remember to set a seed so that you can replicate the selection.

set.seed(431)

wcgs_ms_train <- slice_sample(wcgs_ms, n = 2000)

wcgs_ms_test <- anti_join(wcgs_ms, wcgs_ms_train, by = "id")

c(nrow(wcgs_ms), nrow(wcgs_ms_train), nrow(wcgs_ms_test))
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[1] 3132 2000 1132

OK. This looks good. We have 2000 observations in the training sample, and the rest in the
test sample.

Given a large sample size (at least 500 observations in the full data set) I would usually think
about holding out somewhere between 20% and 30% of the data in this manner, but it’s OK
to stray a bit from those bounds, as we have here, with 1132/3132 = 36% held out for the test
sample.

31.5 Should we transform our outcome?

Consider the Box-Cox approach, which we’ll check in our complete (model C) model.

boxCox(lm(chol ~ age + bmi + sbp + dbp + smoke + dibpat,
data = wcgs_ms_train))
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It looks like we might want to consider using the square root of the cholesterol level as our
outcome. We’ll try that.
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31.6 Scatterplot Matrix and Assessment of Collinearity

wcgs_ms_train <- wcgs_ms_train |>
mutate(sqrtchol = sqrt(chol))

ggpairs(wcgs_ms_train |> select(age, bmi, sbp, dbp, smoke, dibpat, sqrtchol),
lower = list(combo = wrap("facethist", binwidth = 0.5)),
title = "2000 subjects in `wcgs_ms_train`")

Corr:

0.034

Corr:
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With so many observations and more than just a few predictors, it’s not always easy to parse
this plot. We might have considered splitting it into two parts.

Let’s check for collinearity. Unsurprisingly, sbp and dbp are highly correlated with each other.
Does this give us problems with variance inflation? Again, we’ll consider the largest model
we’ll fit.

vif(lm(chol ~ age + bmi + sbp + dbp + smoke + dibpat,
data = wcgs_ms_train))

age bmi sbp dbp smoke dibpat
1.038393 1.157091 2.536938 2.578828 1.035868 1.016123
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The VIF is largest for sbp and dbp, suggesting that perhaps we won’t need them both.

There is also a vif function within the rms package.

rms::vif(lm(chol ~ age + bmi + sbp + dbp + smoke + dibpat,
data = wcgs_ms_train))

age bmi sbp dbp smokeYes dibpatType B
1.038393 1.157091 2.536938 2.578828 1.035868 1.016123

Since we have candidate models using only dbp, let’s see how they fare.

31.7 Fit our Three Candidate Models

Due to our choice to transform our outcome, we will now fit the following candidate models:

• Model A will predict sqrt(chol) using all six predictors.
• Model B will predict sqrt(chol) using five predictors, specifically age, bmi, dbp, dibpat

and smoke.
• Model C will predict sqrt(chol) using only two predictors, specifically dbp and smoke

31.7.1 Three Candidate Models

modelA <- lm(sqrt(chol) ~ age + bmi + sbp + dbp + smoke + dibpat,
data = wcgs_ms_train)

modelB <- lm(sqrt(chol) ~ age + bmi + dbp + smoke + dibpat,
data = wcgs_ms_train)

modelC <- lm(sqrt(chol) ~ age + dbp + smoke,
data = wcgs_ms_train)

31.7.2 Could we have fit other models?

Sure. One approach would have been to consider an automated variable selection tool, even
though they’re all pretty terrible. Stepwise regression is a common, if poor, choice for this
task. The problem is that there’s no good tool for this task, essentially, as we’ll discuss further
in 432.

• A stepwise regression applied to modelA in the training sample with backwards elimina-
tion suggests our modelB.
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step(modelA)

Start: AIC=1357.64
sqrt(chol) ~ age + bmi + sbp + dbp + smoke + dibpat

Df Sum of Sq RSS AIC
- sbp 1 0.359 3916.0 1355.8
<none> 3915.6 1357.6
- bmi 1 5.044 3920.6 1358.2
- dibpat 1 10.321 3925.9 1360.9
- age 1 22.217 3937.8 1367.0
- dbp 1 28.014 3943.6 1369.9
- smoke 1 46.322 3961.9 1379.2

Step: AIC=1355.82
sqrt(chol) ~ age + bmi + dbp + smoke + dibpat

Df Sum of Sq RSS AIC
<none> 3916.0 1355.8
- bmi 1 4.858 3920.8 1356.3
- dibpat 1 10.204 3926.2 1359.0
- age 1 21.913 3937.9 1365.0
- smoke 1 46.021 3962.0 1377.2
- dbp 1 52.228 3968.2 1380.3

Call:
lm(formula = sqrt(chol) ~ age + bmi + dbp + smoke + dibpat, data = wcgs_ms_train)

Coefficients:
(Intercept) age bmi dbp smokeYes

12.03138 0.01930 0.02074 0.01835 0.30687
dibpatType B

-0.14393

• A stepwise regression with forward selection from the intercept only model moving to-
wards modelA in the training sample also suggests modelB.

min_model <- lm(sqrt(chol) ~ 1, data = wcgs_ms_train)
biggest <- formula(lm(sqrt(chol) ~ age + bmi + sbp + dbp + smoke + dibpat,

data = wcgs_ms_train))
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fwd_step <- stats::step(min_model, direction = 'forward', scope = biggest)

Start: AIC=1430.36
sqrt(chol) ~ 1

Df Sum of Sq RSS AIC
+ dbp 1 83.336 4001.7 1391.1
+ sbp 1 57.718 4027.3 1403.9
+ smoke 1 39.557 4045.5 1412.9
+ age 1 39.060 4046.0 1413.1
+ dibpat 1 20.740 4064.3 1422.2
+ bmi 1 19.788 4065.2 1422.7
<none> 4085.0 1430.4

Step: AIC=1391.13
sqrt(chol) ~ dbp

Df Sum of Sq RSS AIC
+ smoke 1 45.953 3955.7 1370.0
+ age 1 24.171 3977.5 1381.0
+ dibpat 1 16.675 3985.0 1384.8
<none> 4001.7 1391.1
+ bmi 1 1.964 3999.7 1392.2
+ sbp 1 0.766 4000.9 1392.8

Step: AIC=1370.04
sqrt(chol) ~ dbp + smoke

Df Sum of Sq RSS AIC
+ age 1 24.3512 3931.4 1359.7
+ dibpat 1 13.4535 3942.3 1365.2
+ bmi 1 4.7652 3951.0 1369.6
<none> 3955.7 1370.0
+ sbp 1 0.0080 3955.7 1372.0

Step: AIC=1359.69
sqrt(chol) ~ dbp + smoke + age

Df Sum of Sq RSS AIC
+ dibpat 1 10.5635 3920.8 1356.3
+ bmi 1 5.2180 3926.2 1359.0
<none> 3931.4 1359.7
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term estimate conf.low conf.high p.value
(Intercept) 12.058 10.933 13.183 0.000
age 0.019 0.005 0.034 0.001
bmi 0.021 -0.013 0.055 0.109
sbp -0.001 -0.010 0.007 0.669
dbp 0.020 0.006 0.034 0.000
smokeYes 0.310 0.146 0.475 0.000
dibpatType B -0.145 -0.308 0.018 0.022

+ sbp 1 0.0906 3931.3 1361.6

Step: AIC=1356.3
sqrt(chol) ~ dbp + smoke + age + dibpat

Df Sum of Sq RSS AIC
+ bmi 1 4.8581 3916.0 1355.8
<none> 3920.8 1356.3
+ sbp 1 0.1735 3920.6 1358.2

Step: AIC=1355.82
sqrt(chol) ~ dbp + smoke + age + dibpat + bmi

Df Sum of Sq RSS AIC
<none> 3916.0 1355.8
+ sbp 1 0.35901 3915.6 1357.6

It is tempting to conclude that modelB is somehow a good model, since both forwards and
stepwise regression like modelB in our training sample given the predictors we fed to the
algorithm. Resist that temptation. As you’ll see, even with the pretty simple validation
strategy we’re going to use here, we won’t wind up selecting model B.

31.7.3 Coefficients of our 3 models with tidy

Given the large sample size, let’s look at some 99% confidence intervals for our model coeffi-
cients. We’ll use tidy from the broom package.

tidy(modelA, conf.int = TRUE, conf.level = 0.99) |>
select(term, estimate, conf.low, conf.high, p.value) |>
kbl(digits = 3) |> kable_classic(full_width = F)
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term estimate conf.low conf.high p.value
(Intercept) 12.031 10.918 13.145 0.000
age 0.019 0.004 0.034 0.001
bmi 0.021 -0.013 0.055 0.116
dbp 0.018 0.009 0.028 0.000
smokeYes 0.307 0.143 0.470 0.000
dibpatType B -0.144 -0.307 0.019 0.023

term estimate conf.low conf.high p.value
(Intercept) 12.243 11.325 13.160 0
age 0.020 0.005 0.035 0
dbp 0.021 0.012 0.029 0
smokeYes 0.305 0.142 0.467 0

tidy(modelB, conf.int = TRUE, conf.level = 0.99) |>
select(term, estimate, conf.low, conf.high, p.value) |>
kbl(digits = 3) |> kable_classic(full_width = F)

tidy(modelC, conf.int = TRUE, conf.level = 0.99) |>
select(term, estimate, conf.low, conf.high, p.value) |>
kbl(digits = 3) |> kable_classic(full_width = F)

31.7.4 ANOVA comparison of the 3 models

Since model C is a subset of model B which is a subset of model A, we can compare these
models with ANOVA tests.

anova(modelC, modelB, modelA)

Analysis of Variance Table

Model 1: sqrt(chol) ~ age + dbp + smoke
Model 2: sqrt(chol) ~ age + bmi + dbp + smoke + dibpat
Model 3: sqrt(chol) ~ age + bmi + sbp + dbp + smoke + dibpat
Res.Df RSS Df Sum of Sq F Pr(>F)

1 1996 3931.4
2 1994 3916.0 2 15.422 3.9247 0.0199 *
3 1993 3915.6 1 0.359 0.1827 0.6691
---
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name r2 adjr2 sigma AIC BIC nobs df df.res
modelA 0.0415 0.0386 1.402 7035 7080 2000 6 1993
modelB 0.0414 0.0390 1.401 7034 7073 2000 5 1994
modelC 0.0376 0.0362 1.403 7037 7065 2000 3 1996

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• There appears to be a detectable improvement (using 𝛼 = 0.05) for model B as compared
to model C, but not if we use 𝛼 = 0.01.

• The improvement from model B to model A doesn’t appear to meet the standard for a
statistically detectable impact based on this ANOVA comparison.

31.7.5 Assessing Fit Quality of our 3 models with glance

repA <- glance(modelA) |> mutate(name = "modelA")
repB <- glance(modelB) |> mutate(name = "modelB")
repC <- glance(modelC) |> mutate(name = "modelC")

fit_report <- bind_rows(repA, repB, repC)

fit_report |>
select(name, r2 = r.squared, adjr2 = adj.r.squared, sigma,

AIC, BIC, nobs, df, df.res = df.residual) |>
kbl(digits = c(0,4,4,3,0,0,0,0,0)) |> kable_minimal()

Our conclusions are:

• Model A has the strongest 𝑅2 value, as it must because it contains the predictors in the
other models, and 𝑅2 is greedy.

• Model B has a slightly stronger adjusted 𝑅2 and 𝜎 than the other models, and also has
the best performance according to AIC.

• Model C (the smallest of these models) shows the best in-sample BIC result.
• None of the differences we observe between these models are particularly large, and none

of the models are especially effective, as judged by 𝑅2.

31.8 Develop Residual Plots

We’ll use augment from the broom package to calculate our summaries of the quality of fit at
the level of the individual observations, and the fact that our fitted values refer to the square
root of cholesterol level is fine for assessing assumptions in-sample.
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aug_A <- augment(modelA, data = wcgs_ms_train)
aug_B <- augment(modelB, data = wcgs_ms_train)
aug_C <- augment(modelC, data = wcgs_ms_train)

31.8.1 First Set of Residual Diagnostics (3 models)

For each model, we’ll start with the pair of plots that show us:

• the residuals vs. the fitted values, to check for non-linearity and non-constant variance,
as well as

• Normal Q-Q plots of the standardized residuals to check for important non-Normality.

p1a <- ggplot(aug_A, aes(x = .fitted, y = .resid)) +
geom_point(alpha = 0.2) +
geom_point(data = aug_A |>

slice_max(abs(.resid), n = 5),
col = "red", size = 2) +

geom_text_repel(data = aug_A |>
slice_max(abs(.resid), n = 5),

aes(label = id), col = "red") +
geom_abline(intercept = 0, slope = 0, lty = "dashed") +
geom_smooth(method = "loess", formula = y ~ x, span = 2, se = F) +
labs(title = "Model A",

x = "Fitted sqrt(cholesterol)", y = "Residual")

p1b <- ggplot(aug_B, aes(x = .fitted, y = .resid)) +
geom_point(alpha = 0.2) +
geom_point(data = aug_B |>

slice_max(abs(.resid), n = 5),
col = "red", size = 2) +

geom_text_repel(data = aug_B |>
slice_max(abs(.resid), n = 5),

aes(label = id), col = "red") +
geom_abline(intercept = 0, slope = 0, lty = "dashed") +
geom_smooth(method = "loess", formula = y ~ x, span = 2, se = F) +
labs(title = "Model B",

x = "Fitted sqrt(cholesterol)", y = "Residual")

p1c <- ggplot(aug_C, aes(x = .fitted, y = .resid)) +
geom_point(alpha = 0.2) +
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geom_point(data = aug_C |>
slice_max(abs(.resid), n = 5),

col = "red", size = 2) +
geom_text_repel(data = aug_C |>

slice_max(abs(.resid), n = 5),
aes(label = id), col = "red") +

geom_abline(intercept = 0, slope = 0, lty = "dashed") +
geom_smooth(method = "loess", formula = y ~ x, span = 2, se = F) +
labs(title = "Model C",

caption = "In each plot, 5 largest |residuals| highlighted in red.",
x = "Fitted sqrt(cholesterol)", y = "Residual")

p2a <- ggplot(aug_A, aes(sample = .std.resid)) +
geom_qq() +
geom_qq_line(col = "red") +
labs(title = "Model A: Normal Q-Q Plot",

y = "Model A Standardized Residual",
x = "Standard Normal Quantiles")

p2b <- ggplot(aug_B, aes(sample = .std.resid)) +
geom_qq() +
geom_qq_line(col = "red") +
labs(title = "Model B: Normal Q-Q Plot",

y = "Model B Standardized Residual",
x = "Standard Normal Quantiles")

p2c <- ggplot(aug_C, aes(sample = .std.resid)) +
geom_qq() +
geom_qq_line(col = "red") +
labs(title = "Model C: Normal Q-Q Plot",

y = "Model C Standardized Residual",
x = "Standard Normal Quantiles")

(p1a + p2a) / (p1b + p2b) / (p1c + p2c) +
plot_annotation(

title = "Residual Diagnostics: Set 1 for Models A, B, C")
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In each of these plots, I see no clear signs of substantial non-linearity or any substantial
problems with the assumptions of constant variance or Normality. No standardized residuals
are especially unusual, and there’s no sign of a substantial curve or fan shape in the plots of
residuals vs. fitted values.

31.8.2 Second Set of Residual Diagnostics (3 models)

As a second check on the assumption of non-constant variance, we’ll draw scale-location plots.
As a second check on the potential for poorly fit or highly leveraged points to influence our
results, we’ll also run the residuals vs. leverage plots.

p3a <- ggplot(aug_A, aes(x = .fitted, y = sqrt(abs(.std.resid)))) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x, span = 2, se = F) +
labs(title = "Model A Scale-Location Plot",

x = "Fitted sqrt(cholesterol)",
y = "Square Root of |Standardized Residual|")

p3b <- ggplot(aug_B, aes(x = .fitted, y = sqrt(abs(.std.resid)))) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x, span = 2, se = F) +
labs(title = "Model B Scale-Location Plot",

x = "Fitted sqrt(cholesterol)",
y = "Square Root of |Standardized Residual|")

p3c <- ggplot(aug_C, aes(x = .fitted, y = sqrt(abs(.std.resid)))) +
geom_point() +
geom_smooth(method = "loess", formula = y ~ x, span = 2, se = F) +
labs(title = "Model C Scale-Location Plot",

x = "Fitted sqrt(cholesterol)",
y = "Square Root of |Standardized Residual|")

p4a <- ggplot(aug_A, aes(x = .hat, y = .std.resid)) +
geom_point() +
geom_point(data = aug_A |> filter(.cooksd >= 0.5),

col = "red", size = 2) +
geom_text_repel(data = aug_A |> filter(.cooksd >= 0.5),

aes(label = id), col = "red") +
geom_smooth(method = "loess", formula = y ~ x, span = 2, se = F) +
geom_vline(aes(xintercept = 3*mean(.hat)), lty = "dashed") +
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labs(title = "Model A Residuals vs. Leverage",
caption = "Red points indicate Cook's d at least 0.5",
x = "Leverage", y = "Standardized Residual")

p4b <- ggplot(aug_B, aes(x = .hat, y = .std.resid)) +
geom_point() +
geom_point(data = aug_B |> filter(.cooksd >= 0.5),

col = "red", size = 2) +
geom_text_repel(data = aug_B |> filter(.cooksd >= 0.5),

aes(label = id), col = "red") +
geom_smooth(method = "loess", formula = y ~ x, span = 2, se = F) +
geom_vline(aes(xintercept = 3*mean(.hat)), lty = "dashed") +
labs(title = "Model B Residuals vs. Leverage",

caption = "Red points indicate Cook's d at least 0.5",
x = "Leverage", y = "Standardized Residual")

p4c <- ggplot(aug_C, aes(x = .hat, y = .std.resid)) +
geom_point() +
geom_point(data = aug_C |> filter(.cooksd >= 0.5),

col = "red", size = 2) +
geom_text_repel(data = aug_C |> filter(.cooksd >= 0.5),

aes(label = id), col = "red") +
geom_smooth(method = "loess", formula = y ~ x, span = 2, se = F) +
geom_vline(aes(xintercept = 3*mean(.hat)), lty = "dashed") +
labs(title = "Model C Residuals vs. Leverage",

caption = "Red points indicate Cook's d at least 0.5",
x = "Leverage", y = "Standardized Residual")

(p3a + p4a) / (p3b + p4b) / (p3c + p4c) +
plot_annotation(

title = "Residual Diagnostics: Set 2 for Models A, B, C")
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Again, I don’t see any signs of powerful trends in the scale-location plot for any of the three
models, so there’s no clear sign of non-constant variance.

For each of the three models, the residuals vs. leverage plot shows no points highlighted in red
(which would indicate substantial influence - a Cook’s distance value above 5.) So I don’t see
anything to worry about.

31.8.3 Numerical Summaries of these measures (all 3 models)

We could summarize the largest standardized residual and the largest Cook’s distance, for
instance, for each model, with something like this.

aug_A |> slice_max(abs(.std.resid), n = 1) |>
select(id, sqrtchol, .fitted, .resid, .std.resid)

# A tibble: 1 x 5
id sqrtchol .fitted .resid .std.resid

<dbl> <dbl> <dbl> <dbl> <dbl>
1 10340 19.7 14.7 5.08 3.63

aug_A |> slice_max(.cooksd, n = 1) |>
select(id, sqrtchol, .fitted, .resid, .hat, .cooksd)

# A tibble: 1 x 6
id sqrtchol .fitted .resid .hat .cooksd

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 10072 10.6 15.5 -4.90 0.00938 0.0167

31.9 Test Sample Comparisons for our 3 Models

Finally, we’ll use our three candidate models (A, B and C) to predict the results in our holdout
sample of 1132 observations not used to fit these models to see which model performs better
in these new data.

Once again, we’ll be using augment to do this work. To start, this is straightforward - we just
need to specify the new data we want to predict with newdata.

test_A <- augment(modelA, newdata = wcgs_ms_test) |> mutate(mod_n = "Model A")
test_B <- augment(modelB, newdata = wcgs_ms_test) |> mutate(mod_n = "Model B")
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test_C <- augment(modelC, newdata = wcgs_ms_test) |> mutate(mod_n = "Model C")

Let’s look at the first two results using Model A.

test_A |>
mutate(sqrtchol = sqrt(chol)) |>
select(chol, sqrtchol, .fitted, .resid) |> head(2)

# A tibble: 2 x 4
chol sqrtchol .fitted .resid
<dbl> <dbl> <dbl> <dbl>

1 194 13.9 15.2 -1.28
2 258 16.1 15.5 0.592

As we can see, the .fitted value is trying to predict the square root of chol and not chol.
When we are doing validation in our test sample, it is more helpful to get back to the scale of
our original outcome. So here, we’d square the .fitted value (to back out of our square root
transformation) and get the actual prediction our model makes for chol. Then we can take
the observed chol value and subtract the prediction of chol to get a new residual on the scale
of our original chol values.

test_res <- bind_rows(test_A, test_B, test_C) |>
mutate(fit_chol = .fitted^2, res_chol = chol - fit_chol) |>
select(mod_n, id, chol, fit_chol, res_chol, everything()) |>
arrange(id, mod_n)

test_res |> head()

# A tibble: 6 x 13
mod_n id chol fit_chol res_chol age bmi sbp dbp smoke dibpat
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr>

1 Model A 2003 181 214. -33.2 42 23.6 110 78 No Type B
2 Model B 2003 181 214. -32.7 42 23.6 110 78 No Type B
3 Model C 2003 181 216. -35.0 42 23.6 110 78 No Type B
4 Model A 2004 132 222. -89.9 41 23.1 124 78 Yes Type B
5 Model B 2004 132 222. -89.9 41 23.1 124 78 Yes Type B
6 Model C 2004 132 224. -92.5 41 23.1 124 78 Yes Type B
# i 2 more variables: .fitted <dbl>, .resid <dbl>

Now, we can summarize the quality of the predictions across each of the models with four
summary statistics calculated across the 1132 observations in the test sample.
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• the mean absolute prediction error, or MAPE
• the median absolute prediction error, or medAPE
• the maximum absolute prediction error, or maxAPE
• the square root of the mean squared prediction error, or RMSPE

No one of these dominates the other, but we might be interested in which model gives us the
best (smallest) result for each of these summaries. Let’s run them.

test_res |>
group_by(mod_n) |>
summarise(MAPE = mean(abs(res_chol)),

medAPE = median(abs(res_chol)),
maxAPE = max(abs(res_chol)),
RMSPE = sqrt(mean(res_chol^2)))

# A tibble: 3 x 5
mod_n MAPE medAPE maxAPE RMSPE
<chr> <dbl> <dbl> <dbl> <dbl>

1 Model A 32.2 27.1 151. 40.8
2 Model B 32.2 27.1 150. 40.8
3 Model C 32.1 26.5 147. 40.8

Which model has the best performance in the testing sample?

• Model C has the smallest (best) MAPE, median APE, maximum APE and RMSPE.
• There are no enormous differences between the models on most of these summaries, but

Model C (the smallest model) appears a bit better.

31.10 Putting it Together - which model do we like best?

It’s worth remembering that none of the three models was particularly strong. Even Model A
(with the full set of predictors) had an 𝑅2 of only about 4.15%.

1. All 3 models had reasonable residual plots, so we don’t have much to choose from there.
2. Within the development sample, Model B had slightly better adjusted 𝑅2, 𝜎 and AIC

results than the other models, while Model C had the best BIC.
3. Model C had the best results in the test sample, across all four summaries we examined.

In this case, I’d pick Model C from among these options, based mainly on the stronger test
sample results and the fact that it’s a smaller model (with fewer predictors) and if none of the
models are going to do very well in terms of predicting chol, there’s not much to choose from
anyway.
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32 Species Found on the Galapagos Islands

32.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(car)
library(GGally)
library(knitr)
library(tidyverse)

theme_set(theme_bw())

We’ll also use a function from the arm package, and from the Hmisc package.

32.2 A Little Background

The gala data describe describe features of the 30 Galapagos Islands.

gala <- read_csv("data/gala.csv", show_col_types = FALSE)

The Galapagos Islands are found about 900 km west of South America: specifically the conti-
nental part of Ecuador. The Islands form a province of Ecuador and serve as a national park
and marine reserve. They are noted for their vast numbers of unique (or endemic) species and
were studied by Charles Darwin during the voyage of the Beagle.

32.2.1 Sources

The data were initially presented by Johnson M and Raven P (1973) Species number and
endemism: the Galapagos Archipelago revisited. Science 179: 893-895 and also appear in
several regression texts, including my source: Faraway (2015). Note that Faraway filled in
some missing data to simplify things a bit. A similar version of the data is available as part of
the faraway library in R, but I encourage you to use the version I supply on our web site.
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Figure 32.1: galapic.jpg
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32.2.2 Variables in the gala data frame

• id = island identification code
• island = island name
• species = our outcome, the number of species found on the island
• area = the area of the island, in square kilometers
• elevation = the highest elevation of the island, in meters
• nearest = the distance from the nearest island, in kilometers
• scruz = the distance from Santa Cruz Island, in kilometers. Santa Cruz is the home to

the largest human population in the Islands, and to the town of Puerto Ayora.
• adjacent = the area of the adjacent island, in square kilometers

gala

# A tibble: 30 x 8
id island species area elevation nearest scruz adjacent

<dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 Baltra 58 25.1 346 0.6 0.6 1.84
2 2 Bartolome 31 1.24 109 0.6 26.3 572.
3 3 Caldwell 3 0.21 114 2.8 58.7 0.78
4 4 Champion 25 0.1 46 1.9 47.4 0.18
5 5 Coamano 2 0.05 77 1.9 1.9 904.
6 6 Daphne.Major 18 0.34 119 8 8 1.84
7 7 Daphne.Minor 24 0.08 93 6 12 0.34
8 8 Darwin 10 2.33 168 34.1 290. 2.85
9 9 Eden 8 0.03 71 0.4 0.4 18.0
10 10 Enderby 2 0.18 112 2.6 50.2 0.1
# i 20 more rows

Hmisc::describe(gala) # check for missing and inexplicable values

gala

8 Variables 30 Observations
--------------------------------------------------------------------------------
id

n missing distinct Info Mean Gmd .05 .10
30 0 30 1 15.5 10.33 2.45 3.90
.25 .50 .75 .90 .95
8.25 15.50 22.75 27.10 28.55
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lowest : 1 2 3 4 5, highest: 26 27 28 29 30
--------------------------------------------------------------------------------
island

n missing distinct
30 0 30

lowest : Baltra Bartolome Caldwell Champion Coamano
highest: SantaFe SantaMaria Seymour Tortuga Wolf
--------------------------------------------------------------------------------
species

n missing distinct Info Mean Gmd .05 .10
30 0 27 0.999 85.23 109.5 2.0 2.9
.25 .50 .75 .90 .95
13.0 42.0 96.0 280.5 319.1

lowest : 2 3 5 8 10, highest: 237 280 285 347 444
--------------------------------------------------------------------------------
area

n missing distinct Info Mean Gmd .05 .10
30 0 29 1 261.7 478.6 0.0390 0.0770
.25 .50 .75 .90 .95

0.2575 2.5900 59.2375 578.5460 782.6215

Value 0 50 100 150 550 600 900 4650
Frequency 21 2 1 1 2 1 1 1
Proportion 0.700 0.067 0.033 0.033 0.067 0.033 0.033 0.033

For the frequency table, variable is rounded to the nearest 50
--------------------------------------------------------------------------------
elevation

n missing distinct Info Mean Gmd .05 .10
30 0 30 1 368 411.1 47.35 68.80
.25 .50 .75 .90 .95

97.75 192.00 435.25 868.20 1229.40

lowest : 25 46 49 71 76, highest: 777 864 906 1494 1707
--------------------------------------------------------------------------------
nearest

n missing distinct Info Mean Gmd .05 .10
30 0 22 0.997 10.06 13.73 0.445 0.590
.25 .50 .75 .90 .95

0.800 3.050 10.025 34.100 40.205
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lowest : 0.2 0.4 0.5 0.6 0.7 , highest: 16.5 29.1 34.1 45.2 47.4
--------------------------------------------------------------------------------
scruz

n missing distinct Info Mean Gmd .05 .10
30 0 29 1 56.98 65.17 0.49 0.60
.25 .50 .75 .90 .95

11.02 46.65 81.08 97.73 193.90

lowest : 0 0.4 0.6 1.9 8 , highest: 93.1 95.3 119.6 254.7 290.2
--------------------------------------------------------------------------------
adjacent

n missing distinct Info Mean Gmd .05 .10
30 0 21 0.998 261.1 477.8 0.10 0.10
.25 .50 .75 .90 .95
0.52 2.59 59.24 578.55 782.62

Value 0 50 100 550 600 900 4650
Frequency 21 2 2 2 1 1 1
Proportion 0.700 0.067 0.067 0.067 0.033 0.033 0.033

For the frequency table, variable is rounded to the nearest 50
--------------------------------------------------------------------------------

32.3 DTDP: A Scatterplot Matrix

After missingness and range checks, the first step in any data analysis problem is to draw
the picture. The most useful picture for me in thinking about a regression problem with a
reasonably small number of predictors is a scatterplot matrix.

Our outcome, that we are predicting here is the number of species.

We’ll use five predictors:

• area
• elevation
• nearest
• scruz and
• adjacent.

ggpairs(gala |> select(area, elevation, nearest,
scruz, adjacent, species))

626



Corr:

0.754***

Corr:

−0.111

Corr:

−0.011

Corr:

−0.101

Corr:

−0.015

Corr:

0.615***

Corr:

0.180

Corr:

0.536**

Corr:

−0.116

Corr:

0.052

Corr:

0.618***

Corr:

0.738***

Corr:

−0.014

Corr:

−0.171

Corr:

0.026

area elevation nearest scruz adjacent species

area
elevation

nearest
scruz

adjacent
species

01000200030004000 0 50010001500 0 10203040 0 10020030001000200030004000 0100200300400

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125

0
500

1000
1500

0
10
20
30
40

0
100
200
300

0
1000
2000
3000
4000

0
100
200
300
400

32.3.1 Questions about the Scatterplot Matrix

In this Chapter, I will provide you with nearly 100 questions that you should be able to answer
in light of the output provided. Here are the first few. If you have questions about how to
interpret the output in light of these questions, please ask about them on Piazza or in TA
office hours.

1. What are we looking for in the scatterplots in the bottom row?
2. What can we learn from the Pearson correlations in the right column?
3. How do the density plots help increase our understanding of the data?
4. What about the scatterplots that are not in the top row?
5. What can we learn from the Pearson correlations that compare predictors?

32.4 Fitting A “Kitchen Sink” Linear Regression model

Next, we’ll fit a multiple linear regression model to predict the number of species based on the
five predictors included in the gala data frame (and scatterplot matrix above.) We use the lm
command to fit the linear model, and use what is called Wilkinson-Rogers notation to specify
the model.
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model1 <- lm(species ~ area + elevation + nearest + scruz +
adjacent, data=gala)

Here are the results of running tidy() and glance() from the broom package on model1.

tidy(model1) |>
kable(digits = 3)

term estimate std.error statistic p.value
(Intercept) 7.068 19.154 0.369 0.715
area -0.024 0.022 -1.068 0.296
elevation 0.319 0.054 5.953 0.000
nearest 0.009 1.054 0.009 0.993
scruz -0.241 0.215 -1.117 0.275
adjacent -0.075 0.018 -4.226 0.000

glance(model1) |>
select(r.squared, adj.r.squared, sigma, statistic,

p.value, df, df.residual, nobs, AIC, BIC) |>
kable(digits = c(3, 3, 1, 1, 3, 0, 0, 0, 1, 1))

r.squared adj.r.squared sigma statistic p.value df df.residual nobs AIC BIC
0.766 0.717 61 15.7 0 5 24 30 339.1 348.9

Here is the result of running summary on model1.

summary(model1)

Call:
lm(formula = species ~ area + elevation + nearest + scruz + adjacent,

data = gala)

Residuals:
Min 1Q Median 3Q Max

-111.679 -34.898 -7.862 33.460 182.584

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.068221 19.154198 0.369 0.715351
area -0.023938 0.022422 -1.068 0.296318
elevation 0.319465 0.053663 5.953 3.82e-06 ***
nearest 0.009144 1.054136 0.009 0.993151
scruz -0.240524 0.215402 -1.117 0.275208
adjacent -0.074805 0.017700 -4.226 0.000297 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.98 on 24 degrees of freedom
Multiple R-squared: 0.7658, Adjusted R-squared: 0.7171
F-statistic: 15.7 on 5 and 24 DF, p-value: 6.838e-07

32.4.1 Questions about the Kitchen Sink Model Summaries

What conclusions can we draw from the summary output for this model? Specifically …

6. What is being predicted? What is the prediction equation?
7. How do we interpret the elevation estimate of 0.32?
8. How do we interpret the area estimate of -0.02?
9. How do we interpret the intercept estimate of 7.07?
10. Overall, does our model1 add detectable predictive value (say, at the 5% significance

level) over the simplest possible model for this outcome (the model using the intercept
term alone)?

11. What proportion of the variation in species counts does this model account for?
12. What does the residual standard error mean in this context?
13. What can we learn from the standard errors in the coefficient output?
14. What can we learn from the t values and Pr(>|t|) values in the summary output?
15. How should we interpret the meaning of the Adjusted R-squared value?

32.5 Finding Confidence Intervals for our Coefficient Estimates

Of course, we can find these intervals in several ways. One approach uses tidy() from the
broom package.

tidy(model1, conf.int = TRUE, conf.level = 0.95) |>
select(term, estimate, std.error, conf.low, conf.high) |>
kable(digits = 3)
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term estimate std.error conf.low conf.high
(Intercept) 7.068 19.154 -32.464 46.601
area -0.024 0.022 -0.070 0.022
elevation 0.319 0.054 0.209 0.430
nearest 0.009 1.054 -2.166 2.185
scruz -0.241 0.215 -0.685 0.204
adjacent -0.075 0.018 -0.111 -0.038

Another approach would be:

confint(model1, level = 0.95)

2.5 % 97.5 %
(Intercept) -32.4641006 46.60054205
area -0.0702158 0.02233912
elevation 0.2087102 0.43021935
nearest -2.1664857 2.18477363
scruz -0.6850926 0.20404416
adjacent -0.1113362 -0.03827344

32.5.1 Questions about the Confidence Intervals

16. What can we learn from the provided confidence interval for elevation?
17. How do the confidence interval results here compare to the t tests we saw previously?

32.6 Measuring Collinearity - the Variance Inflation Factor

The variance inflation factor (abbreviated VIF) can be used to quantify the impact of
multicollinearity in a linear regression model.

The VIF is sometimes interpreted by taking its square root, and then interpreting the result
as telling you how much larger the standard error for that coefficient is, as compared to what
it would be if that variable were uncorrelated with the other predictors.

In R, the vif function from the car library, when applied to a linear regression model, specifies
the variance inflation factors for each of the model’s coefficients, as follows.

vif(model1)
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area elevation nearest scruz adjacent
2.928145 3.992545 1.766099 1.675031 1.826403

So, for instance, the VIF of 3.99 for elevation implies that the standard error of the elevation
coefficient is approximately 2 times larger than it would be if elevation was uncorrelated with
the other predictors.

I will look closely at any VIF value that is greater than 5, although some people
use a cutoff of 10.

• Another collinearity measure called tolerance is simply 1/VIF.
• For example, the tolerance for elevation would be 0.25, and the cutoff for a potentially

problematic tolerance is either 0.2 or lower, or 0.1 or lower.

To calculate the VIF for a predictor 𝑥1, use all of the other predictors to predict 𝑥1 and find
the multiple 𝑅2 value.

• VIF for 𝑥1 = 1 / (1 - 𝑅2
𝑥1|𝑜𝑡ℎ𝑒𝑟𝑠), and tolerance = (1 - 𝑅2

𝑥1|𝑜𝑡ℎ𝑒𝑟𝑠).

32.7 Global (F) Testing of Overall Significance

Our Galapagos Islands species count regression model (called model1) predicts the count of
an island’s species using area, elevation, nearest, scruz and adjacent.

nullmodel <- lm(species ~ 1, data=gala)
summary(nullmodel)

Call:
lm(formula = species ~ 1, data = gala)

Residuals:
Min 1Q Median 3Q Max

-83.23 -72.23 -43.23 10.77 358.77

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 85.23 20.93 4.072 0.000328 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 114.6 on 29 degrees of freedom
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anova(model1, nullmodel)

Analysis of Variance Table

Model 1: species ~ area + elevation + nearest + scruz + adjacent
Model 2: species ~ 1
Res.Df RSS Df Sum of Sq F Pr(>F)

1 24 89231
2 29 381081 -5 -291850 15.699 6.838e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

32.7.1 Questions about the Global Test via ANOVA

18. How do we interpret the null model fit above?
19. What are the hypotheses being tested by this ANOVA output?
20. What conclusions can we draw from the ANOVA output presented here?
21. Where do we find information regarding the result for the previous question in the

summary output for the linear model?
22. How would we set up an ANOVA model to test whether the “kitchen sink” model’s

predictive value would be meaningfully impacted by removing the adjacent predictor
from the model?

23. Where do we find information regarding these result for the previous question in the
summary output for the linear model?

24. How would we set an ANOVA model to test whether a model with area only would be
a detectable improvement over the null model?

32.8 Sequential Testing in a Regression Model with ANOVA

anova(model1)

Analysis of Variance Table

Response: species
Df Sum Sq Mean Sq F value Pr(>F)

area 1 145470 145470 39.1262 1.826e-06 ***
elevation 1 65664 65664 17.6613 0.0003155 ***
nearest 1 29 29 0.0079 0.9300674
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scruz 1 14280 14280 3.8408 0.0617324 .
adjacent 1 66406 66406 17.8609 0.0002971 ***
Residuals 24 89231 3718
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

32.8.1 Questions about Sequential Testing and ANOVA

25. What conclusions can we draw from the area row in the output above?
26. What conclusions can we draw from the elevation row?
27. Does nearest add statistically detectable predictive value to the model including area

and elevation, but none of the other predictors?
28. Does adjacent add detectable predictive value as last predictor into the model?
29. Where else in the regression output can we find the answer to the previous question?
30. How does the mean square of the residuals (3718) relate to the residual standard error?
31. What percentage of the variation in the species counts is accounted for by area alone?
32. What percentage of the variation explained by the kitchen sink model would also be

accounted for in a two-predictor regression model including area and elevation alone?
33. How could we use the original linear model output to whether a model using the four

predictors that appear most promising here would be statistically meaningfully worse
than the full model with all five predictors?

34. What does the following output do differently than the output above, and why is that
potentially useful here? Why is the p value for scruz so different?

anova(lm(species ~ area + elevation + adjacent +
scruz + nearest, data=gala))

Analysis of Variance Table

Response: species
Df Sum Sq Mean Sq F value Pr(>F)

area 1 145470 145470 39.1262 1.826e-06 ***
elevation 1 65664 65664 17.6613 0.0003155 ***
adjacent 1 73171 73171 19.6804 0.0001742 ***
scruz 1 7544 7544 2.0291 0.1671885
nearest 1 0 0 0.0001 0.9931506
Residuals 24 89231 3718
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

35. Consider the ANOVA below, run on a new model with elevation after adjacent. What
happens? Why?

633



anova(lm(species ~ area + adjacent + elevation +
scruz + nearest, data=gala))

Analysis of Variance Table

Response: species
Df Sum Sq Mean Sq F value Pr(>F)

area 1 145470 145470 39.1262 1.826e-06 ***
adjacent 1 2850 2850 0.7666 0.3900
elevation 1 135985 135985 36.5751 3.030e-06 ***
scruz 1 7544 7544 2.0291 0.1672
nearest 1 0 0 0.0001 0.9932
Residuals 24 89231 3718
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

32.9 An ANOVA table for the Model as a Whole

It’s probably also worthwhile to compute a completed ANOVA table for the model as a whole.
All elements are in the ANOVA tables above, or the model summary.

Group DF SS MS F P
Regression 5 291849 58369.8 15.7 6.838e-07
Residuals 24 89231 3718.0

Total 29 381080

36. How did I determine the Mean Square for the Regression model?
37. What conclusions can we draw from this ANOVA table?

32.10 Assumption Checking for our Galapagos Islands models

Remember that the key assumptions of multiple linear regression are:

• [Linearity] We have also assumed that the structural part of the model is correctly
specified (we’ve included all the predictors that need to be in the model, and expressed
them in the most appropriate manner, and we’ve left out any predictors that don’t need
to be in the model.)

• [Normality] The regression makes errors that come from a Normal distribution
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• [Homoscedasticity = Constant Variance] The regression makes errors that come from a
distribution with constant variance at all predictor levels.

• [Independence] The regression errors are independent of each other.

In addition, we need to realize that sometimes a few observations may be particularly prob-
lematic. For instance:

1. An observation may simply not fit the model well (i.e. it creates a large residual)
2. An observation may have high leverage over the fit of the model (this happens with

observations that have an unusual combination of predictor values, in particular)
3. An observation may actually have high influence on the model (in the sense that whether

they are included or excluded has a large impact on the model’s fit, and the value of its
parameter estimates.)

4. Or any combination of high residual, leverage and influence may occur.

So it is important to check the assumptions that we can with the data we have. Our most
important tools are plots and other summaries of residuals, and what are called influence
statistics.

32.11 My First Plot: Studentized Residuals vs. Fitted Values

The first diagnostic plot I usually draw for a multiple regression is a scatterplot of the model’s
studentized residuals1 (on the vertical axis) vs. the model’s fitted values (on the horizon-
tal.) This plot can be used to assess potential non-linearity, non-constant variance, and non-
Normality in the residuals.

gala$stures <- rstudent(model1); gala$fits <- fitted(model1)
ggplot(gala, aes(x = fits, y = stures)) +

geom_point(size = 3, shape = 1) +
geom_smooth(col = "blue", se = FALSE, method = "loess",

formula = y ~ x, weight = 0.5) +
geom_hline(aes(yintercept = 0), linetype = "dashed") +
labs(x = "Fitted Values of Species",

y = "Studentized Residuals",
title = "gala data: Model 1",
subtitle = "Studentized Residuals vs. Fitted Values")

1More on studentized and standardized residuals later. For now, think of them like z scores.
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gala data: Model 1

32.11.1 Questions about Studentized Residuals vs. Fitted Values

38. Consider the point at bottom right. What can you infer about this observation?
39. Why did I include the dotted horizontal line at Studentized Residual = 0?
40. What is the purpose of the thin blue line?
41. What does this plot suggest about the potential for outliers in the residuals?

32.12 Automatic Regression Diagnostics for Model 1

par(mfrow=c(2,2))
plot(model1)
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par(mfrow=c(1,1))

32.13 Model 1: Diagnostic Plot 1

As we’ve seen, the first of R’s automated diagnostic plots for a linear model is a plot of the
residuals vs. the fitted values.

plot(model1, which=1)
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32.13.1 Questions about Diagnostic Plot 1: Residuals vs. Fitted Values

42. What type of regression residuals is R plotting here?
43. Which points are identified by numbers here?
44. Why did R include the gray dotted line at Residual = 0?
45. What is the purpose of the thin red line?
46. What can you tell about the potential for outliers in the model 1 residuals from the plot?
47. What are we looking for in this plot that would let us conclude there were no important

assumption violations implied by it? Which assumptions can we assess with it?
48. What would we do if we saw a violation of assumptions in this plot?
49. What are the key differences between this plot and the one I showed earlier?
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32.14 Diagnostic Plot 2: Assessing Normality

The second diagnostic plot prepared by R for any linear model using the plot command is a
Normal Q-Q plot of the standardized residuals from the model.

plot(model1, which=2)
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32.14.1 Questions about Diagnostic Plot 2: Normal Plot of Standardized
Residuals

50. Which points are being identified here by number?
51. Which assumption(s) of multiple regression does this plot help us check?
52. What are we looking for in this plot that would let us conclude there were no important

assumption violations implied by it?
53. What would we do if we saw a violation of assumptions in this plot?

We could also look at studentized residuals, or we could apply a more complete set of plots
and other assessments of normality. Usually, I don’t.
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32.15 Diagnostic Plot 3: Assessing Constant Variance

The third diagnostic plot prepared by R for any linear model using the plot command shows
the square root of the model’s standardized residuals vs. its fitted values. R calls this a
scale-location plot.

plot(model1, which=3)
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32.15.1 Questions about Diagnostic Plot 3: Scale-Location Plot

54. Which points are being identified here by number?
55. Which assumption(s) of multiple regression does this plot help us check?
56. What is the role of the thin red line in this plot?
57. What are we looking for in this plot that would let us conclude there were no important

assumption violations implied by it?
58. What would we do if we saw a violation of assumptions in this plot?
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32.16 Obtaining Fitted Values and Residuals from a Model

We can use the augment() function from the broom package to find the predictions made by
the regression model for each of the observations used to create the model.

gala_aug <- augment(model1)

names(gala_aug)

[1] "species" "area" "elevation" "nearest" "scruz"
[6] "adjacent" ".fitted" ".resid" ".hat" ".sigma"
[11] ".cooksd" ".std.resid"

Here, we obtain

• predicted (fitted) values for the outcome, in .fitted
• residuals (observed - fitted) values for each observation, in .resid
• leverage values in .hat for each observation
• standard errors associated with each observation in .sigma
• Cook’s distance values for each observation in .cooksd
• standardized residuals in .std.resid

Here, for instance, are the first few rows.

head(gala_aug) |> kable(digits = 2)

species area elevation nearest scruz adjacent .fitted .resid .hat .sigma .cooksd .std.resid
58 25.09 346 0.6 0.6 1.84 116.73 -

58.73
0.08 60.97 0.01 -1.00

31 1.24 109 0.6 26.3 572.33 -7.27 38.27 0.09 61.72 0.01 0.66
3 0.21 114 2.8 58.7 0.78 29.33 -

26.33
0.06 62.03 0.00 -0.45

25 0.10 46 1.9 47.4 0.18 10.36 14.64 0.07 62.21 0.00 0.25
2 0.05 77 1.9 1.9 903.82 -

36.38
38.38 0.17 61.66 0.02 0.69

18 0.34 119 8.0 8.0 1.84 43.09 -
25.09

0.07 62.05 0.00 -0.43
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32.16.1 Questions about Fitted Values

59. Verify that the first fitted value [116.73] is in fact what you get for Baltra (observation
1) when you apply the regression equation:

species = 7.07 - 0.02 area + 0.32 elevation
+ 0.009 nearest - 0.24 scruz - 0.07 adjacent

We can compare these predictions to the actual observed counts of the number of species on
each island. Subtracting the fitted values from the observed values gives us the residuals, as
does the resid function.

round(resid(model1),2)

1 2 3 4 5 6 7 8 9 10
-58.73 38.27 -26.33 14.64 38.38 -25.09 -9.92 19.02 -20.31 -28.79

11 12 13 14 15 16 17 18 19 20
49.34 -3.99 62.03 -59.63 40.50 -39.40 -37.69 -2.04 -111.68 -42.48

21 22 23 24 25 26 27 28 29 30
-23.08 -5.55 73.05 -40.68 182.58 -23.38 89.38 -5.81 -36.94 -5.70

32.16.2 Questions about Residuals

60. What does a positive residual indicate?
61. What does a negative residual indicate?
62. The standard deviation of the full set of 30 residuals turns out to be 55.47. How does

this compare to the residual standard error?
63. The command below identifies Santa Cruz. What does it indicate about Santa Cruz,

specifically?

gala$island[which.max(resid(model1))]

[1] "SantaCruz"

64. From the results below, what is the model1 residual for Santa Cruz? What does this
imply about the species prediction made by Model 1 for Santa Cruz?

which.max(resid(model1))
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round(resid(model1),2)

1 2 3 4 5 6 7 8 9 10
-58.73 38.27 -26.33 14.64 38.38 -25.09 -9.92 19.02 -20.31 -28.79

11 12 13 14 15 16 17 18 19 20
49.34 -3.99 62.03 -59.63 40.50 -39.40 -37.69 -2.04 -111.68 -42.48

21 22 23 24 25 26 27 28 29 30
-23.08 -5.55 73.05 -40.68 182.58 -23.38 89.38 -5.81 -36.94 -5.70

gala[which.max(resid(model1)),]

# A tibble: 1 x 10
id island species area elevation nearest scruz adjacent stures fits

<dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 25 SantaCruz 444 904. 864 0.6 0 0.52 4.38 261.

32.17 Relationship between Fitted and Observed Values

We’ve already seen that the fitted command can produce predicted values for each ob-
servations used to develop a regression model, and that the resid command can produce the
residuals (observed - predicted) for those same observations. Returning to our original model1,
let’s compare the fitted values (stored earlier in fits) to the observed values.

ggplot(gala, aes(x = species, y = fits)) +
geom_point(size = 3, shape = 1) +
geom_abline(intercept = 0, slope = 1,

col = "purple", linetype = "dashed") +
labs(x = "Observed Species Count",

y = "Model Predicted Species")
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32.17.1 Questions about Fitted and Observed Values

65. Why did I draw the dotted purple line with y-intercept 0 and slope 1? Why is that
particular line of interest?

66. If a point on this plot is in the top left here, above the dotted line, what does that mean?
67. If a point is below the dotted line here, what does that mean?
68. How does this plot display the size of an observation’s residual?

32.18 Standardizing Residuals

We’ve already seen that the raw residuals from a regression model can be obtained using the
resid function. Residuals are defined to have mean 0. This is one of the requirements of
the least squares procedure for estimating a linear model, and their true standard deviation is
effectively estimated using the residual standard error.

There are two additional types of residuals for us to be aware of: standardized residuals, and
studentized (sometimes called externally standardized, or jackknife) residuals. Each approach
standardizes the residuals by dividing them by a standard deviation estimate, so the resulting
residuals should have mean 0 and standard deviation 1 if assumptions hold.

644



• Standardized residuals are the original (raw) residuals, scaled by a standard deviation
estimate developed using the entire data set. This summary is part of what is provided
by augment from the broom package, as .std.resid.

• Studentized residuals are the original (raw) residuals, scaled by a standard deviation
estimate developed using the entire data set EXCEPT for this particular observation.

The rstudent function, when applied to a linear regression model, will the model’s studentized
residuals.

gala_aug <- gala_aug |>
mutate(.stu.resid = rstudent(model1))

ggplot(gala_aug, aes(x = .std.resid,
y = .stu.resid)) +

geom_point(size = 3, pch = 1) +
geom_abline(intercept = 0, slope = 1, col = "red") +
geom_label(x = 2.5, y = 1,

label = "y = x", col = "red") +
theme(aspect.ratio = 1) +
labs(x = "Standardized Residuals for Model 1",

y = "Studentized Residuals for Model 1")

y = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = xy = x
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32.18.1 Questions about Standardized and Studentized Residuals

69. From the plot above, what conclusions can you draw about the two methods of stan-
dardizing residuals as they apply in the case of our model1?

32.19 Influence Measures for Multiple Regression

R can output a series of influence measures for a regression model. Let me show you all of
the available measures for model 1, but just for three of the data points - #1 (which is not
particularly influential) and #12 and #16 (which are).

First, we’ll look at the raw data:

gala[c(1,12,16),]

# A tibble: 3 x 10
id island species area elevation nearest scruz adjacent stures fits

<dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 Baltra 58 25.1 346 0.6 0.6 1.84 -1.00 117.
2 12 Fernandina 93 634. 1494 4.3 95.3 4669. -0.286 97.0
3 16 Isabela 347 4669. 1707 0.7 28.1 634. -5.33 386.

And then, we’ll gather the output available in the influence.measures function.

influence.measures(model1)

Here’s an edited version of this output…

Influence measures of
lm(formula = species ~ area + elevation + nearest + scruz + adjacent,
data = gala) :

dfb.1_ dfb.area dfb.elvt dfb.nrst dfb.scrz dfb.adjc
1 -0.15064 0.13572 -0.122412 0.07684 0.084786 1.14e-01
12 0.16112 0.16395 -0.122578 0.03093 -0.059059 -8.27e-01
16 -1.18618 -20.87453 4.885852 0.36713 -1.022431 -8.09e-01

dffit cov.r cook.d hat inf
1 -0.29335 1.0835 1.43e-02 0.0787
12 -1.24249 25.1101 2.68e-01 0.9497 *
16 -29.59041 0.3275 6.81e+01 0.9685 *
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This output presents dfbetas for each coefficient, followed by dffit statistics, covariance ratios,
Cook’s distance and leverage values (hat) along with an indicator of influence.

We’ll consider each of these elements in turn.

32.20 DFBETAs

The first part of the influence measures output concerns what are generally called dfbetas
…

id island dfb.1_ dfb.area dfb.elvt dfb.nrst dfb.scrz dfb.adjc
1 Baltra -0.151 0.136 -0.122 0.077 0.085 0.114
12 Fernandina 0.161 0.164 -0.123 0.031 -0.059 -0.827
16 Isabela -1.186 -20.875 4.886 0.367 -1.022 -0.809

The dfbetas look at a standardized difference in the estimate of a coefficient (slope) that will
occur if the specified point (here, island) is removed from the data set.

• Positive values indicate that deleting the point will yield a smaller coefficient.
• Negative values indicate that deleting the point will yield a larger coefficient.
• If the absolute value of the dfbeta is greater than 2/√𝑛, where 𝑛 is the sample size, then

the dfbeta is considered to be large.

In this case, our cutoff would be 2/
√

30 or 0.365, so that the Isabela dfbeta values are all
indicative of large influence. Essentially, if we remove Isabela from the data, and refit the
model, our regression slopes will change a lot (see below). Fernandina has some influence as
well, especially on the adjacent coefficient.

Predictor Coefficient (p) all 30 islands Coefficient (p) without Isabela
Intercept 7.07 (p = 0.72) 22.59 (p = 0.11)

area -0.02 (p = 0.30) 0.30 (p < 0.01)
elevation 0.32 (p < 0.01) 0.14 (p < 0.01)
nearest 0.01 (p = 0.99) -0.26 (p = 0.73)

scruz -0.24 (p = 0.28) -0.09 (p = 0.55)
adjacent -0.08 (p < 0.01) -0.07 (p < 0.01)

After the dfbetas, the influence.measures output presents dffit, covariance ratios, Cook’s
distance and leverage values (hat) for each observation, along with an indicator of influence.
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id island dffit cov.r cook.d hat inf
1 Baltra -0.29335 1.0835 1.43e-02 0.0787
12 Fernandina -1.24249 25.1101 2.68e-01 0.9497 *
16 Isabela -29.59041 0.3275 6.81e+01 0.9685 *

32.21 Cook’s d or Cook’s Distance

The main measure of influence is Cook’s Distance, also called Cook’s d. Cook’s d provides
a summary of the influence of a particular point on all of the regression coefficients. It is a
function of the standardized residual and the leverage. We’ve seen that the augment() function
in the broom package provides both Cook’s distance and leverage values for all observations
in our model.

• Cook’s distance values greater than 1 are generally indicators of high influence.
• Obviously, Isabela (with a value of Cook’s d = 68.1) is a highly influential observation

by this measure.

32.21.1 Plotting Cook’s Distance

As one of its automated regression diagnostic plots, R will produce an index plot of the Cook’s
distance values. Note the relatively enormous influence for island 16 (Isabela).

plot(model1, which = 4)
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32.22 DFFITS

A similar measure to Cook’s distance is called DFFITS. The DFFITS value describes the influence
of the point on the fitted value. It’s the number of standard deviations that the fitted value
changes if the observation is removed. This is defined as a function of the studentized residual
and the leverage.

• If the absolute value of DFFITS is greater than 2 times √𝑝/𝑛 − 𝑝, where p is the number
of predictors (not including the intercept), we deem the observation influential.

• For the gala data, we’d consider any point with DFFITS greater than 2 x √5/(30 − 5)
= 0.894 to be influential by this standard, since n = 30 and we are estimating p = 5
slopes in our model. This is true of both Fernandina and Isabela.

32.23 Covariance Ratio

The covariance ratio cov.r indicates the role of the observation on the precision of estimation.
If cov.r is greater than 1, then this observation improves the precision, overall, and if it’s
less than 1, the observation drops the precision of estimation, and these are the points about
which we’ll be most concerned.

• As with most of our other influence measures, Isabela appears to be a concern.
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32.24 Leverage

The hat value is a measure of leverage. Specifically, this addresses whether or not the point
in question is unusual in terms of its combination of predictor values. We’ve seen that the
augment() function in the broom package provides leverage values for all observations in our
model.

• The usual cutoff for a large leverage value is 2.5 times the average leverage across all
observations, where the average leverage is equal to k/n, where n is the number of
observations included in the regression model, and k is the number of model coefficients
(slopes plus intercept).

• In the gala example, we’d regard any observation with a hat value larger than 2.5 x
6/30 = 0.5 to have large leverage. This includes Fernandina and Isabela.

32.24.1 Indicator of Influence

The little asterisk indicates an observation which is influential according to R’s standards for
any of these measures. You can take the absence of an asterisk as a clear indication that a point
is NOT influential. Points with asterisks may or may not be influential in an important way.
In practice, I usually focus on the Cook’s distance to make decisions about likely influence,
when the results aren’t completely clear.

32.25 Building Predictions from our models

The predict function, when applied to a linear regression model, produces the fitted values,
just as the augment() function did, and, as we’ve seen, it can be used to generate prediction
intervals for a single new observation, or confidence intervals for a group of new observations
with the same predictor values.

Let us, just for a moment, consider a “typical” island, exemplified by the median value of
all the predictors2. There’s a trick to creating this and dumping it in a vector I will call
x.medians.

x <- model.matrix(model1)
x.medians <- apply(x, 2, function(x) median(x))
x.medians

(Intercept) area elevation nearest scruz adjacent
1.00 2.59 192.00 3.05 46.65 2.59

2This approach is motivated by @Faraway2015, pp. 52-53.
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We want to use the model to predict our outcome (species) on the basis of the inputs above: a
new island with values of all predictors equal to the median of the existing islands. As before,
building an interval forecast around a fitted value requires us to decide whether we are:

• predicting the number of species for one particular island with the specified characteris-
tics (in which case we use something called a prediction interval) or

• predicting the mean number of species across all islands that have the specified charac-
teristics (in which case we use the confidence interval).

newdata <- data.frame(t(x.medians))
predict(model1, newdata, interval="prediction", level = 0.95)

fit lwr upr
1 56.95714 -72.06155 185.9758

predict(model1, newdata, interval="confidence", level = 0.95)

fit lwr upr
1 56.95714 28.52381 85.39048

32.25.1 Questions about the Prediction and Confidence Interval Methods

70. What is the 95% prediction interval for this new observation? Does that make sense?
71. Which interval (prediction or confidence) is wider? Does that make sense?
72. Is there an island that has characteristics that match our new medians variable?
73. What happens if we don’t specify new data in making a prediction?

32.26 Making a Prediction with New Data (without broom)

74. How does the output below help us to make a prediction with a new data point, or series
of them? Interpret the resulting intervals.

newdata2 <- tibble(area = 2, elevation = 100, nearest = 3,
scruz = 5, adjacent = 1)

predict(model1, newdata2, interval="prediction", level = 0.95)

fit lwr upr
1 37.71683 -92.46825 167.9019
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predict(model1, newdata2, interval="confidence", level = 0.95)

fit lwr upr
1 37.71683 4.388351 71.0453

32.27 Scaling Predictors using Z Scores: Semi-Standardized
Coefficients

We know that the interpretation of the coefficients in a regression model is sensitive to the scale
of the predictors. We have already seen how to “standardize” each predictor by subtracting
its mean and dividing by its standard deviation.

• Each coefficient in this semi-standardized model has the following interpretation: the
expected difference in the outcome, comparing units (subjects) that differ by one stan-
dard deviation in the variable of interest, but for which all other variables are fixed at
their average.

• Remember also that the intercept in such a model shows the mean outcome across all
subjects.

Consider a two-variable model, using area and elevation to predict the number of
species…

model2 <- lm(species ~ area + elevation, data=gala)
summary(model2)

Call:
lm(formula = species ~ area + elevation, data = gala)

Residuals:
Min 1Q Median 3Q Max

-192.619 -33.534 -19.199 7.541 261.514

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.10519 20.94211 0.817 0.42120
area 0.01880 0.02594 0.725 0.47478
elevation 0.17174 0.05317 3.230 0.00325 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 79.34 on 27 degrees of freedom
Multiple R-squared: 0.554, Adjusted R-squared: 0.521
F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05

Now compare these results to the ones we get after scaling the area and elevation variables.
Remember that the scale function centers a variable on zero by subtracting the mean from
each observation, and then scales the result by dividing by the standard deviation. This ensures
that each regression input has mean 0 and standard deviation 1, and is thus a z score.

model2.z <- lm(species ~ scale(area) + scale(elevation),
data=gala)

summary(model2.z)

Call:
lm(formula = species ~ scale(area) + scale(elevation), data = gala)

Residuals:
Min 1Q Median 3Q Max

-192.619 -33.534 -19.199 7.541 261.514

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 85.23 14.48 5.884 2.87e-06 ***
scale(area) 16.25 22.42 0.725 0.47478
scale(elevation) 72.41 22.42 3.230 0.00325 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 79.34 on 27 degrees of freedom
Multiple R-squared: 0.554, Adjusted R-squared: 0.521
F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05

32.27.1 Questions about the Semi-Standardized Model

75. What changes after centering and rescaling the predictors, and what does not?
76. Why might rescaling like this be a helpful thing to do if you want to compare predictors

in terms of importance?
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32.28 Fully Standardized Regression Coefficients

Suppose we standardize the coefficients by also taking centering and scaling (using the z score)
the outcome variable: species, creating a fully standardized model.

model2.zout <- lm(scale(species) ~
scale(area) + scale(elevation), data=gala)

summary(model2.zout)

Call:
lm(formula = scale(species) ~ scale(area) + scale(elevation),

data = gala)

Residuals:
Min 1Q Median 3Q Max

-1.68031 -0.29253 -0.16749 0.06578 2.28131

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.594e-17 1.264e-01 0.000 1.00000
scale(area) 1.418e-01 1.956e-01 0.725 0.47478
scale(elevation) 6.316e-01 1.956e-01 3.230 0.00325 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6921 on 27 degrees of freedom
Multiple R-squared: 0.554, Adjusted R-squared: 0.521
F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05

32.28.1 Questions about the Standardized Model

77. How do you interpret the value 0.142 of the scale(area) coefficient here? You may
want to start by reviewing the summary of the original gala data shown here.

summary(gala[c("species", "area", "elevation")])

species area elevation
Min. : 2.00 Min. : 0.010 Min. : 25.00
1st Qu.: 13.00 1st Qu.: 0.258 1st Qu.: 97.75
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Median : 42.00 Median : 2.590 Median : 192.00
Mean : 85.23 Mean : 261.709 Mean : 368.03
3rd Qu.: 96.00 3rd Qu.: 59.237 3rd Qu.: 435.25
Max. :444.00 Max. :4669.320 Max. :1707.00

78. How do you interpret the value 0.632 of the scale(elevation) coefficient in the stan-
dardized model?

79. What is the intercept in this setting? Will this be the case whenever you scale like this?
80. What are some of the advantages of looking at scaled regression coefficients?
81. Why are these called fully standardized coefficients while the previous page described

semi-standardized coefficients?
82. What would motivate you to use one of these two methods of standardization (fully

standardized or semi-standardized) vs. the other?

32.29 Robust Standardization of Regression Coefficients

Another common option for scaling is to specify lower and upper comparison points, perhaps
by comparing the impact of a move from the 25th to the 75th percentile for each variable,
while holding all of the other variables constant.

Occasionally, you will see robust semi-standardized regression coefficients, which measure the
increase in the outcome, Y, associated with an increase in that particular predictor of one IQR
(inter-quartile range).

gala$area.scaleiqr <-
(gala$area - mean(gala$area)) / IQR(gala$area)

gala$elevation.scaleiqr <-
(gala$elevation - mean(gala$elevation)) /

IQR(gala$elevation)

model2.iqr <- lm(species ~
area.scaleiqr + elevation.scaleiqr,

data=gala)
summary(model2.iqr)

Call:
lm(formula = species ~ area.scaleiqr + elevation.scaleiqr, data = gala)

Residuals:
Min 1Q Median 3Q Max
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-192.619 -33.534 -19.199 7.541 261.514

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 85.233 14.485 5.884 2.87e-06 ***
area.scaleiqr 1.109 1.530 0.725 0.47478
elevation.scaleiqr 57.963 17.946 3.230 0.00325 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 79.34 on 27 degrees of freedom
Multiple R-squared: 0.554, Adjusted R-squared: 0.521
F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05

32.29.1 Questions about Robust Standardization

83. How should we interpret the 57.96 value for the scaled elevation variable? You may
want to start by considering the summary of the original elevation data below.

summary(gala$elevation)

Min. 1st Qu. Median Mean 3rd Qu. Max.
25.00 97.75 192.00 368.03 435.25 1707.00

A robust standardized coefficient analysis measures the increase in Y (in IQR of Y)
associated with an increase in the predictor of interest of one IQR.

gala$species.scaleiqr <- (gala$species - mean(gala$species)) / IQR(gala$species)
model2.iqrout <- lm(species.scaleiqr ~ area.scaleiqr + elevation.scaleiqr, data=gala)
model2.iqrout

Call:
lm(formula = species.scaleiqr ~ area.scaleiqr + elevation.scaleiqr,

data = gala)

Coefficients:
(Intercept) area.scaleiqr elevation.scaleiqr
-1.013e-16 1.336e-02 6.983e-01

84. What can we learn from the R output above?
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32.30 Scaling Inputs by Dividing by 2 Standard Deviations

It turns out that standardizing the inputs to a regression model by dividing by a standard
deviation creates some difficulties when you want to include a binary predictor in the model.

Instead, Andrew Gelman recommends that you consider centering all of the predictors (binary
or continuous) by subtracting off the mean, and then, for the non-binary predictors, also
dividing not by one, but rather by two standard deviations.

• Such a standardization can go a long way to helping us understand a model whose
predictors are on different scales, and provides an interpretable starting point.

• Another appealing part of this approach is that in the arm library, Gelman and his col-
leagues have created an R function called standardize, which can be used to automate
the process of checking coefficients that have been standardized in this manner, after the
regression model has been fit.

model2

Call:
lm(formula = species ~ area + elevation, data = gala)

Coefficients:
(Intercept) area elevation

17.1052 0.0188 0.1717

arm::standardize(model2)

Call:
lm(formula = species ~ z.area + z.elevation, data = gala)

Coefficients:
(Intercept) z.area z.elevation

85.23 32.50 144.81

32.30.1 Questions about Standardizing by Dividing by Two SD

85. How does this result compare to the semi-standardized regression coefficients we have
seen on the last few analyses?
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86. How should we interpret the z.area coefficient of 32.5 here? Again, you may want to
start by obtaining a statistical summary of the original area data, as shown below.

summary(gala$area)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.010 0.258 2.590 261.709 59.238 4669.320

To standardize the outcome in this way, as well, we use:

arm::standardize(model2, standardize.y=TRUE)

Call:
lm(formula = z.species ~ z.area + z.elevation, data = gala)

Coefficients:
(Intercept) z.area z.elevation
1.653e-19 1.418e-01 6.316e-01

87. How should we interpret the z.area coefficient of 0.142 here?
88. How does these relate to the standardized regression coefficients we’ve seen before?

Again, if you have questions about how to interpret the output in light of the questions
contained in this Chapter, please ask us for help on Piazza or in TA office hours.
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33 Introduction to Non-linear Terms

33.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(car)
library(Hmisc)
library(rms)
library(mosaic)
library(patchwork)
library(tidyverse)

theme_set(theme_bw())

33.2 The pollution data

Consider the pollution data set, which contain 15 independent variables and a measure
of mortality, describing 60 US metropolitan areas in 1959-1961. The data come from McDonald
and Schwing (1973), and are available at http://www4.stat.ncsu.edu/~boos/var.select/pollution.html
and our web site.

pollution <- read_csv("data/pollution.csv", show_col_types = FALSE)

Here’s a codebook:

Variable Description
y Total Age Adjusted Mortality Rate
x1 Mean annual precipitation in inches
x2 Mean January temperature in degrees Fahrenheit
x3 Mean July temperature in degrees Fahrenheit
x4 Percent of 1960 SMSA population that is 65 years of age or over
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Variable Description
x5 Population per household, 1960 SMSA
x6 Median school years completed for those over 25 in 1960 SMSA
x7 Percent of housing units that are found with facilities
x8 Population per square mile in urbanized area in 1960
x9 Percent of 1960 urbanized area population that is non-white

x10 Percent employment in white-collar occupations in 1960 urbanized area
x11 Percent of families with income under 3; 000 in 1960 urbanized area
x12 Relative population potential of hydrocarbons, HC
x13 Relative pollution potential of oxides of nitrogen, NOx
x14 Relative pollution potential of sulfur dioxide, SO2
x15 Percent relative humidity, annual average at 1 p.m.

33.3 A simple linear model

Consider the relationship between y, the age-adjusted mortality rate, and x2, the mean January
temperature, across these 60 areas. I’ll include both a linear model (in blue) and a loess smooth
(in red.) Does the relationship appear to be linear?

ggplot(pollution, aes(x = x2, y = y)) +
geom_point() +
geom_smooth(method = "lm", col = "blue",

formula = y ~ x, se = F) +
geom_smooth(method = "loess", col = "red",

formula = y ~ x, se = F)
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Suppose we plot the residuals that emerge from the linear model shown in blue, above. Do we
see a curve in a plot of residuals against fitted values?

plot(lm(y ~ x2, data = pollution), which = 1)
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33.4 Quadratic polynomial model‘

A polynomial in the variable x of degree D is a linear combination of the powers of x up to
D.

For example:

• Linear: 𝑦 = 𝛽0 + 𝛽1𝑥
• Quadratic: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2

• Cubic: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3

• Quartic: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4

• Quintic: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5

Fitting such a model creates a polynomial regression.

33.4.1 The raw quadratic model

Let’s look at a quadratic model which predicts y using x2 and the square of x2, so that our
model is of the form:

𝑦 = 𝛽0 + 𝛽1𝑥2 + 𝛽2𝑥2
2 + 𝑒𝑟𝑟𝑜𝑟
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There are several ways to fit this exact model.

• One approach is to calculate the square of x2 within our pollution data set, and then
feed both x2 and x2squared to lm.

• Another approach uses the I function within our lm to specify the use of both x2 and its
square.

• Yet another approach uses the poly function within our lm, which can be used to specify
raw models including x2 and x2squared.

pollution <- pollution |> mutate(x2squared = x2^2)

mod2a <- lm(y ~ x2 + x2squared, data = pollution)
mod2b <- lm(y ~ x2 + I(x2^2), data = pollution)
mod2c <- lm(y ~ poly(x2, degree = 2, raw = TRUE), data = pollution)

Each of these approaches produces the same model, as they are just different ways of expressing
the same idea.

summary(mod2a)

Call:
lm(formula = y ~ x2 + x2squared, data = pollution)

Residuals:
Min 1Q Median 3Q Max

-148.977 -38.651 6.889 35.312 189.346

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 785.77449 79.54086 9.879 5.87e-14 ***
x2 8.87640 4.27394 2.077 0.0423 *
x2squared -0.11704 0.05429 -2.156 0.0353 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.83 on 57 degrees of freedom
Multiple R-squared: 0.07623, Adjusted R-squared: 0.04382
F-statistic: 2.352 on 2 and 57 DF, p-value: 0.1044

And if we plot the fitted values for this mod2 using whatever approach you like, we get exactly
the same result.
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mod2a_aug <- augment(mod2a, pollution)

ggplot(mod2a_aug, aes(x = x2, y = y)) +
geom_point() +
geom_line(aes(x = x2, y = .fitted), col = "red") +
labs(title = "Model 2a: Quadratic fit using x2 and x2^2")
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Model 2a: Quadratic fit using x2 and x2^2

mod2b_aug <- augment(mod2b, pollution)

mod2c_aug <- augment(mod2c, pollution)

p1 <- ggplot(mod2b_aug, aes(x = x2, y = y)) +
geom_point() +
geom_line(aes(x = x2, y = .fitted), col = "red") +
labs(title = "Model 2b: Quadratic fit")

p2 <- ggplot(mod2c_aug, aes(x = x2, y = y)) +
geom_point() +
geom_line(aes(x = x2, y = .fitted), col = "blue") +
labs(title = "Model 2c: Quadratic fit")
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Model 2c: Quadratic fit

33.4.2 Raw quadratic fit after centering

Sometimes, we’ll center (and perhaps rescale, too) the x2 variable before including it in a
quadratic fit like this.

pollution <- pollution |>
mutate(x2_c = x2 - mean(x2))

mod2d <- lm(y ~ x2_c + I(x2_c^2), data = pollution)

summary(mod2d)

Call:
lm(formula = y ~ x2_c + I(x2_c^2), data = pollution)

Residuals:
Min 1Q Median 3Q Max

-148.977 -38.651 6.889 35.312 189.346
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 952.25941 9.59896 99.204 <2e-16 ***
x2_c 0.92163 0.93237 0.988 0.3271
I(x2_c^2) -0.11704 0.05429 -2.156 0.0353 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.83 on 57 degrees of freedom
Multiple R-squared: 0.07623, Adjusted R-squared: 0.04382
F-statistic: 2.352 on 2 and 57 DF, p-value: 0.1044

Note that this model looks very different, with the exception of the second order quadratic
term. But, it produces the same fitted values as the models we fit previously.

mod2d_aug <- augment(mod2d, pollution)

ggplot(mod2d_aug, aes(x = x2, y = y)) +
geom_point() +
geom_line(aes(x = x2, y = .fitted), col = "red") +
labs(title = "Model 2d: Quadratic fit using centered x2 and x2^2")
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Model 2d: Quadratic fit using centered x2 and x2^2
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Or, if you don’t believe me yet, look at the four sets of fitted values another way.

mosaic::favstats(~ .fitted, data = mod2a_aug)

min Q1 median Q3 max mean sd n missing
855.1041 936.7155 945.597 950.2883 954.073 940.3585 17.17507 60 0

mosaic::favstats(~ .fitted, data = mod2b_aug)

min Q1 median Q3 max mean sd n missing
855.1041 936.7155 945.597 950.2883 954.073 940.3585 17.17507 60 0

mosaic::favstats(~ .fitted, data = mod2c_aug)

min Q1 median Q3 max mean sd n missing
855.1041 936.7155 945.597 950.2883 954.073 940.3585 17.17507 60 0

mosaic::favstats(~ .fitted, data = mod2d_aug)

min Q1 median Q3 max mean sd n missing
855.1041 936.7155 945.597 950.2883 954.073 940.3585 17.17507 60 0

33.5 Orthogonal Polynomials

Now, let’s fit an orthogonal polynomial of degree 2 to predict y using x2.

mod2_orth <- lm(y ~ poly(x2, 2), data = pollution)

summary(mod2_orth)

Call:
lm(formula = y ~ poly(x2, 2), data = pollution)

Residuals:
Min 1Q Median 3Q Max
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-148.977 -38.651 6.889 35.312 189.346

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 940.358 7.853 119.746 <2e-16 ***
poly(x2, 2)1 -14.345 60.829 -0.236 0.8144
poly(x2, 2)2 -131.142 60.829 -2.156 0.0353 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.83 on 57 degrees of freedom
Multiple R-squared: 0.07623, Adjusted R-squared: 0.04382
F-statistic: 2.352 on 2 and 57 DF, p-value: 0.1044

Now this looks very different in the equation, but, again, we can see that this produces exactly
the same fitted values as our previous models, and the same model fit summaries. Is it, in
fact, the same model? Here, we’ll plot the fitted Model 2a in a red line, and this new Model
2 with Orthogonal Polynomials as blue points.

mod2orth_aug <- augment(mod2_orth, pollution)

ggplot(mod2orth_aug, aes(x = x2, y = y)) +
geom_point() +
geom_point(aes(x = x2, y = .fitted),

col = "blue", size = 2) +
geom_line(data = mod2a_aug, aes(x = x2, y = .fitted),

col = "red") +
labs(title = "Model 2 with Orthogonal Polynomial, degree 2")
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Model 2 with Orthogonal Polynomial, degree 2

Yes, it is again the same model in terms of the predictions it makes for y.

By default, with raw = FALSE, the poly() function within a linear model computes what
is called an orthogonal polynomial. An orthogonal polynomial sets up a model design
matrix using the coding we’ve seen previously: x2 and x2^2 in our case, and then scales
those columns so that each column is orthogonal to the previous ones. This eliminates the
collinearity (correlation between predictors) and lets our t tests tell us whether the addition
of any particular polynomial term improves the fit of the model over the lower orders.

Would the addition of a cubic term help us much in predicting y from x2?

mod3 <- lm(y ~ poly(x2, 3), data = pollution)
summary(mod3)

Call:
lm(formula = y ~ poly(x2, 3), data = pollution)

Residuals:
Min 1Q Median 3Q Max

-146.262 -39.679 5.569 35.984 191.536

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 940.358 7.917 118.772 <2e-16 ***
poly(x2, 3)1 -14.345 61.328 -0.234 0.8159
poly(x2, 3)2 -131.142 61.328 -2.138 0.0369 *
poly(x2, 3)3 16.918 61.328 0.276 0.7837
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 61.33 on 56 degrees of freedom
Multiple R-squared: 0.07748, Adjusted R-squared: 0.02806
F-statistic: 1.568 on 3 and 56 DF, p-value: 0.2073

It doesn’t appear that the cubic term adds much here, if anything. The p value is not significant
for the third degree polynomial, the summaries of fit quality aren’t much improved, and as we
can see from the plot below, the predictions don’t actually change all that much.

mod3_aug <- augment(mod3, pollution)

ggplot(mod3_aug, aes(x = x2, y = y)) +
geom_point() +
geom_line(aes(x = x2, y = .fitted),

col = "blue") +
geom_line(data = mod2orth_aug, aes(x = x2, y = .fitted),

col = "red") +
labs(title = "Quadratic (red) vs. Cubic (blue) Polynomial Fits")
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33.6 A Cubic Polynomial Model

What if we consider another predictor instead? Let’s look at x3, the Mean July temperature
in degrees Fahrenheit. Here is the loess smooth.

ggplot(pollution, aes(x = x3, y = y)) +
geom_point() +
geom_smooth(method = "loess",

formula = y ~ x, se = TRUE)
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That looks pretty curvy - perhaps we need a more complex polynomial. We’ll consider a linear
model (mod4_L), a quadratic fit (mod4_Q) and a polynomial of degree 3: a cubic fit (mod_4C)

mod4_L <- lm(y ~ x3, data = pollution)
summary(mod4_L)

Call:
lm(formula = y ~ x3, data = pollution)

Residuals:
Min 1Q Median 3Q Max

-139.813 -34.341 4.271 38.197 149.587

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 670.529 123.140 5.445 1.1e-06 ***
x3 3.618 1.648 2.196 0.0321 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.29 on 58 degrees of freedom
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Multiple R-squared: 0.07674, Adjusted R-squared: 0.06082
F-statistic: 4.821 on 1 and 58 DF, p-value: 0.03213

mod4_Q <- lm(y ~ poly(x3, 2), data = pollution)
summary(mod4_Q)

Call:
lm(formula = y ~ poly(x3, 2), data = pollution)

Residuals:
Min 1Q Median 3Q Max

-132.004 -42.184 4.069 47.126 157.396

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 940.358 7.553 124.503 <2e-16 ***
poly(x3, 2)1 132.364 58.504 2.262 0.0275 *
poly(x3, 2)2 -125.270 58.504 -2.141 0.0365 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 58.5 on 57 degrees of freedom
Multiple R-squared: 0.1455, Adjusted R-squared: 0.1155
F-statistic: 4.852 on 2 and 57 DF, p-value: 0.01133

mod4_C <- lm(y ~ poly(x3, 3), data = pollution)
summary(mod4_C)

Call:
lm(formula = y ~ poly(x3, 3), data = pollution)

Residuals:
Min 1Q Median 3Q Max

-148.004 -29.998 1.441 34.579 141.396

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 940.358 7.065 133.095 < 2e-16 ***
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poly(x3, 3)1 132.364 54.728 2.419 0.01886 *
poly(x3, 3)2 -125.270 54.728 -2.289 0.02588 *
poly(x3, 3)3 -165.439 54.728 -3.023 0.00377 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 54.73 on 56 degrees of freedom
Multiple R-squared: 0.2654, Adjusted R-squared: 0.226
F-statistic: 6.742 on 3 and 56 DF, p-value: 0.0005799

It looks like the cubic polynomial term is of some real importance here. Do the linear, quadratic
and cubic model fitted values look different?

mod4_L_aug <- augment(mod4_L, pollution)

mod4_Q_aug <- augment(mod4_Q, pollution)

mod4_C_aug <- augment(mod4_C, pollution)

ggplot(pollution, aes(x = x3, y = y)) +
geom_point() +
geom_line(data = mod4_L_aug, aes(x = x3, y = .fitted),

col = "blue", size = 1.25) +
geom_line(data = mod4_Q_aug, aes(x = x3, y = .fitted),

col = "black", size = 1.25) +
geom_line(data = mod4_C_aug, aes(x = x3, y = .fitted),

col = "red", size = 1.25) +
geom_text(x = 66, y = 930, label = "Linear Fit", col = "blue") +
geom_text(x = 64, y = 820, label = "Quadratic Fit", col = "black") +
geom_text(x = 83, y = 900, label = "Cubic Fit", col = "red") +
labs(title = "Linear, Quadratic and Cubic Fits predicting y with x3")

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.
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33.7 A restricted cubic spline

• A linear spline is a continuous function formed by connecting points (called knots of
the spline) by line segments.

• A restricted cubic spline is a way to build highly complicated curves into a regression
equation in a fairly easily structured way.

• A restricted cubic spline is a series of polynomial functions joined together at the knots.

– Such a spline gives us a way to flexibly account for non-linearity without over-fitting
the model.

– Restricted cubic splines can fit many different types of non-linearities.
– Specifying the number of knots is all you need to do in R to get a reasonable result

from a restricted cubic spline.

The most common choices are 3, 4, or 5 knots. Each additional knot adds to the non-linearity,
and spends an additional degree of freedom:

• 3 Knots, 2 degrees of freedom, allows the curve to “bend” once.
• 4 Knots, 3 degrees of freedom, lets the curve “bend” twice.
• 5 Knots, 4 degrees of freedom, lets the curve “bend” three times.
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For most applications, three to five knots strike a nice balance between complicating the model
needlessly and fitting data pleasingly. Let’s consider a restricted cubic spline model for our y
based on x3 again, but now with:

• in mod5a, 3 knots,
• in mod5b, 4 knots, and
• in mod5c, 5 knots

mod5a_rcs <- lm(y ~ rcs(x3, 3), data = pollution)
mod5b_rcs <- lm(y ~ rcs(x3, 4), data = pollution)
mod5c_rcs <- lm(y ~ rcs(x3, 5), data = pollution)

Here, for instance, is the summary of the 5-knot model:

summary(mod5c_rcs)

Call:
lm(formula = y ~ rcs(x3, 5), data = pollution)

Residuals:
Min 1Q Median 3Q Max

-141.522 -32.009 1.674 31.971 147.878

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 468.113 396.319 1.181 0.243
rcs(x3, 5)x3 6.447 5.749 1.121 0.267
rcs(x3, 5)x3' -25.633 46.810 -0.548 0.586
rcs(x3, 5)x3'' 323.137 293.065 1.103 0.275
rcs(x3, 5)x3''' -612.578 396.270 -1.546 0.128

Residual standard error: 54.35 on 55 degrees of freedom
Multiple R-squared: 0.2883, Adjusted R-squared: 0.2366
F-statistic: 5.571 on 4 and 55 DF, p-value: 0.0007734

We’ll begin by storing the fitted values from these three models and other summaries, for
plotting.

mod5a_aug <- augment(mod5a_rcs, pollution)

mod5b_aug <- augment(mod5b_rcs, pollution)
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mod5c_aug <- augment(mod5c_rcs, pollution)

p2 <- ggplot(pollution, aes(x = x3, y = y)) +
geom_point() +
geom_smooth(method = "loess", col = "purple",

formula = y ~ x, se = F) +
labs(title = "Loess Smooth")

p3 <- ggplot(mod5a_aug, aes(x = x3, y = y)) +
geom_point() +
geom_line(aes(x = x3, y = .fitted),

col = "blue", size = 1.25) +
labs(title = "RCS, 3 knots")

p4 <- ggplot(mod5b_aug, aes(x = x3, y = y)) +
geom_point() +
geom_line(aes(x = x3, y = .fitted),

col = "black", size = 1.25) +
labs(title = "RCS, 4 knots")

p5 <- ggplot(mod5c_aug, aes(x = x3, y = y)) +
geom_point() +
geom_line(aes(x = x3, y = .fitted),

col = "red", size = 1.25) +
labs(title = "RCS, 5 knots")

(p2 + p3) / (p4 + p5)
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Does it seem like the fit improves markedly (perhaps approaching the loess smooth result) as
we increase the number of knots?

anova(mod5a_rcs, mod5b_rcs, mod5c_rcs)

Analysis of Variance Table

Model 1: y ~ rcs(x3, 3)
Model 2: y ~ rcs(x3, 4)
Model 3: y ~ rcs(x3, 5)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 57 194935
2 56 171448 1 23486.9 7.9503 0.006672 **
3 55 162481 1 8967.2 3.0354 0.087057 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Based on an ANOVA comparison, the fourth knot adds significant predictive value (p =
0.0067), but the fifth knot is borderline (p = 0.0871). From the glance function in the broom
package, we can also look at some key summaries.
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glance(mod5a_rcs)

# A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.146 0.116 58.5 4.88 0.0111 2 -328. 663. 672.
# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

glance(mod5b_rcs)

# A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.249 0.209 55.3 6.19 0.00104 3 -324. 658. 668.
# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

glance(mod5c_rcs)

# A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.288 0.237 54.4 5.57 0.000773 4 -322. 657. 669.
# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

Model Knots R2 Adj. R2 AIC BIC
5a 3 0.146 0.116 663.4 671.8
5b 4 0.249 0.209 657.7 668.2
5c 5 0.288 0.237 656.5 669.1

Within our sample, the five-knot RCS outperforms the 3- and 4-knot versions on adjusted R2

and AIC (barely) and does a little worse than the 4-knot RCS on BIC.

Of course, we could also use the cross-validation methods we’ve developed for other linear
regressions to assess predictive capacity of these models. I’ll skip that for now.

To see the values of x3 where the splines place their knots, we can use the attributes
function.
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attributes(rcs(pollution$x3, 5))

$dim
[1] 60 4

$dimnames
$dimnames[[1]]
NULL

$dimnames[[2]]
[1] "pollution" "pollution'" "pollution''" "pollution'''"

$class
[1] "rms"

$name
[1] "pollution"

$label
[1] "pollution"

$assume
[1] "rcspline"

$assume.code
[1] 4

$parms
[1] 68 72 74 77 82

$nonlinear
[1] FALSE TRUE TRUE TRUE

$colnames
[1] "pollution" "pollution'" "pollution''" "pollution'''"

The knots in this particular 5-knot spline are placed by the computer at 68, 72, 74, 77 and 82,
it seems.

There are two kinds of Multivariate Regression Models
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1. [Prediction] Those that are built so that we can make accurate predictions.
2. [Explanatory] Those that are built to help understand underlying phenomena.

While those two notions overlap considerably, they do imply different things about how we
strategize about model-building and model assessment. Harrell’s primary concern is effective
use of the available data for prediction - this implies some things that will be different from
what we’ve seen in the past.

Harrell refers to multivariable regression modeling strategy as the process of spending de-
grees of freedom. The main job in strategizing about multivariate modeling is to

1. Decide the number of degrees of freedom that can be spent
2. Decide where to spend them
3. Spend them, wisely.

What this means is essentially linked to making decisions about predictor complexity, both in
terms of how many predictors will be included in the regression model, and about how we’ll
include those predictors.

33.8 “Spending” Degrees of Freedom

• “Spending” df includes

– fitting parameter estimates in models, or
– examining figures built using the outcome variable Y that tell you how to model

the predictors.

If you use a scatterplot of Y vs. X or the residuals of the Y-X regression model vs. X to decide
whether a linear model is appropriate, then how many degrees of freedom have you actually
spent?

Grambsch and O’Brien conclude that if you wish to preserve the key statistical properties of
the various estimation and fitting procedures used in building a model, you can’t retrieve these
degrees of freedom once they have been spent.

33.8.1 Overfitting and Limits on Predictor Counts

Suppose you have a total sample size of 𝑛 observations, then you really shouldn’t be thinking
about estimating more than 𝑛/15 regression coefficients, at the most.

• If 𝑘 is the number of parameters in a full model containing all candidate predictors for
a stepwise analysis, then 𝑘 should be no greater than 𝑛/15.

• 𝑘 should include all variables screened for association with the response, including inter-
action terms.
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• Sometimes I hold myself to a tougher standard, or 𝑛/50 predictors, at maximum.

So if you have 97 observations in your data, then you can probably just barely justify the use
of a stepwise analysis using the main effects alone of 5 candidate variables (with one additional
DF for the intercept term) using the 𝑛/15 limit.

Harrell (2001) also mentions that if you have a narrowly distributed predictor, without
a lot of variation to work with, then an even larger sample size 𝑛 should be required. See
Vittinghoff et al. (2012), Section 10.3 for more details.

33.8.2 The Importance of Collinearity

Collinearity denotes correlation between predictors high enough to degrade the
precision of the regression coefficient estimates substantially for some or all of the
correlated predictors

• Vittinghoff et al. (2012), section 10.4.1

• Can one predictor in a model be predicted well using the other predictors in the model?

– Strong correlations (for instance, 𝑟 ≥ 0.8) are especially troublesome.

• Effects of collinearity

– decreases precision, in the sense of increasing the standard errors of the parameter
estimates

– decreases power
– increases the difficulty of interpreting individual predictor effects
– overall F test is significant, but individual t tests may not be

Suppose we want to assess whether variable 𝑋𝑗 is collinear with the other predictors in a
model. We run a regression predicting 𝑋𝑗 using the other predictors, and obtain the R2. The
VIF is defined as 1 / (1 - this R2), and we usually interpret VIFs above 5 as indicating a
serious multicollinearity problem (i.e. R2 values for this predictor of 0.8 and above would thus
concern us.)

vif(lm(y ~ x1 + x2 + x3 + x4 + x5 + x6,
data = pollution))

x1 x2 x3 x4 x5 x6
2.238862 2.058731 2.153044 4.174448 3.447399 1.792996

Again, you’ll occasionally see the inverse of VIF reported, and this is called tolerance.

• tolerance = 1 / VIF
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33.8.3 Collinearity in an Explanatory Model

• When we are attempting to identify multiple independent predictors (the explana-
tory model approach), then we will need to choose between collinear variables

– options suggested by Vittinghoff et al. (2012), p. 422, include choosing on the basis
of plausibility as a causal factor,

– choosing the variable that has higher data quality (is measured more accurately or
has fewer missing values.)

– Often, we choose to include a variable that is statistically significant as a predictor,
and drop others, should we be so lucky.

• Larger effects, especially if they are associated with predictors that have minimal cor-
relation with the other predictors under study, cause less trouble in terms of potential
violation of the 𝑛/15 rule for what constitutes a reasonable number of predictors.

33.8.4 Collinearity in a Prediction Model

• If we are primarily building a prediction model for which inference on the individual
predictors is not of interest, then it is totally reasonable to use both predictors in the
model, if doing so reduces prediction error.

– Collinearity doesn’t affect predictions in our model development sample.
– Collinearity doesn’t affect predictions on new data so long as the new data have

similar relationships between predictors.
– If our key predictor is correlated strongly with a confounder, then if the predic-

tor remains significant after adjustment for the confounder, then this suggests a
meaningful independent effect.
∗ If the effects of the predictor are clearly confounded by the adjustment variable,
we again have a clear result.

∗ If neither is statistically significant after adjustment, the data may be inade-
quate.

– If the collinearity is between adjustment variables, but doesn’t involve the key
predictor, then inclusion of the collinear variables is unlikely to cause substantial
problems.

33.9 Spending Degrees of Freedom

We need a flexible approach to assessing non-linearity and fitting models with non-linear pre-
dictors. This will lead us to a measure of what Harrell (2001) calls potential predictive
punch which hides the true form of the regression from the analyst so as to preserve statis-
tical properties, but that lets us make sensible decisions about whether a predictor should be
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included in a model, and the number of parameters (degrees of freedom, essentially) we are
willing to devote to it.

What if we want to consider where best to spend our degrees of freedom on non-linear predictor
terms, like interactions, polynomial functions or curved splines to represent our input data?
The approach we’ll find useful in the largest variety of settings is a combination of

1. a rank correlation assessment of potential predictive punch (using a Spearman 𝜌2 plot,
available in the Hmisc package), followed by

2. the application of restricted cubic splines to fit and assess models.

Let’s try such a plot for our fifteen predictors:

sp2 <- Hmisc::spearman2(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 +
x8 + x9 + x10 + x11 + x12 + x13 +
x14 + x15, data = pollution)

plot(sp2)

x9
x6

x14
x1

x13
x5

x11
x7

x10
x3

x12
x8
x4

x15
x2

N  df

60 1
60 1
60 1
60 1
60 1
60 1
60 1
60 1

0.0 0.1 0.2 0.3

Spearman ρ2    Response : y

Adjusted ρ2

The variable with the largest adjusted squared Spearman 𝜌 statistic in this setting is x9,
followed by x6 and x14. With only 60 observations, we might well want to restrict ourselves to
a very small model. What the Spearman plot suggests is that we focus any non-linear terms
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on x9 first, and then perhaps x6 and x14 as they have some potential predictive power. It
may or may not work out that the non-linear terms are productive.

33.9.1 Fitting a Big Model

So, one possible model built in reaction this plot might be to fit:

• a restricted cubic spline with 5 knots on x9,
• a restricted cubic spline with 3 knots on x6,
• a quadratic polynomial on x14, and
• a linear fit to x1 and x13

That’s way more degrees of freedom (4 for x9, 2 for x6, 2 for x14 and 1 each for x1 and x13
makes a total of 10 without the intercept term) than we can really justify with a sample of 60
observations. But let’s see what happens.

mod_big <- lm(y ~ rcs(x9, 5) + rcs(x6, 3) + poly(x14, 2) +
x1 + x13, data = pollution)

anova(mod_big)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

rcs(x9, 5) 4 100164 25040.9 17.8482 4.229e-09 ***
rcs(x6, 3) 2 38306 19152.8 13.6513 1.939e-05 ***
poly(x14, 2) 2 15595 7797.7 5.5579 0.006677 **
x1 1 4787 4787.3 3.4122 0.070759 .
x13 1 712 711.9 0.5074 0.479635
Residuals 49 68747 1403.0
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This anova suggests that we have at least some predictive value in each spline (x9 and x6)
and some additional value in x14, although it’s not as clear that the linear terms (x1 and x13)
did much good.
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33.9.2 Limitations of lm fits

We can certainly assess this big, complex model using lm in comparison to other models:

• with in-sample summary statistics like adjusted R2, AIC and BIC,
• we can assess its assumptions with residual plots, and
• we can also compare out-of-sample predictive quality through cross-validation,

But to really delve into the details of how well this complex model works, and to help plot
what is actually being fit, we’ll probably want to fit the model using an alternative method
for fitting linear models, called ols, from the rms package developed by Frank Harrell and
colleagues. That will be the focus of our next chapter.
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34 Using ols to fit linear models

34.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(Hmisc)
library(rms)
library(patchwork)
library(tidyverse)

theme_set(theme_bw())

34.2 Where We Are

At the end of Chapter 33, we had fit a model to the pollution data that predicted our
outcome y = Age-Adjusted Mortality Rate, using:

• a restricted cubic spline with 5 knots on x9
• a restricted cubic spline with 3 knots on x6
• a polynomial in 2 degrees on x14
• linear terms for x1 and x13

but this model was hard to evaluate in some ways. Now, instead of using lm to fit this
model, we’ll use a new function called ols from the rms package developed by Frank Harrell
and colleagues, in part to support ideas developed in Harrell (2001) for clinical prediction
models.

34.3 Fitting a model with ols

We will use the datadist approach when fitting a linear model with ols from the rms package,
so as to store additional important elements of the model fit.
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pollution <- read_csv("data/pollution.csv",
show_col_types = FALSE)

d <- datadist(pollution)
options(datadist = "d")

Next, we’ll fit the model using ols and place its results in newmod.

newmod <- ols(y ~ rcs(x9, 5) + rcs(x6, 3) + pol(x14, 2) +
x1 + x13,

data = pollution, x = TRUE, y = TRUE)
newmod

Linear Regression Model

ols(formula = y ~ rcs(x9, 5) + rcs(x6, 3) + pol(x14, 2) + x1 +
x13, data = pollution, x = TRUE, y = TRUE)

Model Likelihood Discrimination
Ratio Test Indexes

Obs 60 LR chi2 72.02 R2 0.699
sigma37.4566 d.f. 10 R2 adj 0.637
d.f. 49 Pr(> chi2) 0.0000 g 58.961

Residuals

Min 1Q Median 3Q Max
-86.189 -18.554 -1.799 18.645 104.307

Coef S.E. t Pr(>|t|)
Intercept 796.2658 162.3269 4.91 <0.0001
x9 -2.6328 6.3504 -0.41 0.6803
x9' 121.4651 124.4827 0.98 0.3340
x9'' -219.8025 227.6775 -0.97 0.3391
x9''' 151.5700 171.3867 0.88 0.3808
x6 7.6817 15.5230 0.49 0.6229
x6' -29.4388 18.0531 -1.63 0.1094
x14 0.5652 0.2547 2.22 0.0311
x14^2 -0.0010 0.0010 -0.96 0.3407
x1 1.0717 0.7317 1.46 0.1494
x13 -0.1028 0.1443 -0.71 0.4796
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Some of the advantages and disadvantages of fitting linear regression models with ols or lm
will reveal themselves over time. For now, one advantage for ols is that the entire variance-
covariance matrix is saved. Most of the time, there will be some value to considering both ols
and lm approaches.

Most of this output should be familiar, but a few pieces are different.

34.3.1 The Model Likelihood Ratio Test

The Model Likelihood Ratio Test compares newmod to the null model with only an intercept
term. It is a goodness-of-fit test that we’ll use in several types of model settings this semester.

• In many settings, the logarithm of the likelihood ratio, multiplied by -2, yields a value
which can be compared to a 𝜒2 distribution. So here, the value 72.02 is -2(log likelihood),
and is compared to a 𝜒2 distribution with 10 degrees of freedom. We reject the null
hypothesis that newmod is no better than the null model, and conclude instead that at
least one of these predictors adds statistically significant value.

– For ols, interpret the model likelihood ratio test like the global (ANOVA) F test
in lm.

– The likelihood function is the probability of observing our data under the specified
model.

– We can compare two nested models by evaluating the difference in their likelihood
ratios and degrees of freedom, then comparing the result to a 𝜒2 distribution.

34.3.2 The g statistic

The g statistic is new and is referred to as the g-index. it’s based on Gini’s mean difference
and is purported to be a robust and highly efficient measure of variation.

• Here, g = 58.9, which implies that if you randomly select two of the 60 areas included
in the model, the average difference in predicted y (Age-Adjusted Mortality Rate) using
this model will be 58.9.

– Technically, g is Gini’s mean difference of the predicted values.

34.4 ANOVA for an ols model

One advantage of the ols approach is that when you apply an anova to it, it separates out
the linear and non-linear components of restricted cubic splines and polynomial terms (as well
as product terms, if your model includes them.)
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anova(newmod)

Analysis of Variance Response: y

Factor d.f. Partial SS MS F P
x9 4 35219.7647 8804.9412 6.28 0.0004
Nonlinear 3 1339.3081 446.4360 0.32 0.8121
x6 2 9367.6008 4683.8004 3.34 0.0437
Nonlinear 1 3730.7388 3730.7388 2.66 0.1094
x14 2 18679.6957 9339.8478 6.66 0.0028
Nonlinear 1 1298.7625 1298.7625 0.93 0.3407
x1 1 3009.1829 3009.1829 2.14 0.1494
x13 1 711.9108 711.9108 0.51 0.4796
TOTAL NONLINEAR 5 6656.1824 1331.2365 0.95 0.4582
REGRESSION 10 159563.8285 15956.3829 11.37 <.0001
ERROR 49 68746.8004 1402.9959

Unlike the anova approach in lm, in ols ANOVA, partial F tests are presented - each predictor
is assessed as “last predictor in” much like the usual t tests in lm. In essence, the partial sums
of squares and F tests here describe the marginal impact of removing each covariate from
newmod.

We conclude that the non-linear parts of x9 and x6 and x14 combined don’t seem to add much
value, but that overall, x9, x6 and x14 seem to be valuable. So it must be the linear parts of
those variables within our model that are doing the lion’s share of the work.

34.5 Effect Estimates

A particularly useful thing to get out of the ols approach that is not as easily available in lm
(without recoding or standardizing our predictors) is a summary of the effects of each predictor
in an interesting scale.

summary(newmod)

Effects Response : y

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
x9 4.95 15.65 10.70 40.4060 14.0790 12.1120 68.6990
x6 10.40 11.50 1.10 -18.2930 8.1499 -34.6710 -1.9153
x14 11.00 69.00 58.00 28.3480 10.6480 6.9503 49.7460
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x1 32.75 43.25 10.50 11.2520 7.6833 -4.1878 26.6930
x13 4.00 23.75 19.75 -2.0303 2.8502 -7.7579 3.6973

This “effects summary” shows the effect on y of moving from the 25th to the 75th percentile
of each variable (along with a standard error and 95% confidence interval) while holding the
other variable at the level specified at the bottom of the output.

The most useful way to look at this sort of analysis is often a plot.

plot(summary(newmod))

y

−30 −10 10 30 50 70

x9 − 15.65 : 4.95

x6 − 11.5 : 10.4

x14 − 69 : 11

x1 − 43.25 : 32.75

x13 − 23.75 : 4

For x9 note from the summary above that the 25th percentile is 4.95 and the 75th is 15.65.
Our conclusion is that the estimated effect of moving x9 from 4.95 to 15.65 is an increase of
40.4 on y, with a 95% CI of (12.1, 68.7).

For a categorical variable, the low level is shown first and then the high level.

The plot shows the point estimate (arrow head) and then the 90% (narrowest bar), 95%
(middle bar) and 99% (widest bar in lightest color) confidence intervals for each predictor’s
effect.

• It’s easier to distinguish this in the x9 plot than the one for x13.
• Remember that what is being compared is the first value to the second value’s impact

on the outcome, with other predictors held constant.
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34.5.1 Simultaneous Confidence Intervals

These confidence intervals make no effort to deal with the multiple comparisons problem, but
just fit individual 95% (or whatever level you choose) confidence intervals for each predictor.
The natural alternative is to make an adjustment for multiple comparisons in fitting the
confidence intervals, so that the set of (in this case, five - one for each predictor) confidence
intervals for effect sizes has a family-wise 95% confidence level. You’ll note that the effect
estimates and standard errors are unchanged from those shown above, but the confidence
limits are a bit wider.

summary(newmod, conf.type=c('simultaneous'))

Effects Response : y

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
x9 4.95 15.65 10.70 40.4060 14.0790 3.1139 77.6980
x6 10.40 11.50 1.10 -18.2930 8.1499 -39.8800 3.2933
x14 11.00 69.00 58.00 28.3480 10.6480 0.1452 56.5510
x1 32.75 43.25 10.50 11.2520 7.6833 -9.0982 31.6030
x13 4.00 23.75 19.75 -2.0303 2.8502 -9.5794 5.5189

Remember that if you’re looking for the usual lm summary for an ols object, use summary.lm,
and that the display function from arm does not recognize ols objects.

34.6 The Predict function for an ols model

The Predict function is very flexible, and can be used to produce individual or simultaneous
confidence limits.

Predict(newmod, x9 = 12, x6 = 12, x14 = 40,
x1 = 40, x13 = 20) # individual limits

x9 x6 x14 x1 x13 yhat lower upper
1 12 12 40 40 20 923.0982 893.0984 953.098

Response variable (y): y

Limits are 0.95 confidence limits

692



Predict(newmod, x9 = 5:15) # individual limits

x9 x6 x14 x1 x13 yhat lower upper
1 5 11.05 30 38 9 913.7392 889.4802 937.9983
2 6 11.05 30 38 9 916.3490 892.0082 940.6897
3 7 11.05 30 38 9 921.3093 898.9657 943.6529
4 8 11.05 30 38 9 927.6464 907.0355 948.2574
5 9 11.05 30 38 9 934.3853 913.3761 955.3946
6 10 11.05 30 38 9 940.5510 917.8371 963.2648
7 11 11.05 30 38 9 945.2225 921.9971 968.4479
8 12 11.05 30 38 9 948.2885 926.4576 970.1194
9 13 11.05 30 38 9 950.2608 930.3003 970.2213
10 14 11.05 30 38 9 951.6671 932.2370 971.0971
11 15 11.05 30 38 9 953.0342 932.1662 973.9021

Response variable (y): y

Adjust to: x6=11.05 x14=30 x1=38 x13=9

Limits are 0.95 confidence limits

Predict(newmod, x9 = 5:15, conf.type = 'simult')

x9 x6 x14 x1 x13 yhat lower upper
1 5 11.05 30 38 9 913.7392 882.4900 944.9885
2 6 11.05 30 38 9 916.3490 884.9945 947.7035
3 7 11.05 30 38 9 921.3093 892.5275 950.0912
4 8 11.05 30 38 9 927.6464 901.0965 954.1964
5 9 11.05 30 38 9 934.3853 907.3223 961.4484
6 10 11.05 30 38 9 940.5510 911.2922 969.8098
7 11 11.05 30 38 9 945.2225 915.3047 975.1403
8 12 11.05 30 38 9 948.2885 920.1671 976.4100
9 13 11.05 30 38 9 950.2608 924.5487 975.9728
10 14 11.05 30 38 9 951.6671 926.6383 976.6959
11 15 11.05 30 38 9 953.0342 926.1531 979.9152

Response variable (y): y

Adjust to: x6=11.05 x14=30 x1=38 x13=9

Limits are 0.95 confidence limits
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The plot below shows the individual effects in newmod in five subpanels, using the default
approach of displaying the same range of values as are seen in the data. Note that each panel
shows point and interval estimates of the effects, and spot the straight lines in x1 and x13, the
single bends in x14 and x6 and the wiggles in x9, corresponding to the amount of non-linearity
specified in the model.

ggplot(Predict(newmod))
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34.7 Checking Influence via dfbeta

For an ols object, we have several tools for looking at residuals. The most interesting to me
is which.influence which is reliant on the notion of dfbeta.

• DFBETA is estimated for each observation in the data, and each coefficient in the model.
• The DFBETA is the difference in the estimated coefficient caused by deleting the obser-

vation, scaled by the coefficient’s standard error estimated with the observation deleted.
• The which.influence command applied to an ols model produces a list of all of the

predictors estimated by the model, including the intercept.

– For each predictor, the command lists all observations (by row number) that, if
removed from the model, would cause the estimated coefficient (the “beta”) for
that predictor to change by at least some particular cutoff.
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– The default is that the DFBETA for that predictor is 0.2 or more.

which.influence(newmod)

$Intercept
[1] "2" "11" "28" "32" "37" "49" "59"

$x9
[1] "2" "3" "6" "9" "31" "35" "49" "57" "58"

$x6
[1] "2" "11" "15" "28" "32" "37" "50" "56" "59"

$x14
[1] "2" "6" "7" "12" "13" "16" "32" "37"

$x1
[1] "7" "18" "32" "37" "49" "57"

$x13
[1] "29" "32" "37"

The implication here, for instance, is that if we drop row 3 from our data frame, and refit
the model, this will have a meaningful impact on the estimate of x9 but not on the other
coefficients. But if we drop, say, row 37, we will affect the estimates of the intercept, x6, x14,
x1, and x13.

34.7.1 Using the residuals command for dfbetas

To see the dfbeta values, standardized according to the approach I used above, you can use
the following code (I’ll use head to just show the first few rows of results) to get a matrix of
the results.

head(residuals(newmod, type = "dfbetas"))

Intercept x9 x9' x9'' x9''' x6
1 0.03071160 -0.023775487 -0.004055111 0.01205425 -0.03260003 -0.02392315
2 -0.38276573 -0.048404993 -0.142293606 0.17009666 -0.22350621 0.44737372
3 0.17226780 -0.426153536 0.350913139 -0.32949129 0.25777913 -0.10263448
4 0.06175110 -0.006460916 0.024828272 -0.03009337 0.04154812 -0.06254145
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5 0.16875200 0.039839994 -0.058178534 0.06449504 -0.07772208 -0.18058630
6 0.03322073 0.112699877 -0.203543632 0.23987378 -0.35201736 -0.04075617

x6' x14 x14^2 x1 x13
1 0.01175375 -0.06494414 0.060929683 -0.011042644 0.03425156
2 -0.48562818 0.19372285 -0.212186731 -0.107830147 -0.01503250
3 0.05005284 -0.02049877 0.014059330 0.010793169 0.04924166
4 0.05498432 0.01135031 -0.001877983 -0.005490454 -0.01254111
5 0.16151742 0.02723710 0.065483158 0.003326357 -0.05570035
6 0.02900006 -0.21508009 0.171627718 0.019241676 0.05775536

34.7.2 Using the residuals command for other summaries

The residuals command will also let you get ordinary residuals, leverage values and dffits
values, which are the normalized differences in predicted values when observations are omitted.
See ?residuals.ols for more details.

temp <- tibble(area = 1:60)
temp$residual <- residuals(newmod, type = "ordinary")
temp$leverage <- residuals(newmod, type = "hat")
temp$dffits <- residuals(newmod, type = "dffits")

ggplot(temp, aes(x = area, y = dffits)) +
geom_point() +
geom_line()
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It appears that point 37 has the largest (positive) dffits value. Recall that point 37 seemed
influential on several predictors and the intercept term. Point 32 has the smallest (or largest
negative) dffits, and also appears to have been influential on several predictors and the
intercept.

which.max(temp$dffits)

37
37

which.min(temp$dffits)

32
32

34.8 Model Validation and Correcting for Optimism

We have learned about splitting our regression models into training samples and test samples,
performing variable selection work on the training sample to identify two or three candidate
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models (perhaps via a stepwise approach), and then comparing the predictions made by those
models in a test sample.

The validate function allows us to perform cross-validation of our models for some sum-
mary statistics (and then correct those statistics for optimism in describing likely predictive
accuracy) in an easy way.

validate develops:

• Resampling validation with or without backward elimination of variables
• Estimates of the optimism in measures of predictive accuracy
• Estimates of the intercept and slope of a calibration model

(observed y) = Intercept + Slope (predicted y)

with the following code…

set.seed(432002); validate(newmod, method = "boot", B = 40)

index.orig training test optimism index.corrected n
R-square 0.6989 0.7426 0.5749 0.1676 0.5312 40
MSE 1145.7800 963.9565 1617.4042 -653.4478 1799.2278 40
g 58.9614 59.7891 54.6444 5.1447 53.8168 40
Intercept 0.0000 0.0000 96.6990 -96.6990 96.6990 40
Slope 1.0000 1.0000 0.8961 0.1039 0.8961 40

So, for R-square we see that our original estimate was 0.6989

• Our estimated R-square across n = 40 training samples was 0.7426, but in the resulting
tests, the average R-square was only 0.5749

• This suggests an optimism of 0.7426 - 0.5749 = 0.1676 (after rounding).
• We then apply that optimism to obtain a new estimate of R2 corrected for overfitting,

at 0.5312, which is probably a better estimate of what our results might look like in new
data that were similar to (but not the same as) the data we used in building newmod
than our initial estimate of 0.6989

We also obtain optimism-corrected estimates of the mean squared error (square of the residual
standard deviation), the g index, and the intercept and slope of the calibration model. The
“corrected” slope is a shrinkage factor that takes overfitting into account.
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34.9 Building a Nomogram for Our Model

Another nice feature of an ols model object is that we can picture the model with a nomo-
gram easily. Here is model newmod.

plot(nomogram(newmod))
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For this model, we can use this plot to predict y as follows:

1. find our values of x9 on the appropriate line
2. draw a vertical line up to the points line to count the points associated with our subject
3. repeat the process to obtain the points associated with x6, x14, x1, and x13. Sum the

points.
4. draw a vertical line down from that number in the Total Points line to estimate y (the

Linear Predictor) = Age-Adjusted Mortality Rate.

The impact of the non-linearity is seen in the x6 results, for example, which turn around from
9-10 to 11-12. We also see non-linearity’s effects in the scales of the non-linear terms in terms
of points awarded.

An area with a combination of predictor values leading to a total of 100 points, for instance,
would lead to a prediction of a Mortality Rate near 905. An area with a total of 140 points
would have a predicted Mortality Rate of 955, roughly.
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35 BMI and Employment Study

This chapter was developed originally in 2018 and 2019, and has only been lightly revised
since. In part, I have done this to let you see some other options. One appealing feature
is that this chapter (eventually) uses the mice package to do some multiple imputation, and
work with missing data, instead of naniar. While we’ll have other approaches for this in 432,
at least you’ll see one possibility.

35.1 Setup: Packages Used Here

knitr::opts_chunk$set(comment = NA)

library(GGally)
library(mice)
library(tidyverse)

theme_set(theme_bw())

We’ll also use a function from the Hmisc package.

35.2 The Data

A 2016 study published in BMJ Open looked at the differential relationship between em-
ployment status and body-mass index among middle-aged and elderly adults living in South
Korea1. Data from this study were available online thanks to the Dryad data package2. The
original data came from a nationally representative sample of 7228 participants in the Ko-
rean Longitudinal Study of Aging. I sampled these data, and did some data “rectangling”
(wrangling) to build the emp_bmi.csv file on our web site.

1See Noh J, Kim J, Park J, Oh I, Kwon YD (2016) Age and gender differential relationship between employment
status and body mass index among middle-aged and elderly adults: a cross-sectional study. BMJ Open 6(11):
e012117. http://dx.doi.org/10.1136/bmjopen-2016-012117

2Noh J, Kim J, Park J, Oh I, Kwon YD (2016) Data from: Age and gender differential relationship between
employment status and body mass index among middle aged and elderly adults: a cross-sectional study.
Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.ng8mn
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The available data in emp_bmi describe 999 subjects, and included are 8 variables:

emp_bmi <- read_csv("data/emp_bmi.csv", show_col_types = FALSE)

Variable Description NA?
pid subject identification number (categorical) 0
bmi our outcome, quantitative, body-mass index 0
age subject’s age (between 51 and 95) 1

gender subject’s gender (male or female) 0
employed employment status indicator (1/0) 1
married marital status indicator (1/0) 1
alcohol 3-level factor 2

education 4-level factor 5

Hmisc::describe(emp_bmi)

emp_bmi

8 Variables 999 Observations
--------------------------------------------------------------------------------
pid

n missing distinct Info Mean Gmd .05 .10
999 0 999 1 31774 20178 3506 6961
.25 .50 .75 .90 .95

16671 31761 46902 54635 58433

lowest : 22 41 52 82 112, highest: 61471 61481 61532 61641 61691
--------------------------------------------------------------------------------
bmi

n missing distinct Info Mean Gmd .05 .10
999 0 373 1 23.24 2.808 19.21 20.13
.25 .50 .75 .90 .95

21.54 23.24 24.78 26.56 27.34

lowest : 15.6 15.63 16.22 16.44 16.53, highest: 31.11 31.24 32.05 33.5 34.67
--------------------------------------------------------------------------------
age

n missing distinct Info Mean Gmd .05 .10
998 1 43 0.999 66.29 11.56 52 53
.25 .50 .75 .90 .95
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57 66 74 81 83

lowest : 51 52 53 54 55, highest: 89 90 92 93 95
--------------------------------------------------------------------------------
gender

n missing distinct
999 0 2

Value female male
Frequency 570 429
Proportion 0.571 0.429
--------------------------------------------------------------------------------
employed

n missing distinct Info Sum Mean Gmd
998 1 2 0.723 404 0.4048 0.4824

--------------------------------------------------------------------------------
married

n missing distinct Info Sum Mean Gmd
998 1 2 0.548 758 0.7595 0.3657

--------------------------------------------------------------------------------
alcohol

n missing distinct
997 2 3

Value alcohol dependent heavy drinker
Frequency 45 306
Proportion 0.045 0.307

Value normal drinker or non-drinker
Frequency 646
Proportion 0.648
--------------------------------------------------------------------------------
education

n missing distinct
994 5 4

Value 1 elem school grad or lower 2 middle school grad
Frequency 421 180
Proportion 0.424 0.181

Value 3 high school grad 4 college grad or higher

702



Frequency 292 101
Proportion 0.294 0.102
--------------------------------------------------------------------------------

35.2.1 Specifying Outcome and Predictors for our Model

In the original study, a key goal was to understand the relationship between employment and
body-mass index. Our goal in this example will be to create a model to predict bmi focusing
on employment status (so our key predictor is employed) while accounting for the additional
predictors age, gender, married, alcohol and education. A natural thing to do would be to
consider interactions of these predictor variables (for example, does the relationship between
bmi and employed change when comparing men to women?) but we’ll postpone that discussion
until 432.

35.2.2 Dealing with Missing Predictor Values

md.pattern(emp_bmi)

pid

0

bmi

0

gender

0

age

1

employed

1

married

1

alcohol

2

education

5

21

11

11

11

15

0990

10

pid bmi gender age employed married alcohol education
990 1 1 1 1 1 1 1 1 0
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5 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 0 1 2

0 0 0 1 1 1 2 5 10

We will eventually build a model to predict bmi using all of the other variables besides pid.
So we’ll eventually have to account for the 9 people with missing values (one of whom has
two missing values, as we see above.) What I’m going to do in this example is to first build a
complete-case analysis on the 990 subjects without missing values and then, later, do multiple
imputation to account for the 9 subjects with missing values (and their 10 actual missing
values) sensibly.

I’ll put the “complete cases” data set of 990 subjects in emp_bmi_noNA.

emp_bmi_noNA <- emp_bmi |> na.omit()
emp_bmi_noNA

# A tibble: 990 x 8
pid bmi age gender employed married alcohol education

<dbl> <dbl> <dbl> <chr> <dbl> <dbl> <chr> <chr>
1 22 20.8 58 male 1 1 heavy drinker 4 colleg~
2 41 21.4 76 female 0 1 normal drinker or non-dr~ 1 elem s~
3 52 20.9 66 female 1 1 heavy drinker 1 elem s~
4 82 23.7 67 male 1 1 alcohol dependent 2 middle~
5 112 25.5 63 female 0 1 heavy drinker 1 elem s~
6 181 20.5 51 female 1 1 heavy drinker 3 high s~
7 182 25.3 51 male 1 1 alcohol dependent 3 high s~
8 411 20.8 66 female 1 1 normal drinker or non-dr~ 2 middle~
9 491 20.8 64 female 0 1 normal drinker or non-dr~ 3 high s~
10 531 24.3 84 female 0 0 normal drinker or non-dr~ 1 elem s~
# i 980 more rows

colSums(is.na(emp_bmi_noNA))

pid bmi age gender employed married alcohol education
0 0 0 0 0 0 0 0
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35.3 The “Kitchen Sink” Model

A “kitchen sink” model includes all available predictors.

ebmodel.1 <- lm(bmi ~ age + gender + employed + married +
alcohol + education, data = emp_bmi_noNA)

summary(ebmodel.1)

Call:
lm(formula = bmi ~ age + gender + employed + married + alcohol +

education, data = emp_bmi_noNA)

Residuals:
Min 1Q Median 3Q Max

-7.7033 -1.6057 -0.0494 1.4992 11.7303

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.15391 0.88356 29.601 < 2e-16 ***
age -0.04260 0.01065 -3.998 6.86e-05 ***
gendermale 0.29811 0.20271 1.471 0.1417
employed -0.45761 0.19153 -2.389 0.0171 *
married 0.09438 0.21280 0.444 0.6575
alcoholheavy drinker 0.25317 0.40727 0.622 0.5343
alcoholnormal drinker or non-drinker 0.14121 0.40766 0.346 0.7291
education2 middle school grad -0.28862 0.24020 -1.202 0.2298
education3 high school grad -0.50123 0.22192 -2.259 0.0241 *
education4 college grad or higher -0.79862 0.31068 -2.571 0.0103 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.513 on 980 degrees of freedom
Multiple R-squared: 0.02251, Adjusted R-squared: 0.01353
F-statistic: 2.508 on 9 and 980 DF, p-value: 0.007716

35.4 Using Categorical Variables (Factors) as Predictors

We have six predictors here, and five of them are categorical. Note that R recognizes each
kind of variable in this case and models them appropriately. Let’s look at the coefficients of
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our model.

35.4.1 gender: A binary variable represented by letters

The gender variable contains the two categories: male and female, and R recognizes this as
a factor. When building a regression model with such a variable, R assigns the first of the
two levels of the factor to the baseline, and includes in the model an indicator variable for the
second level. By default, R assigns each factor a level order alphabetically.

So, in this case, we have:

is.factor(emp_bmi_noNA$gender)

[1] FALSE

levels(emp_bmi_noNA$gender)

NULL

As you see in the model, the gender information is captured by the indicator variable
gendermale, which is 1 when gender = male and 0 otherwise.

So, when our model includes:

Coefficients: Estimate Std. Error t value Pr(>|t|)
gendermale 0.29811 0.20271 1.471 0.1417

this means that a male subject is predicted to have an outcome that is 0.29811 points higher
than a female subject, if they have the same values of all of the other predictors.

Note that if we wanted to switch the levels so that “male” came first (and so that R would
use “male” as the baseline category and “female” as the 1 value in an indicator), we could
do so with the forcats package and the fct_relevel command. Building a model with this
version of gender will simply reverse the sign of our indicator variable, but not change any of
the other output.

emp_bmi_noNA$gender.2 <- fct_relevel(emp_bmi_noNA$gender, "male", "female")
revised.model <- lm(bmi ~ age + gender.2 + employed + married +

alcohol + education, data = emp_bmi_noNA)
summary(revised.model)
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Call:
lm(formula = bmi ~ age + gender.2 + employed + married + alcohol +

education, data = emp_bmi_noNA)

Residuals:
Min 1Q Median 3Q Max

-7.7033 -1.6057 -0.0494 1.4992 11.7303

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.45202 0.94648 27.948 < 2e-16 ***
age -0.04260 0.01065 -3.998 6.86e-05 ***
gender.2female -0.29811 0.20271 -1.471 0.1417
employed -0.45761 0.19153 -2.389 0.0171 *
married 0.09438 0.21280 0.444 0.6575
alcoholheavy drinker 0.25317 0.40727 0.622 0.5343
alcoholnormal drinker or non-drinker 0.14121 0.40766 0.346 0.7291
education2 middle school grad -0.28862 0.24020 -1.202 0.2298
education3 high school grad -0.50123 0.22192 -2.259 0.0241 *
education4 college grad or higher -0.79862 0.31068 -2.571 0.0103 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.513 on 980 degrees of freedom
Multiple R-squared: 0.02251, Adjusted R-squared: 0.01353
F-statistic: 2.508 on 9 and 980 DF, p-value: 0.007716

Note that the two categories here need to be both mutually exclusive (a subject cannot be
in more than one category) and collectively exhaustive (all subjects must fit into this set of
categories) in order to work properly as a regression predictor.

35.4.2 employed: A binary variable represented a 1/0 indicator

The employed and married variables are each described using an indicator variable, which is
1 if the condition of interest holds and 0 if it does not. R doesn’t recognize this as a factor,
but rather as a quantitative variable. However, this is no problem for modeling, where we just
need to remember that if employed = 1, the subject is employed, and if employed = 0, the
subject is not employed, to interpret the results. The same approach is used for married.

Coefficients: Estimate Std. Error t value Pr(>|t|)

707



employed -0.45761 0.19153 -2.389 0.0171 *
married 0.09438 0.21280 0.444 0.6575

So, in our model, if subject A is employed, they are expected to have an outcome that is 0.46
points lower (-0.46 points higher) than subject B who is not employed but otherwise identical
to subject A.

Similarly, if subject X is married, and subject Y is unmarried, but they otherwise have the
same values of all predictors, then our model will predict a bmi for X that is 0.094 points
higher than for Y.

35.4.3 alcohol: A three-category variable coded by names

Our alcohol information divides subjects into three categories, which are:

• normal drinker or non-drinker
• heavy drinker
• alcohol dependent

R builds a model using 𝑘 − 1 predictors to describe a variable with 𝑘 levels. As mentioned
previously, R selects a baseline category when confronted with a factor variable, and it always
selects the first level as the baseline. The levels are sorted alphabetically, unless we tell R to
sort them some other way. So, we have

Coefficients: Estimate Std. Error t value Pr(>|t|)
alcoholheavy drinker 0.25317 0.40727 0.622 0.5343
alcoholnormal drinker or non-drinker 0.14121 0.40766 0.346 0.7291

How do we interpret this?

• Suppose subject A is alcohol dependent, B is a heavy drinker and C is a normal drinker
or non-drinker, but subjects A-C have the same values of all other predictors.

• Our model predicts that B would have a BMI that is 0.25 points higher than A.
• Our model predicts that C would have a BMI that is 0.14 points higher than A.

A good way to think about this…

Subject Status
alcoholheavy

drinker

alcoholnormal
drinker or

non-drinker
A alcohol dependent 0 0
B heavy drinker 1 0
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Subject Status
alcoholheavy

drinker

alcoholnormal
drinker or

non-drinker
C normal drinker or non-drinker 0 1

and so, with two variables, we cover each of these three possible alcohol levels.

When we have an ordered variable like this one, we usually want the baseline category to be
at either end of the scale (either the highest or the lowest, but not something in the middle.)
Another good idea in many settings is to use as the baseline category the most common
category. Here, the baseline R chose was “alcohol dependent” which is the least common
category, so I might want to use the fct_relevel function again to force R to choose, say,
normal drinker/non-drinker as the baseline category.

emp_bmi_noNA$alcohol.2 <- fct_relevel(emp_bmi_noNA$alcohol,
"normal drinker or non-drinker", "heavy drinker")

revised.model.2 <- lm(bmi ~ age + gender + employed + married +
alcohol.2 + education, data = emp_bmi_noNA)

summary(revised.model.2)

Call:
lm(formula = bmi ~ age + gender + employed + married + alcohol.2 +

education, data = emp_bmi_noNA)

Residuals:
Min 1Q Median 3Q Max

-7.7033 -1.6057 -0.0494 1.4992 11.7303

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.29512 0.82860 31.734 < 2e-16 ***
age -0.04260 0.01065 -3.998 6.86e-05 ***
gendermale 0.29811 0.20271 1.471 0.1417
employed -0.45761 0.19153 -2.389 0.0171 *
married 0.09438 0.21280 0.444 0.6575
alcohol.2heavy drinker 0.11196 0.19647 0.570 0.5689
alcohol.2alcohol dependent -0.14121 0.40766 -0.346 0.7291
education2 middle school grad -0.28862 0.24020 -1.202 0.2298
education3 high school grad -0.50123 0.22192 -2.259 0.0241 *
education4 college grad or higher -0.79862 0.31068 -2.571 0.0103 *
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.513 on 980 degrees of freedom
Multiple R-squared: 0.02251, Adjusted R-squared: 0.01353
F-statistic: 2.508 on 9 and 980 DF, p-value: 0.007716

How do we interpret this revised model?

• Again, subject A is alcohol dependent, B is a heavy drinker and C is a normal drinker
or non-drinker, but subjects A-C have the same values of all other predictors.

• Our model predicts that B would have a BMI that is 0.11 points higher than C.
• Our model predicts that A would have a BMI that is 0.14 points lower than C.

So, those are the same conclusions, just rephrased.

35.4.4 t tests and multi-categorical variables

The usual “last predictor in” t test works perfectly for binary factors, but suppose we have
a factor like alcohol which is represented by two different indicator variables. If we want
to know whether the alcohol information, as a group, adds statistically significant value to
the model that includes all of the other predictors, then our best strategy is to compare two
models - one with the alcohol information, and one without.

model.with.a <- lm(bmi ~ age + gender + alcohol + employed + married + education,
data = emp_bmi_noNA)

model.no.a <- lm(bmi ~ age + gender + employed + married + education,
data = emp_bmi_noNA)

anova(model.with.a, model.no.a)

Analysis of Variance Table

Model 1: bmi ~ age + gender + alcohol + employed + married + education
Model 2: bmi ~ age + gender + employed + married + education
Res.Df RSS Df Sum of Sq F Pr(>F)

1 980 6189.9
2 982 6193.6 -2 -3.6288 0.2873 0.7504

The p value for both of the indicator variables associated with alcohol combined is 0.75,
according to an ANOVA F test with 2 degrees of freedom.
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Note that we can get the same information from an ANOVA table of the larger model if we
add the alcohol predictor to the model last.

anova(lm(bmi ~ age + gender + employed + married + education + alcohol,
data = emp_bmi_noNA))

Analysis of Variance Table

Response: bmi
Df Sum Sq Mean Sq F value Pr(>F)

age 1 55.5 55.510 8.7884 0.003105 **
gender 1 0.4 0.369 0.0585 0.809000
employed 1 30.7 30.733 4.8657 0.027626 *
married 1 0.4 0.374 0.0592 0.807746
education 3 51.9 17.311 2.7408 0.042202 *
alcohol 2 3.6 1.814 0.2873 0.750382
Residuals 980 6189.9 6.316
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Again, we see p for the two alcohol indicators is 0.75.

35.4.5 education: A four-category variable coded by names

The education variable’s codes are a little better designed. By preceding the text with a
number for each code, we force R to attend to the level order we want to see.

Coefficients: Estimate Std. Error t value Pr(>|t|)
education2 middle school grad -0.28862 0.24020 -1.202 0.2298
education3 high school grad -0.50123 0.22192 -2.259 0.0241 *
education4 college grad or higher -0.79862 0.31068 -2.571 0.0103 *

Since we have four education levels, we need those three indicator variables.

• education2 middle school grad is 1 if the subject is a middle school graduate, and 0
if they have some other status

• education3 high school grad is 1 if the subject is a high school graduate, and 0 if
they have some other status

• education4 college grad or higher is 1 if the subject is a college graduate or has
more education, and 0 if they have some other status.
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• So the subjects with only elementary school or lower education are represented by zeros
in all three indicators.

Suppose we have four subjects now, with the same values of all other predictors, but different
levels of education.

Subject Education Estimated BMI
A elementary school or less A
B middle school grad A - 0.289
C high school grad A - 0.501
D college grad A - 0.799

Note that the four categories are mutually exclusive (a subject cannot be in more than one
category) and collectively exhaustive (all subjects must fit into this set of categories.) As we
have seen, this is a requirement of categorical variables in a regression analysis.

Let’s run the ANOVA test for the education information captured in those three indicator
variables…

anova(lm(bmi ~ age + gender + employed + married + alcohol + education,
data = emp_bmi_noNA))

Analysis of Variance Table

Response: bmi
Df Sum Sq Mean Sq F value Pr(>F)

age 1 55.5 55.510 8.7884 0.003105 **
gender 1 0.4 0.369 0.0585 0.809000
employed 1 30.7 30.733 4.8657 0.027626 *
married 1 0.4 0.374 0.0592 0.807746
alcohol 2 3.5 1.750 0.2771 0.758055
education 3 52.1 17.354 2.7476 0.041820 *
Residuals 980 6189.9 6.316
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

So, as a group, the three indicator variables add statistically significant predictive value at the
5% significance level, since the F test for those three variables has p = 0.042
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35.4.6 Interpreting the Kitchen Sink Model

So, again, here’s our model.

ebmodel.1 <- lm(bmi ~ age + gender + employed + married +
alcohol + education, data = emp_bmi_noNA)

ebmodel.1

Call:
lm(formula = bmi ~ age + gender + employed + married + alcohol +

education, data = emp_bmi_noNA)

Coefficients:
(Intercept) age

26.15391 -0.04260
gendermale employed

0.29811 -0.45761
married alcoholheavy drinker
0.09438 0.25317

alcoholnormal drinker or non-drinker education2 middle school grad
0.14121 -0.28862

education3 high school grad education4 college grad or higher
-0.50123 -0.79862

If we wanted to predict a BMI level for a new subject like the ones used in the development
of this model, that prediction would be:

• 26.15
• minus 0.426 times the subject’s age
• plus 0.298 if the subject’s gender was male
• minus 0.458 if the subject’s employment status was employed
• plus 0.253 if the subject’s alcohol classification was heavy drinker
• plus 0.141 if the subject’s alcohol classification was normal drinker or non-drinker
• minus 0.289 if the subject’s education classification was 2 middle school grad
• minus 0.501 if the subject’s education classification was 3 high school grad
• minus 0.799 if the subject’s education classification was 4 college grad or higher
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35.5 Scatterplot Matrix with Categorical Predictors

Let’s look at a scatterplot matrix of a few key predictors, with my favorite approach (at least
for quantitative predictors)…

ggpairs(emp_bmi_noNA |> select(age, gender, employed, education, bmi))

Corr:

−0.440***

Corr:

−0.094**

Corr:

−0.016

age gender employed education bmi
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i

50 60 70 80 90 0 2040600 2040600.000.250.500.751.000102030405001020304050010203040500102030405015 20 25 30 35

0.00
0.01
0.02
0.03

01020304050

01020304050

0.00
0.25
0.50
0.75
1.00

010203040

010203040

010203040

010203040

15
20
25
30
35

35.6 Residual Plots when we have Categorical Predictors

Here are the main residual plots from the kitchen sink model ebmodel.1 defined previously.

par(mfrow=c(2,2))
plot(ebmodel.1)
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par(mfrow=c(1,1))

Sometimes, in small samples, the categorical variables will make the regression residuals line up
in somewhat strange patterns. But in this case, there’s no real problem. The use of categorical
variables also has some impact on leverage, as it’s hard for a subject to be a serious outlier in
terms of a predictor if that predictor only has a few possible levels.
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35.7 Stepwise Regression and Categorical Predictors

When R does backwards elimination for stepwise model selection, it makes decisions about
each categorical variable as in/out across all of the indicator variables simultaneously, as you’d
hope.

step(ebmodel.1)

Start: AIC=1834.64
bmi ~ age + gender + employed + married + alcohol + education

Df Sum of Sq RSS AIC
- alcohol 2 3.629 6193.6 1831.2
- married 1 1.243 6191.2 1832.8
<none> 6189.9 1834.6
- gender 1 13.660 6203.6 1834.8
- education 3 52.063 6242.0 1836.9
- employed 1 36.057 6226.0 1838.4
- age 1 100.976 6290.9 1848.7

Step: AIC=1831.22
bmi ~ age + gender + employed + married + education

Df Sum of Sq RSS AIC
- married 1 1.026 6194.6 1829.4
<none> 6193.6 1831.2
- gender 1 19.071 6212.6 1832.3
- education 3 51.934 6245.5 1833.5
- employed 1 34.736 6228.3 1834.8
- age 1 108.599 6302.2 1846.4

Step: AIC=1829.39
bmi ~ age + gender + employed + education

Df Sum of Sq RSS AIC
<none> 6194.6 1829.4
- gender 1 22.169 6216.7 1830.9
- education 3 51.282 6245.9 1831.5
- employed 1 34.390 6229.0 1832.9
- age 1 125.431 6320.0 1847.2
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Call:
lm(formula = bmi ~ age + gender + employed + education, data = emp_bmi_noNA)

Coefficients:
(Intercept) age

26.50206 -0.04459
gendermale employed

0.34057 -0.44571
education2 middle school grad education3 high school grad

-0.28787 -0.49772
education4 college grad or higher

-0.79037

Note that the stepwise approach first drops two degrees of freedom (two indicator variables)
for alcohol and then drops the one degree of freedom for married before it settles on a model
with age, gender, education and employed.

35.8 Pooling Results after Multiple Imputation

As mentioned earlier, having built a model using complete cases, we should probably investi-
gate the impact of multiple imputation on the missing observations. We’ll fit 100 imputations
using the emp_bmi data and then fit a pooled regression model across those imputations.

emp_bmi_mi <- mice(emp_bmi, m = 100, maxit = 5,
printFlag = FALSE, seed = 4312021)

Now, we’ll fit the pooled kitchen sink regression model to these imputed data sets and pool
them.

model.empbmi.mi <-
with(emp_bmi_mi, lm(bmi ~ age + gender + employed +

married + alcohol + education))
summary(pool(model.empbmi.mi))

term estimate std.error statistic
1 (Intercept) 26.15304370 0.88053709 29.7012402
2 age -0.04258223 0.01063989 -4.0021319
3 gendermale 0.29794032 0.20237455 1.4722223
4 employed -0.45695506 0.19112904 -2.3908196
5 married 0.09430912 0.21247583 0.4438581
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6 alcoholheavy drinker 0.25298858 0.40270904 0.6282168
7 alcoholnormal drinker or non-drinker 0.14108076 0.40341263 0.3497182
8 education2 middle school grad -0.28861113 0.23994418 -1.2028261
9 education3 high school grad -0.50119826 0.22138848 -2.2638859
10 education4 college grad or higher -0.79852096 0.30947717 -2.5802258

df p.value
1 979.908 0.000000e+00
2 979.908 6.750699e-05
3 979.908 1.412819e-01
4 979.908 1.699872e-02
5 979.908 6.572432e-01
6 979.908 5.300083e-01
7 979.908 7.266253e-01
8 979.908 2.293342e-01
9 979.908 2.379907e-02
10 979.908 1.001814e-02

OK. That’s it for now.

718



A Getting Data Into R

Using data from an R package

To use data from an R package, for instance, the bechdel data from the fivethirtyeight
package, you can simply load the relevant package with library and then the data frame will
be available

library(fivethirtyeight)
library(tidyverse)

bechdel

# A tibble: 1,794 x 15
year imdb title test clean_test binary budget domgross intgross code

<int> <chr> <chr> <chr> <ord> <chr> <int> <dbl> <dbl> <chr>
1 2013 tt1711425 21 & ~ nota~ notalk FAIL 1.3 e7 25682380 4.22e7 2013~
2 2012 tt1343727 Dredd~ ok-d~ ok PASS 4.50e7 13414714 4.09e7 2012~
3 2013 tt2024544 12 Ye~ nota~ notalk FAIL 2 e7 53107035 1.59e8 2013~
4 2013 tt1272878 2 Guns nota~ notalk FAIL 6.1 e7 75612460 1.32e8 2013~
5 2013 tt0453562 42 men men FAIL 4 e7 95020213 9.50e7 2013~
6 2013 tt1335975 47 Ro~ men men FAIL 2.25e8 38362475 1.46e8 2013~
7 2013 tt1606378 A Goo~ nota~ notalk FAIL 9.2 e7 67349198 3.04e8 2013~
8 2013 tt2194499 About~ ok-d~ ok PASS 1.20e7 15323921 8.73e7 2013~
9 2013 tt1814621 Admis~ ok ok PASS 1.3 e7 18007317 1.80e7 2013~
10 2013 tt1815862 After~ nota~ notalk FAIL 1.3 e8 60522097 2.44e8 2013~
# i 1,784 more rows
# i 5 more variables: budget_2013 <int>, domgross_2013 <dbl>,
# intgross_2013 <dbl>, period_code <int>, decade_code <int>

Using read_rds to read in an R data set

We have provided the nnyfs.Rds data file on the course data page.
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Suppose you have downloaded this data file into a directory on your computer called data
which is a sub-directory of the directory where you plan to do your work, perhaps called
431-nnyfs.

Open RStudio and create a new project into the 431-nnyfs directory on your computer. You
should see a data subdirectory in the Files window in RStudio after the project is created.

Now, read in the nnyfs.Rds file to a new tibble in R called nnyfs_new with the following
command:

nnyfs_new <- read_rds("data/nnyfs.Rds")

Here are the results…

nnyfs_new

# A tibble: 1,518 x 45
SEQN sex age_child race_eth educ_child language sampling_wt income_pov

<dbl> <fct> <dbl> <fct> <dbl> <fct> <dbl> <dbl>
1 71917 Female 15 3_Black No~ 9 English 28299. 0.21
2 71918 Female 8 3_Black No~ 2 English 15127. 5
3 71919 Female 14 2_White No~ 8 English 29977. 5
4 71920 Female 15 2_White No~ 8 English 80652. 0.87
5 71921 Male 3 2_White No~ NA English 55592. 4.34
6 71922 Male 12 1_Hispanic 6 English 27365. 5
7 71923 Male 12 2_White No~ 5 English 86673. 5
8 71924 Female 8 4_Other Ra~ 2 English 39549. 2.74
9 71925 Male 7 1_Hispanic 0 English 42333. 0.46
10 71926 Male 8 3_Black No~ 2 English 15307. 1.57
# i 1,508 more rows
# i 37 more variables: age_adult <dbl>, educ_adult <fct>, respondent <fct>,
# salt_used <fct>, energy <dbl>, protein <dbl>, sugar <dbl>, fat <dbl>,
# diet_yesterday <fct>, water <dbl>, plank_time <dbl>, height <dbl>,
# weight <dbl>, bmi <dbl>, bmi_cat <fct>, arm_length <dbl>, waist <dbl>,
# arm_circ <dbl>, calf_circ <dbl>, calf_skinfold <dbl>,
# triceps_skinfold <dbl>, subscapular_skinfold <dbl>, active_days <dbl>, ...

Using read_csv to read in a comma-separated version of a data file

We have provided the nnyfs.csv data file on the course data page.
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Suppose you have downloaded this data file into a directory on your computer called data
which is a sub-directory of the directory where you plan to do your work, perhaps called
431-nnyfs.

Open RStudio and create a new project into the 431-nnyfs directory on your computer. You
should see a data subdirectory in the Files window in RStudio after the project is created.

Now, read in the nnyfs.csv file to a new tibble in R called nnyfs_new2 with the following
command:

nnyfs_new2 <- read_csv("data/nnyfs.csv")

Rows: 1518 Columns: 45
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (18): sex, race_eth, language, educ_adult, respondent, salt_used, diet_y...
dbl (27): SEQN, age_child, educ_child, sampling_wt, income_pov, age_adult, e...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

nnyfs_new2

# A tibble: 1,518 x 45
SEQN sex age_child race_eth educ_child language sampling_wt income_pov

<dbl> <chr> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
1 71917 Female 15 3_Black No~ 9 English 28299. 0.21
2 71918 Female 8 3_Black No~ 2 English 15127. 5
3 71919 Female 14 2_White No~ 8 English 29977. 5
4 71920 Female 15 2_White No~ 8 English 80652. 0.87
5 71921 Male 3 2_White No~ NA English 55592. 4.34
6 71922 Male 12 1_Hispanic 6 English 27365. 5
7 71923 Male 12 2_White No~ 5 English 86673. 5
8 71924 Female 8 4_Other Ra~ 2 English 39549. 2.74
9 71925 Male 7 1_Hispanic 0 English 42333. 0.46
10 71926 Male 8 3_Black No~ 2 English 15307. 1.57
# i 1,508 more rows
# i 37 more variables: age_adult <dbl>, educ_adult <chr>, respondent <chr>,
# salt_used <chr>, energy <dbl>, protein <dbl>, sugar <dbl>, fat <dbl>,
# diet_yesterday <chr>, water <dbl>, plank_time <dbl>, height <dbl>,
# weight <dbl>, bmi <dbl>, bmi_cat <chr>, arm_length <dbl>, waist <dbl>,
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# arm_circ <dbl>, calf_circ <dbl>, calf_skinfold <dbl>,
# triceps_skinfold <dbl>, subscapular_skinfold <dbl>, active_days <dbl>, ...

If you also want to convert the character variables to factors, as you will often want to do
before analyzing the results, you should instead use:

nnyfs_new3 <- read_csv("data/nnyfs.csv") %>%
mutate(across(where(is.character), as_factor))

Rows: 1518 Columns: 45
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (18): sex, race_eth, language, educ_adult, respondent, salt_used, diet_y...
dbl (27): SEQN, age_child, educ_child, sampling_wt, income_pov, age_adult, e...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

nnyfs_new3

# A tibble: 1,518 x 45
SEQN sex age_child race_eth educ_child language sampling_wt income_pov

<dbl> <fct> <dbl> <fct> <dbl> <fct> <dbl> <dbl>
1 71917 Female 15 3_Black No~ 9 English 28299. 0.21
2 71918 Female 8 3_Black No~ 2 English 15127. 5
3 71919 Female 14 2_White No~ 8 English 29977. 5
4 71920 Female 15 2_White No~ 8 English 80652. 0.87
5 71921 Male 3 2_White No~ NA English 55592. 4.34
6 71922 Male 12 1_Hispanic 6 English 27365. 5
7 71923 Male 12 2_White No~ 5 English 86673. 5
8 71924 Female 8 4_Other Ra~ 2 English 39549. 2.74
9 71925 Male 7 1_Hispanic 0 English 42333. 0.46
10 71926 Male 8 3_Black No~ 2 English 15307. 1.57
# i 1,508 more rows
# i 37 more variables: age_adult <dbl>, educ_adult <fct>, respondent <fct>,
# salt_used <fct>, energy <dbl>, protein <dbl>, sugar <dbl>, fat <dbl>,
# diet_yesterday <fct>, water <dbl>, plank_time <dbl>, height <dbl>,
# weight <dbl>, bmi <dbl>, bmi_cat <fct>, arm_length <dbl>, waist <dbl>,
# arm_circ <dbl>, calf_circ <dbl>, calf_skinfold <dbl>,
# triceps_skinfold <dbl>, subscapular_skinfold <dbl>, active_days <dbl>, ...
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Note that, for example, sex and race_eth are now listed as factor (fctr) variables. One
place where this distinction between character and factor variables matters is when you
summarize the data.

summary(nnyfs_new2$race_eth)

Length Class Mode
1518 character character

summary(nnyfs_new3$race_eth)

3_Black Non-Hispanic 2_White Non-Hispanic 1_Hispanic
338 610 450

4_Other Race/Ethnicity
120

Converting Character Variables into Factors

The command you want to create newdata from olddata is:

newdata <- olddata %>%
mutate(across(where(is.character), as_factor))

For more on factors, visit https://r4ds.had.co.nz/factors.html

Converting Data Frames to Tibbles

Use as_tibble() or simply tibble() to assign the attributes of a tibble to a data frame.
Note that read_rds and read_csv automatically create tibbles.

For more on tibbles, visit https://r4ds.had.co.nz/tibbles.html.

For more advice

Consider visiting the software tutorials page under the R and Data heading on our main web
site.
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B Session Information

It is often helpful to include a summary of your R session, specifically some information about
your operating system, the version of R and the packages you made use of in creating your
document.

We demonstrate two approaches to including this below, each of which you’ll use in submitting
Lab and Project assignments over the course of the semester.

B.1 Using sessionInfo()

One approach is to use the sessionInfo() function available in base R.

sessionInfo()

R version 4.3.1 (2023-06-16 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 11 x64 (build 22621)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base
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loaded via a namespace (and not attached):
[1] compiler_4.3.1 fastmap_1.1.1 cli_3.6.1 tools_4.3.1
[5] htmltools_0.5.6.1 rstudioapi_0.15.0 rmarkdown_2.25 knitr_1.44
[9] jsonlite_1.8.7 xfun_0.40 digest_0.6.33 rlang_1.1.1
[13] evaluate_0.22

B.2 Using session_info()

Another approach is to use the session_info() function available in the sessioninfo pack-
age. Professor Love has a slight preference for this approach, but it’s not an important dis-
tinction to make.

sessioninfo::session_info()

- Session info ---------------------------------------------------------------
setting value
version R version 4.3.1 (2023-06-16 ucrt)
os Windows 11 x64 (build 22621)
system x86_64, mingw32
ui RTerm
language (EN)
collate English_United States.utf8
ctype English_United States.utf8
tz America/New_York
date 2023-10-15
pandoc 3.1.1 @ C:/Program Files/RStudio/resources/app/bin/quarto/bin/tools/ (via rmarkdown)

- Packages -------------------------------------------------------------------
package * version date (UTC) lib source
cli 3.6.1 2023-03-23 [1] CRAN (R 4.3.1)
digest 0.6.33 2023-07-07 [1] CRAN (R 4.3.1)
evaluate 0.22 2023-09-29 [1] CRAN (R 4.3.1)
fastmap 1.1.1 2023-02-24 [1] CRAN (R 4.3.1)
htmltools 0.5.6.1 2023-10-06 [1] CRAN (R 4.3.1)
jsonlite 1.8.7 2023-06-29 [1] CRAN (R 4.3.1)
knitr 1.44 2023-09-11 [1] CRAN (R 4.3.1)
rlang 1.1.1 2023-04-28 [1] CRAN (R 4.3.1)
rmarkdown 2.25 2023-09-18 [1] CRAN (R 4.3.1)
rstudioapi 0.15.0 2023-07-07 [1] CRAN (R 4.3.1)
sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.3.1)
xfun 0.40 2023-08-09 [1] CRAN (R 4.3.1)
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[1] C:/Users/thoma/AppData/Local/R/win-library/4.3
[2] C:/Program Files/R/R-4.3.1/library

------------------------------------------------------------------------------
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