Data Science for Biological, Medical and Health Research

Notes for PQHS/CRSP/MPHP 432 at CWRU

Thomas E. Love

$$
2024-04-15
$$

Table of contents

Introduction 24
This is work in progress 25
R Setup 26
General Theme for ggplot work 27
1 Building the nh432 example 28
1.1 R Setup 28
1.2 Selecting NHANES Variables 28
1.2.1 Demographics and Sample Weights 29
1.2.2 Oral Health 30
1.2.3 Hospital Utilization \& Access to Care 31
1.2.4 Body Measures 31
1.2.5 Blood Pressure 32
1.2.6 Complete Blood Count 33
1.2.7 C-Reactive Protein 33
1.2.8 Alcohol Use 34
1.2.9 Dermatology 35
1.2.10 Depression Screener 35
1.2.11 Diet Behavior 36
1.2.12 Food Security 37
1.2.13 Health Insurance 38
1.2.14 Medical Conditions 39
1.2.15 Oral Health 39
1.2.16 Physical Activity 40
1.2.17 Reproductive Health 41
1.2.18 Sleep Disorders 42
1.2.19 Smoking Cigarettes 42
1.2.20 Secondhand Smoke 43
1.2.21 Weight History 44
1.3 Filtering for Inclusion 44
1.4 Merging the Data 45
1.4.1 Merging Two Data Frames at a Time 45
1.4.2 Merging Many Data Frames Together 46
1.5 The "Raw" Data 46
1.6 Cleaning Tasks 50
1.7 Our identifying variable 50
1.8 "Refused" \& "Don't Know" 51
1.9 Variables without Variation 52
1.10 Quantitative Variables 52
1.10.1 Renaming the Quantities 54
1.10.2 Sampling Weights 54
1.11 Binary Variables 55
1.11.1 Sex (RIAGENDR) 55
1.11.2 Yes/No variables 56
1.11.3 Renaming Binary Variables 57
1.12 Create PHQ-9 Scores 58
1.12.1 Forming the PHQ-9 Score 58
1.12.2 Distribution of PHQ-9 Score 61
1.12.3 Fixing the DPQ100 variable 62
1.13 Multi-Categorical Variables 62
1.13.1 Creating RACEETH from RIDRETH3 63
1.13.2 Creating EDUC from DMDEDUC2 64
1.13.3 Creating DENTAL from OHAREC 65
1.13.4 Creating SROH from HUQ010 66
1.13.5 Creating SUNSCR from DEQ034D 67
1.13.6 Creating DEPRDIFF from DPQ100 68
1.13.7 Creating DIETQUAL from DBQ700 68
1.13.8 Creating FOODSEC from FSDAD 69
1.13.9 Creating SNORE from SLQ030 70
1.13.10 Creating WTGOAL from WHQ040 70
1.14 Dropping Variables 71
1.15 Resorting Variables 72
1.16 nh 432 analytic tibble 72
1.16.1 Saving the tibble as nh432.Rds 73
2 Codebook for nh432 74
2.1 R Setup 74
2.1.1 Data Load 74
2.2 Quantitative Variables in nh432 74
2.3 Two-Category ($1 / 0$) Variables in nh432 76
2.4 Factor Variables in nh432 77
2.5 Detailed Numerical Description for nh432 80
2.6 Missingness in nh432 90
3431 Review: Comparing Means 95
3.1 R Setup 95
3.2 Data Ingest 96
3.3 Testing or Summarizing Normality? 96
3.4 Comparing Two Means using Paired Samples 96
3.5 Comparing PULSE1 to PULSE2 97
3.5.1 Distribution of Paired Differences 98
3.5.2 Using t.test to obtain a 90% CI for the mean pulse difference 99
3.5.3 Using linear regression to obtain a 90% CI for the mean pulse difference 100
3.5.4 Using the bootstrap to obtain a 90% CI for the mean pulse difference 101
3.5.5 Wilcoxon signed rank approach to comparing pulse rates 102
3.6 Comparing WEIGHT to ESTWT 103
3.6.1 Plotting The Paired Difference in Weight 104
3.6.2 t.test $90 \% \mathrm{CI}$ for the mean weight difference 105
3.6.3 Linear Regression: 90\% CI for mean weight difference 106
3.6.4 Bootstrap 90% CI for the mean weight difference 106
3.6.5 Wilcoxon signed rank approach to comparing weight estimates 107
3.7 Comparing Two Means using Independent Samples 108
3.8 Comparing White Blood Cell Count by Hospitalization Status 108
3.8.1 Exploring the Data 108
3.8.2 Pooled t test (assumes equal variances) via linear model 110
3.8.3 Pooled t test (assumes equal variances) via t.test 112
3.8.4 Welch t test (doesn't assume equal variance) via t.test 113
3.8.5 Bootstrap comparison of WBC by HOSPITAL 114
3.8.6 Transforming the WBC Counts 115
3.9 Comparing Waist Circumference by Sleep Trouble 118
3.9.1 Summarizing the Data 118
3.9.2 Pooled t test (assumes equal variances) via linear model 120
3.9.3 Pooled t test (assumes equal variances) via t.test 122
3.9.4 Welch t test (doesn't assume equal variance) via t.test 123
3.9.5 Bootstrap comparison of WAIST by SLPTROUB 124
3.9.6 Wilcoxon-Mann-Whitney Rank Sum Approach 125
3.10 Comparing 3 Means using Independent Samples: Systolic BP by Weight Goal 126
3.10.1 Summarizing SBP by WTGOAL 126
3.10.2 Fitting an ANOVA Model 128
3.10.3 Tukey HSD Pairwise Comparisons 130
3.10.4 Holm pairwise comparisons of means 132
3.11 Comparing 4 Means using Independent Samples: Weight by Food Security 133
3.11.1 Summarizing the Data 133
3.11.2 Fitting the ANOVA model 134
3.11.3 Tukey HSD Pairwise Comparisons 135
3.11.4 Kruskal-Wallis Test 136
3.11.5 Dunn Test for Pairwise Comparisons after Kruskal-Wallis Test 136
4431 Review: Comparing Rates 138
4.1 R Setup 138
4.1.1 Data Load 138
4.2 2x2 Contingency Table: DR_LOSE and NOWLOSE 139
4.2.1 Standard Epidemiological Format 140
4.2.2 Obtaining Key Summaries with twoby2() 142
4.3 2x2 Table: SEDATE category and NOW_EXER 143
4.3.1 Creating a Low and High Group on SEDATE 143
4.3.2 Two-by-Two Table Summaries 145
4.3.3 Flipping Levels 146
4.4 A Larger (5x3) 2-Way Table: DIETQUAL and WTGOAL in Lighter Men 147
4.4.1 What would independence look like? 148
4.4.2 Back to the DIETQUAL and WTGOAL table 150
4.5 PHQ9 Category and Race/Ethnicity 153
4.5.1 The Cochran conditions 154
4.5.2 Collapsing Categories 155
4.5.3 Pearson χ^{2} Analysis 156
4.5.4 Mosaic Plot 157
4.5.5 Examining the Fit 157
5431 Review: Fitting Linear Models 159
5.1 R Setup 159
5.1.1 Data Load 160
5.2 Modeling Weekend Sleep Hours 160
5.2.1 Should we transform our outcome? 161
5.2.2 Scatterplot Matrix 162
5.2.3 Collinearity? 163
5.2.4 Fitting and Displaying Model m1 163
5.2.5 Using broom functions on Model m1 164
5.2.6 Residual Plots for Model m1 166
5.2.7 Fitting and Displaying Model m2 171
5.2.8 Using broom functions on m 2 172
5.2.9 Residual Plots for Model m2 173
5.2.10 Conclusions 175
5.3 Modeling High-Sensitivity C-Reactive Protein 175
5.3.1 Partitioning the Data 176
5.3.2 Transforming the Outcome? 176
5.3.3 Scatterplot Matrix and Collinearity 178
5.3.4 Fit Model m3 179
5.3.5 Residual Plots for m3 180
5.3.6 Fit Model m4 182
5.3.7 Residual Plots for m4 182
5.3.8 In-Sample Fit Quality Comparison (m3 vs. m4) 184
5.3.9 Testing the models in new data 184
5.3.10 Conclusions 187
6 BRFSS SMART Data 188
6.1 R Setup Used Here 188
6.2 Key resources 189
6.3 Ingesting the Raw Data 189
6.4 Ingesting from our CSV file 190
6.5 What does the raw data look like? 190
6.6 Cleaning the BRFSS Data 191
6.6.1 Identifying Information 191
6.6.2 Survey Method 193
6.6.3 Health Status (1 item) 195
6.6.4 Healthy Days - Health-Related Quality of Life (3 items) 196
6.6.5 Health Care Access (4 items) 200
6.6.6 Blood Pressure (2 measures) 203
6.6.7 Cholesterol (3 items) 206
6.6.8 Chronic Health Conditions (14 items) 208
6.6.9 Arthritis Burden (4 items) 213
6.6.10 Demographics (25 items) 216
6.6.11 Tobacco Use (2 items) 235
6.6.12 E-Cigarettes (2 items) 237
6.6.13 Alcohol Consumption (6 items) 238
6.6.14 Fruits and Vegetables (8 items) 243
6.6.15 Exercise and Physical Activity (8 items) 247
6.6.16 Seatbelt Use (1 item) 257
6.6.17 Immunization (3 items) 258
6.6.18 HIV/AIDS (2 items) 260
6.7 Imputing Age and Income as Quantitative from Thin Air 262
6.7.1 age_imp: Imputing Age Data 262
6.7.2 inc_imp: Imputing Income Data 263
6.8 Clean Data in the State of Ohio 265
6.9 Clean Cleveland-Elyria Data 266
6.9.1 Cleveland - Elyria Data 266
7 Dealing with Missingness: Single Imputation 268
7.1 R Setup Used Here 268
7.1.1 Data Load 268
7.2 Selecting Some Variables from the smart_cle data 268
7.3 smart_cle1: Seeing our Missing Data 270
7.3.1 Plotting Missingness 273
7.4 Missing-data mechanisms 275
7.5 Options for Dealing with Missingness 276
7.6 Complete Case (and Available Case) analyses 276
7.7 Single Imputation 277
7.8 Multiple Imputation 277
7.9 Approach 1: Building a Complete Case Analysis: smart_cle1_cc 277
7.10 Approach 2: Single Imputation to create smart_cle1_sh 278
7.10.1 What Type of Missingness Do We Have? 279
7.10.2 Single imputation into smart_cle1_sh 280
7.10.3 Imputing Binary Categorical Variables 281
7.10.4 Imputing Quantitative Variables 282
7.10.5 Imputation Results 282
7.10.6 Imputing Multi-Categorical Variables 287
7.10.7 Saving the new tibbles 289
8 Summarizing smart_cle1 290
8.1 R Setup Used Here 290
8.1.1 Data Load 290
8.2 What's in these data? 290
8.3 General Approaches to Obtaining Numeric Summaries 291
8.3.1 summary for a data frame 291
8.3.2 The inspect function from the mosaic package 292
8.3.3 The describe function in Hmisc 293
8.4 Counting as exploratory data analysis 294
8.4.1 Did genhealth vary by smoking status? 295
8.4.2 What's the distribution of physhealth? 296
8.4.3 What's the distribution of bmi? 298
8.4.4 How many of the respondents have a BMI below 30 ? 298
8.4.5 How many of the respondents with a $\mathrm{BMI}<30$ are highly active? 299
8.4.6 Is obesity associated with smoking history? 299
8.4.7 Comparing drinks_wk summaries by obesity status 299
8.5 Can bmi predict physhealth? 300
8.5.1 Fitting a Simple Regression Model 301
8.5.2 Model Summary for a Simple (One-Predictor) Regression 302
8.5.3 Using the broom package 307
8.5.4 How does the model do? (Residuals vs. Fitted Values) 309
9 Analysis of Variance with SMART 314
9.1 R Setup Used Here 314
9.1.1 Data Load 314
9.2 A One-Factor Analysis of Variance 315
9.2.1 Can activity be used to predict bmi? 315
9.2.2 Should we transform bmi? 316
9.2.3 Building the ANOVA model 318
9.2.4 The ANOVA table 319
9.2.5 The Model Coefficients 319
9.2.6 Using tidy to explore the coefficients 321
9.2.7 Using glance to summarize the model's fit 321
9.2.8 Using augment to make predictions 322
9.3 A Two-Factor ANOVA (without Interaction) 323
9.3.1 Model Coefficients 324
9.4 A Two-Factor ANOVA (with Interaction) 327
9.4.1 Model Coefficients 328
9.4.2 Is the interaction term necessary? 331
10 Two-Way ANOVA and Interaction 336
10.1 R Setup Used Here 336
10.1.1 Data Load 336
10.2 The bonding data: A Designed Dental Experiment 336
10.3 A One-Factor Analysis of Variance 337
10.3.1 Look at the Data! 338
10.3.2 Table of Summary Statistics 339
10.4 A Two-Way ANOVA: Looking at Two Factors 342
10.5 A Means Plot (with standard deviations) to check for interaction 343
10.5.1 Summarizing the data after grouping by resin and light 344
10.6 Fitting the Two-Way ANOVA model with Interaction 345
10.6.1 The ANOVA table for our model 346
10.6.2 Is the interaction important? 346
10.6.3 Interpreting the Interaction 347
10.7 Comparing Individual Combinations of resin and light 347
10.8 The bonding model without Interaction 349
10.9 cortisol: A Hypothetical Clinical Trial 351
10.9.1 Codebook and Raw Data for cortisol 352
10.10Creating a factor combining sex and waist 352
10.11A Means Plot for the cortisol trial (with standard errors) 353
10.12A Two-Way ANOVA model for cortisol with Interaction 355
10.12.1 Notes on this Question 356
10.13A Two-Way ANOVA model for cortisol without Interaction 359
10.13.1 The Graph 359
10.13.2 The ANOVA Model 359
10.13.3 The Regression Summary 360
10.13.4 Tukey HSD Comparisons 360
11 Analysis of Covariance 362
11.1 R Setup Used Here 362
11.1.1 Data Load 362
11.2 An Emphysema Study 362
11.2.1 Codebook 362
11.3 Does sex affect the mean change in theophylline? 363
11.4 Is there an association between age and sex in this study? 364
11.5 Adding a quantitative covariate, age, to the model 365
11.5.1 The ANCOVA model 365
11.5.2 The ANCOVA Table 366
11.6 Rerunning the ANCOVA model after simple imputation 366
11.7 Looking at a factor-covariate interaction 368
11.8 Centering the Covariate to Facilitate ANCOVA Interpretation 369
12 Analysis of Covariance with the SMART data 371
12.1 R Setup Used Here 371
12.1.1 Data Load 371
12.2 A New Small Study: Predicting BMI 371
12.2.1 Does smoke100 predict bmi well? 372
12.3 mod1: A simple t-test model 373
12.4 mod2: Adding another predictor (two-way ANOVA without interaction) 375
12.5 mod3: Adding the interaction term (Two-way ANOVA with interaction) 380
12.6 mod4: Using smoke100 and physhealth in a model for bmi 382
12.7 Making Predictions with a Linear Regression Model 385
12.7.1 Fitting an Individual Prediction and 95% Prediction Interval 385
12.7.2 Confidence Interval for an Average Prediction 386
12.7.3 Fitting Multiple Individual Predictions to New Data 386
12.8 Centering the model 387
12.8.1 Plot of Model 4 on Centered physhealth: mod4_c 388
12.9 Rescaling an input by subtracting the mean and dividing by 2 standard deviations 389
12.9.1 Refitting model mod4 to the rescaled data 390
12.9.2 Interpreting the model on rescaled data 390
12.9.3 Plot of model on rescaled data 391
12.10mod5: What if we add more variables? 392
12.11mod6: Would adding self-reported health help? 394
12.12Key Regression Assumptions for Building Effective Prediction Models 396
12.12.1 Checking Assumptions in model mod6 397
13 Adding Non-linear Terms to a Linear Regression 402
13.1 R Setup Used Here 402
13.1.1 Data Load 402
13.2 The pollution data 402
13.3 Fitting a straight line model to predict y from x2 403
13.4 Quadratic polynomial model to predict y using x2 405
13.4.1 The raw quadratic model 405
13.4.2 Raw quadratic fit after centering x2 408
13.5 Orthogonal Polynomials 411
13.6 Fit a cubic polynomial to predict y from x3 414
13.7 Fitting a restricted cubic spline in a linear regression 418
13.8 "Spending" Degrees of Freedom 424
13.8.1 Overfitting and Limits on the \# of Predictors 424
13.8.2 The Importance of Collinearity 425
13.8.3 Collinearity in an Explanatory Model 426
13.8.4 Collinearity in a Prediction Model 426
13.9 Spending DF on Non-Linearity: The Spearman Plot 426
13.9.1 Fitting a Big Model to the pollution data 428
13.9.2 Limitations of 1 m for fitting complex linear regression models 429
14 Using ols to fit linear models 430
14.1 R Setup Used Here 430
14.1.1 Data Load 430
14.2 Fitting a model with ols 431
14.2.1 The Model Likelihood Ratio Test 432
14.2.2 The g statistic 432
14.3 ANOVA for an ols model 433
14.4 Effect Estimates 433
14.4.1 Simultaneous Confidence Intervals 435
14.5 The Predict function for an ols model 435
14.6 Checking Influence via dfbeta 438
14.6.1 Using the residuals command for dfbetas 439
14.6.2 Using the residuals command for other summaries 439
14.7 Model Validation and Correcting for Optimism 441
14.8 Building a Nomogram for Our Model 442
15 A Model for Prostate Cancer 444
15.1 R Setup Used Here 444
15.1.1 Data Load. 444
15.2 Data Load and Background 444
15.3 Code Book 445
15.4 Additions for Later Use 446
15.5 Fitting and Evaluating a Two-Predictor Model 447
15.5.1 Using tidy 448
15.5.2 Interpretation 448
15.6 Exploring Model prost_A 449
15.6.1 summary for Model prost_A 449
15.6.2 Adjusted R^{2} 450
15.6.3 Coefficient Confidence Intervals 450
15.6.4 ANOVA for Model prost_A 451
15.6.5 Residuals, Fitted Values and Standard Errors with augment 451
15.6.6 Making Predictions with prost_A 453
15.7 Plotting Model prost_A 453
15.7.1 Residual Plots of prost_A 455
16 Validating our Prostate Cancer Model 458
16.1 R Setup Used Here 458
16.1.1 Data Load 458
16.2 Data Cleaning 458
16.3 Fitting the prostA model 459
16.4 Split Validation of Model prost_A 459
16.5 V-fold Cross-Validation Approach for model prostA 461
17 Multiple Imputation and Linear Regression 464
17.1 R Setup Used Here 464
17.2 Data Load 464
17.3 Developing a smart_16 data set 464
17.3.1 Any missing values? 466
17.4 Obtaining a Simple Imputation with mice 467
17.5 Linear Regression: Considering a Transformation of the Outcome 468
17.6 Linear Regression: Considering Non-Linearity in the Predictors 469
17.7 "Main Effects" Linear Regression with lm on the Complete Cases 470
17.7.1 Quality of Fit Statistics 471
17.7.2 Interpreting Effect Sizes 472
17.7.3 Making Predictions with the Model 473
17.8 "Augmented" Linear Regression with lm on the Complete Cases 474
17.8.1 Quality of Fit Statistics 476
17.8.2 ANOVA assessing the impact of the non-linear terms 476
17.8.3 Interpreting Effect Sizes 477
17.8.4 Making Predictions with the Model 479
17.9 Using mice to perform Multiple Imputation 481
17.10Running the Linear Regression in lm with Multiple Imputation 483
17.11Fit the Multiple Imputation Model with aregImpute 486
17.12Fit Linear Regression using ols and fit.mult.impute 490
17.12.1 Summaries and Coefficients 491
17.12.2 Effect Sizes 492
17.12.3 Making Predictions with this Model 493
17.12.4 Nomogram 494
17.12.5 Validating Summary Statistics 496
18 Building Table 1 497
18.1 R Setup Used Here 497
18.2 Data Load 497
18.3 Two examples from the New England Journal of Medicine 497
18.3.1 A simple Table 1 497
18.3.2 A group comparison 498
18.4 The MR CLEAN trial 499
18.5 Simulated fakestroke data 501
18.6 Building Table 1 for fakestroke: Attempt 1 502
18.6.1 Some of this is very useful, and other parts need to be fixed. 504
18.6.2 fakestroke Cleaning Up Categorical Variables 504
18.7 fakestroke Table 1: Attempt 2 505
18.7.1 What summaries should we show? 506
18.8 Obtaining a more detailed Summary 508
18.9 Exporting the Completed Table 1 from R to Excel or Word 512
18.9.1 Approach A: Save and open in Excel 512
18.9.2 Approach B: Produce the Table so you can cut and paste it 513
18.10A Controlled Biological Experiment - The Blood-Brain Barrier 514
18.11The bloodbrain. csv file 514
18.12A Table 1 for bloodbrain 515
18.12.1 Generate final Table 1 for bloodbrain 519
18.12.2 A More Finished Version (after Cleanup in Word) 522
19 Logistic Regression: The Foundations 523
19.1 R Setup Used Here 523
19.2 A First Attempt: A Linear Probability Model 523
19.3 Logistic Regression 525
19.4 The Logistic Regression Model 526
19.5 The Link Function 526
19.6 The logit or \log odds 528
19.7 Interpreting the Coefficients of a Logistic Regression Model 528
19.8 The Logistic Regression has non-constant variance 528
19.9 Fitting a Logistic Regression Model to our Simulated Data 529
19.10Plotting the Logistic Regression Model 531
20 Logistic Regression with glm 534
20.1 R Setup Used Here 534
20.1.1 Data Load 534
20.2 The resect data 534
20.3 Running A Simple Logistic Regression Model 536
20.3.1 Logistic Regression Can Be Harder than Linear Regression 536
20.4 Logistic Regression using glm 537
20.4.1 Interpreting the Coefficients of a Logistic Regression Model 537
20.4.2 Using predict to describe the model's fits 538
20.4.3 Odds Ratio interpretation of Coefficients 539
20.4.4 Interpreting the rest of the model output from glm 540
20.4.5 Deviance and Comparing Our Model to the Null Model 541
20.4.6 Using glance with a logistic regression model 542
20.5 Interpreting the Model Summary 543
20.5.1 Wald Z tests for Coefficients in a Logistic Regression 544
20.5.2 Confidence Intervals for the Coefficients 544
20.5.3 Deviance Residuals 545
20.5.4 Dispersion Parameter 546
20.5.5 Fisher Scoring iterations 546
20.6 Plotting a Simple Logistic Regression Model 546
20.6.1 Using augment to capture the fitted probabilities 546
20.6.2 Plotting a Logistic Regression Model's Fitted Values 547
20.6.3 Plotting a Simple Logistic Model using binomial_smooth 547
20.7 How well does Model A classify subjects? 548
20.8 The Confusion Matrix 549
20.9 Using the confusionMatrix tool from the caret package 550
20.10Receiver Operating Characteristic Curve Analysis 551
20.10.1 Interpreting the Area under the ROC curve 553
20.11The ROC Plot for res_modA 559
20.11.1 Another way to plot the ROC Curve 560
20.12Assessing Residual Plots from Model A 561
20.13Model B: A "Kitchen Sink" Logistic Regression Model 563
20.13.1 Comparing Model A to Model B 563
20.13.2 Interpreting Model B 564
20.14Plotting Model B 565
20.14.1 Using augment to capture the fitted probabilities 565
20.14.2 Plotting Model B Fits by Observed Mortality 566
20.14.3 Confusion Matrix for Model B 567
20.14.4 The ROC curve for Model B 568
20.14.5 Residuals, Leverage and Influence 569
21 Logistic Regression with lrm 570
21.1 R Setup Used Here 570
21.1.1 Data Load 570
21.2 Logistic Regression using lrm 570
21.2.1 Interpreting Nagelkerke R^{2} 571
21.2.2 Interpreting the C statistic and Plotting the ROC Curve 572
21.2.3 The C statistic and Somers' D 574
21.2.4 Validating the Logistic Regression Model Summary Statistics 574
21.2.5 Plotting the Summary of the lrm approach 575
21.2.6 Plot In-Sample Predictions for Model C 576
21.2.7 ANOVA from the 1 rm approach 577
21.2.8 Are any points particularly influential? 578
21.2.9 A Nomogram for Model C 578
21.3 Model D: An Augmented Kitchen Sink Model 580
21.3.1 Spearman ρ^{2} Plot 580
21.3.2 Fitting Model D using lrm 581
21.3.3 Assessing Model D using lrm's tools 581
21.3.4 ANOVA and Wald Tests for Model D 582
21.3.5 Effect Sizes in Model D 582
21.3.6 Plot In-Sample Predictions for Model D 584
21.3.7 Plotting the ROC curve for Model D 585
21.3.8 Validation of Model D summaries 587
21.4 Model E: Fitting a Reduced Model in light of Model D 588
21.4.1 A Plot comparing the two intubation groups 589
21.4.2 Nomogram for Model E 590
21.4.3 Effect Sizes from Model E 591
21.4.4 Plot In-Sample Predictions for Model E 592
21.4.5 ANOVA for Model E 594
21.4.6 Validation of Model E 594
21.4.7 Do any points seem particularly influential? 595
21.4.8 Fitting Model E using glm to get plots about influence 595
21.5 Concordance: Comparing Model C, D and E's predictions 596
21.6 Conclusions 599
22 Estimating and Interpreting Effect Sizes 600
22.1 R Setup Used Here 600
22.1.1 Data Load 600
22.2 Available Variables 600
22.3 Effect Interpretation in A Linear Regression Model 601
22.4 Making a prediction and building a prediction interval with an lm fit 604
22.5 What if we include a Spline or an Interaction? 605
22.6 Making a prediction and building a prediction interval with an ols fit 607
22.7 Effect Estimates in A Logistic Regression fit with glm 608
22.8 Estimates in The Same Logistic Regression fit with lrm 611
22.9 Estimates in A New Logistic Regression fit with lrm 613
23 Colorectal Cancer Screening and Some Special Cases 616
23.1 R Setup Used Here 616
23.2 Data Load 616
23.3 Logistic Regression for Aggregated Data 617
23.3.1 Colorectal Cancer Screening Data 617
23.3.2 Fitting a Logistic Regression Model to Proportion Data 619
23.3.3 Fitting a Logistic Regression Model to Counts of Successes and Failures 620
23.3.4 How does one address this problem in rms? 621
23.4 Probit Regression 622
23.4.1 Colorectal Cancer Screening Data on Individuals 622
23.4.2 A logistic regression model 624
23.4.3 Predicting status for Harry and Sally 625
23.4.4 A probit regression model 626
23.4.5 Interpreting the Probit Model's Coefficients 627
23.4.6 What about Harry and Sally? 628
24 Modeling a Count Outcome 629
24.1 R Setup Used Here 629
24.2 Data Load 629
24.3 Creating A Useful Analytic Subset, ohioA 630
24.3.1 Is age group associated with physhealth? 630
24.4 Exploratory Data Analysis (in the 18-49 group) 633
24.4.1 Build a subset of those ages 18-49 633
24.4.2 Centering bmi 634
24.4.3 Distribution of the Outcome 634
24.4.4 Scatterplot Matrix 635
24.4.5 Summary of the final subset of data 636
24.5 Modeling Strategies Explored Here 636
24.5.1 What Will We Demonstrate? 637
24.5.2 Extra Data File for Harry and Sally 637
24.6 The OLS Approach 638
24.6.1 Interpreting the Coefficients 639
24.6.2 Store fitted values and residuals 639
24.6.3 Specify the R^{2} and \log (likelihood) values 639
24.6.4 Check model assumptions 640
24.6.5 Predictions for Harry and Sally 642
24.6.6 Notes 642
24.7 OLS model on $\log ($ physhealth +1$)$ days 643
24.7.1 Interpreting the Coefficients 644
24.7.2 Store fitted values and residuals 644
24.7.3 Specify the R^{2} and \log (likelihood) values 645
24.7.4 Getting R^{2} on the scale of physhealth 646
24.7.5 Check model assumptions 646
24.7.6 Predictions for Harry and Sally 648
24.8 A Poisson Regression Model 648
24.8.1 The Fitted Equation 650
24.8.2 Interpreting the Coefficients 650
24.8.3 Testing the Predictors 651
24.8.4 Correcting for Overdispersion with coeftest/coefci 652
24.8.5 Store fitted values and residuals 653
24.8.6 Rootogram: see the fit of a count regression model 653
24.8.7 Specify the R^{2} and \log (likelihood) values 654
24.8.8 Check model assumptions 655
24.8.9 Using glm.diag. plots from the boot package 656
24.8.10 Predictions for Harry and Sally 658
24.9 Overdispersion in a Poisson Model 658
24.9.1 Testing for Overdispersion? 659
24.10Fitting the Quasi-Poisson Model 660
24.10.1 The Fitted Equation 661
24.10.2 Interpreting the Coefficients 661
24.10.3 Testing the Predictors 662
24.10.4 Store fitted values and residuals 662
24.10.5 Specify the R^{2} and \log (likelihood) values 663
24.10.6 Check model assumptions 664
24.10.7 Predictions for Harry and Sally 665
24.11Poisson and Quasi-Poisson models using Glm from the rms package 666
24.11.1 Refitting the original Poisson regression with Glm 666
24.11.2 Refitting the overdispersed Poisson regression with Glm 667
24.11.3 ANOVA on a Glm fit 667
24.11.4 ggplots from Glm fit 668
24.11.5 Summary of a Glm fit 668
24.11.6 Plot of the Summary 669
24.11.7 Nomogram of a Glm fit 669
25 Negative Binomial Models for Count Data 671
25.1 R Setup Used Here 671
25.2 Data Load and Subset Creation 671
25.3 Setup for this Chapter 672
25.3.1 What Will We Demonstrate? 672
25.3.2 Extra Data File for Harry and Sally 673
25.3.3 Our Poisson Model (for comparison) 673
25.4 Negative Binomial Model 673
25.4.1 The Fitted Equation 675
25.4.2 Comparison with the (raw) Poisson model 675
25.4.3 Interpreting the Coefficients 676
25.4.4 Interpretation of Coefficients in terms of IRRs 676
25.4.5 Testing the Predictors 677
25.4.6 Store fitted values and residuals 678
25.4.7 Rootogram for Negative Binomial model 679
25.4.8 Simulating what the Negative Binomial model predicts 680
25.4.9 Specify the R^{2} and \log (likelihood) values 681
25.4.10 Check model assumptions 681
25.4.11 Predictions for Harry and Sally 683
25.5 The Problem: Too Few Zeros 684
26 Zero-Inflated Models for Count Data 686
26.1 R Setup Used Here 686
26.2 Data Load and Subset Creation 686
26.3 Setup for this Chapter 687
26.3.1 What Will We Demonstrate? 687
26.3.2 Extra Data File for Harry and Sally 688
26.3.3 Previous Models (for comparison) 688
26.4 The Zero-Inflated Poisson Regression Model 689
26.4.1 Comparison to a null model 690
26.4.2 Comparison to a Poisson Model with the Vuong test 691
26.4.3 The Fitted Equation 691
26.4.4 Interpreting the Coefficients 692
26.4.5 Testing the Predictors 692
26.4.6 Store fitted values and residuals 693
26.4.7 Modeled Number of Zero Counts 694
26.4.8 Rootogram for ZIP model 694
26.4.9 Specify the R^{2} and \log (likelihood) values 695
26.4.10 Check model assumptions 695
26.4.11 Predictions for Harry and Sally 696
26.5 The Zero-Inflated Negative Binomial Regression Model 696
26.5.1 Comparison to a null model 698
26.5.2 Comparison to a Negative Binomial Model: Vuong test 699
26.5.3 The Fitted Equation 699
26.5.4 Interpreting the Coefficients 699
26.5.5 Testing the Predictors 700
26.5.6 Store fitted values and residuals 701
26.5.7 Modeled Number of Zero Counts 701
26.5.8 Rootogram for Zero-Inflated Negative Binomial model 702
26.5.9 Specify the R^{2} and \log (likelihood) values 702
26.5.10 Check model assumptions 703
26.5.11 Predictions for Harry and Sally 704
26.6 A "hurdle" model (with Poisson) 704
26.6.1 Comparison to a null model 706
26.6.2 Comparison to a Poisson Model: Vuong test 707
26.6.3 Comparison to a Zero-Inflated Poisson Model: Vuong test 708
26.6.4 The Fitted Equation 708
26.6.5 Interpreting the Coefficients 708
26.6.6 Testing the Predictors 709
26.6.7 Store fitted values and residuals 710
26.6.8 Modeled Number of Zero Counts 710
26.6.9 Rootogram for Hurdle Model 711
26.6.10 Understanding the Modeled Counts in Detail 711
26.6.11 Specify the R^{2} and \log (likelihood) values 713
26.6.12 Check model assumptions 713
26.6.13 Predictions for Harry and Sally 714
26.7 A "hurdle" model (with negative binomial for overdispersion) 714
26.7.1 Comparison to a null model 716
26.7.2 Comparison to a Negative Binomial Model: Vuong test 717
26.7.3 Comparison to a Zero-Inflated NB Model: Vuong test 717
26.7.4 Comparing the Hurdle Models with AIC and BIC 718
26.7.5 The Fitted Equation 718
26.7.6 Interpreting the Coefficients 718
26.7.7 Testing the Predictors 719
26.7.8 Store fitted values and residuals 720
26.7.9 Rootogram for NB Hurdle Model 720
26.7.10 Specify the R^{2} and \log (likelihood) values 721
26.7.11 Check model assumptions 722
26.7.12 Predictions for Harry and Sally 723
26.7.13 Note: Fitting a Different Hurdle Model for Counts and Pr (zero) 723
26.7.14Hanging Rootogram for this new Hurdle Model 724
26.8 A Tobit (Censored) Regression Model 724
26.8.1 The Fitted Equation 726
26.8.2 Interpreting the Coefficients 726
26.8.3 Testing the Predictors 727
26.8.4 Store fitted values and residuals 727
26.8.5 Building Something Like a Rootogram 728
26.8.6 Tables of the Observed and Fitted physhealth from Tobit 729
26.8.7 Specify the R^{2} and \log (likelihood) values 730
26.8.8 Check model assumptions 730
26.8.9 Predictions for Harry and Sally 732
27 Modeling an Ordinal Categorical Outcome 733
27.1 R Setup Used Here 733
27.1.1 Data Load 733
27.2 A subset of the Ohio SMART data 733
27.2.1 Several Ways of Storing Multi-Categorical data 734
27.3 Building Cross-Tabulations 735
27.3.1 Using base table functions 735
27.3.2 Using xtabs 737
27.3.3 Storing a table in a tibble 737
27.3.4 Using CrossTable from the gmodels package 738
27.4 Graphing Categorical Data 740
27.4.1 A Bar Chart for a Single Variable 740
27.4.2 A Counts Chart for a 2-Way Cross-Tabulation 742
27.5 Building a Model for genh using veg_day 743
27.5.1 A little EDA 743
27.5.2 Describing the Proportional-Odds Cumulative Logit Model 744
27.5.3 Fitting a Proportional Odds Logistic Regression with polr 746
27.6 Interpreting Model m1 747
27.6.1 Looking at Predictions 747
27.6.2 Making Predictions for Harry (and Sally) with predict 748
27.6.3 Predicting the actual classification of genh 749
27.6.4 A Cross-Tabulation of Predictions? 749
27.6.5 The Fitted Model Equations 749
27.6.6 Interpreting the veg_day coefficient 751
27.6.7 Exponentiating the Slope Coefficient to facilitate Interpretation 751
27.6.8 Comparison to a Null Model 752
27.7 The Assumption of Proportional Odds 752
27.7.1 Testing the Proportional Odds Assumption 754
27.8 Can model m1 be fit using rms tools? 755
27.9 Building a Three-Predictor Model 757
27.9.1 Scatterplot Matrix 757
27.9.2 Our Three-Predictor Model, m2 757
27.9.3 Does the three-predictor model outperform m 1 ? 758
27.9.4 Wald tests for individual predictors 759
27.9.5 A Cross-Tabulation of Predictions? 760
27.9.6 Interpreting the Effect Sizes 760
27.9.7 Quality of the Model Fit 762
27.9.8 Validating the Summary Statistics in m2_lrm 762
27.9.9 Testing the Proportional Odds Assumption 763
27.9.10 Plotting the Fitted Model 765
27.10A Larger Model, including income group 766
27.10.1 Cross-Tabulation of Predicted/Observed Classifications 768
27.10.2 Nomogram 768
27.10.3 Using Predict and showing mean prediction on 1-5 scale 769
27.10.4 Validating the Summary Statistics in m3_lrm 770
27.11References for this Chapter 771
28 Multinomial Logistic Regression 772
28.1 R Setup Used Here 772
28.1.1 Data Load 772
28.2 The Authorship Example 772
28.3 Focus on 11 key words 773
28.3.1 Side by Side Boxplots 774
28.4 A Multinomial Logistic Regression Model 776
28.4.1 Testing Model 1 777
28.5 Model 2 778
28.5.1 Comparing Model 2 to Model 1 779
28.5.2 Testing Model 2 779
28.5.3 A little history 780
28.6 Classification Table 780
28.7 Probability Curves based on a Single Predictor 781
28.7.1 Produce the Plot of Estimated Probabilities based on "been" counts 783
28.7.2 Boxplot of "been" counts 784
28.7.3 Quote Sources 785
29 Time To Event / Survival Data 786
29.1 R Setup Used Here 786
29.1.1 Data Load 787
29.2 An Outline of Key Topics Discussed in these Notes 787
29.3 Foundations of Survival Analysis 787
29.3.1 The Survival Function, $S(t)$ 788
29.3.2 Kaplan-Meier Estimator of the Survival Function 788
29.3.3 Creating a Survival Object in R 789
29.4 A First Example: Recurrent Lobar Intracerebral Hemorrhage 789
29.5 Building a Survival Object 791
29.6 Kaplan-Meier Estimate of the Survival Function 791
29.6.1 The Kaplan-Meier Plot, using Base R 793
29.6.2 Using survminer to draw survival curves 794
29.6.3 A "Fancy" K-M Plot with a number at risk table 795
29.7 Comparing Survival Across the Two Genotypes 795
29.7.1 Kaplan-Meier Survival Function Estimates, by Genotype 796
29.8 Testing the difference between two survival curves 797
29.8.1 Alternative log rank tests 798
29.9 A "Fancy" K-M Plot with a number at risk table 799
29.9.1 Customizing the Kaplan-Meier Plot Presentation Further 800
29.10The Hazard Function 803
29.10.1 The Inverse Kaplan-Meier Estimator of $H(t)$ 803
29.10.2 Cumulative Hazard Function from Inverse K-M 804
29.10.3 The Nelson-Aalen Estimator of $H(t)$ 805
29.10.4 Convert Wide Data to Long 806
29.10.5 Plot Comparison of Hazard Estimates 806
29.11NEW!! Checking Assumptions Using a log ($-\log$) plot 808
30 Cox Regression Models, Part 1 810
30.1 R Setup Used Here 810
30.1.1 Data Load 810
30.2 Sources used in building this material 811
30.3 Fitting a Cox Model in R with coxph 811
30.3.1 Summarizing the Fit 812
30.3.2 Glancing at the model? 814
30.3.3 Plot the baseline survival function 814
30.3.4 Plot the genotype effect 815
30.3.5 Testing the Key Assumption: Proportional Hazards 816
30.3.6 Plotting the cox.zph results for the cfit model 817
30.4 Fitting a Cox Model using cph from the rms package 818
30.4.1 The Main cph results 818
30.4.2 Using anova with cph 819
30.4.3 Effect Sizes after cph fit 819
30.4.4 Validating cph summaries 820
30.4.5 Plotting Survival Functions for each Genotype 820
30.4.6 Genotype's effect on \log relative hazard 822
30.4.7 Nomogram of our simple hem model 823
30.4.8 Assessing the Proportional Hazards Assumption 824
30.4.9 Plot to Check PH Assumption 824
31 Cox Regression Models, Part 2 826
31.1 R Setup Used Here 826
31.1.1 Data Load 826
31.2 A Second Example: The leukem data 826
31.2.1 Creating our response: A survival time object 827
31.2.2 Models We'll Fit 828
31.3 Model A: coxph Model for Survival Time using age at diagnosis 828
31.3.1 Plotting the Survival Curve implied by Model A 830
31.3.2 Testing the Proportional Hazards Assumption 831
31.4 Building Model A with cph for the leukem data 832
31.4.1 Plotting the age effect implied by our model. 833
31.4.2 Survival Plots (Kaplan-Meier) of the age effect 834
31.4.3 ANOVA test for the cph-built model for leukem 836
31.4.4 Summarizing the Effect Sizes from modA_cph 836
31.4.5 Validating the Cox Model Summary Statistics 837
31.4.6 Looking for Influential Points 838
31.4.7 Checking the Proportional Hazards Assumption 839
31.5 Model B: Fitting a 5-Predictor Model with coxph 840
31.5.1 Plotting the Survival Curve implied by Model B 841
31.5.2 Testing the Proportional Hazards Assumption 842
31.5.3 Assessing Collinearity 843
31.6 Model B2: A Stepwise Reduction of Model B 844
31.6.1 The Survival Curve implied by Model B2 845
31.6.2 Checking Proportional Hazards for Model B2 846
31.7 Model C: Using a Spearman Plot to pick a model 847
31.7.1 Fitting Model C 848
31.7.2 ANOVA for Model C 849
31.7.3 Summarizing Model C Effect Sizes 849
31.7.4 Plotting the diagnosis age effect in Model C 850
31.7.5 Survival Plot associated with Model C 851
31.7.6 Checking the Proportional Hazards Assumption 852
31.7.7 Model C Nomogram 853
31.7.8 Validating Model C's Summary Statistics 854
31.7.9 Calibration of Model C (12-month survival estimates) 855
32 NEW!! A Few LASSO Ideas 857
32.1 R Setup Used Here 857
32.1.1 Data Load 857
32.2 The pollution data 857
32.3 Should We Rescale any Predictors? 858
32.4 A Kitchen Sink Model 860
32.4.1 Considering an Outcome Transformation 860
32.4.2 How much collinearity are we dealing with? 862
32.5 Using the LASSO to suggest a smaller model 863
32.6 Would the 9 -predictor model be a big improvement? 864
32.7 Using Stepwise Regression to suggest a smaller model 867
33 NEW!! Bayes and a Linear Model 874
33.1 R Setup Used Here 874
33.2 Return to the smalldat Example 874
33.3 The Distribution of Total Cholesterol 875
33.4 Fitting a Linear Model with $\operatorname{lm}()$ for Total Cholesterol 875
33.5 Fitting a Bayesian Linear Model 876
33.5.1 Extracting the Posterior 878
33.5.2 Describing Uncertainty 881
33.5.3 Visualizing the Coefficients and Credible Intervals 882
33.6 Summarizing the Posterior Distribution 882
33.6.1 Summarizing the Parameter values 883
33.6.2 Probability of Direction (pd) estimates. 883
33.6.3 The ROPE estimates 884
33.6.4 Convergence Diagnostics 885
33.7 Summarizing the Priors Used 885
33.8 Graphical Posterior Predictive Checks 886
34 NEW!! Bayes and a Logistic Model 889
34.1 R Setup Used Here 889
34.2 Return to the smalldat Example 889
34.3 The Distribution of Smoking Status 890
34.4 Fitting a Logistic Regression Model with glm() 890
34.5 Fitting a Bayesian Linear Model 891
34.5.1 Extracting the Posterior 894
34.5.2 Describing Uncertainty 897
34.5.3 Visualizing the Coefficients and Credible Intervals 898
34.6 Summarizing the Posterior Distribution 899
34.6.1 Summarizing the Parameter values 899
34.6.2 Probability of Direction (pd) estimates. 899
34.6.3 The ROPE estimates 900
34.6.4 Summarizing the Coefficients as Odds Ratios 901
34.7 Summarizing the Priors Used 901
34.8 Graphical Posterior Predictive Checks 902
References 904

Introduction

These Notes provide a series of examples using R to work through issues that are likely to come up in PQHS/CRSP/MPHP 432.

While these Notes share some of the features of a textbook, they are neither comprehensive nor completely original. The main purpose is to give students in 432 a set of common materials on which to draw during the course. In class, we will sometimes:

- reiterate points made in this document,
- amplify what is here,
- simplify the presentation of things done here,
- use new examples to show some of the same techniques,
- refer to issues not mentioned in this document,
but what we don't (always) do is follow these notes very precisely. We assume instead that you will read the materials and try to learn from them, just as you will attend classes and try to learn from them. We welcome feedback of all kinds on this document or anything else via our Campuswire discussion forum.

What you will mostly find are brief explanations of a key idea or summary, accompanied (most of the time) by R code and a demonstration of the results of applying that code.

Everything you see here is available to you in this HTML document. You will also have access to the Quarto files, which contain the code which generates everything in the document, including all of the R results. We will demonstrate the use of Quarto and R Studio (the "program" which we use to interface with the R language) in class. At the end of the semester, I hope to be able to get the PDF version of this document posted, but that may be a challenge.

To download the data and R code related to these notes, visit the 432-data page.

This is work in progress

These materials are not yet finalized, although they are close to complete. Additional materials may appear as the semester progresses. We thank you for your patience.

If you find any typographical or other errors, please let Dr. Love know about them, either through the Typos folder in Campuswire or by email to Thomas dot Love at case dot edu.

Thanks again.

R Setup

Here, we'll show all of the R packages used in these notes. The list of R Packages we will use in 432 is even more extensive, and is available on our course website.

```
knitr::opts_chunk$set(comment = NA) ## Dr. Love always includes this
library(arm)
library(boot)
library(car)
library(caret)
library(countreg) # install via R-Forge
library(DescTools)
library(distributions3)
library(Epi)
library(GGally)
library(ggridges)
library(glue)
library(gmodels)
library(gt)
library(gtsummary)
library(Hmisc)
library(janitor)
library(knitr)
library(lmboot)
library(lmtest)
library(MASS)
library(mice)
library(MKinfer)
library(mosaic)
library(naniar)
library(nhanesA)
library(nnet)
library(patchwork)
library(pROC)
library(pscl)
```

```
library(rms)
library(ROCR)
library(rstatix)
library(sandwich)
library(simputation)
library(survival)
library(survminer)
library(tableone)
library(topmodels) # install via R-Forge
library(vcd)
library(VGAM)
library(visdat)
library(tidymodels)
library(tidyverse)
```


General Theme for ggplot work

Dr. Love prefers theme_bw() to the default choice.
theme_set(theme_bw())

1 Building the nh432 example

In this Chapter, we will extract and tidy a data set using pre-pandemic (2017 - March 2020) data from the National Health and Nutrition Examination Survey (NHANES). Then we'll save this data set (which I'll call nh432 once it's built) so that we can use it again in subsequent work. Details on the data are available at this link to NHANES at CDC.

1.1 R Setup

```
knitr::opts_chunk$set(comment = NA)
library(janitor)
library(gt)
library(gtsummary)
library(Hmisc)
library(naniar)
library(nhanesA)
library(tidyverse)
theme_set(theme_bw())
```


1.2 Selecting NHANES Variables

We'll focus on NHANES data describing

- participating adults ages 30-59 years who
- completed both an NHANES interview and medical examination, and who
- also completed an oral health examination, and who
- also reported their overall health as either Excellent, Very Good, Good, Fair, or Poor

We will pull the following NHANES data elements using the nhanesA package:

1.2.1 Demographics and Sample Weights

From the Demographic Variables and Sample Weights database (P_DEMO), we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
RIDSTATR	Interview and MEC exam status	$1=$ Interviewed only 2 = Interviewed \& MEC examined
RIDAGEYR	Age at screening (years) We will	
require ages 30-59.		
Top coded at 80^{1}		

Note As part of our inclusion criteria, we will require that all participants in our analytic data have RIDAGEYR values of 30-59 and thus drop the participants whose responses to that item are missing or outside that range.

Here's my code to select these variables from the P_DEMO data.

```
p_demo <- nhanes('P_DEMO', translate = FALSE) |>
    select(SEQN, RIDSTATR, RIDAGEYR, RIDRETH3, DMDEDUC2, RIAGENDR,
            WTINTPRP, WTMECPRP)
dim(p_demo) # gives number of rows (participants) and columns (variables)
```

[1] 155608

[^0]Do we have any duplicate SEQN values?

```
p_demo |> get_dupes(SEQN)
No duplicate combinations found of: SEQN
[1] SEQN dupe_count RIDSTATR RIDAGEYR RIDRETH3 DMDEDUC2 RIAGENDR
[8] WTINTPRP WTMECPRP
<0 rows> (or 0-length row.names)
```

Good.

1.2.2 Oral Health

From the Oral Health - Recommendation of Care (P_OHXREF), we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
OHDEXSTS	Overall Oral Health Exam Status	$\mathbf{1}=$ Complete $2=$ Partial $3=$ Not Done
OHAREC	Overall Recommendation for Dental Care	$1=$ See a dentist immediately $2=$ See a dentist within the next 2 weeks $3=$ See a dentist at your earliest convenience $4=$ Continue your regular routine care

Note In addition to requiring that all participants in our analytic data have OHDEXSTS $=$ 1 , we will (later) collapse values 1 and 2 in OHAREC because there are only a few participants with code 1 in OHAREC.

Here's my code to select these variables from the P_OHXREF data.

```
p_ohxref <- nhanes('P_OHXREF', translate = FALSE) |>
    select(SEQN, OHDEXSTS, OHAREC)
dim(p_ohxref)
```

[1] 13772

1.2.3 Hospital Utilization \& Access to Care

From the Questionnaire on Hospital Utilization \& Access to Care (P_HUQ) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
HUQ010	General health condition we require a 1-5 response	$1=$ Excellent $2=$ Very Good $3=$ Good $4=$ Fair $5=$ Poor $7=$ Refused ($t o$ be dropped) $9=$ Don't Know (to be dropped)
HUQ071	Overnight hospital patient in past 12 months	$1=$ Yes, $2=$ No $7=$ Refused (will treat as NA) $9=$ Don't Know (will treat as NA)
HUQ090	Seen mental health professional in past 12 months	$1=$ Yes, $2=$ No $7=$ Refused (will treat as $N A$) $9=$ Don't Know (will treat as NA)

Note As part of our inclusion criteria, we will require that all participants in our analytic data have HUQ010 values of 1-5 and drop participants whose responses are missing, Refused or Don't Know for that item.

Here's my code to select these variables from the P_HUQ data.

```
p_huq <- nhanes('P_HUQ', translate = FALSE) |>
    select(SEQN, HUQ010, HUQ071, HUQ090)
dim(p_huq)
```

[1] 155604

1.2.4 Body Measures

From the Body Measures database (P_BMX), we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number	link across databases
	(participant ID)	
BMXWT	Body weight (kg)	Measured in examination
BMXHT	Standing height (cm)	Measured in examination

Variable	Description	Values
BMXWAIST	Waist Circumference (cm)	Measured in examination

Here's my code to select these variables from the $\mathrm{P} _$BMX data.

```
p_bmx <- nhanes('P_BMX', translate = FALSE) |>
    select(SEQN, BMXWT, BMXHT, BMXWAIST)
dim(p_bmx)
```

[1] 143004

1.2.5 Blood Pressure

From the Blood Pressure - Oscillometric Measurement (P_BPXO), we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
BPXOSY2	Systolic BP (2nd reading, in mm Hg)	Measured in examination
BPXODI2	Diastolic BP (2nd reading, in mm	Measured in examination
	Hg)	
BPXOPLS1	Pulse (1st reading, beats/minute)	Measured in examination
BPXOPLS2	Pulse (2nd reading, beats/minute)	Measured in examination

- A "normal" blood pressure for most adults is <120 systolic and <80 diastolic.
- A "normal" resting pulse rate for most adults is between 60 and 100 beats/minute.

Here's my code to select these variables from the P_BPXO data.

```
p_bpxo <- nhanes('P_BPXO', translate = FALSE) |>
    select(SEQN, BPXOSY2, BPXODI2, BPXOPLS1, BPXOPLS2)
dim(p_bpxo)
```

[1] 116565

1.2.6 Complete Blood Count

From the Complete Blood Count with 5-Part Differential in Whole Blood (P_CBC), we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
LBXWBCSI	White blood cell count in 1000 cells/uL	normal range: 4.5-11
LBXPLTSI	Platelet count in 1000 cells/uL	normal range: 150-450

Here's my code to select these variables from the P_CBC data.

```
p_cbc <- nhanes('P_CBC', translate = FALSE) |>
    select(SEQN, LBXWBCSI, LBXPLTSI)
dim(p_cbc)
[1] 13772
```


1.2.7 C-Reactive Protein

From the High-Sensitivity C-Reactive Protein (P_HSCRP) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
LBXHSCRP	High-Sensitivity C-Reactive Protein (mg/L)	normal range: 1.0-3.0

Here's my code to select these variables from the P_HSCRP data.

```
p_hscrp <- nhanes('P_HSCRP', translate = FALSE) |>
    select(SEQN, LBXHSCRP)
dim(p_hscrp)
```

[1] 137722

1.2.8 Alcohol Use

From the Questionnaire on Alcohol Use ($\mathrm{P} _$ALQ) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
ALQ111	Ever had a drink of alcohol?	$1=$ Yes, $2=$ No $7=$ Refused (treat as NA) $9=$ Don't Know (treat as NA)
ALQ130	Average drinks per day in past 12 months (Top coded at 15^{2})	count (set to $\mathbf{0}$ if ALQ111 is No) 777 $=$ Refused (treat as NA) $999=$ Don't Know (treat as NA)

Here's my code to select these variables from the P_ALQ data.

```
p_alq <- nhanes('P_ALQ', translate = FALSE) |>
    select(SEQN, ALQ111, ALQ130)
dim(p_alq)
```

[1] 89653

As noted above, we set the value of ALQ130 to be 0 if the response to ALQ111 is 2 (No).

```
p_alq <- p_alq |>
        mutate(ALQ130 = ifelse(ALQ111 == 2, 0, ALQ130))
p_alq |> count(ALQ130, ALQ111)
```

ALQ130	ALQ111	n
0	2	867
1	1	2126
2	1	1769
3	1	843
4	1	431
5	1	231
6	1	201
7	1	44

[^1]| 9 | 8 | 1 | 65 |
| :--- | ---: | ---: | ---: |
| 10 | 9 | 1 | 13 |
| 11 | 10 | 1 | 42 |
| 12 | 11 | 1 | 3 |
| 13 | 12 | 1 | 53 |
| 14 | 13 | 1 | 3 |
| 15 | 15 | 1 | 29 |
| 16 | 777 | 1 | 1 |
| 17 | 999 | 1 | 9 |
| 18 | NA | 1 | 1640 |
| 19 | NA | NA | 595 |

1.2.9 Dermatology

From the Questionnaire on Dermatology (P_DEQ) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
DEQ034D	Use sunscreen if outside on very	$1=$ Always $2=$ Most of the time $3=$ \quadSunny day? \quadRefused $($ treat as $N A) 9=$ Don't Know (treat as $N A$)

Here's my code to select these variables from the P_DEQ data.

```
p_deq <- nhanes('P_DEQ', translate = FALSE) |>
        select(SEQN, DEQ034D)
    dim(p_deq)
[1] 5810 2
```


1.2.10 Depression Screener

From the Questionnaire on Mental Health - Depression Screener (P_DPQ) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant	link across databases
	ID)	
DPQ010	Have little interest in doing things	$0-3:$ codes below
DPQ020	Feeling down, depressed or hopeless	$0-3:$ codes below
DPQ030	Trouble sleeping or sleeping too much	$0-3:$ codes below
DPQ040	Feeling tired or having little energy	$0-3:$ codes below
DPQ050	Poor appetite or overeating	$0-3:$ codes below
DPQ060	Feeling bad about yourself	$0-3:$ codes below
DPQ070	Trouble concentrating on things	$0-3:$ codes below
DPQ080	Moving or speaking slowly or too fast	$0-3:$ codes below
DPQ090	Thoughts you would be better off dead	$0-3:$ codes below
DPQ100	Difficulty these problems have caused	$0-3:$ codes below

- For DPQ010 - DPQ090, the codes are $0=$ Not at all, $1=$ Several days in the past two weeks, $2=$ More than half the days in the past two weeks, $3=$ Nearly every day in the past two weeks, with $7=$ Refused and $9=$ Don't Know which we will treat as NA.
- For DPQ100, the codes are $0=$ Not at all difficult, $1=$ Somewhat difficult, $2=$ Very difficult, $3=$ Extremely difficult, with $7=$ Refused and $9=$ Don't Know which we will treat as $N A$. Also, the DPQ100 score should be 0 if the scores on DPQ010 through DPQ090 are all zero.

Later, we will sum the scores in DPQ010 - DPQ090 to produce a PHQ-9 score for each participant.

Here's my code to select these variables from the P $_$DPQ data.

```
p_dpq <- nhanes('P_DPQ', translate = FALSE)
    # we're actually pulling all available variables
dim(p_dpq)
```

[1] 8965
11

1.2.11 Diet Behavior

From the Questionnaire on Diet Behavior and Nutrition (P_DBQ) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
DBQ700	How healthy is your diet?	$1=$ Excellent $2=$ Very Good $3=$ Good
		NA) Fair $5=$ Poor $7=$ Den't Know (treat as NA)

Here's my code to select these variables from the P_DBQ data.

```
p_dbq <- nhanes('P_DBQ', translate = FALSE) |>
        select(SEQN, DBQ700)
dim(p_dbq)
```

[1] 15560
2

1.2.12 Food Security

From the Questionnaire on Food Security (P_FSQ) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
FSDAD	Adult food security category for last 12m	$1=$ Full food security $2=$ Marginal $3=$ Low 4 = Very low

Here's my code to select these variables from the P_FSQ data.

```
p_fsq <- nhanes('P_FSQ', translate = FALSE) |>
    select(SEQN, FSDAD)
    dim(p_fsq)
[1] 15560 2
```


1.2.13 Health Insurance

From the Questionnaire on Health Insurance (P_HIQ) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
HIQ011	Covered by health insurance now?	$1=$ Yes, $2=$ No $7=$ Refused (treat as NA) $9=$ Don't Know (treat as NA)
HIQ210	Time when no insurance in past year?	$1=$ Yes, $2=$ No $7=$ Refused (treat as NA) $9=$ Don't Know (treat as NA) (set to Yes if HIQ011 is No.)

Here's my code to select these variables from the P_HIQ data.

```
p_hiq <- nhanes('P_HIQ', translate = FALSE) |>
    select (SEQN, HIQ011, HIQ210)
dim(p_hiq)
```

[1] 155603

As noted above, we set the value of HIQ210 to be 1 (Yes) if HIQ011 is 2 (No).

```
p_hiq <- p_hiq |>
    mutate(HIQ210 = ifelse(HIQ011 == 2, 1, HIQ210))
    p_hiq |> count(HIQ210, HIQ011)
\begin{tabular}{lrrr} 
& HIQ210 & HIQO11 & n \\
1 & 1 & 1 & 960 \\
2 & 1 & 2 & 1852 \\
3 & 2 & 1 & 12682 \\
4 & 7 & 1 & 2 \\
5 & 9 & 1 & 25 \\
6 & NA & 1 & 2 \\
7 & NA & 7 & 8 \\
8 & NA & 9 & 29
\end{tabular}
```


1.2.14 Medical Conditions

From the Questionnaire on Medical Conditions (P_MCQ) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
MCQ366A	Doctor told you to control/lose weight in the past 12 months?	$1=$ Yes, $2=$ No $7=$ Refused (treat as NA) $9=$ Don't Know (treat as $N A$)
MCQ366B	Doctor told you to exercise in the past 12 months?	$1=$ Yes, $2=$ No $7=$ Refused (treat as NA) $9=$ Don't Know (treat as NA)
MCQ371A	Are you now controlling or losing weight?	$1=$ Yes, $2=$ No $7=$ Refused (treat as NA) $9=$ Don't Know (treat as $N A$)
MCQ371B	Are you now increasing exercise?	$1=$ Yes, $2=$ No $7=$ Refused (treat as NA) $9=$ Don't Know (treat as NA)

Here's my code to select these variables from the $\mathrm{P} _M C Q$ data.

```
p_mcq <- nhanes('P_MCQ', translate = FALSE) |>
    select(SEQN, MCQ366A, MCQ366B, MCQ371A, MCQ371B)
dim(p_mcq)
```

[1] 149865

1.2.15 Oral Health

From the Questionnaire on Oral Health (P_OHQ) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
OHQ870	Days using dental floss (in the last	
	week)	count (0-7) 9 = Unknown (treat as NA) $99=$ Don't Know (treat as NA)

Here's my code to select these variables from the $\mathrm{P} _\mathrm{OHQ}$ data.

```
p_ohq <- nhanes('P_OHQ', translate = FALSE) |>
    select(SEQN, OHQ870)
dim(p_ohq)
```

[1] 14986
2

1.2.16 Physical Activity

From the Questionnaire on Physical Activity (P_PAQ) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
PAQ605	Vigorous work activity for 10 min/week?	$\begin{aligned} & 1=\text { Yes, } 2=\text { No } 7=\text { Refused (treat as } \\ & N A) 9=\text { Don't Know (treat as } N A) \end{aligned}$
PAQ610	\# of days of vigorous work activity in past week	count (1-7) $77=$ Refused (treat as NA) $99=$ Don't Know (treat as NA) (set to 0 if PAQ605 is No.)
PAQ650	Vigorous recreational activity for $10 \mathrm{~min} /$ week?	$\begin{aligned} & 1=\text { Yes, } 2=\text { No } 7=\text { Refused (treat as } \\ & N A) 9=\text { Don't Know }(\text { treat as } N A) \end{aligned}$
PAQ655	\# of days of vigorous recreational activity in past week	count (1-7) $77=$ Refused (treat as $N A$) 99 = Don't Know (treat as NA) (set to 0 if PAQ650 is No.)
PAD680	Minutes of sedentary activity (min/day)	excludes sleeping $7777=$ Refused (treat as NA) $9999=$ Don't Know (treat as NA)

Here's my code to select these variables from the P_PAQ data.

```
p_paq <- nhanes('P_PAQ', translate = FALSE) |>
    select(SEQN, PAQ605, PAQ610, PAQ650, PAQ655, PAD680)
dim(p_paq)
```

[1] 96936

Now, let's set the value of PAQ610 to be 0 if PAQ605 is 2 (No).

```
p_paq <- p_paq |>
    mutate(PAQ610 = ifelse(PAQ605 == 2, 0, PAQ610))
```

Finally, we set the value of PAQ655 to be 0 if PAQ650 is 2 (No).

```
p_paq <- p_paq |>
    mutate(PAQ655 = ifelse(PAQ650 == 2, 0, PAQ655))
```


1.2.17 Reproductive Health

From the Questionnaire on Reproductive Health (P_RHQ) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
RHQ131	Ever been pregnant?	$\begin{aligned} & 1=\text { Yes, } 2=\text { No } 7=\text { Refused (treat as } \\ & N A) 9=\text { Don't Know (treat as } N A \text {) } \end{aligned}$
RHQ160	How many times have you been pregnant?	count (1-11) $77=$ Refused (treat as $N A$) $99=$ Don't Know (treat as NA) (set to 0 if RHQ131 is No.)

Here's my code to select these variables from the P_RHQ data.

```
p_rhq <- nhanes('P_RHQ', translate = FALSE) |>
        select(SEQN, RHQ131, RHQ160)
    dim(p_rhq)
```

[1] 53143

Now, let's set the value of RHQ160 to be 0 if RHQ131 is 2 (No).

```
p_rhq <- p_rhq |>
    mutate(RHQ160 = ifelse(RHQ131 == 2, 0, RHQ160))
```


1.2.18 Sleep Disorders

From the Questionnaire on Sleep Disorders (P_SLQ) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
SLD012	Usual hours of sleep (weekdays)	hours limited to 2-14
SLD013	Usual hours of sleep (weekends)	hours limited to 2-14
SLQ030	How often do you snore in the past 12 months?	$0=$ Never $1=$ Rarely (1-2 nights/week) $2=$ Occasionally (3-4 nights/week) $3=$ Frequently ($5+$ nights/week) $7=$ Refused (treat as NA) $9=$ Don't Know (treat as NA)
SLQ050	Have you ever told a doctor you had trouble sleeping?	$\begin{aligned} & 1=\text { Yes, } 2=\text { No } 7=\text { Refused (treat as } \\ & N A) 9=\text { Don't Know }(\text { treat as } N A) \end{aligned}$

Here's my code to select these variables from the P_SLQ data.

```
p_slq <- nhanes('P_SLQ', translate = FALSE) |>
    select(SEQN, SLD012, SLD013, SLQ030, SLQ050)
dim(p_slq)
[1] 101955
```


1.2.19 Smoking Cigarettes

From the Questionnaire on Smoking - Cigarette Use (P_SMQ) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
SMQ020	Smoked at least 100 cigarettes in	$1=$ Yes, $2=$ No $7=$ Refused (treat as your life?
SMD641	Days (in past 30) when you $9=$Don't Know (treat as NA) count $(0-30) 77=$ Refused (treat as NA)	
	Smoked a cigarette?	$99=$ Don't Know (treat as NA) (set to $\mathbf{0}$ if SMQ020 is No.)

Here's my code to select these variables from the P_SMQ data.

```
p_smq <- nhanes('P_SMQ', translate = FALSE) |>
    select(SEQN, SMQ020, SMD641)
dim(p_smq)
```

[1] 111373

Now, let's set the value of SMD641 to be 0 if SMQ020 is 2 (No).

```
p_smq <- p_smq |>
    mutate(SMD641 = ifelse(SMQ020 == 2, 0, SMD641))
```


1.2.20 Secondhand Smoke

From the Questionnaire on Smoking - Secondhand Smoke Exposure (P__SMQSHS) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
SMQ856	Last 7 days worked at a job not at home?	$1=$ Yes, $2=$ No $7=$ Refused (treat as NA) $9=$ Don't Know (treat as $N A$)
SMQ860	Last 7 days spent time in a restaurant?	$1=$ Yes, $2=$ No $7=$ Refused (treat as NA) $9=$ Don't Know (treat as NA)
SMQ866	Last 7 days spent time in a bar?	$1=$ Yes, $2=$ No $7=$ Refused (treat as NA) $9=$ Don't Know (treat as $N A$)

Here's my code to select these variables from the P_SMQSHS data.

```
p_smqshs <- nhanes('P_SMQSHS', translate = FALSE) |>
    select(SEQN, SMQ856, SMQ860, SMQ866)
dim(p_smqshs)
[1] 15560 4
```


1.2.21 Weight History

From the Questionnaire on Weight History ($\mathrm{P} _\mathrm{WHQ}$) we collect the following variables.

Variable	Description	Values
SEQN	Respondent Sequence Number (participant ID)	link across databases
WHD010	Current self-reported height (in	49 to $827777=$ Refused (treat as NA)
	inches)	$9999=$ Don't Know (treat as NA)
WHD020	Current self-reported weight (in	67 to $5787777=$ Refused (treat as NA)
	\quad pounds)	$999=$ Don't Know (treat as NA)
WHQ040	Like to weigh more, less, or same	$1=$ More $2=$ Less $3=$ Stay about the same $7=$ Refused (treat as NA) $9=$
		Don't Know (treat as NA)

Here's my code to select these variables from the $\mathrm{P} _$WHQ data.

```
p_whq <- nhanes('P_WHQ', translate = FALSE) |>
    select(SEQN, WHDO10, WHD020, WHQO40)
dim(p_whq)
```

[1] 101954

1.3 Filtering for Inclusion

First, I'll filter the demographic data (p_demo) to the participants with known ages (RIDAGEYR here) between 30 and 59 years (inclusive), and to those who were both interviewed and examined (so RIDSTATR is 2) to match our inclusion criteria.

```
p_demo <- p_demo |>
        filter (RIDAGEYR >= 30 \& RIDAGEYR <= 59,
        RIDSTATR == 2)
dim(p_demo)
[1] 41338
```

Second, I'll restrict the p_ohxref sample to the participants who had a complete oral health exam (so OHDEXSTS is 1) which is also part of our inclusion criteria.

```
p_ohxref <- p_ohxref |>
    filter(OHDEXSTS == 1)
dim(p_ohxref)
```

[1] 132713

Third, I'll restrict the p_hug sample to the participants who gave one of our five available responses (codes 1-5) to the general health condition question in HUQ010, which is the final element of our inclusion criteria.

```
p_huq <- p_huq |>
    filter(HUQO10 <= 5)
dim(p_huq)
[1] 15550 4
```

Subjects that meet all of these requirements will be included in our analytic data. To achieve that end, we'll begin merging the individual data bases.

1.4 Merging the Data

1.4.1 Merging Two Data Frames at a Time

We have two ways to merge our data. We can merge data sets two at a time. In this case, we'll use inner_join() from the dplyr package to include only those participants with data in each of the two data frames we're merging. For example, we'll create temp01 to include data from both p_demo and p_ohxref for all participants (identified by their SEQN) that appear in each of those two data frames. Then, we'll merge the resulting temp01 with p_huq to create temp02 in a similar way.

```
temp01 <- inner_join(p_demo, p_ohxref, by = "SEQN")
temp02 <- inner_join(temp01, p_huq, by = "SEQN")
dim(temp02)
```

Note that we now have 3931 participants in our data, and this should be the case after we merge in all of the other data sets, too. Rather than using inner_join() we will switch now to using left_join() many more times so that we always add new information only on those subjects who meet our inclusion criteria (as identified in temp02. For more on the various types of joins we can use from the dplyr package, visit <https://dplyr.tidyverse.org/reference/mutatejoins.html. The problem is that that approach would force us to create lots of new temporary files as we add in each new variable.

1.4.2 Merging Many Data Frames Together

A better approach is to use the reduce() function in the purrr package ${ }^{3}$, which will let us join this temp02 data frame with our remaining 17 data frames using left_join() in a much more streamlined way. We'll also ensure that the final result (which we'll call nh_raw) is a tibble, rather than just a data frame.

```
df_list <- list(temp02, p_bmx, p_bpxo, p_cbc, p_hscrp,
    p_alq, p_deq, p_dpq, p_dbq, p_fsq,
    p_hiq, p_mcq, p_ohq, p_paq, p_rhq,
    p_slq, p_smqshs, p_smq, p_whq)
nh_raw <- df_list |>
    reduce(left_join, by = 'SEQN') |>
    as_tibble()
dim(nh_raw)
```

[1] 393164

1.5 The "Raw" Data

What does the data in nh_raw look like? Normally, I wouldn't include this sort of intermediate description in a published bit of work, but it may be helpful to compare this description to the one we'll generate at the end of the cleaning process in this case.

```
summary(nh_raw)
```

[^2]| SEQN | RIDSTAT | RIDAGEYR | RIDRETH3 | DMDEDUC2 |
| :---: | :---: | :---: | :---: | :---: |
| Min. :109271 | Min. $: 2$ | Min. $\quad 30.00$ | Min. 1.000 | Min. $: 1.00$ |
| 1st Qu.:113103 | 1st Qu.:2 | 1st Qu.:37.00 | 1st Qu.:3.000 | 1st Qu.:3.00 |
| Median :117059 | Median :2 | Median : 45.00 | Median :3.000 | Median :4.00 |
| Mean :117074 | Mean :2 | Mean : 44.79 | Mean :3.561 | Mean :3.64 |
| 3rd Qu.:121040 | 3rd Qu.:2 | 3rd Qu.:53.00 | 3rd Qu.: 4.000 | 3rd Qu.:5.00 |
| Max. : 124818 | Max. $: 2$ | Max. 59.00 | Max. 7.000 | Max. $: 7.00$ |

RI	WTINTPRP	WTMECPRP	OHDEXSTS	OHAREC
Min. $: 1.000$	Min. : 2467	Min. : 2589	Min. 11	Min. 11.000
1st Qu.:1.000	1st Qu.: 10615	1st Qu.: 11365	1st Qu.:1	1st Qu.:3.000
Median :2.000	Median : 17358	Median : 18422	Median :1	Median : 4.000
Mean :1.533	Mean : 28434	Mean : 30353	Mean	Mean :3.455
3rd Qu.:2.000	3rd Qu.: 31476	3rd Qu.: 33155	3rd Qu.: 1	3rd Qu.:4.000
Max. 2.000	Max. :311265	Max. :321574	Max. 11	Max. $: 4.000$

HUQ010	HUQ071	HUQ090	BMXWT
Min. 11.000	Min. $: 1.000$	Min. $: 1.000$	Min. : 36.90
1st Qu.:2.000	1st Qu.:2.000	1st Qu.:2.000	1st Qu.: 69.30
Median :3.000	Median :2.000	Median :2.000	Median : 82.10
Mean :2.741	Mean :1.913	Mean :1.883	Mean : 86.31
3rd Qu.:3.000	3rd Qu.:2.000	3rd Qu.:2.000	3rd Qu.: 99.10
Max. 5.000	Max. 2.000	Max. 99.000	$\begin{array}{ll} \text { Max. } & : 254.30 \\ \text { NA's } & : 28 \end{array}$
BMXHT	BMXWAIST	BPXOSY2	BPXODI2
Min. : 135.3	Min. : 57.9	Min. : 69.0	Min. : 31.00
1st Qu.:160.0	1st Qu.: 89.1	1st Qu.:110.0	1st Qu.: 69.00
Median :166.9	Median : 99.2	Median :120.0	Median : 76.00
Mean :167.4	Mean :101.5	Mean :121.5	Mean : 77.03
3rd Qu.:174.7	3rd Qu.:111.7	3rd Qu.: 131.0	3rd Qu.: 84.00
Max. $: 198.7$	Max. $: 178.0$	Max. $: 222.0$	Max. $: 136.00$
NA's : 30	NA's :149	NA's :346	NA's :346
BPXOPLS1	BPXOPLS2	LBXWBCSI	LBXPLTSI
Min. : 38.0	Min. $\quad 37.00$	Min. : 2.300	Min. $\quad 47.0$
1st Qu.: 62.0	1st Qu.: 63.00	1st Qu.: 5.700	1st Qu.:210.0
Median : 69.0	Median : 70.00	Median : 6.900	Median :246.0
Mean : 70.3	Mean : 70.96	Mean : 7.254	Mean :253.3
3rd Qu.: 77.0	3rd Qu.: 78.00	3rd Qu.: 8.400	3rd Qu.:290.0
Max. : 126.0	Max. $: 121.00$	Max. 22.800	Max. :818.0
NA's :615	NA's :617	NA's : 176	NA's : 176
LBXHSCRP	ALQ111	ALQ130	DEQ034D
Min. : 0.110	Min. 1.000	Min. : 0.000	Min. 1.000
1st Qu.: 0.890	1st Qu.:1.000	1st Qu.: 1.000	1st Qu.:3.000

Median : 2.090	Median :1.000	Median : 2.000	Median :4.000
Mean : 4.326	Mean :1.089	Mean : 2.345	Mean :3.675
3rd Qu.: 4.740	3rd Qu.:1.000	3rd Qu.: 3.000	3rd Qu.:5.000
Max. : 182.820	Max. 2.000	Max. :15.000	Max. 55.000
NA's :267	NA's :205	NA's :789	NA's : 19
DPQ010	DPQ020	DPQ030	DPQ040
Min. 0.0000	Min. 00.0000	Min. :0.0000	Min. 00.0000
1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:0.0000
Median :0.0000	Median :0.0000	Median :0.0000	Median :1.0000
Mean :0.3907	Mean :0.3732	Mean :0.6529	9 Mean :0.7612
3rd Qu.:1.0000	3rd Qu.:1.0000	3rd Qu.:1.0000	3rd Qu.:1.0000
Max. 9.0000	Max. 77.0000	Max. 99.0000	Max. 99.0000
NA's :212	NA's :212	NA's :212	NA's :212
DPQ050	DPQ060	DPQ070	DPQ080
Min. 0.0000	Min. 00.0000	Min. 0.0000	Min. 00.0000
1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:0.0000
Median :0.0000	Median :0.0000	Median :0.0000	Median :0.0000
Mean :0.4117	Mean :0.2504	Mean :0.2924	4 Mean :0.1622
3rd Qu.:1.0000	3rd Qu.:0.0000	3rd Qu.:0.0000	3rd Qu.:0.0000
Max. 9.0000	Max. 3.0000	Max. 3.0000	Max. 3.0000
NA's :212	NA's :213	NA's :213	NA's :213
DPQ090	DPQ100	DBQ700	FSDAD
Min. 00.000	Min. 0.0000	Min. $\quad 1.00$	Min. 1.000
1st Qu.:0.000	1st Qu.:0.0000	1st Qu.:2.00	1st Qu.:1.000
Median :0.000	Median :0.0000	Median :3.00	Median :1.000
Mean :0.053	Mean :0.3447	Mean :3.11	Mean : 1.737
3rd Qu.:0.000	3rd Qu.:1.0000	3rd Qu.:4.00	3rd Qu.:2.000
Max. $: 3.000$	Max. 3.0000	Max. $: 9.00$	Max. $: 4.000$
NA's :214	NA's :1448		NA's :231
HIQ011	HIQ210	MCQ366A	MCQ366B
Min. $: 1.000$	Min. 1.000	Min. $: 1.000$	Min. 1.000
1st Qu.:1.000	1st Qu.:1.000	1st Qu.:1.000	1st Qu.:1.000
Median :1.000	Median :2.000	Median :2.000	Median :2.000
Mean :1.211	Mean :1.742	Mean :1.699	Mean :1.574
3rd Qu.:1.000	3rd Qu.:2.000	3rd Qu.:2.000	3rd Qu.:2.000
Max. $: 9.000$	$\begin{array}{ll} \text { Max. } & : 9.000 \\ \text { NA's } & : 12 \end{array}$	Max. $: 9.000$	Max. 9.9 .000
MCQ371A	MCQ371B	OHQ870	PAQ605
Min. $: 1.000$	Min. 1.000	Min. $\quad 0.000$	Min. : 1.000
1st Qu.:1.000	1st Qu.:1.000	1st Qu.: 0.000	1st Qu.:1.000
Median :1.000	Median :1.000	Median : 3.000	Median :2.000
Mean :1.371	Mean :1.399	Mean : 3.503	Mean : 1.723
3rd Qu.:2.000	3rd Qu.:2.000	3rd Qu.: 7.000	3rd Qu.:2.000

1.6 Cleaning Tasks

We now have a tibble called nh_raw containing 3931 NHANES participants in the rows and 64 variables in the columns. What must we do to clean up the data?

1. Check that every identifier (here, SEQN) is unique.
2. Ensure that all coded values for "Refused", "Don't Know" or "Missing" are interpreted as missing values by R .
3. Be sure all quantitative variables have plausible minimum and maximum values.
4. Replace the RIAGENDR variable with a new factor variable called SEX with levels Male and Female.
5. Convert all binary Yes/No variables to $1 / 0$ numeric variables where $1=$ Yes, $0=$ No.
6. Create the PHQ-9 score from the nine relevant items in the depression screener (P_DPQ).
7. Use meaningful level names for all multi-categorical variables, and be sure R uses factors to represent them.
8. Clean and adjust the names of the variables to something more useful, as desired. (Usually, I will do this first, but in this case, I've decided to do it last.)

Once we've accomplished these cleaning tasks, we'll save the resulting tibble as an R data set we can use later, and we'll summarize our final analytic variables in a proper codebook.

1.7 Our identifying variable

SEQN is meant to identify the rows (participants) in these data, with one row per SEQN. Is every SEQN unique?

```
nrow(nh_raw)
```

[1] 3931

```
n_distinct(nh_raw$SEQN)
```

[1] 3931

It looks like the number of rows in our tibble matches the number of unique (distinct) SEQN values, so we're OK. I prefer to specify that the SEQN be maintained by R as a character variable, which reduces the chance of my accidentally including it in a model as if it were something meaningful.

```
nh_fixing <- nh_raw |> mutate(SEQN = as.character(SEQN))
```


1.8 "Refused" \& "Don't Know"

Some of our variables have "hidden" missing values coded as "Refused" or "Don't Know". We must ensure that R sees these values as missing.

- The following variables use code 7 for Refused and 9 for Don't Know:
- DMDEDUC2, HUQ071, HUQ090, ALQ111, DEQ034D,
- DPQ010, DPQ020, DPQ030, DPQ040, DPQ050,
- DPQ060, DPQ070, DPQ080, DPQ090, DPQ100,
- DBQ700, HIQ011, HIQ210, MCQ366A, MCQ366B,
- MCQ371A, MCQ371B, PAQ605, PAQ650, RHQ131,
- SLQ030, SLQ050, SMQ020, SMQ856, SMQ860,
- SMQ866, WHQ040
- The following variables use code 9 for Unknown and 99 for Don't Know:
- OHQ870
- The following variables use code 77 for Refused and 99 for Unknown:
- PAQ610, PAQ655, RHQ160, SMD641
- The following variables use code 777 for Refused and 999 for Don't Know:
- ALQ130
- The following variables use code 7777 for Refused and 9999 for Don't Know:
- PAD680, WHD010, WHD020

The replace_with_na() set of functions from the naniar package can be very helpful here ${ }^{4}$.

```
nh_fixing <- nh_fixing %>%
    replace_with_na_at(.vars = c("DMDEDUC2", "HUQ071", "HUQ090", "ALQ111",
                                    "DEQ034D", "DPQ010", "DPQ020", "DPQ030",
                                    "DPQ040", "DPQ050", "DPQ060", "DPQ070",
                                    "DPQ080", "DPQ090", "DPQ100", "DBQ700",
                                    "HIQ011", "HIQ210", "MCQ366A", "MCQ366B",
                                    "MCQ371A", "MCQ371B", "PAQ605", "PAQ650",
    "RHQ131", "SLQ030", "SLQ050", "SMQ020",
    "SMQ856", "SMQ860", "SMQ866", "WHQ040"),
```

[^3]```
 condition = ~.x %in% c(7, 9)) %>%
replace_with_na_at(.vars = c("OHQ870"),
 condition = ~.x %in% c(9, 99)) %>%
replace_with_na_at(.vars = c("PAQ610", "PAQ655", "RHQ160", "SMD641"),
 condition = ~.x %in% c(77, 99)) %>%
replace_with_na_at(.vars = c("ALQ130"),
 condition = ~.x %in% c(777, 999)) %>%
replace_with_na_at(.vars = c("PAD680", "WHD010", "WHD020"),
 condition = ~.x %in% c(7777, 9999))
```


### 1.9 Variables without Variation

Note first that we have two variables which now have the same value for all participants.

| Variable | Description | Codes |
| ---: | :---: | :--- |
| RIDSTATR | Interview and examination status | $2=$ Both |
| OHDEXSTS | Complete oral health exam? | $1=$ Yes |

```
 nh_fixing |> count(RIDSTATR, OHDEXSTS)
```

\# A tibble: $1 \times 3$
RIDSTATR OHDEXSTS $n$
<dbl> <dbl> <int>
1
213391

We won't use these variables in our analyses, now that we've verified them.

### 1.10 Quantitative Variables

Here are our quantitative variables, and some key information about the values we observe, along with their units of measurement. Our job here is to check the ranges of these variables, and be sure we have no unreasonable values. It's also helpful to keep an eye on how much missingness we might have to deal with.

We're also going to rename each of these variables, as indicated.

| NHANES |  |  | Units | \# NA | Range |
| :---: | :---: | :---: | :---: | :---: | :---: |
| New Name | Name | Description |  |  |  |
| AGE | RIDAGEYR | Age at screening | years | 0 | 30, 59 |
| WEIGHT | BMXWT | Body weight | kg | 28 | 36.9, 254.3 |
| HEIGHT | BMXHT | Standing height | cm | 30 | 135.3, 198.7 |
| WAIST | BMXWAIST | Waist Circumference | cm | 149 | 57.9, 178 |
| SBP | BPXOSY2 | Systolic BP (2nd reading) | mm Hg | 346 | 69, 222 |
| DBP | BPXODI2 | Diastolic BP (2nd reading) | mm Hg | 346 | 31, 136 |
| PULSE1 | BPXOPLS1 | Pulse (1st reading) | $\frac{\text { beats }}{\text { minute }}$ | 615 | 38, 126 |
| PULSE2 | BPXOPLS2 | Pulse (2nd reading) | $\frac{\text { beats }}{\text { minute }}$ | 617 | 37, 121 |
| WBC | LBXWBCSI | White blood cell count | $\frac{1000 \text { cells }}{u \mathrm{~L}}$ | 176 | 2.3, 22.8 |
| PLATELET | LBXPLTSI | Platelet count | $\frac{1000 \text { cells }}{u L^{u}}$ | 176 | 47, 818 |
| HSCRP | LBXHSCRP | High-Sensitivity C-Reactive Protein | $m g / L$ | 267 | 0.11, 182.82 |
| DRINKS | ALQ130 | Average daily Alcoholic drinks | drinks | 789 | 0, 15 |
| FLOSS | OHQ870 | Days using dental floss in past week | days | 4 | 0, 7 |
| VIGWK_D | PAQ610 | Average days per week with Vigorous work | days | 5 | 0, 7 |
| VIGREC_D | PAQ655 | Average days per week with Vigorous recreation | days | 1 | 0, 7 |
| SEDATE | PAD680 | Average daily <br> Sedentary activity | minutes | 24 | 2, 1320 |
| PREGNANT | RHQ160 | Pregnancies | times | 1975 | 0, 11 |
| SLPWKDAY | SLD012 | Usual sleep (weekdays) | hours | 34 | 2, 14 |
| SLPWKEND | SLD013 | Usual sleep (weekends) | hours | 34 | 2, 14 |
| SMOKE30 | SMD641 | Days in past 30 when you smoked a cigarette | days | 726 | 0, 30 |
| ESTHT | WHD010 | Self-reported height | inches | 95 | 50, 81 |
| ESTWT | WHD020 | Self-reported weight | pounds | 68 | 86, 578 |

To insert the number of missing values and range (minimum, maximum among non-missing values) into the table, I used inline R code like this:
n_miss (nh_fixing $\$$ BMXWT)
[1] 28

```
range(nh_fixing$BMXWT, na.rm = TRUE)
```

[1] $36.9 \quad 254.3$

### 1.10.1 Renaming the Quantities

Here's the renaming code:

```
nh_fixing <- nh_fixing |>
 rename(AGE = RIDAGEYR, WEIGHT = BMXWT, HEIGHT = BMXHT,
 WAIST = BMXWAIST, SBP = BPXOSY2, DBP = BPXODI2,
 PULSE1 = BPXOPLS1, PULSE2 = BPXOPLS2, WBC = LBXWBCSI,
 PLATELET = LBXPLTSI, HSCRP = LBXHSCRP, DRINKS = ALQ130,
 FLOSS = OHQ870, VIGWK_D = PAQ610, VIGREC_D = PAQ655,
 SEDATE = PAD680, PREGS = RHQ160, SLPWKDAY = SLD012,
 SLPWKEND = SLD013, SMOKE30 = SMD641,
 ESTHT = WHD010, ESTWT = WHD020)
```


### 1.10.2 Sampling Weights

Here are the sampling weights, which I think of as unitless, typically, though they represent people.

| Variable | Description | \# NA | Range |
| ---: | :---: | ---: | :---: |
| WTINTPRP | Sampling Weight (interviews) | 0 | $2467.1,311265.2$ |
| WTMECPRP | Sampling Weight (examinations) | 0 | $2589.2,321573.5$ |

Note that to obtain these ranges formatted like this, I had to use some additional code in the table:

```
format(round_half_up(range(nh_fixing$WTINTPRP, na.rm = TRUE),1), scientific = FALSE)
```

[1] " 2467.1" "311265.2"

### 1.11 Binary Variables

### 1.11.1 Sex (RIAGENDR)

To start, let's do something about the variable describing the participant's biological sex (so we'll rename it to a more useful name), and then we'll recode the values of the SEX variable to more useful choices.

| New Name | NHANES Name | Description |
| ---: | :---: | :--- |
| SEX | RIAGENDR | Sex |

Note that we have more female than male subjects, and no missing values, as it turns out.

```
nh_fixing |> count(RIAGENDR)
A tibble: 2 x 2
 RIAGENDR n
 <dbl> <int>
1 1 1837
2 2 2094
```

Now, let's convert the information in RIAGENDR to SEX.

```
nh_fixing <- nh_fixing |>
 rename (SEX = RIAGENDR) |>
 mutate(SEX = factor(ifelse(SEX == 1, "Male", "Female")))
```

And we'll run a little "sanity check" here to ensure that we've recoded this variable properly ${ }^{5}$.

```
 nh_fixing |> count(SEX)
```

\# A tibble: 2 x 2
SEX n
<fct> <int>
1 Female 2094
2 Male 1837

[^4]
### 1.11.2 Yes/No variables

Now, let's tackle the variables with code $1=$ Yes, and $2=$ No, and (potentially) some missing values. I'll summarize each with the percentage of "Yes" responses (out of those with code 1 or 2 ) and the number of missing values.

| New NHANES |  | \% | \# |
| :---: | :---: | :---: | :---: |
| NAME NAME | Description | Yes | NA |
| HOSPITAL HUQ071 | Overnight hospital patient in past 12 m ? | 8.7 | 0 |
| MENTALH HUQ090 | Seen mental health professional past 12 m ? | 12.1 | 2 |
| EVERALC ALQ111 | Ever had a drink of alcohol? | 91.1 | 205 |
| INSURNOW HIQ011 | Covered by health insurance now? | 80.8 | 10 |
| NOINSUR HIQ210 | Time when no insurance in past year? | 26.6 | 16 |
| DR_LOSE MCQ366A | Doctor told you to control/lose weight in the past 12 months? | 30.3 | 1 |
| DR_EXER MCQ366B | Doctor told you to exercise in the past 12 months? | 42.7 | 1 |
| NOW_LOSEMCQ371A | Are you now controlling or losing weight? | 63.2 | 2 |
| NOW_EXERICQ371B | Are you now increasing exercise? | 60.3 | 1 |
| WORK_V PAQ605 | Vigorous work activity for $10 \mathrm{~min} /$ week? | 28.4 | 4 |
| REC_V PAQ650 | Vigorous recreational activity for $10 \mathrm{~min} /$ week? | 26.9 | 0 |
| EVERPREG RHQ131 | Ever been pregnant? | 89.2 | 1972 |
| SLPTROUB SLQ050 | Ever told a doctor you had trouble sleeping? | 29.5 | 3 |
| CIG100 SMQ020 | Smoked at least 100 cigarettes in your life? | 40.1 | 1 |
| AWAYWORKSMQ856 | Last 7 days worked at a job not at home? | 67.7 | 0 |
| AWAYREST SMQ860 | Last 7 days spent time in a restaurant? | 58.1 | 2 |
| AWAYBAR SMQ866 | Last 7 days spent time in a bar? | 15.4 | 0 |

The inline code I used in the tables was, for example:

```
round_half_up(100 * sum(nh_fixing\$HUQ090 == "1", na.rm = TRUE) /
 sum(nh_fixing\$HUQ090 \%in\% c("1", "2"), na.rm = TRUE), 1)
```

[1] 12.1

```
n_miss(nh_fixing$HUQ090)
```

[1] 2

To clean these ( $1=$ Yes, $2=$ No $)$ variables, I'll subtract the values from 2 , to obtain variables where $1=$ Yes and $0=$ No. I'll use the across() function within my mutate() statement so as to avoid having to type out each change individually ${ }^{6}$.

```
nh_fixing <- nh_fixing |>
 mutate(across(c(HUQ071, HUQ090, ALQ111, HIQ011, HIQ210,
 MCQ366A, MCQ366B, MCQ371A, MCQ371B, PAQ605,
 PAQ650, RHQ131, SLQ050, SMQ020, SMQ856,
 SMQ860, SMQ866),
 ~ 2 - .x))
```

Let's do just one of the relevant sanity checks here. In addition to verifying that our new variable has the values 0 and 1 (instead of 2 and 1 ), we want to be certain that we've maintained any missing values.

```
nh_fixing |> count(SLQ050)
```

\# A tibble: 3 x 2
SLQ050 n
<dbl> <int>
102769
211159
3 NA 3

### 1.11.3 Renaming Binary Variables

Here's the renaming code.

```
nh_fixing <- nh_fixing |>
 rename(HOSPITAL = HUQ071, MENTALH = HUQ090, EVERALC = ALQ111,
 INSURNOW = HIQ011, NOINSUR = HIQ210, DR_LOSE = MCQ366A,
 DR_EXER = MCQ366B, NOW_LOSE = MCQ371A, NOW_EXER = MCQ371B,
 WORK_V = PAQ605, REC_V = PAQ650, EVERPREG = RHQ131,
 SLPTROUB = SLQ050, CIG100 = SMQ020, AWAYWORK = SMQ856,
 AWAYREST = SMQ860, AWAYBAR = SMQ866)
```

[^5]
### 1.12 Create PHQ-9 Scores

The questions below are asked to assess depression severity, following the prompt "Over the last two weeks, how often have you been bothered by any of the following problems?"

| Variable | Description | Values |
| ---: | :---: | :--- |
| SEQN | Respondent Sequence Number (participant | link across databases |
|  | ID) |  |
| DPQ010 | Have little interest in doing things | $0-3:$ see below |
| DPQ020 | Feeling down, depressed or hopeless | $0-3:$ see below |
| DPQ030 | Trouble sleeping or sleeping too much | $0-3:$ see below |
| DPQ040 | Feeling tired or having little energy | $0-3:$ see below |
| DPQ050 | Poor appetite or overeating | $0-3:$ see below |
| DPQ060 | Feeling bad about yourself | $0-3:$ see below |
| DPQ070 | Trouble concentrating on things | $0-3:$ see below |
| DPQ080 | Moving or speaking slowly or too fast | $0-3:$ see below |
| DPQ090 | Thoughts you would be better off dead | $0-3:$ see below |

- For DPQ010 - DPQ090, the codes are $0=$ Not at all, $1=$ Several days in the past two weeks, $2=$ More than half the days in the past two weeks, $3=$ Nearly every day in the past two weeks.


### 1.12.1 Forming the PHQ-9 Score

One way to use this information is to sum the scores from items DPQ010 through DPQ090 to obtain a result on a scale from $0-27$. Cutoffs of $5,10,15$, and 20 then represent mild, moderate, moderately severe, and severe levels of depressive symptoms, respectively ${ }^{7}$. If we had no missing values in our responses, then this would be relatively straightforward.

```
 temp <- nh_fixing |>
 mutate (PHQ9 = DPQ010 + DPQ020 + DPQ030 + DPQ040 + DPQ050 +
 DPQ060 + DPQ070 + DPQ080 + DPQ090)
 temp |> count(PHQ9) |> tail()
\# A tibble: 6 x 2
 PHQ9 n
 <dbl> <int>
1229
```

[^6]| 2 | 23 | 5 |
| ---: | ---: | ---: |
| 3 | 24 | 2 |
| 4 | 25 | 2 |
| 5 | 26 | 3 |
| 6 | NA | 221 |

It turns out that this formulation of PHQ9 regards as missing the result for any participant who failed to answer all 9 questions. A common approach to dealing with missing data in creating PHQ-9 scores ${ }^{8}$ is to score all questionnaires with up to two missing values, replacing any missing values with the average score of the completed items.

So how many of our subjects are missing only one or two of the 9 items?

```
temp2 <- temp |>
 select (SEQN, DPQ010, DPQ020, DPQ030, DPQ040, DPQ050, DPQ060,
 DPQ070, DPQ080, DPQ090)
miss_case_table(temp2)
```

| \# A tibble: $5 \times 3$ |  |  |  |
| ---: | ---: | ---: | :---: |
|  | n_miss_in_case | $n_{-}$cases | pct_cases |
|  | <int> | <int> | <dbl> |
| 1 | 0 | 3710 | 94.4 |
| 2 | 1 | 5 | 0.127 |
| 3 | 2 | 3 | 0.0763 |
| 4 | 4 | 1 | 0.0254 |
| 5 |  | 9 | 212 |

With a little googling I found an R script online that will perform this task, and create three new variables:

- nvalid_phq9 = Number of Valid Responses (out of 9) to the PHQ-9 items
- PHQ9 $=$ PHQ-9 score (0-27 scale, higher values indicate more depression)
- PHQ9_CAT $=$ factor describing PHQ-9 score
- PHQ9 > 20 means PHQ9_CAT is"severe",
- 15-19 = "moderately severe",
- $10-14=$ "moderate"
- $5-9=$ "mild"
$-0-4=$ "minimal"

[^7]```
scoring_phq9 <- function(data, items.phq9) {
    data %>%
        mutate(nvalid_phq9 = rowSums(!is.na(select(., items.phq9))),
            nvalid_phq9 = as.integer(nvalid_phq9),
            mean.temp = rowSums(select(., items.phq9), na.rm = TRUE)/nvalid_phq9,
            phq.01.temp = as.integer(unlist(data[items.phq9[1]])),
            phq.02.temp = as.integer(unlist(data[items.phq9[2]])),
            phq.03.temp = as.integer(unlist(data[items.phq9[3]])),
            phq.04.temp = as.integer(unlist(data[items.phq9[4]])),
            phq.05.temp = as.integer(unlist(data[items.phq9[5]])),
            phq.06.temp = as.integer(unlist(data[items.phq9[6]])),
            phq.07.temp = as.integer(unlist(data[items.phq9[7]])),
            phq.08.temp = as.integer(unlist(data[items.phq9[8]])),
            phq.09.temp = as.integer(unlist(data[items.phq9[9]]))) %>%
    mutate_at(vars(phq.01.temp:phq.09.temp),
                    funs(ifelse(is.na(.), round(mean.temp), .))) %>%
    mutate(score.temp = rowSums(select(., phq.01.temp:phq.09.temp), na.rm = TRUE),
            PHQ9 = ifelse(nvalid_phq9 >= 7, as.integer(round(score.temp)), NA),
            PHQ9_CAT = case_when(
                PHQ9 >= 20 ~ 'severe',
                    PHQ9 >= 15 ~ 'moderately severe',
                    PHQ9 >= 10 ~ 'moderate',
                    PHQ9 >= 5 ~ 'mild',
                    PHQ9 < 5 ~ 'minimal'),
                    PHQ9_CAT = factor(PHQ9_CAT, levels = c('minimal', 'mild',
                                    'moderate', 'moderately severe',
                                    'severe'))) %>%
    select(-ends_with("temp"))
}
```

Applying this script to our nh_fixing data, our result is:

```
items.phq9 <- c("DPQ010", "DPQ020", "DPQ030", "DPQ040", "DPQ050",
    "DPQ060", "DPQ070", "DPQ080", "DPQ090")
nh_fixing <- nh_fixing %>% scoring_phq9(., all_of(items.phq9))
nh_fixing |> count(nvalid_phq9, PHQ9, PHQ9_CAT)
```

\# A tibble: 36 x 4
nvalid_phq9 PHQ9 PHQ9_CAT n
<int> <int> <fct> <int>

1	0	NA <NA>	212
2	5	NA <NA>	1
3	7	1 minimal	1
4	7	2 minimal	1
5	7	7 mild	1
6	8	1 minimal	2
7	8	2 minimal	1
8	8	3 minimal	1
9	8	8 mild	1
10	9	0 minimal	1233
\# i 26 more rows			

1.12.2 Distribution of PHQ-9 Score

Here's a quick look at the distribution of PHQ-9 scores in our nh_fixing data.

```
nh_fixing |> filter(complete.cases(PHQ9, PHQ9_CAT)) %>%
    ggplot(., aes(x = PHQ9, fill = PHQ9_CAT)) +
    geom_histogram(binwidth = 1) +
    scale_fill_viridis_d() +
    labs(title = "PHQ-9 Scores for subjects in `nh_fixing`")
```

PHQ-9 Scores for subjects in `nh_fixing`

1.12.3 Fixing the DPQ100 variable

The DPQ100 variable should be 0 (Not at all difficult) if the PHQ-9 score is zero. We need to fix this, because NHANES participants who answered 0 (Not at all) to each of the nine elements contained in the PHQ-9 were not asked the DPQ100 question. So, we set the value of DPQ100 to be 0 if PHQ9 is 0 .

```
nh_fixing <- nh_fixing |>
    mutate(DPQ100 = ifelse(PHQ9 == 0, 0, DPQ100))
```

This will eliminate the "automatic missing" values in DPQ100.

```
nh_fixing |> tabyl(DPQ100)
```

DPQ100	n	percent	valid_percent
0	3039	0.77308573	0.81781485
1	541	0.13762401	0.14558665
2	93	0.02365810	0.02502691
3	43	0.01093869	0.01157158
NA	215	0.05469346	NA

1.13 Multi-Categorical Variables

Our remaining categorical variables with more than two levels are:

Variable	Description	Codes	\# NAs
RIDRETH3	Race/Hispanic origin	$1,2,3,4,6,7$	0
DMDEDUC2	Education Level	$1,2,3,4,5$	1
OHAREC	Overall Recommendation for Care	$1,2,3,4$	0
HUQ010	General health condition	$1,2,3,4,5$	0
DEQ034D	Use sunscreen if outside on very	$1,2,3,4,5$	19
	sunny day?		
DPQ100	Difficulty depression problems have	$0,1,2,3$	215
	caused	$1,2,3,4,5$	
DBQ700	How healthy is your diet?	$1,2,3,4$	1
FSDAD	Adult food security in last 12m	$0,1,2,3$	231
SLQ030	How often do you snore?	$1,2,3$	219
WHQ040	Like to weigh more, less, or same?		3

1.13.1 Creating RACEETH from RIDRETH3

At the moment, our RIDRETH3 data look like this:

```
t_ridreth3 <- nh_fixing |> tabyl(RIDRETH3) |> adorn_pct_formatting() |>
    mutate(Code = c("Mexican American", "Other Hispanic", "Non-Hispanic White",
                            "Non-Hispanic Black", "Non-Hispanic Asian", "Other Race"))
gt(t_ridreth3)
```

RIDRETH3	n	percent	Code
1	500	12.7%	Mexican American
2	403	10.3%	Other Hispanic
3	1192	30.3%	Non-Hispanic White
4	1049	26.7%	Non-Hispanic Black
6	588	15.0%	Non-Hispanic Asian
7	199	5.1%	Other Race

Now, we'll turn this RIDRETH3 variable into a new factor called RACEETH with meaningful levels, and then sort those levels by their frequency in the data. We'll also collapse together the Mexican American and Other Hispanic levels, not because the distinction is irrelevant, but more to demonstrate how this might be done.

```
nh_fixing <- nh_fixing |>
    mutate(RACEETH =
        fct_recode(
            factor(RIDRETH3),
            "Hispanic" = "1",
            "Hispanic" = "2",
            "Non-H White" = "3",
            "Non-H Black" = "4",
            "Non-H Asian" = "6",
            "Other Race" = "7")) |>
    mutate(RACEETH = fct_infreq(RACEETH))
```

I'm using fct_infreq() here to sort the (nominal) Race and Ethnicity data so that the most common column appears first, and will thus be treated as the "baseline" level in models. Here is the resulting order.

```
nh_fixing |> count(RACEETH)
```

```
# A tibble: 5 x 2
    RACEETH n
    <fct> <int>
1 Non-H White }119
2 Non-H Black }104
3 Hispanic 903
4 \text { Non-H Asian } 5 8 8
5 \text { Other Race 199}
```

Now, let's check ${ }^{9}$ to see if RACEETH and RIDRETH3 include the same information (after collapsing the Mexican American and Other Hispanic categories.)

```
    nh_fixing |> count(RACEETH, RIDRETH3)
# A tibble: 6 x 3
    RACEETH RIDRETH3 n
    <fct> <dbl> <int>
1 Non-H White 3 1192
2 Non-H Black 4 }104
3 Hispanic 1 500
4 Hispanic 2 403
5 Non-H Asian 6 588
6 Other Race }79
```


1.13.2 Creating EDUC from DMDEDUC2

At the moment, our DMDEDUC2 data look like this:

```
t_dmdeduc2 <- nh_fixing |> tabyl(DMDEDUC2) |> adorn_pct_formatting() |>
    mutate (Code \(=c(" L e s s ~ t h a n ~ 9 t h ~ g r a d e ", ~ " 9 t h-11 t h ~ g r a d e ", ~ " H i g h ~ S c h o o l ~ G r a d ", ~\)
            "Some College / AA", "College Grad", "Missing"))
gt(t_dmdeduc2)
```

DMDEDUC2	n	percent	valid_percent	Code
1	272	6.9%	6.9%	Less than 9th grade
2	424	10.8%	10.8%	9th-11th grade
3	850	21.6%	21.6%	High School Grad

[^8]| 4 | 1287 | 32.7% | 32.7% | Some College / AA |
| ---: | ---: | ---: | ---: | :--- |
| 5 | 1097 | 27.9% | 27.9% | College Grad |
| NA | 1 | 0.0% | - | Missing |

Now, we'll turn this DMDEDUC2 variable into a new factor called EDUC with meaningful levels.

```
nh_fixing <- nh_fixing |>
    mutate(EDUC =
        fct_recode(
            factor(DMDEDUC2),
            "Less than 9th Grade" = "1",
            "9th - 11th Grade" = "2",
            "High School Grad" = "3",
            "Some College / AA" = "4",
            "College Grad" = "5"))
```

Once again, checking our work...

```
nh_fixing |> tabyl(EDUC, DMDEDUC2) |> gt()
```

EDUC	1	2	3	4	5	NA
Less than 9th Grade	272	0	0	0	0	0
9th - 11th Grade	0	424	0	0	0	0
High School Grad	0	0	850	0	0	0
Some College / AA	0	0	0	1287	0	0
College Grad	0	0	0	0	1097	0
NA	0	0	0	0	0	1

1.13.3 Creating DENTAL from OHAREC

```
t_oharec <- nh_fixing |> tabyl(OHAREC) |> adorn_pct_formatting() |>
    mutate(Code = c("See a dentist immediately", "See a dentist within the next 2 weeks", "S
gt(t_oharec)
```

OHAREC	n	percent	Code
1	4	0.1%	See a dentist immediately
2	230	5.9%	See a dentist within the next 2 weeks

3	1671	42.5%	See a dentist at your earliest convenience
4	2026	51.5%	Continue your regular routine care

We'll collapse categories 1 and 2 together since they are quite small.

```
nh_fixing <- nh_fixing |>
    mutate(DENTAL =
        fct_recode(
            factor(OHAREC),
            "See dentist urgently" = "1",
            "See dentist urgently" = "2",
            "See dentist soon" = "3",
            "Regular Routine" = "4"))
```

Once again, checking our work...

```
nh_fixing |> tabyl(DENTAL, OHAREC) |> gt()
```

DENTAL	1	2	3	4
See dentist urgently	4	230	0	0
See dentist soon	0	0	1671	0
Regular Routine	0	0	0	2026

1.13.4 Creating SROH from HUQ010

Variable	Description	Codes	$\#$ NAs
HUQ010	General health condition	$1=$ Excellent $2=$ Very Good	0
		$3=$ Good $4=$ Fair $5=$ Poor	

```
nh_fixing <- nh_fixing |>
    mutate(SROH =
        fct_recode(
            factor(HUQ010),
            "Excellent" = "1",
            "Very Good" = "2",
            "Good" = "3",
            "Fair" = "4",
            "Poor" = "5"))
```

Checking our work...
nh_fixing |> tabyl(SROH, HUQ010) |> gt()

SROH	1	2	3	4	5
Excellent	495	0	0	0	0
Very Good	0	1071	0	0	0
Good	0	0	1462	0	0
Fair	0	0	0	765	0
Poor	0	0	0	0	138

1.13.5 Creating SUNSCR from DEQ034D

Variable	Description	Codes	\# NAs
DEQ034D	Use sunscreen if outside	$1=$ Always $2=$ Most of the	19
	on very sunny day?	time $3=$ Sometimes $4=$	
		Rarely $5=$ Never	

```
nh_fixing <- nh_fixing |>
```

 mutate (SUNSCR =
 fct_recode(
 factor (DEQ034D),
 "Always" = "1",
 "Most of the time" = "2",
 "Sometimes" = "3",
 "Rarely" = "4",
 "Never" = "5"))
 nh_fixing |> tabyl(SUNSCR, DEQ034D) |> gt()

SUNSCR	1	2	3	4	5	NA
Always	351	0	0	0	0	0
Most of the time	0	485	0	0	0	0
Sometimes	0	0	831	0	0	0
Rarely	0	0	0	662	0	0
Never	0	0	0	0	1583	0
NA	0	0	0	0	0	19

1.13.6 Creating DEPRDIFF from DPQ100

Variable	Description	Codes	\# NAs
DPQ100	Difficulty depression	$0=$ Not at all difficult $1=$	215
	problems have caused	Somewhat difficult 2 = Very	
		difficult $3=$ Extremely	
	difficult		

```
nh_fixing <- nh_fixing |>
    mutate(DEPRDIFF =
                fct_recode(
                    factor(DPQ100),
                    "Not at all" = "O",
            "Somewhat" = "1",
            "Very" = "2",
            "Extremely" = "3"))
nh_fixing |> tabyl(DEPRDIFF, DPQ100) |> gt()
```

DEPRDIFF	0	1	2	3	NA-
Not at all	3039	0	0	0	0
Somewhat	0	541	0	0	0
Very	0	0	93	0	0
Extremely	0	0	0	43	0
NA	0	0	0	0	215

1.13.7 Creating DIETQUAL from DBQ700

Variable	Description	Codes	\# NAs
DBQ700	How healthy is your	$1=$ Excellent $2=$ Very Good	1
	diet?	$3=$ Good $4=$ Fair $5=$ Poor	

```
nh_fixing <- nh_fixing |>
    mutate(DIETQUAL =
        fct_recode(
            factor(DBQ700),
```

```
    "Excellent" = "1",
    "Very Good" = "2",
    "Good" = "3",
    "Fair" = "4",
    "Poor" = "5"))
nh_fixing |> tabyl(DIETQUAL, DBQ700) |> gt()
```

DIETQUAL	1	2	3	4	5	NA $_{-}$
Excellent	260	0	0	0	0	0
Very Good	0	758	0	0	0	0
Good	0	0	1519	0	0	0
Fair	0	0	0	1082	0	0
Poor	0	0	0	0	311	0
NA	0	0	0	0	0	1

1.13.8 Creating FOODSEC from FSDAD

Variable	Description	Codes	\# NAs
FSDAD	Adult food security	$1=$ Full food security $2=$	231
	category for last 12m	Marginal food security $3=$	
		Low food security $4=$ Very	
		low food security	

```
nh_fixing <- nh_fixing |>
    mutate(FOODSEC =
        fct_recode(
            factor(FSDAD),
            "Full" = "1",
            "Marginal" = "2",
            "Low" = "3",
            "Very Low" = "4"))
nh_fixing |> tabyl(FOODSEC, FSDAD) |> gt()
```

FOODSEC	1	2	3	4	NA_{-}

Full	2247	0	0	0	0
Marginal	0	565	0	0	0
Low	0	0	503	0	0
Very Low	0	0	0	385	0
NA	0	0	0	0	231

1.13.9 Creating SNORE from SLQ030

Variable	Description	Codes	\# NAs
SLQ030	How often do you snore?	$0=$ Never $1=$ Rarely $(1-2$	219
		nights/week $) 2=$	
		Occasionally $(3-4$	
		nights/week $) 3=$ Frequently	
		$(5+$ nights/week $)$	

```
nh_fixing <- nh_fixing |>
    mutate(SNORE =
            fct_recode(
                factor(SLQ030),
                "Never" = "0",
                "Rarely" = "1",
                "Occasionally" = "2",
                "Frequently" = "3"))
```

nh_fixing |> tabyl(SNORE, SLQ030) |> gt()

SNORE	0	1	2	3	NA-
Never	855	0	0	0	0
Rarely	0	959	0	0	0
Occasionally	0	0	700	0	0
Frequently	0	0	0	1198	0
NA	0	0	0	0	219

1.13.10 Creating WTGOAL from WHQ040

Variable	Description	Codes	\# NAs
WHQ040	Like to weigh more, less,	$1=$ More $2=$ Less $3=$ Stay	3
	or same?	about the same	

Since there's a natural ordering here (more then same then less) I'll adapt it using the fct_relevel() function from the forcats package ${ }^{10}$ for this variable.

```
nh_fixing <- nh_fixing |>
        mutate(WTGOAL =
                fct_recode(
                    factor (WHQ040),
                "More" = "1",
                "Less" = "2",
            "Same" = "3")) |>
    mutate(WTGOAL = fct_relevel(WTGOAL, "More", "Same", "Less"))
nh_fixing |> tabyl(WTGOAL, WHQO40) |> gt()
```

WTGOAL	1	2	3	NA -
More	289	0	0	0
Same	0	0	974	0
Less	0	2665	0	0
NA	0	0	0	3

1.14 Dropping Variables

We'll drop the following variables before saving an analytic tibble.

- Our two variables with no variation
- RIDSTATR, OHDEXSTS
- Elements of the PHQ-9 we no longer need
- nvalid_phq, DPQ010, DPQ020, DPQ030, DPQ040
- DPQ050, DPQ060, DPQ070, DPQ080, DPQ090

[^9]- Multi-categorical variables that we renamed
- RIDRETH3, DMDEDUC2, OHAREC, HUQ010, DEQ034D
- DPQ100, DBQ700, FSDAD, SLQ030, WHQ040

```
nh_fixing <- nh_fixing |>
    select(-c(RIDSTATR, OHDEXSTS, nvalid_phq9, DPQ010,
                    DPQ020, DPQ030, DPQ040, DPQ050, DPQ060,
                    DPQ070, DPQ080, DPQ090, RIDRETH3, DMDEDUC2,
                    OHAREC, HUQ010, DEQ034D, DPQ100, DBQ700,
                        FSDAD, SLQO30, WHQO40))
```


1.15 Resorting Variables

I'd like to have the variables in the following order:

```
nh432 <- nh_fixing |>
    select(SEQN, AGE, RACEETH, EDUC, SEX, INSURNOW,
        NOINSUR, SROH, WEIGHT, HEIGHT, WAIST,
        SBP, DBP, PULSE1, PULSE2, WBC, PLATELET, HSCRP,
        DR_LOSE, DR_EXER, NOW_LOSE, NOW_EXER,
        ESTHT, ESTWT, WTGOAL, DIETQUAL, FOODSEC,
        WORK_V, VIGWK_D, REC_V, VIGREC_D, SEDATE,
        PHQ9, PHQ9_CAT, DEPRDIFF, MENTALH,
        SLPWKDAY, SLPWKEND, SLPTROUB, SNORE,
        HOSPITAL, EVERALC, DRINKS, CIG100, SMOKE30,
        AWAYWORK, AWAYREST, AWAYBAR, DENTAL, FLOSS,
        EVERPREG, PREGS, SUNSCR, WTINTPRP, WTMECPRP)
```


1.16 nh 432 analytic tibble

```
    nh432
# A tibble: 3,931 x 55
    SEQN AGE RACEETH EDUC SEX INSURNOW NOINSUR SROH WEIGHT HEIGHT WAIST
    <chr> <dbl> <fct> <fct> <fct> <dbl> <dbl> <fct> <dbl> <dbl> <dbl>
1109271 49 Non-H Wh~ 9th ~ Male 0 Fair 98.8 182. 120.
2 109273 36 Non-H Wh~ Some~ Male 1 1 Good 74.3 184. 86.8
```


1.16.1 Saving the tibble as nh432.Rds

```
write_rds(nh432, "data/nh432.Rds")
```


2 Codebook for nh432

2.1 R Setup

```
knitr::opts_chunk$set(comment = NA)
library(janitor)
library(gt)
library(gtsummary)
library(Hmisc)
library(mosaic)
library(naniar)
library(tidyverse)
theme_set(theme_bw())
```


2.1.1 Data Load

```
nh432 <- read_rds("data/nh432.Rds")
```


2.2 Quantitative Variables in nh432

```
t1_quantitative <- df_stats(~ AGE + WEIGHT + HEIGHT + WAIST + SBP + DBP +
    PULSE1 + PULSE2 + WBC + PLATELET + HSCRP +
    ESTHT + ESTWT + VIGWK_D + VIGREC_D + SEDATE + PHQ9 +
    SLPWKDAY + SLPWKEND + DRINKS + SMOKE30 +
    FLOSS + PREGS, data = nh432) |>
    mutate(across(.cols = -c(response, n, missing),
        round_half_up, digits = 1)) |>
    rename(med = median, "NA" = missing)
```

```
t1_quantitative |>
    mutate(description =
        c("Age (years)", "Weight (kg)", "Height (cm)",
                        "Waist circumference (cm)", "Systolic BP (mm Hg)",
                        "Diastolic BP (mm Hg)", "1st Pulse (beats/min)",
                        "2nd Pulse (beats/min)", "White Blood Cell Count (1000 cells/uL)",
                        "Platelets (1000 cells/uL)",
                        "High-Sensitivity C-Reactive Protein (mg/L)",
                        "Self Estimate: Height (in)", "Self-Estimate: Weight (lb)",
                        "Vigorous Work per week (days)",
                "Vigorous Recreation per week (days)",
                    "Sedentary Activity per day (minutes)",
            "PHQ-9 Depression Screener Score (points)",
            "Average weekday sleep (hours)", "Average weekend sleep (hours)",
            "Average Alcohol per day (drinks)",
            "Days smoked cigarette in last 30",
            "Days Flossed in last 7", "Pregnancies")) |>
    select(response, description, everything()) |>
    gt() |>
    tab_header(title = "Quantitative Variables in nh432")
```

Quantitative Variables in nh432

response	description	min	Q1	med	Q3	max	mean
AGE	Age (years)	30.0	37.0	45.0	53.0	59.0	44.8
WEIGHT	Weight (kg)	36.9	69.3	82.1	99.1	254.3	86.3
HEIGHT	Height (cm)	135.3	160.0	166.9	174.7	198.7	167.4
WAIST	Waist circumference (cm)	57.9	89.1	99.2	111.7	178.0	101.5
SBP	Systolic BP (mm Hg)	69.0	110.0	120.0	131.0	222.0	121.5
DBP	Diastolic BP (mm Hg)	31.0	69.0	76.0	84.0	136.0	77.0
PULSE1	1st Pulse (beats/min)	38.0	62.0	69.0	77.0	126.0	70.3
PULSE2	2nd Pulse (beats/min)	37.0	63.0	70.0	78.0	121.0	71.0
WBC	White Blood Cell Count (1000 cells/uL)	2.3	5.7	6.9	8.4	22.8	7.3
PLATELET	Platelets (1000 cells/uL)	47.0	210.0	246.0	290.0	818.0	253.3
HSCRP	High-Sensitivity C-Reactive Protein (mg/L)	0.1	0.9	2.1	4.7	182.8	4.3
ESTHT	Self Estimate: Height (in)	50.0	63.0	66.0	69.0	81.0	66.5
ESTWT	Self-Estimate: Weight (lb)	86.0	150.0	180.0	216.0	578.0	188.1
VIGWK_D	Vigorous Work per week (days)	0.0	0.0	0.0	2.0	7.0	1.2
VIGREC_D	Vigorous Recreation per week (days)	0.0	0.0	0.0	1.0	7.0	0.9
SEDATE	Sedentary Activity per day (minutes)	2.0	180.0	300.0	480.0	1320.0	332.7
PHQ9	PHQ-9 Depression Screener Score (points)	0.0	0.0	2.0	5.0	26.0	3.3

SLPWKDAY	Average weekday sleep (hours)	2.0	6.5	7.5	8.0	14.0	7.4
SLPWKEND	Average weekend sleep (hours)	2.0	7.0	8.0	9.0	14.0	8.2
DRINKS	Average Alcohol per day (drinks)	0.0	1.0	2.0	3.0	15.0	2.3
SMOKE30	Days smoked cigarette in last 30	0.0	0.0	0.0	5.0	30.0	6.8
FLOSS	Days Flossed in last 7	0.0	0.0	3.0	7.0	7.0	3.5
PREGS	Pregnancies	0.0	2.0	3.0	4.0	11.0	3.0

2.3 Two-Category (1/0) Variables in nh432

```
nh_dich_vars <- nh432 |>
    select(HOSPITAL, MENTALH, EVERALC, INSURNOW, NOINSUR, DR_LOSE,
            DR_EXER, NOW_LOSE, NOW_EXER, WORK_V, REC_V, EVERPREG,
            SLPTROUB, CIG100, AWAYWORK, AWAYREST, AWAYBAR)
temp1 <- nh_dich_vars |> summarise(across(.cols = everything(),
                                    ~ sum(.x, na.rm = TRUE)))
temp2 <- nh_dich_vars |> summarise(across(.cols = everything(),
                                    ~ round_half_up(100*mean(.x, na.rm = TRUE), 1)))
temp3 <- nh_dich_vars |> summarise(across(.cols = everything(),
                                    ~ n_miss(.x)))
nh_dichotomous_summary <- bind_rows(temp1, temp2, temp3) |>
    mutate(summary = c("Yes", "% Yes", "# NA")) |>
    relocate(summary) |>
    pivot_longer(!summary, names_to = "variable") |>
    pivot_wider(names_from = summary) |>
    mutate(Description =
                c("Overnight hospital patient in past 12m?",
                    "Seen mental health professional past 12m?",
                "Ever had a drink of alcohol?",
            "Covered by health insurance now?",
            "Time when no insurance in past year?",
            "Doctor said to control/lose weight past 12m?",
            "Doctor said to exercise in past 12m?",
            "Are you now controlling or losing weight?",
            "Are you now increasing exercise?",
            "Vigorous work activity for }10\textrm{min}/week?"
            "Vigorous recreational activity for 10 min/week?",
```

```
"Ever been pregnant?",
"Ever told a doctor you had trouble sleeping?",
"Smoked at least }100\mathrm{ cigarettes in your life?",
"Last 7 days worked at a job not at home?",
"Last 7 days spent time in a restaurant?",
"Last 7 days spent time in a bar?"))
```

nh_dichotomous_summary |>
gt()

variable	Yes	\% Yes	\# NA	Description
HOSPITAL	343	8.7	0	Overnight hospital patient in past $12 \mathrm{~m} ?$
MENTALH	475	12.1	2	Seen mental health professional past $12 \mathrm{~m} ?$
EVERALC	3393	91.1	205	Ever had a drink of alcohol?
INSURNOW	3169	80.8	10	Covered by health insurance now?
NOINSUR	1041	26.6	16	Time when no insurance in past year?
DR_LOSE	1189	30.3	1	Doctor said to control/lose weight past $12 \mathrm{~m} ?$
DR_EXER	1680	42.7	1	Doctor said to exercise in past $12 \mathrm{~m} ?$
NOW_LOSE	2485	63.2	2	Are you now controlling or losing weight?
NOW_EXER	2369	60.3	1	Are you now increasing exercise?
WORK_V	1116	28.4	4	Vigorous work activity for 10 min/week?
REC_V	1056	26.9	0	Vigorous recreational activity for 10 min/week?
EVERPREG	1747	89.2	1972	Ever been pregnant?
SLPTROUB	1159	29.5	3	Ever told a doctor you had trouble sleeping?
CIG100	1576	40.1	1	Smoked at least 100 cigarettes in your life?
AWAYWORK	2663	67.7	0	Last 7 days worked at a job not at home?
AWAYREST	2283	58.1	2	Last 7 days spent time in a restaurant?
AWAYBAR	605	15.4	0	Last 7 days spent time in a bar?

2.4 Factor Variables in nh432

```
nh_factor_vars <- nh432 |>
    select(where(~ is.factor(.x)))
tbl_summary(nh_factor_vars,
    label = c(RACEETH = "RACEETH: Race/Ethnicity",
        EDUC = "EDUC: Educational Attainment",
        SROH = "SROH: Self-reported Overall Health",
        WTGOAL = "WTGOAL: Like to weigh more/less/the same?",
```

```
    DIETQUAL = "DIETQUAL: How healthy is your diet?",
    FOODSEC = "FOODSEC: Adult food security (last 12m)",
    PHQ9_CAT = "PHQ9_CAT: Depression Screen Category",
    DEPRDIFF = "DEPRDIFF: Difficulty with Depression?",
    SNORE = "SNORE: How often do you snore?",
    DENTAL = "DENTAL: Recommendation for Dental Care?",
    SUNSCR = "SUNSCR: Use sunscreen on very sunny day?"),
missing_text = "(# NA)")
```

```
Table printed with `knitr::kable()`, not {gt}. Learn why at
https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.
```

Characteristic	$\mathbf{N}=\mathbf{3 , 9 3 1}$
RACEETH: Race/Ethnicity	
Non-H White	$1,192(30 \%)$
Non-H Black	$1,049(27 \%)$
Hispanic	$903(23 \%)$
Non-H Asian	$588(15 \%)$
Other Race	$199(5.1 \%)$
EDUC: Educational Attainment	
Less than 9th Grade	$272(6.9 \%)$
9th - 11th Grade	$424(11 \%)$
High School Grad	$850(22 \%)$
Some College / AA	$1,287(33 \%)$
College Grad	$1,097(28 \%)$
\#\# NA)	1
SEX	$2,094(53 \%)$
Female	$1,837(47 \%)$
Male	
SROH: Self-reported Overall Health	$495(13 \%)$
Excellent	$1,071(27 \%)$
Very Good	$1,462(37 \%)$
Good	$765(19 \%)$
Fair	$138(3.5 \%)$
Poor	
WTGOAL: Like to weigh more/less/the same?	$289(7.4 \%)$
More	$974(25 \%)$
Same	$2,665(68 \%)$
Less	

Characteristic	$\mathbf{N}=\mathbf{3 , 9 3 1}$
(\# NA)	3
DIETQUAL: How healthy is your diet?	$260(6.6 \%)$
Excellent	$758(19 \%)$
Very Good	$1,519(39 \%)$
Good	$1,082(28 \%)$
Fair	$311(7.9 \%)$
Poor	1
(\# NA)	$2,247(61 \%)$
FOODSEC: Adult food security (last 12m)	$565(15 \%)$
Full	$503(14 \%)$
Marginal	$385(10 \%)$
Low	231
Very Low	$2,748(74 \%)$
(\# NA)	$621(17 \%)$
PHQ9_CAT: Depression Screen Category	$220(5.9 \%)$
minimal	$91(2.4 \%)$
mild	$38(1.0 \%)$
moderate	213
moderately severe	
severe	$3,039(82 \%)$
(\# NA)	$541(15 \%)$
DEPRDIFF: Difficulty with Depression?	$93(2.5 \%)$
Not at all	$43(1.2 \%)$
Somewhat	215
Very	
Extremely	$855(23 \%)$
(\# NA)	$959(26 \%)$
SNORE: How often do you snore?	$700(19 \%)$
Never	$1,198(32 \%)$
Rarely	219
Occasionally	$234(6.0 \%)$
Frequently	$1,671(43 \%)$
(\# NA)	$2,026(52 \%)$
DENTAL: Recommendation for Dental Care?	
See dentist urgently	$351(9.0 \%)$
See dentist soon	$485(12 \%)$
Regular Routine	$831(21 \%)$
SUNSCR: Use sunscreen on very sunny day?	
Always	
Most of the time	
Sometimes	

Characteristic	$\mathbf{N}=\mathbf{3 , 9 3 1}$
Rarely	$662(17 \%)$
Never	$1,583(40 \%)$
(\# NA)	19

2.5 Detailed Numerical Description for nh432

```
describe(nh432)
nh432
55 Variables 3931 Observations
```

```
SEQN
\begin{tabular}{rrr}
\(n\) & missing distinct \\
3931 & 0 & 3931
\end{tabular}
```

lowest : 109271109273109284109291 109292, highest: 124807124810124813124815124818

AGE							
n	missing	distinct	Info	Mean	Gmd	. 05	. 10
3931	0	30	0.999	44.79	10.09	31	33
. 25	. 50	. 75	. 90	. 95			
37	45	53	57	58			
lowest : 30313233 34, highest: 5556575859							

RACEETH

n	missing distinct	
3931	0	5

Value	Non-H White	Non-H Black	Hispanic	Non-H Asian	Other Race
Frequency	1192	1049	903	588	199
Proportion	0.303	0.267	0.230	0.150	0.051

EDUC

```
        n missing distinct
    3930 1 5
```

Value	Less than 9th Grade	9th - 11th Grade	High School Grad
Frequency	272	424	850
Proportion	0.069	0.108	0.216
Value	Some College / AA	College Grad	
Frequency	1287	1097	
Proportion	0.327	0.279	

SEX

n	missing distinct	
3931	0	2

Value	Female	Male
Frequency	2094	1837
Proportion	0.533	0.467

INSURNOW						
n	missing distinct	Info	Sum	Mean	Gmd	
3921	10	2	0.465	3169	0.8082	0.3101
nOINSUR						
n	missing distinct	Info	Sum	Mean	Gmd	
3915	16	2	0.586	1041	0.2659	0.3905

SROH

n	missing distinct	
3931	0	5

Value	Excellent	Very Good	Good	Fair	Poor
Frequency	495	1071	1462	765	138
Proportion	0.126	0.272	0.372	0.195	0.035

WEIGHT							
n	missing	distinct	Info	Mean	Gmd	. 05	. 10
3903	28	969	1	86.31	26.59	54.20	58.82
. 25	. 50	. 75	. 90	. 95			
69.30	82.10	99.10	119.30	131.49			
lowest :	36.939	. 439.6	. 839.	, highe	204.4	4.621	242.6

HEIGHT

n	missing	distinct	Info	Mean	Gmd	.05	.10
3901	30	484	1	167.4	11.45	152.0	154.8
.25	.50	.75	.90	.95			
160.0	166.9	174.7	180.8	184.6			

WAIST							
n	missing	distinct	Info	Mean	Gmd	. 05	. 10
3782	149	781	1	101.5	19.68	75.9	80.4
. 25	. 50	. 75	. 90	. 95			
89.1	99.2	111.7	125.4	134.5			

lowest	57.962	. $7 \quad 63.2$	64.9 , highest: 166			11	173.
SBP							
n	missing	distinct	Info	Mean	Gmd	. 05	. 10
3585	346	116	1	121.5	18.61	98	102
. 25	. 50	. 75	. 90	. 95			
110	120	131	143	152			

lowest : $697277 \quad 79$ 80, highest: 199200211219222
DBP

n	missing distinct	Info	Mean	Gmd	.05	.10	
3585	346	81	0.999	77.03	13.01	59.2	63.0
.25	.50	.75	.90	.95			
69.0	76.0	84.0	92.0	97.0			

lowest : $3144 \quad 4546$ 47, highest: 121122126127136

PULSE1							
n	missing	distinct	Info	Mean	Gmd	. 05	. 10
3316	615	76	0.999	70.3	12.92	53	57
. 25	. 50	. 75	. 90	. 95			
62	69	77	86	91			
lowest : 38404142 44, highest: 114115120121126							
PULSE2							
n	missing	distinct	Info	Mean	Gmd	. 05	. 10
3314	617	80	0.999	70.96	12.92	54	57
. 25	. 50	. 75	. 90	. 95			

n	missing	distinct	Info	Sum	Mean
3930	1	2	0.721	1576	0.401

For the frequency table, variable is rounded to the nearest 0

WTMECPRP							
n	missing	distinct	Info	Mean	Gmd	. 05	. 10
3931	0	3701	1	30353	29409	6217	7634
. 25	. 50	. 75	. 90	. 95			
11365	18422	33155	68569	102038			
lowest : 2589.17 2782.74 3003.523009 .533016 .64							
highest: 267064		268879	27395830	308015321574			

2.6 Missingness in nh432

```
miss_case_table(nh432) |> gt()
```

n__miss_in__case	n__cases	pct_cases
0	907	23.0730094
1	533	13.5588909
2	1030	26.2019842
3	591	15.0343424
4	307	7.8097176
5	161	4.0956500
6	87	2.2131773
7	106	2.6965149
8	68	1.7298397
9	18	0.4578988
10	20	0.5087764
11	39	0.9921140
12	27	0.6868481
13	14	0.3561435
14	9	0.2289494
15	14	0.3561435

```
gg_miss_var(nh432)
```


miss_var_summary(nh432) |> gt()

variable	n _miss	pct_miss
PREGS	1975	50.2
EVERPREG	1972	50.2
DRINKS	789	20.1
SMOKE30	726	18.5
PULSE2	617	15.7
PULSE1	615	15.6
SBP	346	8.80
DBP	346	8.80
HSCRP	267	6.79
FOODSEC	231	5.88
SNORE	219	5.57
DEPRDIFF	215	5.47
PHQ9	213	5.42
PHQ9_CAT	213	5.42
EVERALC	205	5.21
WBC	176	4.48
PLATELET	176	4.48
WAIST	149	3.79
ESTHT	95	2.42
ESTWT	68	1.73
SLPWKDAY	34	0.865
SLPWKEND	34	0.865
HEIGHT	30	0.763
WEIGHT	28	0.712
SEDATE	24	0.611
SUNSCR	19	0.483
NOINSUR	16	0.407
INSURNOW	10	0.254
VIGWK_D	5	0.127
WORK_V	4	0.102
FLOSS	4	0.102
WTGOAL	3	0.0763
SLPTROUB	3	0.0763
NOW_LOSE	2	0.0509
MENTALH	2	0.0509
AWAYREST	2	0.0509
EDUC	1	0.0254
DR_LOSE	1	0.0254

DR_EXER	1	0.0254
NOW_EXER	1	0.0254
DIETQUAL	1	0.0254
VIGREC_D	1	0.0254
CIG100	1	0.0254
SEQN	0	0
AGE	0	0
RACEETH	0	0
SEX	0	0
SROH	0	0
REC_V	0	0
HOSPITAL	0	0
AWAYWORK	0	0
AWAYBAR	0	0
DENTAL	0	0
WTINTPRP	0	0
WTMECPRP	0	0

miss_var_table(nh432) |> gt()

n__miss_in__var	n__vars	pct__vars
0	12	21.818182
1	7	12.727273
2	3	5.454545
3	2	3.636364
4	2	3.636364
5	1	1.818182
10	1	1.818182
16	1	1.818182
19	1	1.818182
24	1	1.818182
28	1	1.818182
30	1	1.818182
34	2	3.636364
68	1	1.818182
95	1	1.818182
149	1	1.818182
176	2	3.636364
205	1	1.818182
213	2	3.636364

215	1	1.818182
219	1	1.818182
231	1	1.818182
267	1	1.818182
346	2	3.636364
615	1	1.818182
617	1	1.818182
726	1	1.818182
789	1	1.818182
1972	1	1.818182
1975	1	1.818182

3431 Review: Comparing Means

In this Chapter, we will review some key issues about comparing means, mostly drawn from the 431 course. This and the other Chapters labeled " 431 Review" show elements of the two studies involved in a " 431 Project B" using the pre-pandemic (2017 - March 2020) data from the National Health and Nutrition Examination Survey (NHANES) called nh432 that we developed in Chapter 1 and then summarized in Chapter 2. Note that we'll ignore the issue of sampling weights and assume a "missing completely at random" (MCAR) mechanism in these "431 Review" chapters, so that we can work with complete cases.

The 431 course notes are at https://thomaselove.github.io/431-notes/ and will remain there until June 1.

3.1 R Setup

```
knitr::opts_chunk$set(comment = NA)
library(janitor)
library(broom)
library(car)
library(glue)
library(gt)
library(gtsummary)
library(lmboot)
library(MKinfer)
library(mosaic)
library(naniar)
library(patchwork)
library(rstatix)
library(tidyverse)
theme_set(theme_bw())
```


3.2 Data Ingest

Since we've already got the nh432 file formatted as an R data set, we'll use that.

```
nh432 <- read_rds("data/nh432.Rds")
```


3.3 Testing or Summarizing Normality?

As we'll see, the two most useful strategies for dealing with problematic non-Normality when comparing means are (1) transformation of the outcome to make the assumption of Normality more tenable, and (2) alternate inference approaches (for example, using a bootstrap or rankbased procedure instead of a t test.)

While it is possible to obtain numerical summaries of deviations from Normality, perhaps a measure of skewness (asymmetry) or kurtosis (heavy-tailed behavior), in practical work, I never use such summaries to overrule my assessment of the plots. It's critical instead to focus on the pictures of a distribution, most especially Normal Q-Q plots.

Perhaps the simplest skewness summary is $s k e w_{1}=$ (mean-median)/(standard deviation), where values below -0.2 are meant to indicate (meaningful) left skew, and values above +0.2 indicate (meaningful) right skew. Unfortunately, this approach works poorly with many distributions (for example, multimodal distributions) and so do many other (more sophisticated) measures ${ }^{1}$.

It is also possible to develop hypothesis tests of whether a particular batch of data follows a Normal distribution, for example, the Kolmogorov-Smirnov test ${ }^{2}$, or the Shapiro-Wilk test ${ }^{3}$, but again, I find these to be without value in practical work and cannot recommend their use.

3.4 Comparing Two Means using Paired Samples

Now, we'll demonstrate some approaches to comparing two means coming from paired samples. This will include:

- a paired t test (one-sample t test on the paired differences), which we can obtain from a linear model, or from t.test ()

[^10]These procedures based on the t distribution for paired samples require that the distribution of the sample paired differences is well-approximated by a Normal model. As an alternative without that requirement, we'll focus primarily on a bootstrap comparison (not assuming Normality) from boot.t.test(), which comes from the MKinfer package. It is also possible to generate rank-based inference, such as using the Wilcoxon signed rank approach, but this introduces the major weakness of not estimating the population mean (or even the population median.)

We'll assume a Missing Completely at Random (MCAR) mechanism for missing data, so that a complete case analysis makes sense, and we'll also use functions from the broom package to tidy our output, and from the gt package to help present it in an attractive table.

3.5 Comparing PULSE1 to PULSE2

We have two measurements of pulse rate (in beats per minute) in nh432 for each participant. Let's compare the two for all participants with two PULSE readings. Since we have a value of PULSE1 and PULSE2 for each participant, it makes sense to treat these as paired samples, and study the paired differences in pulse rate.

```
dat1 <- nh432 |> select(SEQN, PULSE1, PULSE2) |>
    drop_na() |>
    mutate(PULSEDIFF = PULSE2 - PULSE1)
summary(dat1 |> select(-SEQN))
```

PULSE1	PULSE2	PULSEDIFF
n. : 38.0	Min. : 37.00	Min. : -22.0000
1st Qu.: 62.0	1st Qu.: 63.00	1st Qu.: -1.0000
Median : 69.0	Median : 70.00	Median : 1.0000
Mean : 70.3	Mean : 70.96	Mean : 0.6533
3rd Qu.: 77.0	3rd Qu.: 78.00	3rd Qu.: 2.0000
Max. $: 126.0$	Max. :121.00	Max. : 26.

```
df_stats(~ PULSE1 + PULSE2 + PULSEDIFF, data = dat1) |>
    mutate(across(.cols = c(mean, sd), \(x) num(x, digits = 2))) |>
    gt()
```

response	min	Q1	median	Q3	max	mean	sd	n	missing
PULSE1	38	62	69	77	126	70.30	11.61	3314	0

PULSE2	37	63	70	78	121	70.96	11.57	3314	0
PULSEDIFF	-22	-1	1	2	26	0.65	3.43	3314	0

3.5.1 Distribution of Paired Differences

```
p1 <- ggplot(dat1, aes(sample = PULSEDIFF)) +
    geom_qq(col = "dodgerblue") + geom_qq_line(col = "navy") +
    theme(aspect.ratio = 1) +
    labs(title = "Normal Q-Q plot")
p2 <- ggplot(dat1, aes(x = PULSEDIFF)) +
    geom_histogram(aes(y = after_stat(density)),
        bins = 25, fill = "dodgerblue", col = "white") +
    stat_function(fun = dnorm,
        args = list(mean = mean(dat1$PULSEDIFF),
                                    sd = sd(dat1$PULSEDIFF)),
            col = "navy", linewidth = 1.5) +
    labs(title = "Histogram and Normal Density")
p3 <- ggplot(dat1, aes(x = PULSEDIFF, y = "")) +
    geom_boxplot(fill = "dodgerblue", outlier.color = "dodgerblue") +
    stat_summary(fun = "mean", geom = "point",
        shape = 23, size = 3, fill = "white") +
    labs(title = "Boxplot with mean", y = "")
p1 + (p2 / p3 + plot_layout(heights = c(4,1))) +
    plot_annotation(title = "Pulse 2 - Pulse 1 difference in nh432",
        subtitle = glue(nrow(dat1), " NHANES Participants ages 30-59 in nh432 da
```

Pulse 2 - Pulse 1 difference in nh432
3314 NHANES Participants ages 30-59 in nh432 data

These data appear to come from a distribution that is essentially symmetric, but extremely heavy-tailed, with many outlier candidates on both the low and high end of the distribution. It seems unwise to assume a Normal distribution for these differences in pulse rate.

3.5.2 Using t.test to obtain a $\mathbf{9 0 \%} \mathbf{C I}$ for the mean pulse difference

Note that I use 90% as my confidence level here, mostly to make sure that we don't always simply default to 95% without engaging our brains.

```
tt1 <- t.test(dat1$PULSEDIFF, conf.level = 0.90)
tt1
```

 One Sample t-test
 data: dat1\$PULSEDIFF
$\mathrm{t}=10.98$, $\mathrm{df}=3313$, p -value $<2.2 \mathrm{e}-16$
alternative hypothesis: true mean is not equal to 0
90 percent confidence interval:
0.55539890 .7511792
sample estimates:
mean of x
0.6532891

```
tidy(tt1, conf.int = TRUE, conf = 0.90) |>
    select(estimate, low.90 = conf.low, hi.90 = conf.high,
            "Paired t" = statistic, p.value, method) |>
    mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
    gt() |>
    tab_header(title = "Pulse 2 - Pulse 1 Difference Estimate with 90% T-based CI",
                subtitle = glue(nrow(dat1), " NHANES Participants ages 30-59 in nh432 data"))
```

Pulse 2 - Pulse 1 Difference Estimate with 90\% T-based CI 3314 NHANES Participants ages 30-59 in nh432 data

estimate	low.90	hi. 90	Paired t	p.value	method
0.653	0.555	0.751	10.980	0.000	One Sample t-test

3.5.3 Using linear regression to obtain a $\mathbf{9 0 \%} \mathbf{C I}$ for the mean pulse difference

A linear regression model predicting the paired differences with an intercept alone produces the same result as the paired t test.

```
lm1 <- lm(PULSEDIFF ~ 1, data = dat1)
summary(lm1)
```

Call:
lm(formula $=$ PULSEDIFF ~ 1, data $=$ dat1)

Residuals:

Residual standard error: 3.425 on 3313 degrees of freedom

```
tidy(lm1, conf.int = TRUE, conf = 0.90) |>
    mutate(method = c("Linear Model")) |>
    select(estimate, low.90 = conf.low, hi.90 = conf.high,
            "Paired t" = statistic, p.value, method) |>
    mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
    gt() |>
    tab_header(title = "Pulse 2 - Pulse 1 Difference Estimate with 90% T-based CI",
            subtitle = glue(nrow(dat1), " NHANES Participants ages 30-59 in nh432 data"))
```

Pulse 2 - Pulse 1 Difference Estimate with 90\% T-based CI
3314 NHANES Participants ages 30-59 in nh432 data

estimate	low.90	hi.90	Paired t	p.value	method
0.653	0.555	0.751	10.980	0.000	Linear Model

3.5.4 Using the bootstrap to obtain a $\mathbf{9 0 \%} \mathbf{C I}$ for the mean pulse difference

This is a better choice than the t test if the distribution of the paired differences veer far away from a Normal distribution, but you are still interested in making inferences about the population mean. This is a different approach to obtaining a bootstrap than I have used in the past, but I prefer it because it works well with the tidy() function in the broom package.

```
set.seed(4321)
bs1 <- boot.t.test(dat1$PULSEDIFF, conf.level = 0.90,
    boot = TRUE, R = 999)
bs1
```

 Bootstrap One Sample t-test
 data: dat1\$PULSEDIFF
number of bootstrap samples: 999
bootstrap p-value < 0.001001
bootstrap mean of $x(S E)=0.6554904$ (0.05954107)
90 percent bootstrap percentile confidence interval:
0.55546170 .7526554

```
Results without bootstrap:
t = 10.98, df = 3313, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
90 percent confidence interval:
    0.5553989 0.7511792
sample estimates:
mean of x
0.6532891
```

```
tidy(bs1, conf.int = TRUE, conf = 0.90) |>
```

tidy(bs1, conf.int = TRUE, conf = 0.90) |>
select(estimate, low. }90=\mathrm{ conf.low, hi. }90=conf.high
select(estimate, low. }90=\mathrm{ conf.low, hi. }90=conf.high
"Bootstrap t" = statistic, p.value, method) |>
"Bootstrap t" = statistic, p.value, method) |>
mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
gt() |>
gt() |>
tab_header(title = "Pulse 2 - Pulse 1 Difference Estimate with 90% Bootstrap CI",
tab_header(title = "Pulse 2 - Pulse 1 Difference Estimate with 90% Bootstrap CI",
subtitle = glue(nrow(dat1), " NHANES Participants ages 30-59 in nh432 data"))

```
        subtitle = glue(nrow(dat1), " NHANES Participants ages 30-59 in nh432 data"))
```

Pulse 2 - Pulse 1 Difference Estimate with 90% Bootstrap CI
3314 NHANES Participants ages 30-59 in nh432 data

estimate	low. 90	hi. 90	Bootstrap t	p.value	method
0.653	0.555	0.751	10.980	0.000	Bootstrap One Sample t-test

Given our large sample size, it is perhaps not overly surprising that even a small difference in mean pulse rate (0.653 beats per minute) turns out to have a 90% confidence interval well above the value (0) that would occur if there were no difference at all between the groups.

3.5.5 Wilcoxon signed rank approach to comparing pulse rates

We can obtain a 90% confidence interval for the pseudo-median of our paired differences in pulse rate with the Wilcoxon signed rank approach.

```
wt1 <- wilcox.test(dat1$PULSEDIFF, conf.int = TRUE, conf.level = 0.90)
wt1
```

Wilcoxon signed rank test with continuity correction

```
data: dat1$PULSEDIFF
V = 2449203, p-value < 2.2e-16
alternative hypothesis: true location is not equal to 0
90 percent confidence interval:
    0.5000466 0.9999290
sample estimates:
(pseudo)median
    0.9999809
```

But this is of limited value, even though it doesn't assume Normality of the distribution of paired differences, because the summary statistic is a pseudo-median ${ }^{4}$, which isn't straightforward to interpret, unless the true distribution of the paired differences is symmetric, in which case the pseudo-median and the median have the same value.

Let's consider another example using two paired samples to compare means, this time with a somewhat smaller sample size.

3.6 Comparing WEIGHT to ESTWT

We have two assessments of each participant's weight in nh432: their WEIGHT (as measured using a scale, in kilograms) and their ESTWT (self-reported weight via questionnaire, in pounds.) First, let's create a data set containing those values, and converting pounds to kilograms for the ESTWT results so that we can compare the two assessments fairly. To shrink the sample size a bit, let's only look at people whose age is 43 , and who describe their overall health as either Good or Fair.

```
dat2 <- nh432 |> select(SEQN, AGE, SROH, WEIGHT, ESTWT) |>
    filter(AGE == 43, SROH %in% c("Good", "Fair")) |>
    drop_na() |>
    mutate(ESTWTKG = ESTWT*0.45359,
            WTDIFF = WEIGHT - ESTWTKG)
glimpse(dat2)
```

Rows: 70
Columns: 7

```
$ SEQN <chr> "109342", "109602", "109805", "110286", "110645", "111149", "1~
$ AGE <dbl> 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43~
```

[^11]```
$ SROH <fct> Good, Good, Good, Fair, Good, Good, Good, Good, Good, Fair, Go~
$ WEIGHT <dbl> 92.1, 76.5, 133.0, 86.8, 119.3, 74.1, 75.8, 106.8, 102.1, 77.0~
$ ESTWT <dbl> 200, 167, 260, 198, 230, 145, 167, 240, 223, 172, 150, 265, 22~
$ ESTWTKG <dbl> 90.71800, 75.74953, 117.93340, 89.81082, 104.32570, 65.77055, ~
$ WTDIFF <dbl> 1.38200, 0.75047, 15.06660, -3.01082, 14.97430, 8.32945, 0.050~
df_stats(~ WEIGHT + ESTWTKG + WTDIFF, data = dat2) |>
 mutate(across(.cols = -c(response, n, missing), \(x) num(x , digits = 3))) |>
 gt()
```

| response | $\min$ | Q1 | median | Q3 | $\max$ | $\operatorname{mean}$ | sd | n | missing |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: |
| WEIGHT | 36.900 | 74.525 | 89.400 | 106.175 | 204.600 | 93.040 | 29.211 | 70 | 0 |
| ESTWTKG | 45.359 | 74.842 | 89.130 | 103.759 | 204.115 | 92.532 | 27.869 | 70 | 0 |
| WTDIFF | -9.871 | -2.256 | -0.028 | 1.923 | 15.067 | 0.508 | 4.671 | 70 | 0 |

### 3.6.1 Plotting The Paired Difference in Weight

```
p1 <- ggplot(dat2, aes(sample = WTDIFF)) +
 geom_qq(col = "seagreen") + geom_qq_line(col = "deeppink") +
 theme(aspect.ratio = 1) +
 labs(title = "Normal Q-Q plot")
p2 <- ggplot(dat2, aes(x = WTDIFF)) +
 geom_histogram(aes(y = after_stat(density)),
 bins = 15, fill = "seagreen", col = "white") +
 stat_function(fun = dnorm,
 args = list(mean = mean(dat2$WTDIFF),
 sd = sd(dat2$WTDIFF)),
 col = "deeppink", linewidth = 1.5) +
 labs(title = "Histogram and Normal Density")
p3 <- ggplot(dat2, aes(x = WTDIFF, y = "")) +
 geom_boxplot(fill = "seagreen", outlier.color = "seagreen") +
 stat_summary(fun = "mean", geom = "point",
 shape = 23, size = 3, fill = "white") +
 labs(title = "Boxplot with mean", y = "")
p1 + (p2 / p3 + plot_layout(heights = c(4,1))) +
 plot_annotation(title = "Measured - Self-reported Weight (in kilograms)",
```

```
 subtitle = glue(nrow(dat2), " participants in Good or Fair Health aged
```

Measured - Self-reported Weight (in kilograms)
70 participants in Good or Fair Health aged 43 in nh432


As we saw with the differences in pulse rate, the differences in weight for this sample appear to come from a distribution that might be symmetric, but that still has several outlier candidates, especially on the high end of the distribution. We may want to consider whether the assumption of a t-based confidence interval is reasonable here, and whether we might be better off using a bootstrap approach.

### 3.6.2 t.test $\mathbf{9 0 \%} \mathbf{C l}$ for the mean weight difference

```
tt2 <- t.test(dat2$WTDIFF, conf.level = 0.90)
tidy(tt2, conf.int = TRUE, conf = 0.90) |>
 select(estimate, low.90 = conf.low, hi. }90=conf.high
 "Paired t" = statistic, p.value, method) |>
 mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
 gt() |>
 tab_header(title = "Measured - Self-reported Weight with 90% T-based CI",
 subtitle = glue(nrow(dat2), " NHANES Participants aged 43 in Good or Fair Hea
```

Measured - Self-reported Weight with $90 \%$ T-based CI
70 NHANES Participants aged 43 in Good or Fair Health in nh432 data

| estimate | low.90 | hi.90 | Paired t | p.value | method |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 0.508 | -0.423 | 1.438 | 0.909 | 0.366 | One Sample t-test |

### 3.6.3 Linear Regression: $\mathbf{9 0 \%} \mathbf{C I}$ for mean weight difference

```
lm2 <- lm(WTDIFF ~ 1, data = dat2)
tidy(lm2, conf.int = TRUE, conf = 0.90) |>
 mutate(method = c("Linear Model")) |>
 select(estimate, low.90 = conf.low, hi. }90=conf.high
 "Paired t" = statistic, p.value, method) |>
 mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
 gt() |>
 tab_header(title = "Measured - Self-reported Weight with 90% T-based CI",
 subtitle = glue(nrow(dat2), " NHANES Participants aged 43 in Good or Fair Hea
```

Measured - Self-reported Weight with 90\% T-based CI 70 NHANES Participants aged 43 in Good or Fair Health in nh 432 data

| estimate | low.90 | hi.90 | Paired t | p.value | method |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 0.508 | -0.423 | 1.438 | 0.909 | 0.366 | Linear Model |

### 3.6.4 Bootstrap $90 \% \mathrm{CI}$ for the mean weight difference

```
set.seed(4322)
bs2 <- boot.t.test(dat2$WTDIFF, conf.level = 0.90,
 boot = TRUE, R = 999)
tidy(bs2, conf.int = TRUE, conf = 0.90) |>
 select(estimate, low. 90 = conf.low, hi.90 = conf.high,
 "Bootstrap t" = statistic, p.value, method) |>
 mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
 gt() |>
 tab_header(title = "Measured - Self-reported Weight",
 subtitle = "with 90% Bootstrap CI") |>
```

```
tab_footnote(footnote = glue(nrow(dat1), " NHANES Participants age 43 in Good or Fair He
```

Measured - Self-reported Weight
with $90 \%$ Bootstrap CI

| estimate | low. 90 | hi. 90 | Bootstrap t | p.value | method |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 0.508 | -0.423 | 1.438 | 0.909 | 0.366 | Bootstrap One Sample t-test |

3314 NHANES Participants age 43 in Good or Fair Health in nh432 data
In light of the clear issue with outliers in the plots of the weight differences, I think I would choose the bootstrap confidence interval, which clearly includes both negative and positive values as plausible estimates of the population mean difference.

### 3.6.5 Wilcoxon signed rank approach to comparing weight estimates

We can obtain a $90 \%$ confidence interval for the pseudo-median of our paired differences in weight with the Wilcoxon signed rank approach.

```
wt2 <- wilcox.test(dat2$WTDIFF, conf.int = TRUE, conf.level = 0.90)
wt2
 Wilcoxon signed rank test with continuity correction
data: dat2$WTDIFF
V = 1262, p-value = 0.9115
alternative hypothesis: true location is not equal to 0
90 percent confidence interval:
 -0.6347756 0.7941699
sample estimates:
(pseudo)median
 0.06155979
```

But this is of limited value, even though it doesn't assume Normality of the distribution of paired differences, because the summary statistic is a pseudo-median ${ }^{5}$, which isn't straightforward to interpret, unless the true distribution of the paired differences is symmetric, in which case the pseudo-median and the median have the same value.

[^12]
### 3.7 Comparing Two Means using Independent Samples

Now, we'll demonstrate some approaches to comparing two means coming from independent samples. This will include:

- a pooled t test ( t test assuming equal population variances), which we can obtain from a linear model, or from $t$.test ()
- a Welch t test ( t test not assuming equal population variances), from t . test ()

Each of these $t$ tests requires the distribution of each of our two independent samples to be well-approximated by a Normal model. As an alternative without that requirement, we'll focus on a bootstrap comparison (not assuming equal variances or Normality) from boot.t.test () (again from the MKinfer package.) Once more, it is also possible to generate rank-based inference, such as using the Wilcoxon-Mann-Whitney rank sum approach, but again this does not provide us with estimates of either the difference in population means or medians, which limits its utility.

### 3.8 Comparing White Blood Cell Count by Hospitalization Status

Now, we'll use independent samples to compare subjects who were hospitalized in the past year to those who were not, in terms of their white blood cell count. The normal range of WBCs in the blood is 4.5 to 11 on the scale ( 1000 cells per microliter) our data is available.

### 3.8.1 Exploring the Data

```
dat3 <- nh432 |>
 select(SEQN, HOSPITAL, WBC) |>
 drop_na()
ggplot(dat3, aes(x = factor(HOSPITAL), y = WBC)) +
 geom_violin(aes(fill = factor(HOSPITAL))) +
 geom_boxplot(width = 0.3, notch = TRUE) +
 stat_summary(aes(fill = factor(HOSPITAL)), fun = "mean", geom = "point",
 shape = 23, size = 3) +
 guides(fill = "none", col = "none") +
 scale_fill_viridis_d(option = "cividis", alpha = 0.3) +
 coord_flip() +
 labs(x = "Hospitalized in Past Year? (0 = No, 1 = Yes)",
 y = "White blood cell count (1000 cells / uL)",
 title = "White Blood Cell Count by Hospitalization Status",
```

```
subtitle = glue(nrow(dat3), " NHANES participants in nh432"))
```



Each of these distributions shows some signs of right skew, or at least more than a few outlier candidates on the upper end of the white blood cell count's distribution, according to the boxplot. A pair of Normal Q-Q plots should help clarify issues for us.

```
ggplot(dat3, aes(sample = WBC)) +
 geom_qq(aes(col = factor(HOSPITAL))) + geom_qq_line(col = "red") +
 facet_wrap(~ HOSPITAL, labeller = "label_both") +
 guides(col = "none") +
 scale_color_viridis_d(option = "cividis", end = 0.5) +
 labs(x = "Expectation Under Standard Normal Distribution",
 y = "Observed White Blood Cell Count (1000 cells/uL)",
 title = "Normal Q-Q plots of White Blood Cell Count",
 subtitle = "By Hospitalization Status in the Past Year",
 caption = glue(nrow(dat3), " NHANES participants in nh432"))
```



It seems unreasonable to assume that each of these samples comes from a distribution that is well-approximated by the Normal. There's just too much skew here. Here are some key numerical summaries of the data in each sample.

```
favstats(WBC ~ HOSPITAL, data = dat3) |>
 mutate(across(.cols = c(mean, sd), \(x) num(x, digits = 3))) |>
 gt()
```

| HOSPITAL | min | Q1 | median | Q3 | max | mean | sd | n | missing |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 2.3 | 5.7 | 7.0 | 8.4 | 22.8 | 7.246 | 2.170 | 3430 | 0 |
| 1 | 2.5 | 5.6 | 6.9 | 8.7 | 17.1 | 7.332 | 2.392 | 325 | 0 |

### 3.8.2 Pooled $\mathbf{t}$ test (assumes equal variances) via linear model

The pooled t test for comparison of two population means using independent samples assumes:

- that the WBC (outcome) in each of the two HOSPITAL (exposure) groups follows a Normal distribution, and
- that the population variances are equal in the two groups

The "equal population variances" assumption can be relaxed and a pooled $t$ test used if we have a balanced design, with the same number of subjects in each exposure group.

In our setting, we shouldn't be particularly comfortable with the assumption of Normality, as mentioned above. Were we able to get past that, though, we can see that the two distributions have fairly similar sample variances (remember this is just the square of the standard deviation.) The sample sizes are wildly different, with many more non-hospitalized subjects than hospitalized ones.

For completeness, though, we'll start by running the pooled t test.

```
lm3 <- lm(WBC ~ HOSPITAL, data = dat3)
summary(lm3)
Call:
lm(formula = WBC ~ HOSPITAL, data = dat3)
Residuals:
 Min 1Q Median 3Q Max
-4.9463-1.5463-0.3463 1.1537 15.5537
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept)

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.19 on 3753 degrees of freedom
Multiple R-squared: 0.000121, Adjusted R-squared: -0.0001454
F-statistic: 0.4542 on 1 and 3753 DF, p-value: 0.5004
 confint(lm3, level = 0.90)
 5% 95 %
(Intercept) 7.1847964 7.3078567
HOSPITAL -0.1234734 0.2948204
```

```
tidy(lm3, conf.int = TRUE, conf.level = 0.90) |>
 filter(term == "HOSPITAL") |>
 mutate(method = "Pooled t") |>
 select(estimate, low.90 = conf.low, hi. 90 = conf.high,
 "Pooled t" = statistic, p.value, method) |>
 mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
 gt() |>
 tab_header(title = "White Blood Cell Count (Hospitalized - Non-Hospitalized)",
 subtitle = "with 90% Pooled t-based CI via Linear Model") |>
 tab_footnote(footnote = glue(nrow(dat3), " NHANES Participants ages 30-59 in nh432 data"
```

White Blood Cell Count (Hospitalized - Non-Hospitalized)
with $90 \%$ Pooled t-based CI via Linear Model

| estimate | low. 90 | hi.90 | Pooled t | p.value | method |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.086 | -0.123 | 0.295 | 0.674 | 0.500 | Pooled t |

3755 NHANES Participants ages 30-59 in nh432 data

### 3.8.3 Pooled $t$ test (assumes equal variances) via $t$.test

Note that this approach estimates the difference with Not Hospitalized - Hospitalized, as opposed to the approach used in the linear model. Be careful to check the sample estimates provided in your output against the original summary of the sample data to avoid making a mistake.

```
tt3p <- t.test(WBC ~ HOSPITAL, data = dat3, var.equal = TRUE, conf.level = 0.90)
tt3p
```

    Two Sample t-test
    data: WBC by HOSPITAL
$\mathrm{t}=-0.67395, \mathrm{df}=3753$, p -value $=0.5004$
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to
90 percent confidence interval:
-0.2948204 0.1234734
sample estimates:
mean in group 0 mean in group 1

```
tidy(tt3p, conf.int = TRUE, conf.level = 0.90) |>
 select (estimate, low. \(90=\) conf.low, hi. \(90=\) conf.high,
 "Pooled t" = statistic, p.value, method) |>
 mutate(across(.cols = -method, \(\backslash(x)\) num(x, digits = 3))) |>
 gt() |>
 tab_header (title = "White Blood Cell Count (Non-Hospitalized minus Hospitalized)",
 subtitle = "with 90\% Pooled t-based Confidence Interval") |>
 tab_footnote (footnote \(=\) glue(nrow(dat3), " NHANES Participants ages 30-59 in nh432 data"
```

White Blood Cell Count (Non-Hospitalized minus Hospitalized)
with $90 \%$ Pooled t-based Confidence Interval

| estimate | low. 90 | hi. 90 | Pooled t | p.value | method |
| :---: | :---: | :---: | :---: | :---: | :--- |
| -0.086 | -0.295 | 0.123 | -0.674 | 0.500 | Two Sample t-test |

3755 NHANES Participants ages 30-59 in nh432 data

Again, note that the t.test() approach estimates Non-Hospitalized - Hospitalized (so that the sample mean is negative.)

### 3.8.4 Welch $t$ test (doesn't assume equal variance) via $t$.test

The Welch t test (which is actually the default t.test in R ) assumes that the two groups each follow a Normal distribution, but does not require that those distributions have the same population variance.

```
tt3w <- t.test(WBC ~ HOSPITAL, data = dat3, conf.level = 0.90)
tt3w
```


## Welch Two Sample t-test

```
data: WBC by HOSPITAL
```

$\mathrm{t}=-0.6218, \mathrm{df}=376.28, \mathrm{p}$-value $=0.5345$
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to
90 percent confidence interval:
-0.3128672 0.1415202
sample estimates:
mean in group 0 mean in group 1
$7.246327 \quad 7.332000$
tidy (tt3w, conf.int = TRUE, conf.level = 0.90) |>
select(estimate, low. $90=$ conf.low, hi. $90=$ conf.high,
"Welch t" = statistic, p.value, method) |>
mutate (across (.cols $=-$ method, $\backslash(x)$ num(x, digits $=3))$ ) $\mid>$
gt() |>
tab_header (title = "White Blood Cell Count (Non-Hospitalized minus Hospitalized)", subtitle = "with 90\% Welch t-based Confidence Interval") |>
tab_footnote(footnote = glue(nrow(dat3), " NHANES Participants ages 30-59 in nh432 data"

White Blood Cell Count (Non-Hospitalized minus Hospitalized)
with $90 \%$ Welch t-based Confidence Interval

| estimate | low. 90 | hi. 90 | Welch t | p.value | method |
| :---: | :---: | :---: | :---: | :---: | :--- |
| -0.086 | -0.313 | 0.142 | -0.622 | 0.534 | Welch Two Sample t-test |

3755 NHANES Participants ages $30-59$ in nh432 data

### 3.8.5 Bootstrap comparison of WBC by HOSPITAL

The bootstrap approach is appealing in part because it neither assumes Normality or equal population variances.

```
set.seed(4323)
bs3 <- boot.t.test(WBC ~ HOSPITAL, data = dat3,
 R = 999, conf.level = 0.90)
bs3
 Bootstrap Welch Two Sample t-test
data: WBC by HOSPITAL
number of bootstrap samples: }99
bootstrap p-value = 0.5325
bootstrap difference of means (SE) = -0.08734076 (0.1376246)
90 percent bootstrap percentile confidence interval:
```

```
-0.3137606 0.1414317
```

Results without bootstrap:
$\mathrm{t}=-0.6218$, $\mathrm{df}=376.28$, p -value $=0.5345$
alternative hypothesis: true difference in means is not equal to 0
90 percent confidence interval:
-0.3128672 0.1415202
sample estimates:
mean in group 0 mean in group 1
$7.246327 \quad 7.332000$
tidy(bs3, conf.int = TRUE, conf.level = 0.90) |>
mutate(diff = estimate1 - estimate2) |>
select(est1 = estimate1, est2 = estimate2, diff,
low. 90 = conf.low, hi. $90=$ conf.high,
p.value, method) |>
mutate(across(.cols = -method, $\backslash(x)$ num(x, digits = 3))) |>
gt() |>
tab_header (title = "White Blood Cell Count (Non-Hospitalized minus Hospitalized)",
subtitle = "with 90\% Bootstrap Confidence Interval") |>
tab_footnote (footnote = glue(nrow(dat3), " NHANES Participants ages 30-59 in nh432 data"

White Blood Cell Count (Non-Hospitalized minus Hospitalized)
with $90 \%$ Bootstrap Confidence Interval

| est1 | est2 | diff | low.90 | hi.90 | p.value | method |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 7.246 | 7.332 | -0.086 | -0.313 | 0.142 | 0.534 | Bootstrap Welch Two Sample t-test |

3755 NHANES Participants ages $30-59$ in nh432 data

In any case, though, we come to the same basic conclusion - both positive and negative differences in WBC count are plausible.

Given the huge imbalance between the two groups in terms of sample size, and the apparent skew in the distribution of each sample, I would probably be most comfortable with the bootstrap approach here than the t-based intervals.

### 3.8.6 Transforming the WBC Counts

Since the White Blood Cell counts are far from Normally distributed, and in fact appear to be substantially skewed (asymmetric) we might want to consider a transformation of the data.

The Box-Cox approach can be used to suggest potential transformations even in a simple case like this. We can use the boxCox() function from the car package, for example.

```
m3 <- lm(WBC ~ HOSPITAL, data = dat3)
boxCox(m3)
```

Profile Log-likelihood


The estimated power $(\lambda)$ shown in the plot is close to 0 . The ladder of power transformations looks like this:

| $\$$ | Transformation | Formula |
| ---: | :---: | :---: |
| -2 | inverse square | $1 / y^{2}$ |
| -1 | inverse | $1 / y$ |
| -0.5 | inverse square root | $1 / \sqrt{y}$ |
| 0 | logarithm | logy |
| 0.5 | square root | $\sqrt{y}$ |
| 1 | no transformation | y |
| 2 | square | $y^{2}$ |
| 3 | cube | $y^{3}$ |

So in this case, the Box-Cox approach is suggesting we try the logarithm (we use the natural logarithm, with base e, here) of WBC.

Let's redraw our Normal Q-Q plots with this transformation applied.

```
ggplot(dat3, aes(sample \(=\log (\) WBC \()))+\)
 geom_qq(aes(col = factor(HOSPITAL))) + geom_qq_line(col = "red") +
 facet_wrap(HOSPITAL, labeller = "label_both") +
 guides(col = "none") +
 scale_color_viridis_d(option = "cividis", end = 0.5) +
 labs(x = "Expectation Under Standard Normal Distribution",
 \(\mathrm{y}=\mathrm{L}\) Log of White Blood Cell Count (1000 cells/uL)",
 title \(=\) "Normal \(Q-Q\) plots of \(\log (W B C) "\),
 subtitle = "By Hospitalization Status in the Past Year",
 caption \(=\) glue(nrow(dat3), " NHANES participants in nh432"))
```

            Normal Q-Q plots of \(\log (W B C)\)
    \(\stackrel{1}{\beth}\) By Hospitalization Status in the Past Year
    


The assumption of Normality now looks much more plausible for each of our samples. So we might try building a $90 \%$ confidence interval for the mean of $\log (\mathrm{WBC})$, as follows:

```
favstats(log(WBC) ~ HOSPITAL, data = dat3) |>
 mutate(across(.cols = -c(HOSPITAL, n, missing), \(x) num(x, digits = 3))) |>
 gt() |>
 tab_header(title = "log(WBC) by Hospitalization Status",
 subtitle = "NHANES participants in nh432")
```

$\log$ (WBC) by Hospitalization Status
NHANES participants in nh432

| HOSPITAL | $\min$ | Q1 | median | Q3 | $\max$ | mean | sd | n | missing |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: |
| 0 | 0.833 | 1.740 | 1.946 | 2.128 | 3.127 | 1.938 | 0.293 | 3430 | 0 |
| 1 | 0.916 | 1.723 | 1.932 | 2.163 | 2.839 | 1.941 | 0.322 | 325 | 0 |

We see that there's essentially no difference at all in the means of the $\log (W B C)$ values across the two levels of hospitalization status.

```
tt3log <- t.test(log(WBC) ~ HOSPITAL, data = dat3, var.equal = TRUE, conf.level = 0.90)
tidy(tt3log, conf.int = TRUE, conf.level = 0.90) |>
 select(estimate1, estimate2, estimate, conf.low, conf.high, p.value)
A tibble: 1 x 6
 estimate1 estimate2 estimate conf.low conf.high p.value
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1.94 1.94 -0.00320 -0.0314 0.0250
```

Let's consider a second example for comparing means from independent samples.

### 3.9 Comparing Waist Circumference by Sleep Trouble

Now, we'll restrict ourselves to NHANES participants who rated their overall health as "Fair", and we'll compare the mean waist circumference (WAIST, in cm ) of people in that group who responded Yes (vs. No) to the question of whether they had told a doctor that they had trouble sleeping (gathered in the SLPTROUB variable.)

### 3.9.1 Summarizing the Data

```
dat4 <- nh432 |>
 select(SEQN, SROH, SLPTROUB, WAIST) |>
 filter(SROH == "Fair") |>
 drop_na()
ggplot(dat4, aes(x = factor(SLPTROUB), y = WAIST)) +
 geom_violin(aes(fill = factor(SLPTROUB))) +
 geom_boxplot(width = 0.3, notch = TRUE) +
```

```
stat_summary(fill = "red", fun = "mean", geom = "point",
 shape = 23, size = 3) +
guides(fill = "none", col = "none") +
scale_fill_brewer(palette = "Accent") +
labs(x = "Reported Sleep Trouble to a Doctor? (0 = No, 1 = Yes)",
y = "Waist circumference (cm)",
 title = "Waist Circumference by Sleep Trouble",
 subtitle = glue(nrow(dat4), " NHANES participants in Fair health in nh432"))
```


## Waist Circumference by Sleep Trouble

 734 NHANES participants in Fair health in nh432

```
ggplot(dat4, aes(sample = WAIST)) +
 geom_qq(aes(col = factor(SLPTROUB))) + geom_qq_line(col = "red") +
 facet_wrap(~ SLPTROUB, labeller = "label_both") +
 guides(col = "none") +
 scale_color_brewer(palette = "Accent") +
 labs(x = "Expectation Under Standard Normal Distribution",
 y = "Observed Waist Circumference (in cm)",
 title = "Normal Q-Q plots of Waist Circumference",
 subtitle = "By Reported Sleep Trouble",
 caption = glue(nrow(dat4), " NHANES participants in Fair health in nh432"))
```



Here's a situation where we might be willing to consider a t test, since a Normal distribution is a much better fit for the data in each of our two samples. Let's look at some brief numerical summaries, too.

```
favstats(WAIST ~ SLPTROUB, data = dat4) |>
 mutate(across(.cols = c(mean, sd), \(x) num(x, digits = 2))) |>
 gt()
```

| SLPTROUB | min | Q1 | median | Q3 | $\max$ | mean | sd | n | missing |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 65.8 | 91.7 | 102.1 | 117.5 | 178 | 104.71 | 18.35 | 425 | 0 |
| 1 | 69.6 | 97.4 | 109.4 | 124.0 | 166 | 110.69 | 18.86 | 309 | 0 |

### 3.9.2 Pooled $t$ test (assumes equal variances) via linear model

Here's the pooled t test via linear model.

```
lm4 <- lm(WAIST ~ SLPTROUB, data = dat4)
summary(lm4)
```

```
Call:
lm(formula = WAIST ~ SLPTROUB, data = dat4)
Residuals:
\begin{tabular}{rrrrr}
Min & \(1 Q\) & Median & 3Q & Max \\
-41.093 & -13.293 & -2.293 & 12.790 & 73.290
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{lrrrrr}
(Intercept) & 104.7099 & 0.9006 & 116.27 & \(<2 \mathrm{e}-16\) & \(* * *\) \\
SLPTROUB & 5.9830 & 1.3881 & 4.31 & \(1.85 \mathrm{e}-05\) & \(* * *\)
\end{tabular}

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 18.57 on 732 degrees of freedom
Multiple R-squared: 0.02475, Adjusted R-squared: 0.02342
F-statistic: 18.58 on 1 and 732 DF, p-value: 1.853e-05
 confint(lm4, level = 0.90)
 5% 95 %
(Intercept) 103.226621 106.193144
SLPTROUB 3.696944 8.269052
```

```
tidy(lm4, conf.int = TRUE, conf.level = 0.90) |>
```

tidy(lm4, conf.int = TRUE, conf.level = 0.90) |>
filter(term == "SLPTROUB") |>
filter(term == "SLPTROUB") |>
mutate(method = "Pooled t") |>
mutate(method = "Pooled t") |>
select(estimate, low.90 = conf.low, hi. 90 = conf.high,
select(estimate, low.90 = conf.low, hi. 90 = conf.high,
"Pooled t" = statistic, p.value, method) |>
"Pooled t" = statistic, p.value, method) |>
mutate(across(.cols = -method, \(x) num(x, digits = 2))) |>
mutate(across(.cols = -method, \(x) num(x, digits = 2))) |>
gt() |>
gt() |>
tab_header(title = "Waist Circumference by Sleep Trouble",
tab_header(title = "Waist Circumference by Sleep Trouble",
subtitle = "with 90% Pooled t-based CI via Linear Model") |>
subtitle = "with 90% Pooled t-based CI via Linear Model") |>
tab_footnote(footnote = glue(nrow(dat4), " NHANES Participants in Fair Health in nh432

```
 tab_footnote(footnote = glue(nrow(dat4), " NHANES Participants in Fair Health in nh432
```

Waist Circumference by Sleep Trouble
with $90 \%$ Pooled t-based CI via Linear Model

| estimate | low. 90 | hi. 90 | Pooled t | p.value | method |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5.98 | 3.70 | 8.27 | 4.31 | 0.00 | Pooled t |

734 NHANES Participants in Fair Health in nh432 data

### 3.9.3 Pooled $t$ test (assumes equal variances) via $t$.test

```
tt \(4 \mathrm{p}<-\mathrm{t} . \mathrm{test}(W A I S T \mathrm{\sim}\) SLPTROUB, data \(=\) dat4, var.equal \(=\) TRUE, conf.level \(=0.90\))
\(t t 4 p\)
```

    Two Sample t-test
    data: WAIST by SLPTROUB
$\mathrm{t}=-4.3103, \mathrm{df}=732, \mathrm{p}$-value $=1.853 \mathrm{e}-05$
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to
90 percent confidence interval:
-8.269052-3.696944
sample estimates:
mean in group 0 mean in group 1
$104.7099 \quad 110.6929$
tidy (tt4p, conf.int = TRUE, conf.level = 0.90) |>
select (estimate, low. $90=$ conf.low, hi. $90=$ conf.high,
"Pooled t" = statistic, p.value, method) |>
mutate(across(.cols $=-m e t h o d, ~ \(x)$ num(x , digits $=2))$ ) |>
gt() |>
tab_header (title = "Waist Circumference by Sleep Trouble",
subtitle = "with 90\% Pooled t-based Confidence Interval") |>
tab_footnote (footnote $=$ glue(nrow(dat4), " NHANES Participants in Fair Health in nh432

Waist Circumference by Sleep Trouble
with $90 \%$ Pooled t-based Confidence Interval

| estimate | low. 90 | hi. 90 | Pooled t | p.value | method |
| :---: | :---: | :---: | :---: | :---: | :--- |
| -5.98 | -8.27 | -3.70 | -4.31 | 0.00 | Two Sample t-test |

734 NHANES Participants in Fair Health in nh432 data

### 3.9.4 Welch t test (doesn't assume equal variance) via t .test

```
tt4w <- t.test(WAIST ~ SLPTROUB, data = dat4, conf.level = 0.90)
tt4w
```

    Welch Two Sample t-test
    data: WAIST by SLPTROUB
$\mathrm{t}=-4.2919, \mathrm{df}=653.24, \mathrm{p}$-value $=2.04 \mathrm{e}-05$
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to
90 percent confidence interval:
-8.279237-3.686759
sample estimates:
mean in group 0 mean in group 1
$104.7099 \quad 110.6929$
tidy (tt4w, conf.int = TRUE, conf.level = 0.90) |>
select(estimate, low. $90=$ conf.low, hi. $90=$ conf.high,
"Welch t" = statistic, p.value, method) |>
mutate (across (.cols $=-$ method, $\backslash(x)$ num $(x, \operatorname{digits}=2))) \mid>$
gt() |>
tab_header(title = "Waist Circumference by Sleep Trouble",
subtitle = "with 90\% Welch t-based Confidence Interval") |>
tab_footnote (footnote = glue(nrow(dat4), " NHANES Participants in Fair Health in nh432 d

Waist Circumference by Sleep Trouble with $90 \%$ Welch t-based Confidence Interval

| estimate | low. 90 | hi. 90 | Welch t | p.value | method |
| :---: | :---: | :---: | :---: | :---: | :--- |
| -5.98 | -8.28 | -3.69 | -4.29 | 0.00 | Welch Two Sample t-test |

734 NHANES Participants in Fair Health in nh432 data

### 3.9.5 Bootstrap comparison of WAIST by SLPTROUB

```
set.seed(4324)
bs4 <- boot.t.test(WAIST ~ SLPTROUB, data = dat4,
 R = 999, conf.level = 0.90)
bs4
 Bootstrap Welch Two Sample t-test
data: WAIST by SLPTROUB
number of bootstrap samples: }99
bootstrap p-value < 0.001001
bootstrap difference of means (SE) = -5.991814 (1.389937)
90 percent bootstrap percentile confidence interval:
 -8.207833 -3.747965
Results without bootstrap:
t = -4.2919, df = 653.24, p-value = 2.04e-05
alternative hypothesis: true difference in means is not equal to 0
90 percent confidence interval:
 -8.279237 -3.686759
sample estimates:
mean in group 0 mean in group 1
 104.7099 110.6929
tidy(bs4, conf.int = TRUE, conf.level = 0.90) |>
 mutate(diff = estimate1 - estimate2) |>
 select(est1 = estimate1, est2 = estimate2, diff,
 low.90 = conf.low, hi.90 = conf.high,
 p.value, method) |>
 mutate(across(.cols = -method, \(x) num(x, digits = 2))) |>
 gt() |>
 tab_header(title = "Waist Circumference by Sleep Trouble",
 subtitle = "with 90% Bootstrap Confidence Interval") |>
 tab_footnote(footnote = glue(nrow(dat4), " NHANES Participants in Fair Health in nh432
```

Waist Circumference by Sleep Trouble
with $90 \%$ Bootstrap Confidence Interval

| est1 | est2 | diff | low.90 | hi. 90 | p.value | method |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 104.71 | 110.69 | -5.98 | -8.28 | -3.69 | 0.00 | Bootstrap Welch Two Sample t-test |

734 NHANES Participants in Fair Health in nh432 data

### 3.9.6 Wilcoxon-Mann-Whitney Rank Sum Approach

The Wilcoxon-Mann-Whitney rank sum approach also allows us (like the bootstrap) to avoid the assumptions of Normality and equal population variances, but at the cost of no longer yielding direct inference about the population mean.

```
wt4 <- wilcox.test(WAIST ~ SLPTROUB, data = dat4,
 conf.int = TRUE, conf.level = 0.90, paired = FALSE)
wt4
```

Wilcoxon rank sum test with continuity correction
data: WAIST by SLPTROUB
$\mathrm{W}=53322, \mathrm{p}$-value $=1.355 \mathrm{e}-05$
alternative hypothesis: true location shift is not equal to 0
90 percent confidence interval:
-8.599997-3.900026
sample estimates:
difference in location
-6. 299963

Note that the estimated "difference in location" here is not the difference in the medians across the two groups, but instead the median of the difference between a sample from the SLPTROUB $=$ Yes group and a sample from the SLPTROUB $=$ No group.

Just to prove my point, here are the sample median WAIST results in the two SLPTROUB groups. You can see that the difference between these medians does not match the "difference in location" estimate from the Wilcoxon-Mann-Whitney rank sum output.

```
dat4 |> group_by(SLPTROUB) |> summarise(median(WAIST))
```

```
A tibble: 2 x 2
 SLPTROUB `median(WAIST)`
 <dbl> <dbl>
1 0 102.
2 1 109.
```

In conclusion, the confidence intervals (from any of these approaches) suggest that plausible means of waist circumference are around $3-8$ centimeters larger in the "told Dr. about sleep problems" group, which I suppose isn't especially surprising, at least in terms of its direction.

### 3.10 Comparing 3 Means using Independent Samples: Systolic BP by Weight Goal

We'll compare systolic blood pressure means across the three samples defined by WTGOAL (goal is to weigh more, less or stay about the same), restricting to our participants of Hispanic or Latinx ethnicity in nh432.

```
dat5 <- nh432 |>
 select(SEQN, RACEETH, SBP, WTGOAL) |>
 filter(RACEETH == "Hispanic") |>
 drop_na()
```


### 3.10.1 Summarizing SBP by WTGOAL

```
ggplot(dat5, aes(x = SBP, y = WTGOAL)) +
 geom_violin(aes(fill = WTGOAL)) +
 geom_boxplot(width = 0.3, notch = TRUE) +
 guides(fill = "none") +
 labs(title = "Comparing Mean Systolic BP by Weight Goal",
 subtitle = glue("among ", nrow(dat5), " Hispanic participants in nh432"),
 x = "Systolic Blood Pressure (mm Hg)", y = "Weight Goal")
```

Comparing Mean Systolic BP by Weight Goal among 788 Hispanic participants in nh432


```
favstats (SBP ~ WTGOAL, data = dat5) |>
 as_tibble() |>
 mutate (across(.cols \(=c(\) "mean", "sd"), \\(x) num(x, digits = 2))) |>
 gt()
```

| WTGOAL | $\min$ | Q1 | median | Q3 | $\max$ | mean | sd | n | missing |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| More | 84 | 104.5 | 114.0 | 123 | 150 | 114.08 | 14.76 | 36 | 0 |
| Same | 87 | 107.0 | 116.5 | 128 | 200 | 119.26 | 16.49 | 188 | 0 |
| Less | 80 | 109.0 | 119.0 | 131 | 199 | 120.70 | 17.17 | 564 | 0 |

The analysis of variance is our primary tool for comparing more than two means (this is the extension of the pooled $t$ test, with similar assumptions.) So the assumptions we might want to think about here are:

- SBP in each Weight Goal group is assumed to follow a Normal distribution
- SBP in each Weight Goal group is assumed to have the same population variance

The ANOVA, however, is far more robust to minor violations of these assumptions than is the pooled $t$ test. So we might go ahead and fit the ANOVA model anyway, despite the apparent right skew in the "Less" group.

### 3.10.2 Fitting an ANOVA Model

```
m5 <- lm(SBP ~ WTGOAL, data = dat5)
anova(m5)
Analysis of Variance Table
Response: SBP
 Df Sum Sq Mean Sq F value Pr(>F)
WTGOAL 2 1639 819.45 2.8656 0.05754 .
Residuals 785 224477 285.96

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

A small $p$ value (remember we are using $90 \%$ confidence in our 432 work) like this isn't really very important - usually it simply steers us towards trying to identify confidence intervals for differences between pairs of SBP means defined by WTGOAL.

### 3.10.2.1 ANOVA without assuming Equal Variances?

R will also fit an ANOVA-style model and produce a $p$ value without the assumption of equal population SBP variance across the three groups of WTGOAL.

```
oneway.test(SBP ~ WTGOAL, data = dat5)
 One-way analysis of means (not assuming equal variances)
data: SBP and WTGOAL
F = 3.5255, num df = 2.000, denom df = 93.753, p-value = 0.0334
```

I don't use this approach much, as ANOVA is pretty robust to the assumption of equal variance. The huge differences in sample size in this study (many more participants are in the Less group than the More, for instance) are most of the cause of the difference we see here.

### 3.10.2.2 Testing for Equal Population Variance?

Some people like to perform tests for equal population variance to help choose between ANOVA and the oneway.test () approach, but I do not. If I'm happy with the assumption of Normality, I virtually always just use ANOVA. There are many such tests of "equal variance", including:

- Bartlett's test
- Levene's test (which in R comes from the car package)
- Fligner-Killeen test

Bartlett's test is the least reliable of these when the data in at least one sample appear to be poorly described by the Normal distribution. Either Levene or Fligner-Killeen is a better choice in that setting, but again, I don't use any of these in my work.

```
bartlett.test(SBP ~ WTGOAL, data = dat5)
 Bartlett test of homogeneity of variances
data: SBP by WTGOAL
Bartlett's K-squared = 1.6722, df = 2, p-value = 0.4334
 leveneTest(SBP ~ WTGOAL, data = dat5)
Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 2 0.6557 0.5193
 7 8 5
 fligner.test(SBP ~ WTGOAL, data = dat5)
 Fligner-Killeen test of homogeneity of variances
data: SBP by WTGOAL
Fligner-Killeen:med chi-squared = 1.26, df = 2, p-value = 0.5326
```


### 3.10.2.3 Is there a bootstrap one-way ANOVA approach?

If all you are looking for is a $p$ value for the ANOVA model, then yes, there is a bootstrap approach available to perform one-way ANOVA testing. But I don't actually use it, again usually preferring the usual ANOVA if the data seem reasonably likely to have been drawn from a Normal distribution, and the Kruskal-Wallis rank-based test otherwise. If you are willing to install the lmboot package, and use its ANOVA.boot () function, you can do so, like this.

```
bs5 <- ANOVA.boot(SBP ~ WTGOAL, B = 1000, seed = 4325, data = dat5)
bs5$`p-value`
```

[1] 0.052

In this case, it doesn't seem that we have a wildly different result than we got from the original ANOVA. That is often the case, and I have never actually used ANOVA.boot() in practical work.

### 3.10.3 Tukey HSD Pairwise Comparisons

When pairwise comparisons are pre-planned, especially when the design is close to balanced, my favorite choice for generating adjusted inferences about the means is Tukey's Honestly Significant Differences (HSD) approach.

Here, we generate confidence intervals for the pairwise differences in the SBP means by WTGOAL group with a $90 \%$ family-wise confidence level.

```
th5 <- TukeyHSD(aov(SBP ~ WTGOAL, data = dat5),
 ordered = TRUE, conf.level = 0.90)
tidy(th5) |>
 select(-c(term, null.value)) |>
 mutate(across(.cols = -contrast, \(x) num(x, digits = 3))) |>
 arrange(desc(estimate)) |>
 gt() |>
 tab_header(title = "Comparing Mean Systolic BP across pairs of WTGOAL groups",
 subtitle = "90% Tukey HSD Confidence Intervals") |>
 tab_footnote(footnote = glue(nrow(dat5), " Hispanic participants in nh432"))
```

Comparing Mean Systolic BP across pairs of WTGOAL groups $90 \%$ Tukey HSD Confidence Intervals

| contrast | estimate | conf.low | conf.high | adj.p.value |
| :--- | :---: | :---: | :---: | :---: |
| Less-More | 6.617 | 0.642 | 12.592 | 0.060 |
| Same-More | 5.172 | -1.151 | 11.495 | 0.213 |
| Less-Same | 1.445 | -1.482 | 4.372 | 0.568 |

788 Hispanic participants in nh432

```
tidy(th5) |>
 mutate(contrast = fct_reorder(contrast, estimate, .desc = TRUE)) %>%
 ggplot(., aes(x = contrast, y = estimate, ymin = conf.low, ymax = conf.high)) +
 geom_crossbar() +
 geom_hline(yintercept = 0, col = "red", linetype = "dashed") +
 geom_label(aes(label = round_half_up(estimate, 2))) +
 labs(title = "Comparing Mean Systolic BP across pairs of WTGOAL groups",
 subtitle = "90% Tukey HSD Confidence intervals",
 caption = glue(nrow(dat5), " Hispanic participants in nh432"),
 x = "Pairwise Difference between WTGOAL groups",
 y = "Difference in Systolic Blood Pressure (mm Hg)")
```



The main problems here are that:

- the sample sizes in the various levels of WTGOAL are very different from one another, and
- the SBP data are not especially well-described by a Normal distribution, at least in the "Less" group.


### 3.10.4 Holm pairwise comparisons of means

Another approach to developing pairwise inferences would be to use either Bonferroni or (my preference) Holm-adjusted p values for the relevant t tests. First, we'll run the appropriate Holm comparison of means assuming equal population variances of SBP across all three WTGOAL groups.

```
ht5 <- pairwise.t.test(dat5$SBP, dat5$WTGOAL, pool.sd = TRUE, p.adjust.method = "holm")
tidy(ht5) |>
 gt()
```

| group1 | group2 | p.value |
| :--- | :--- | ---: |
| Same | More | 0.18625400 |
| Less | More | 0.06929224 |
| Less | Same | 0.31056211 |

The results are merely p-values, and not confidence intervals. There's nothing being estimated here of interest. We can also perform these Holm comparisons without assuming equal population variances, as shown below.

```
ht5un <- pairwise.t.test(dat5$SBP, dat5$WTGOAL, pool.sd = FALSE,
 p.adjust.method = "holm")
tidy(ht5un) |>
 gt()
```

| group1 | group2 | p.value |
| :--- | :--- | ---: |
| Same | More | 0.12866665 |
| Less | More | 0.04046259 |
| Less | Same | 0.30396220 |

Again, the problem with this approach is that it's only producing a p value, which tempts us into talking about useless things like "statistical significance." This is part of the reason I prefer Tukey HSD approaches when appropriate.

### 3.11 Comparing 4 Means using Independent Samples: Weight by Food Security

```
dat6 <- nh432 |>
 select(SEQN, WEIGHT, FOODSEC) |>
 drop_na()
```


### 3.11.1 Summarizing the Data

```
ggplot(dat6, aes(x = FOODSEC, y = WEIGHT)) +
 geom_violin(aes(fill = FOODSEC)) +
 geom_boxplot(width = 0.3, notch = TRUE) +
 guides(fill = "none") +
 scale_fill_viridis_d(option = "rocket") +
 labs(title = "Comparing Mean Weight by Food Security",
 subtitle = glue("among ", nrow(dat6), " participants in nh432"),
 x = "Food Security Category", y = "Weight (kg)")
```

Comparing Mean Weight by Food Security among 3673 participants in nh432


```
favstats(WEIGHT ~ FOODSEC, data = dat6) |>
 as_tibble() |>
 mutate(across(.cols = -c("FOODSEC", "n", "missing"), \(x) num(x, digits = 1))) |>
 gt()
```

| FOODSEC | $\min$ | Q1 | median | Q3 | $\max$ | $\operatorname{mean}$ | sd | $n$ | missing |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: |
| Full | 36.9 | 68.6 | 81.0 | 97.7 | 210.8 | 85.2 | 24.5 | 2233 | 0 |
| Marginal | 39.9 | 69.2 | 83.0 | 100.2 | 242.6 | 87.0 | 25.0 | 560 | 0 |
| Low | 40.9 | 70.4 | 83.6 | 102.3 | 201.0 | 88.2 | 24.6 | 501 | 0 |
| Very Low | 46.1 | 73.4 | 85.8 | 101.3 | 254.3 | 90.1 | 24.4 | 379 | 0 |

### 3.11.2 Fitting the ANOVA model

```
m6 <- lm(WEIGHT ~ FOODSEC, data = dat6)
anova(m6)
Analysis of Variance Table
Response: WEIGHT
 Df Sum Sq Mean Sq F value Pr (>F)
FOODSEC 3 10021 3340.3 5.525 0.0008786 ***
Residuals 3669 2218162 604.6

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Does the bootstrap ANOVA give a meaningfully different result? No.

```
bs6 <- ANOVA.boot(WEIGHT ~ FOODSEC, B = 5000, seed = 4326, data = dat6)
bs6$`p-value`
[1] \(8 \mathrm{e}-04\)
```


### 3.11.3 Tukey HSD Pairwise Comparisons

```
th6 <- TukeyHSD(aov(WEIGHT ~ FOODSEC, data = dat6),
 ordered = TRUE, conf.level = 0.90)
tidy(th6) |>
 select(-c(term, null.value)) |>
 mutate(across(.cols = -contrast, \(x) num(x, digits = 3))) |>
 arrange(desc(estimate)) |>
 gt() |>
 tab_header(title = "Comparing Mean Weight across pairs of Food Security groups",
 subtitle = "90% Tukey HSD Confidence Intervals") |>
 tab_footnote(footnote = glue(nrow(dat6), " participants in nh432"))
```

Comparing Mean Weight across pairs of Food Security groups
$90 \%$ Tukey HSD Confidence Intervals

| contrast | estimate | conf.low | conf.high | adj.p.value |
| :--- | :---: | :---: | :---: | :---: |
| Very Low-Full | 4.877 | 1.746 | 8.008 | 0.002 |
| Very Low-Marginal | 3.103 | -0.646 | 6.851 | 0.229 |
| Low-Full | 2.930 | 0.144 | 5.717 | 0.075 |
| Very Low-Low | 1.946 | -1.891 | 5.783 | 0.650 |
| Marginal-Full | 1.774 | -0.889 | 4.438 | 0.422 |
| Low-Marginal | 1.156 | -2.310 | 4.622 | 0.870 |

3673 participants in nh432

```
tidy(th6) |>
 mutate (contrast = fct_reorder (contrast, estimate, .desc = TRUE)) \%>\%
 ggplot(., aes (\(\mathrm{x}=\) contrast, \(\mathrm{y}=\) estimate, \(\mathrm{ymin}=\) conf.low, ymax \(=\) conf.high \()\)) +
 geom_pointrange() +
 geom_hline(yintercept \(=0\), col \(=\) "blue", linetype \(=\) "dashed") +
 geom_label(aes(label = round_half_up(estimate, 2))) +
 labs(title = "Comparing Mean Weight across pairs of Food Security groups",
 subtitle \(=\) " \(90 \%\) Tukey HSD Confidence intervals",
 caption \(=\) glue(nrow (dat5), " non-Hispanic Black participants in nh432"),
 x = "Pairwise Difference between FOODSEC groups",
 y = "Difference in Weight (kg)")
```



### 3.11.4 Kruskal-Wallis Test

When the assumption of Normality is really unreasonable, many people (including me) will instead use a rank-based method, called the Kruskal-Wallis test to compare the locations of WEIGHT across levels of FOODSEC.

```
kruskal.test(WEIGHT ~ FOODSEC, data = dat6)
```

    Kruskal-Wallis rank sum test
    data: WEIGHT by FOODSEC
Kruskal-Wallis chi-squared $=21.102, \mathrm{df}=3, \mathrm{p}$-value $=0.0001003$

### 3.11.5 Dunn Test for Pairwise Comparisons after Kruskal-Wallis Test

Should you develop a Kruskal-Wallis test result which implies that running a set of pairwise comparisons is important, I would suggest the use of the Dunn test, available in the dunn_test() function from the rstatix package.

```
dunn_test(data = dat6, WEIGHT ~ FOODSEC,
 p.adjust.method = "holm", detailed = TRUE) |>
 select(group1, group2, p.adj, n1, n2, estimate1, estimate2, estimate) |>
 mutate(across(.cols = -c(group1, group2, n1, n2), \(x) num(x, digits = 3))) |>
 gt() |>
 tab_header(title = "Dunn Tests comparing WEIGHT by FOODSEC",
 subtitle = "Pairwise Comparisons after Kruskal-Wallis test") |>
 tab_footnote(footnote = glue(nrow(dat6), " participants in nh432"))
```

Dunn Tests comparing WEIGHT by FOODSEC
Pairwise Comparisons after Kruskal-Wallis test

| group1 | group2 | p.adj | n1 | n2 | estimate1 | estimate2 | estimate |
| :--- | :--- | :--- | ---: | ---: | :---: | :---: | :---: |
| Full | Marginal | 0.269 | 2233 | 560 | 1780.595 | 1865.621 | 85.026 |
| Full | Low | 0.049 | 2233 | 501 | 1780.595 | 1916.147 | 135.551 |
| Full | Very Low | 0.000 | 2233 | 379 | 1780.595 | 2022.412 | 241.816 |
| Marginal | Low | 0.438 | 560 | 501 | 1865.621 | 1916.147 | 50.525 |
| Marginal | Very Low | 0.105 | 560 | 379 | 1865.621 | 2022.412 | 156.790 |
| Low | Very Low | 0.282 | 501 | 379 | 1916.147 | 2022.412 | 106.265 |

3673 participants in nh432

Again, a problem with this approach is that all it provides is a set of adjusted p values for these comparisons, but if we're not willing to assume even very approximate Normality (and thus use an ANOVA approach) this is what we'll have to cope with.

## 4431 Review: Comparing Rates

In this Chapter, we will review some key issues about comparing proportions or rates, mostly drawn from the 431 course. This and the other Chapters labeled " 431 Review" show elements of the two studies involved in a " 431 Project B" using the pre-pandemic (2017 - March 2020) data from the National Health and Nutrition Examination Survey (NHANES) called nh432 that we developed in Chapter 1 and then summarized in Chapter 2. Note that we'll ignore the issue of sampling weights and assume a "missing completely at random" (MCAR) mechanism in these " 431 Review" chapters, so that we can work with complete cases.

The 431 course notes are at https://thomaselove.github.io/431-notes/ and will remain there until June 1.

### 4.1 R Setup

```
knitr::opts_chunk$set(comment = NA)
library(janitor)
library(broom)
library(DescTools)
library(Epi)
library(gt)
library(Hmisc)
library(vcd)
library(tidyverse)
theme_set(theme_bw())
```


### 4.1.1 Data Load

```
nh432 <- read_rds("data/nh432.Rds")
```


### 4.2 2x2 Contingency Table: DR_LOSE and NOWLOSE

Let's compare the probability that NOWLOSE is 1 (The subject is currently working on losing or controlling their body weight) between NHANES participants who have (vs. who have not) been told by a doctor to lose or control their weight in the past 12 months (DR_LOSE). Each of these (DR_LOSE and NOWLOSE) is stored in R as a numeric variable with non-missing values equal to 0 or 1 .

```
temp <- nh432 |>
 select(SEQN, DR_LOSE, NOW_LOSE) |>
 drop_na()
```

As with any categorical variable, we start by counting, and the natural way to display the counts of these two variables (DR_LOSE and NOW_LOSE) is in a table, rather than a graph, I think.

```
temp |>
 tabyl(DR_LOSE, NOW_LOSE) |>
 adorn_totals(where = c("row", "col")) |>
 adorn_title()
```

| NOW_LOSE |  |  |  |
| ---: | ---: | ---: | ---: |
| DR_LOSE | 0 | 1 | Total |
| 0 | 1198 | 1541 | 2739 |
| 1 | 246 | 943 | 1189 |
| Total | 1444 | 2484 | 3928 |

Now that we have a 2 x 2 table, we could consider obtaining some more detailed summary statistics, with a tool like the twoby2() function in the Epi package. There is a problem with this, though.

```
twoby2(temp$DR_LOSE, temp$NOW_LOSE)
```

```
2 by 2 table analysis:
```

Outcome : 0
Comparing : 0 vs. 1

|  | 0 | 1 | $P(0)$ | $95 \%$ conf. | interval |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1198 | 1541 | 0.4374 | 0.4189 | 0.4560 |

```
1 246 943 0.2069 0.1848 0.2309
\begin{tabular}{rrrr}
& \multicolumn{3}{c}{ 95\% conf. } \\
Relative Risk: & 2.1140 & 1.8766 & 2.3815 \\
Sample Odds Ratio: & 2.9801 & 2.5412 & 3.4949 \\
Conditional MLE Odds Ratio: & 2.9793 & 2.5350 & 3.5096 \\
Probability difference: & 0.2305 & 0.2002 & 0.2594
\end{tabular}
 Exact P-value: 0.0000
 Asymptotic P-value: 0.0000
```

The code runs fine, but the table isn't really in a useful format. This table shows the probability that NOWLOSE $=0$ ("No") comparing DR_LOSE $=0$ ("No") to DR_LOSE $=1$ ("Yes"), and that's just confusing.

It would be much better if we did two things:

1. used factors with meaningful labels to represent the $1 / 0$ variables for this table
2. set up the table in standard epidemiological format, and then made a better choice as to what combination should be in the top left of the 2 x 2 table.

So let's do that.

### 4.2.1 Standard Epidemiological Format

Standard Epidemiological Format for a $2 x 2$ table places the exposure in the rows, and the outcome in the columns, with the top left representing the combination of interest when we obtain things like an odds ratio or probability difference. Typically this means we want to put the "Yes" and "Yes" combination in the top left.

First, let's create factor versions (with more meaningful labels than 1 and 0 ) out of the two variables of interest: DR LOSE and NOW LOSE.

```
dat1 <- nh432 |>
 select(SEQN, DR_LOSE, NOW_LOSE) |>
 drop_na() |>
 mutate(DR_LOSE_f = fct_recode(factor(DR_LOSE), "Dr_said_Lose_Wt" = "1", No = "0"),
 DR_LOSE_f = fct_relevel(DR_LOSE_f, "Dr_said_Lose_Wt", "No"),
 NOW_LOSE_f = fct_recode(factor(NOW_LOSE), "Now_losing_Wt" = "1", No = "0"),
 NOW_LOSE_f = fct_relevel(NOW_LOSE_f, "Now_losing_Wt", "No"))
```

Note that after recoding the levels to more meaningful labels, we also re-leveled the factors so that the "Yes" result comes first rather than last.

This produces the following table, which is now in standard epidemiological format, where we are using the DR_LOSE_f information to predict NOW_LOSE_f.

```
dat1 |>
 tabyl(DR_LOSE_f, NOW_LOSE_f) |>
 adorn_totals(where = c("row", "col")) |>
 adorn_title()
 NOW_LOSE_f
 DR_LOSE_f Now_losing_Wt No Total
Dr_said_Lose_Wt 943 246 1189
 No 1541 1198 2739
 Total 2484 1444 3928
```

We could, I suppose, make the table even prettier.

```
tab1 <- dat1 |>
 tabyl(DR_LOSE_f, NOW_LOSE_f) |>
 adorn_totals(where = c("row", "col"))
gt(tab1, rowname_col = "DR_LOSE_f") |>
 tab_header(title = "DR_LOSE vs. NOW_LOSE",
 subtitle = "Standard Epidemiological Format") |>
 tab_stubhead(label = "Dr said Lose Weight?") |>
 tab_spanner(label = "Currently Losing Weight?",
 columns = c(Now_losing_Wt, No))
```

                    DR_LOSE vs. NOW_LOSE
                    Standard Epidemiological Format
    |  | Currently Losing Weight? |  |  |
| :--- | ---: | ---: | ---: |
| Dr said Lose Weight? | Now_losing_Wt | No | Total |
| Dr_said_Lose_Wt | 943 | 246 | 1189 |
| No | 1541 | 1198 | 2739 |
| Total | 2484 | 1444 | 3928 |

### 4.2.2 Obtaining Key Summaries with twoby2()

And, finally, we can obtain necessary summaries (including estimates and confidence intervals) using the twoby2() function.

```
twoby2(dat1\$DR_LOSE_f, dat1\$NOW_LOSE_f, conf.level = 0.90)
2 by 2 table analysis:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Outcome : Now_losing_Wt} \\
\hline \multicolumn{6}{|l|}{Comparing : Dr_said_Lose_Wt vs. No} \\
\hline & Now_losing_Wt & No & P(Now_losing_Wt) & 90\% conf. & interval \\
\hline Dr_said_Lose_Wt & 943 & 246 & 0.7931 & 0.7731 & 0.8118 \\
\hline No & 1541 & 1198 & 0.5626 & 0.5470 & 0.5781 \\
\hline
\end{tabular}
\begin{tabular}{rrrr}
& \multicolumn{3}{c}{ 90\% conf. } \\
Relative Risk: & 1.4097 & 1.3586 & 1.4627 \\
Sample Odds Ratio: & 2.9801 & 2.6071 & 3.4065 \\
Conditional MLE Odds Ratio: & 2.9793 & 2.5998 & 3.4195 \\
Probability difference: & 0.2305 & 0.2052 & 0.2548
\end{tabular}
 Exact P-value: 0.0000
 Asymptotic P-value: 0.0000
```

Some brief descriptions of these results:

- The probability that a participant is now losing weight (NOW_LOSE is 1 ) is estimated to be 0.79 (with $90 \%$ CI $0.77,0.81$ ) if the participant has been told to lose weight by a doctor in the past 12 months ( $\mathrm{DR} \_$LOSE $=1$ ), but only 0.56 (with $90 \%$ CI $0.55,0.58$ ) if the participant has not been told this.
- The relative risk of a participant now losing weight is estimated to be $\frac{0.7931}{0.5626}=1.41$ (with $90 \%$ CI $1.36,1.46$ ) for a participant who has been told to lose weight vs. a participant who has not.
- The odds of a participant now losing weight are $\frac{0.7931(1-0.5626)}{0.5626(1-0.7931)}=2.98$ times as high for a participant who has been told to lose weight than for one who has not, with $90 \%$ CI (2.61, 3.41).
- The difference in probability is estimated to be $0.7931-0.5626=0.2305$ (90\% CI: $0.21,0.25$ ), indicating again that the true probability of now losing weight is higher in participants who have been told to lose weight than in those who have not.

The "exact" p-value listed comes from the Fisher exact test, while the "asymptotic" p-value comes from a Pearson $\chi^{2}$ (chi-squared) test. I would focus on the meaningful estimates (those with confidence intervals) in making comparisons, rather than on trying to determine "statistical significance" with the p-values.

## $4.32 \times 2$ Table: SEDATE category and NOW_EXER

Let's now look at another example, where we compare the probability that a participant is "now exercising" (NOW_EXER $=1$ ) on the basis of their level of sedentary activity in a typical day (collected in the SEDATE variable, in minutes.)

```
dat2 <- nh432 |>
 select(SEQN, SEDATE, NOW_EXER) |>
 drop_na()
summary(dat2 |> select(-SEQN))
```

| SEDATE | NOW_EXER |
| :---: | :---: |
| Min. : 2.0 | Min. 0.0000 |
| 1st Qu.: 180.0 | 1st Qu.:0.0000 |
| Median : 300.0 | Median :1.0000 |
| Mean : 332.8 | Mean :0.6019 |
| 3rd Qu.: 480.0 | 3rd Qu.:1.0000 |
| Max. : 1320.0 | Max. : 1.0000 |

As you can see above, the information in SEDATE is quantitative, and suppose we want to compare a High SEDATE group vs. a Low SEDATE group.

### 4.3.1 Creating a Low and High Group on SEDATE

We can use the cut2 () function from the Hmisc package to partition the data by the SEDATE variable into three groups of equal sample size. At the same time, we'll make NOW_EXER into a more useful (for tabulation) factor with more meaningful level descriptions.

```
dat2 <- dat2 |>
 mutate(SED_f = cut2(SEDATE, g = 3),
 NOW_EXER_f = fct_recode(factor(NOW_EXER), "Now_exercising" = "1", No = "0"),
 NOW_EXER_f = fct_relevel(NOW_EXER_f, "Now_exercising", "No"))
```

As you can see, we now have three groups defined by their SEDATE values, of roughly equal sample sizes.

```
dat2 |> tabyl(SED_f)
```

| SED_f | n | percent |
| :---: | :---: | :---: |
| [ 2, 200) | 1323 | 0.3387097 |
| [200, 420) | 1301 | 0.3330773 |
| [420, 1320] | 1282 | 0.3282130 |

The group labeled $[2,200)$ contains the 1323 subjects who had SEDATE values ranging from 2 up to (but not including) 200 minutes, for example.

```
ggplot(dat2, aes(x = SEDATE)) +
 geom_histogram(aes(fill = SED_f), col = "black", bins = 25) +
 scale_fill_manual(values = c("seagreen", "white", "seagreen")) +
 labs(title = "Comparing Low SEDATE to High SEDATE",
 subtitle = "Identification of Groups")
```

        Comparing Low SEDATE to High SEDATE
        Identification of Groups
    

Now, we want to compare the Lowest SEDATE group (SED_F $=[2,200)$ ) to the Highest SEDATE group (SED_F = [420, 1320]). To do that, we'll drop the middle group, and then look
at the cross-tabulation of our two remaining SEDATE groups with our outcome: NOW_EXER (in factor form.)

```
dat2 <- dat2 |>
 filter(SED_f != "[200, 420)") |>
 mutate(SED_f = fct_drop(SED_f))
dat2 |> tabyl(SED_f, NOW_EXER_f)
 SED_f Now_exercising No
[2, 200) 776 547
[420,1320] 789493
```


### 4.3.2 Two-by-Two Table Summaries

Let's look at the analytic results for this table.

```
twoby2(dat2$SED_f, dat2$NOW_EXER_f)
```

2 by 2 table analysis:

| Outcome : Now_exercising |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  | Now_exercising No | P (Now_exercising) | 95\% conf. | interval |
| [ 2, 200) | 776547 | 0.5865 | 0.5598 | 0.6128 |
| [420, 1320] | 789493 | 0.6154 | 0.5885 | 0.6417 |


|  | 95\% conf . interval |  |  |
| ---: | ---: | ---: | ---: |
| Relative Risk: | 0.9530 | 0.8952 | 1.0146 |
| Sample Odds Ratio: | 0.8864 | 0.7577 | 1.0371 |
| Conditional MLE Odds Ratio: | 0.8865 | 0.7553 | 1.0403 |
| Probability difference: | -0.0289 | -0.0664 | 0.0087 |
|  |  |  |  |
| Exact P-value: | 0.1388 |  |  |

Uh, oh. There's a bit of a problem here now. We have the right rows and the right columns, but they're not in the best possible order, since the estimated probability of Now Exercising
for the group on top $(\operatorname{SED}=[2,200))$ is smaller than it is for the people in the high group in terms of sedentary activity As a result of this problem with ordering, our relative risk and odds ratio estimates are less than 1 , and our probability difference is negative.

### 4.3.3 Flipping Levels

Since which exposure goes at the top is an arbitrary decision, let's switch the factor levels in SED_f, so that the people with high sedentary activity and who are now exercising are shown in the top left cell of the table. This should flip the point estimates of the relative risk and odds ratio above 1, and the estimated probability difference to a positive number. Note the use of the fct_rev() function from the forcats package to accomplish this.

```
dat2 <- dat2 |>
 mutate(SED_f = fct_rev(SED_f))
dat2 |> tabyl(SED_f, NOW_EXER_f) |>
 adorn_totals(where = c("row", "col")) |>
 adorn_title()
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NOW_EXER_f} \\
\hline SED_f & Now_exercising & No & Total \\
\hline [420, 1320] & 789 & 493 & 1282 \\
\hline [2, 200) & 776 & 547 & 1323 \\
\hline Total & 1565 & 1040 & 2605 \\
\hline
\end{tabular}
```

2 by 2 table analysis:

| Outcome : Now_exercising |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Comparing : [420,1320] vs. [ 2, 200) |  |  |  |  |  |  |
| Now_exercising No P |  |  | P(Now_exercising) 90\% conf. interval |  |  |  |
| [420, 1320] | 789 | 493 |  | 0.6154 | 0.5929 | 0.6375 |
| [ 2, 200) | 776 | 547 |  | 0.5865 | 0.5641 | 0.6086 |
|  | 90\% conf. interval |  |  |  |  |  |
|  | Relative Risk | : 1.0493 | 30.9956 | 1.1 | 059 |  |
|  | ample Odds Ratio | : 1.1281 | 10.9889 | 1.2 | 869 |  |
| Conditiona | MLE Odds Ratio | : 1.1281 | 10.9858 | 1.2 | 910 |  |

```
Probability difference: 0.0289 -0.0027 0.0604
 Exact P-value: 0.1388
 Asymptotic P-value: 0.1322
```

We conclude now that the participants who were in the high SEDATION group (as compared to those in the low SEDATION group) had:

- a relative risk of $1.05(90 \%$ CI: $0.995,1.106)$ for Now exercising,
- a sample odds ratio of 1.13 ( $90 \%$ CI: $0.989,1.287$ ) for Now exercising,
- and probability for Now exercising that was 0.029 higher ( $-0.003,0.060$ ) than for those in the low SEDATION group.


### 4.4 A Larger (5x3) 2-Way Table: DIETQUAL and WTGOAL in Lighter Men

Here, we'll look at Male participants who weighed less than 100 kg (approximately 220 pounds) and ask whether their DIETQUAL (diet quality: self-rated as Excellent to poor in 5 categories) response is associated with their response to WTGOAL (would you like to weigh more, about the same, or less than you do now: 3 categories.)

The resulting two-way contingency table includes 5 rows and 3 columns. We are interested in evaluating the relationship between the rows and the columns. It's called a two-way table because there are two categorical variables (DIETQUAL and WTGOAL) under study.

If the rows and columns were found to be independent of one another, this would mean that the probabilities of falling in each column do not change, regardless of what row of the table we look at.

If the rows and columns are associated, then the probabilities of falling in each column do depend on which row we're looking at.

```
dat3 <- nh432 |>
 select(SEQN, DIETQUAL, WTGOAL, WEIGHT, SEX) |>
 filter(WEIGHT < 100 & SEX == "Male") |>
 drop_na()
dat3 |>
 tabyl(DIETQUAL, WTGOAL)
```

| DIETQUAL | More | Same | Less |
| ---: | ---: | ---: | ---: |
| Excellent | 16 | 53 | 32 |
| Very Good | 37 | 153 | 117 |
| Good | 68 | 179 | 238 |
| Fair | 44 | 111 | 144 |
| Poor | 15 | 18 | 43 |

If we want a graphical representation of a two-way table, the most common choice is probably a mosaic plot.

```
vcd::mosaic(~ DIETQUAL + WTGOAL, data = dat3,
 highlighting = "WTGOAL")
```



Larger observed frequencies in the contingency table show up with larger tile areas in the in the mosaic plot. So, for instance, we see the larger proportion of "less" WTGOAL in the "Poor" DIETQUAL category, as compared to most of the other DIETQUAL categories.

### 4.4.1 What would independence look like?

A mosaic plot displaying perfect independence (using simulated data) might look something like this:

```
var1 <- c(rep("A", 48), rep("B", 54), rep("C", 60), rep("D", 24))
var2 <- c(rep(c("G1", "G1", "G2", "G2", "G2", "G3"), 31))
temp_tab <- tibble(var1, var2); rm(var1, var2)
vcd::mosaic(~ var1 + var2, data = temp_tab, highlighting = "var1")
```



Here's the table for our simulated data, where independence holds perfectly.

```
 xtabs(~ var1 + var2, data = temp_tab)
 var2
var1 G1 G2 G3
 A 16 24 8
 B 18 27 9
 C 20 30 10
 D 8 12 4
```

Note that in these simulated data, we have the same fraction of people in each of the four var1 categories (A, B, C, and D) regardless of which of the three var2 categories (G1, G2 and G3) we are in, and vice versa. That's what it means for rows and columns to be independent.

### 4.4.2 Back to the DIETQUAL and WTGOAL table

Now, returning to our problem, to obtain detailed results from the Pearson $\chi^{2}$ test, I use the xtabs() function and then the chisq.test() function, like this:
chi3 <- chisq.test(xtabs(~ DIETQUAL + WTGOAL, data = dat3))
chi3

```
 Pearson's Chi-squared test
data: xtabs(~DIETQUAL + WTGOAL, data = dat3)
X-squared = 32.603, df = 8, p-value = 7.261e-05
```

The null hypothesis being tested here is that DIETQUAL and WTGOAL are independent of each other. A small $p$ value like this is indicative of an association between the two variables.

The chi3 object we have created also contains:

- the observed frequencies in each cell, as well as
- the expected frequencies under the hypothesis of independence of the rows and the columns ${ }^{1}$, and
- the Pearson residuals (observed - expected) $/ \sqrt{\text { expected }}$ for each cell, among other things.

```
chi3$observed
```

| WTGOAL |  |  |  |
| :--- | ---: | ---: | ---: |
| DIETQUAL | More |  | Same |
| Less |  |  |  |
| Excellent | 16 | 53 | 32 |
| Very Good | 37 | 153 | 117 |
| Good | 68 | 179 | 238 |
| Fair | 44 | 111 | 144 |
| Poor | 15 | 18 | 43 |
|  |  |  |  |
| chi3\$expected |  |  |  |

[^13]| WTGOAL |  |  |  |
| :---: | :---: | :---: | :---: |
| DIETQUAL | More | Same | Less |
| Excellent | 14.33754 | 40.94164 | 45.72082 |
| Very Good | 43.58044 | 124.44637 | 138.97319 |
| Good | 68.84858 | 196.60095 | 219.55047 |
| Fair | 42.44479 | 121.20347 | 135.35174 |
| Poor | 10.78864 | 30.80757 | 34.40379 |
| chi3\$residuals \# Pearson residuals |  |  |  |
| WTGOAL |  |  |  |
| DIETQUAL | More |  | me Less |
| Excellent | 0.4390501 | 11.8845 | $11-2.0291917$ |
| Very Good | -0.9968028 | 2.55958 | 886-1.8639211 |
| Good | -0.1022694 | -1.255287 | 751.2451396 |
| Fair | 0.2387127 | $7-0.92680$ | 930.7433564 |
| Poor | 1.2821492 | $2-2.30748$ | 051.4655618 |

An association plot presents a graphical description of the Pearson residuals, with the area of each box shown proportional to the difference between the observed and expected frequencies.

- If the observed frequency of a cell is greater than the expectation under the hypothesis of independence, then the box rises above the baseline.
- An example here is the (DIETQUAL $=$ Very Good, WTGOAL $=$ Same) which had an observed frequency of 153 but an expected frequency of 124.4, yielding the largest positive Pearson residual at 2.56.
- Boxes shown below the baseline indicate that the observed frequency was less than the expectation under the independence hypothesis.
- The largest negative Pearson residual is the (DIETQUAL $=$ Poor, WTGOAL $=$ Same) cell, where we observed 18 observations but the independence model would predict 30.8, yielding a Pearson residual of -2.31 .

```
vcd::assoc(~ DIETQUAL + WTGOAL, data = dat3)
```



Some people also like to calculate a correlation between categorical variables. If each of your categorical variables is ordinal (as in this case) then Kendall's tau (version b) is probably the best choice. As with a Pearson correlation for quantities, the value for this measure ranges from -1 to 1 , with -1 indicating a strong negative correlation, and +1 a strong positive correlation, with 0 indicating no correlation.

To use this approach, though, we first have to be willing to treat our multi-categorical variables as if they were numeric, which may or may not be reasonable.

```
dat3 <- dat3 |>
 mutate(DIETQUAL_num = as.numeric(DIETQUAL))
dat3 |> tabyl(DIETQUAL_num, DIETQUAL)
DIETQUAL_num Excellent Very Good Good Fair Poor
\begin{tabular}{rrrrrr}
1 & 101 & 0 & 0 & 0 & 0 \\
2 & 0 & 307 & 0 & 0 & 0 \\
3 & 0 & 0 & 485 & 0 & 0 \\
4 & 0 & 0 & 0 & 299 & 0 \\
5 & 0 & 0 & 0 & 0 & 76
\end{tabular}
```

```
 dat3 <- dat3 |>
 mutate(WTGOAL_num = as.numeric(WTGOAL))
 dat3 |> tabyl(WTGOAL_num, WTGOAL)
WTGOAL_num More Same Less
 1 180 0 0
 2 0
 3 0}0057
cor(dat3$DIETQUAL_num, dat3$WTGOAL_num, method = "kendall")
```

[1] 0.07193663

If you want to obtain a confidence interval for this correlation coefficient, then you would need to use the KendallTauB() function from the DescTools package.

KendallTauB(dat3\$DIETQUAL_num, dat3\$WTGOAL_num, conf.level = 0.90)
tau_b lwr.ci upr.ci
0.071936630 .031471300 .11240196

Again, it's just a number, and not especially valuable.

### 4.5 PHQ9 Category and Race/Ethnicity

Let's look next at the association of race-ethnicity (RACEETH, which has 5 levels) and the depression category (minimal, mild, moderate, moderately severe, or severe) available in PHQ9_CAT, which we derived from the PHQ-9 depression screener score. We'll restrict this small analysis to NHANES participants who did not receive care from a mental health provider (so MENTALH is 0 ) in the last 12 months.

```
temp <- nh432 |>
 select(SEQN, RACEETH, PHQ9_CAT, MENTALH) |>
 filter(MENTALH == 0) |>
 drop_na()
```

So here's our first attempt at a $5 \times 5$ table describing this association.

```
 temp |>
 tabyl(RACEETH, PHQ9_CAT)
```

| RACEETH minimal |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Non-H White | 770 | 151 | 41 | 20 | 8 |  |
| Non-H Black | 668 | 143 | 34 | 13 | 1 |  |
| Non | 36 | 12 | 5 |  |  |  |
| Hispanic | 581 | 133 | 36 | 1 | 1 |  |
| Non-H Asian | 428 | 49 | 11 | 5 | 1 |  |

We note some very small observed frequencies, especially in the bottom right of the table. Should we try to run a Pearson $\chi^{2}$ test on these results, we will generate a warning that the Chi-square approximation may be incorrect.

```
xtabs(~ RACEETH + PHQ9_CAT, data = temp) |>
 chisq.test()
```

Warning in stats: :chisq.test(x, y, ...): Chi-squared approximation may be
incorrect
Pearson's Chi-squared test
data: xtabs (~RACEETH + PHQ9_CAT, data $=$ temp $)$
X -squared $=49.288, \mathrm{df}=16, \mathrm{p}$-value $=2.974 \mathrm{e}-05$

### 4.5.1 The Cochran conditions

R sets off this warning when the "Cochran conditions" are not met. The Cochran conditions require that we have:

- no cells with 0 counts
- at least $80 \%$ of the cells in our table with counts of 5 or higher
- expected counts in each cell of the table should be 5 or more

In our table, we have four cells with observed counts below 5 (all have count 1) and two more with observed counts of exactly 5 . If we look at the expected frequencies under the hypothesis of independence, what do we see?

```
temp_chi <- xtabs(~ RACEETH + PHQ9_CAT, data = temp) |>
 chisq.test()
```

Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be incorrect

```
temp_chi$expected
```

|  | Q9_CAT |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RACEETH | minimal | mild | modera | moderately severe | ere |
| Non-H White | 774.2813 | 154.73491 | 40.655838 | 15.473491 | 4.8544284 |
| Non-H Black | 671.8259 | 134.25988 | 35.276126 | 13.425988 | 4.2120748 |
| Hispanic | 599.8725 | 119.88048 | 31.498008 | 11.988048 | 3.7609562 |
| Non-H Asian | 383.2302 | 76.58596 | 20.122587 | 7.658596 | 2.4026969 |
| Other Race | 122.7901 | 24.53877 | 6.447441 | 2.453877 | 0.769843 |

Every cell in the "severe" category has an expected frequency below 5, and we also have some generally small counts, in the Non-Hispanic Asian and Other Race categories, as well as the "moderately severe" category.

### 4.5.2 Collapsing Categories

So what might we do about this?
Let us consider two approaches that we'll use simultaneously:

1. drop two of the RACEETH groups, and just use the top 3 (Non-H White, Non-H Black and Hispanic) using filter()
2. collapse together the two right-most levels of PHQ9_CAT (moderately severe and severe) into a new level which I'll call "More Severe", using fct_lump_n()
```
dat5 <- nh432 |>
 select(SEQN, RACEETH, PHQ9_CAT, MENTALH) |>
 filter(MENTALH == 0) |>
 filter(RACEETH %in% c("Non-H White", "Non-H Black", "Hispanic")) |>
 drop_na() |>
 mutate(RACEETH = fct_drop(RACEETH),
 PHQ9_CAT = fct_lump_n(PHQ9_CAT, 3,
 other_level = "More Severe"))
```

```
dat5 |>
 tabyl(RACEETH, PHQ9_CAT)
```

| RACEETH minimal mild moderate More Severe |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: |
| Non-H White | 770 | 151 | 41 | 28 |
| Non-H Black | 668 | 143 | 34 | 14 |
| Hispanic | 581 | 133 | 36 | 17 |

Now, we have at least 14 participants in every cell of the table.

### 4.5.3 Pearson $\chi^{2}$ Analysis

Now, let's consider what the Pearson $\chi^{2}$ test suggests.

```
tab5 <- xtabs(~ RACEETH + PHQ9_CAT, data = dat5)
tab5
\begin{tabular}{crrrr}
\multicolumn{5}{c}{ PHQ9_CAT } \\
RACEETH & minimal & mild & moderate & More \\
Non-H White & 770 & 151 & 41 & 28 \\
Non-H Black & 668 & 143 & 34 & 14 \\
Hispanic & 581 & 133 & 36 & 17
\end{tabular}
 chisq.test(tab5)
```

        Pearson's Chi-squared test
    data: tab5
X-squared $=5.0157, \mathrm{df}=6, \mathrm{p}$-value $=0.5418$

Now we have no warning, and notice also how large a change this has meant in terms of the p-value, as compared to our original $\chi^{2}$ result.

### 4.5.4 Mosaic Plot

Here's a mosaic plot ${ }^{2}$ of the table.

```
vcd::mosaic(tab5, highlighting = "PHQ9_CAT")
```



### 4.5.5 Examining the Fit

We'll finish up with a look at the expected frequencies, and a table and association plot of the Pearson residuals.
chisq.test(tab5)\$observed

| PHQ9_CAT |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: |
| RACEETH | minimal | mild | moderate | More |
| Non-H White | 770 | 151 | 41 | 28 |
| Non-H Black | 668 | 143 | 34 | 14 |
| Hispanic | 581 | 133 | 36 | 17 |

[^14]chisq.test(tab5)\$expected

```
 PHQ9_CAT
RACEETH minimal mild moderate More Severe
 Non-H White 764.0711 161.5940 42.00688 22.32798
 Non-H Black 662.9667 140.2114 36.44839 19.37347
 Hispanic 591.9622 125.1946 32.54472 17.29855
 chisq.test(tab5)$residuals
 PHQ9_CAT
RACEETH minimal mild moderate More Severe
 Non-H White 0.21449006 -0.83339100 -0.15535235 1.20036381
 Non-H Black 0.19548040 0.23550271 -0.40554793 -1.22081874
 Hispanic -0.45055624 0.69759600 0.60567876 -0.07178083
assoc(tab5)
```


## PHQ9_CAT

minimal mild modAłate Severe


## 5431 Review: Fitting Linear Models

In this Chapter, we will review some key issues about comparing proportions or rates, mostly drawn from the 431 course. This and the other Chapters labeled " 431 Review" show elements of the two studies involved in a " 431 Project B" using the pre-pandemic (2017 - March 2020) data from the National Health and Nutrition Examination Survey (NHANES) called nh432 that we developed in Chapter 1 and then summarized in Chapter 2. Note that we'll ignore the issue of sampling weights and assume a "missing completely at random" (MCAR) mechanism in these " 431 Review" chapters, so that we can work with complete cases.

The 431 course notes are at https://thomaselove.github.io/431-notes/ and will remain there until June 1.

### 5.1 R Setup

```
knitr::opts_chunk$set(comment = NA)
library(janitor)
library(broom)
library(car)
library(GGally)
library(gt)
library(Hmisc)
library(knitr)
library(patchwork)
library(tidyverse)
theme_set(theme_bw())
```


### 5.1.1 Data Load

```
nh432 <- read_rds("data/nh432.Rds")
```


### 5.2 Modeling Weekend Sleep Hours

In this example, we'll try to build an effective model to predict our outcome: average weekend hours of sleep (SLPWKEND) on the basis of four predictors:

- average weekday hours of sleep (SLPWKDAY)
- systolic blood pressure (SBP)
- PHQ-9 depression screener score (PHQ9), and
- whether or not the participant has mentioned trouble sleeping to a physician (SLPTROUB)

We'll compare a model using all four of these predictors to a model using just the two directly related to sleep (SLPWKDAY and SLPTROUB), and we'll restrict our analysis to those participants whose self-reported overall health (SROH) was "Good".

```
dat1 <- nh432 |>
 select(SEQN, SLPWKEND, SLPWKDAY, SBP, PHQ9, SLPTROUB, SROH) |>
 filter(SROH == "Good") |>
 drop_na()
dat1
```

\# A tibble: 1,293 x 7
SEQN SLPWKEND SLPWKDAY SBP PHQ9 SLPTROUB SROH
<chr> <dbl> <dbl> <dbl> <int> <dbl> <fct>
$\begin{array}{lllllll}1 & 109273 & 8 & 6.5 & 110 & 15 & 1\end{array}$
$\begin{array}{llllll}2 & 109293 & 6.5 & 7.5 & 130 & 3\end{array}$
$\begin{array}{lllllll}3 & 109295 & 7 & 7 & 161 & 0 & 1 \text { Good }\end{array}$
$\begin{array}{llllll}4 & 109305 & 6.5 & 6 & 125 & 0\end{array}$
$\begin{array}{llllll}5 & 109307 & 11 & 7.5 & 114 & 0\end{array}$
$\begin{array}{lllllll}6 & 109315 & 5 & 5 & 123 & 1 & 0 \text { Good }\end{array}$
$\begin{array}{lllllll}7 & 109336 & 8 & 4 & 148 & 1 & 1\end{array}$
$\begin{array}{lllllll}8 & 109342 & 8 & 6.5 & 107 & 16 & 1\end{array}$
$\begin{array}{lllllll}9 & 109365 & 9.5 & 9.5 & 133 & 7 & 0\end{array}$
$\begin{array}{lllllll}10 & 109378 & 9 & 9 & 133 & 0 & 0\end{array}$
\# i 1,283 more rows

### 5.2.1 Should we transform our outcome?

We can develop a Box-Cox plot to help us choose between potential transformations of our outcome, so as to improve the adherence to regression assumptions. To do so, we first fit our larger model.

```
m1 <- lm(SLPWKEND ~ SLPWKDAY + SBP + PHQ9 + SLPTROUB, data = dat1)
boxCox(m1)
```

Profile Log-likelihood


The Box-Cox suggested set of transformations centers near $\lambda=1$. As we saw back in Chapter 3, The ladder of power transformations looks like this:

| $\lambda$ | Transformation | Formula |
| ---: | :---: | :---: |
| -2 | inverse square | $1 / y^{2}$ |
| -1 | inverse | $1 / y$ |
| -0.5 | inverse square root | $1 / \sqrt{y}$ |
| 0 | logarithm | $\operatorname{logy}$ |
| 0.5 | square root | $\sqrt{y}$ |
| 1 | no transformation | y |
| 2 | square | $y^{2}$ |


| $\lambda$ | Transformation | Formula |
| :---: | :---: | :---: |
| 3 | cube | $y^{3}$ |

So, in this case, the Box-Cox approach (again, with $\lambda$ near 1) suggests that we leave the existing SLPWKEND outcome alone.

### 5.2.2 Scatterplot Matrix

```
ggpairs(dat1, columns = c(3:6, 2), switch = "both",
 lower=list(combo=wrap("facethist", bins=25)))
```



- The reason I included column 2 (our outcome: SLPWKEND) last in this plot is so that the bottom row would include each of our predictors plotted on the X (horizontal) axis against the outcome on the Y (vertical) axis, next to a density plot of the outcome.
- I also switched the locations of the facet labels on both the x and y axis from their defaults, so that the labels are to the left and below the plots, since I find that a bit easier to work with.
- The lower business is to avoid getting a warning about binwidths.
- The binary variable (SLPTROUB) is included here as a 1-0 numeric variable, rather than a factor, which is why the scatterplot matrix looks as it does, rather than creating a series of boxplots (as we'll see when we work with a factor later.)


### 5.2.3 Collinearity?

In any multiple regression setting, two or more of the predictors might be highly correlated with one another, and this is referred to as multicollinearity or just collinearity. If we have a serious problem with collinearity, this can cause several problems, including difficulty fitting and interpreting the resulting model.

Is collinearity a serious concern in our situation? Looking at the scatterplot matrix, we see that the largest observed correlation between two predictors is between PHQ9 and SLPTROUB. Does that rise to the level of a problem?

I usually use the vif () function from the car package to help make this decision. The variance inflation factor (or VIF) measures how much the variance of a regression coefficient is inflated due to collinearity in the model. The smallest possible VIF value is 1, and VIFs near 1, as we'll see here, indicate no problems with collinearity worth worrying about.

```
vif(m1)
```

SLPWKDAY SBP PHQ9 SLPTROUB
1.0028071 .0067781 .1023411 .098187

Should we see a VIF (or generalized VIF, which is produced by the vif() function when we have factor variables in the model) above, say, 5 , that would be an indication that the model would be improved by not including the variable that exhibits collinearity. Here, we have no such issues, and will proceed to fit the model including all of these predictors.

### 5.2.4 Fitting and Displaying Model m1

Here are the coefficients obtained from fitting the model m1.

```
 m1 <- lm(SLPWKEND ~ SLPWKDAY + SBP + PHQ9 + SLPTROUB, data = dat1)
 m1
Call:
lm(formula = SLPWKEND ~ SLPWKDAY + SBP + PHQ9 + SLPTROUB, data = dat1)
Coefficients:
(Intercept)
```

If Harry and Sally have the same values of SLPWKDAY, SBP and SLPTROUB, but Harry's PHQ9 is one point higher than Sally's, then model m1 predicts that Harry will sleep 0.029 hours less than Sally on the weekends.

A summary of the regression model m 1 provides lots of useful information about the parameters (including their standard errors) and the quality of fit (at least as measured by $R^{2}$ and adjusted $R^{2}$.)
summary (m1)

Call:
lm(formula = SLPWKEND ~ SLPWKDAY + SBP + PHQ9 + SLPTROUB, data = dat1)
Residuals:

| Min | 1Q Median | n 3Q | Max |  |
| :---: | :---: | :---: | :---: | :---: |
| -5.1173-0.9 | . 9609 -0.1005 | 50.9248 | 6.3659 |  |
| Coefficients: |  |  |  |  |
|  | Estimate S | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |
| (Intercept) | 5.262657 | 0.388427 | 13.549 | $<2 \mathrm{e}-16$ *** |
| SLPWKDAY | 0.526612 | 0.028950 | 18.190 | < 2e-16 *** |
| SBP | -0.005600 | 0.002515 | -2.227 | 0.02613 |
| PHQ9 | -0.029450 | 0.010955 | -2.688 | 0.00727 ** |
| SLPTROUB | -0.208129 | 0.098758 | -2.107 | 0.03527 |

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.554 on 1288 degrees of freedom
Multiple R-squared: 0.2171, Adjusted R-squared: 0.2147
F-statistic: 89.3 on 4 and 1288 DF, p-value: < 2.2e-16

### 5.2.5 Using broom functions on Model m1

If we want to actually use the information in the model summary elsewhere, we use the tidy () and glance() functions from the broom package to help us.

```
tidy(m1, conf.int = TRUE, conf.level = 0.90)
A tibble: 5 x 7
 term estimate std.error statistic p.value conf.low conf.high
```

| <chr> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 (Intercept) | 5.26 | 0.388 | 13.5 | 3.41e-39 | 4.62 | 5.90 |
| 2 SLPWKDAY | 0.527 | 0.0290 | 18.2 | $5.52 \mathrm{e}-66$ | 0.479 | 0.574 |
| 3 SBP | -0.00560 | 0.00251 | -2.23 | $2.61 e-2$ | -0.00974 | -0.00146 |
| 4 PHQ9 | -0.0294 | 0.0110 | -2.69 | $7.27 e-3$ | -0.0475 | -0.0114 |
| 5 SLPTROUB | -0.208 | 0.0988 | -2.11 | $3.53 \mathrm{e}-2$ | -0.371 | -0.0456 |

We can produce a neater version of the tidy() output, produced using the gt() function, but I will just show the code here, since it causes trouble when I build a PDF of these Notes.

```
tidy(m1, conf.int = TRUE, conf.level = 0.90) |>
 mutate(across(.cols = -c(term), \(x) round_half_up(x, digits = 3))) |>
 gt()
```

Note that none of the $90 \%$ confidence intervals here cross zero. This just means that we have a pretty good handle on the direction of effects - for example, our estimate for the slope of SLPWKDAY is positive, suggesting that people who sleep more during the week also sleep more on the weekend, after accounting for SBP, PHQ9 and SLPTROUB.

```
glance(m1)
```

```
A tibble: 1 x 12
 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
10.217 0.215 1.55 89.3 4.93e-67 4 -2402. 4817. 4848.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
```

Model m 1 shows an $R^{2}$ value of 0.217 , which means that $21.7 \%$ of the variation in our outcome SLPWKEND is accounted for by the model using SLPWKDAY, SBP, PHQ9 and SLPTROUBLE.

The adjusted $R^{2}$ value isn't a percentage or proportion of anything, but it is a handy index when comparing two models fit to the same outcome for the same observations. It penalizes the raw $R^{2}$ value for models that require more coefficients to be fit. If the raw $R^{2}$ is much larger than the adjusted $R^{2}$ value, this is also an indication that the model may be "overfit" - capitalizing on noise in the data more than we'd like, so that the amount of signal in the predictors may be overstated by raw $R^{2}$.

Here's a cleaner presentation of some of the more important elements in the glance() output:

```
glance(m1) |>
 select(r2 = r.squared, adjr2 = adj.r.squared,
 AIC, BIC, sigma, nobs, df, df.res = df.residual) |>
 kable(digits = c(3, 3, 1, 1, 2, 0, 0, 0))
\begin{tabular}{rrrrrrrr}
\hline r2 & adjr2 & AIC & BIC & sigma & nobs & df & df.res \\
\hline 0.217 & 0.215 & 4816.6 & 4847.6 & 1.55 & 1293 & 4 & 1288 \\
\hline
\end{tabular}
```

- AIC and BIC are measures used to compare models for the same outcome using the same data, so we'll see those again when we fit a second model to these data. In those comparisons, smaller values of AIC and BIC indicate better fitting models.
- nobs is the number of observations used to actually fit our model m1,
- df indicates the number of degrees of freedom used by the model, and represents the number of estimated coefficients fit, while
- df.res $=$ nobs $-\mathrm{df}-1=$ residual degrees of freedom.


### 5.2.6 Residual Plots for Model m1

The key assumptions for a linear regression model include:

1. Linearity of the association under study
2. Normality of the residuals
3. Constant Variance (Homoscedasticity)
4. Independence (not an issue with cross-sectional data like this)

A residual for a point in a regression model is just the observed value of our outcome (here, SLPWKEND) minus the value predicted by the model based on the predictor values (also called the fitted value.)

The four key plots that R will generate for you to help assess these results are shown below for model m 1 .

```
I used
#| fig.height: 8
at the top of this code chunk
to make the plots tall enough to see well
par(mfrow = c(2,2)); plot(m1); par(mfrow = c(1,1))
```



Fitted values


Fitted values


Theoretical Quantiles


### 5.2.6.1 Residuals vs. Fitted values

The top left plot (Residuals vs. Fitted Values) helps us to assess the linearity and constant variance assumptions.

- We want to see a "fuzzy football" shape.
- A clear curve is indicative of a problem with linearity, and suggests that perhaps a transformation of the outcome (or perhaps one or more predictors) may be in order
- A fan shape, with much more variation at one end of the fitted values (left or right) than the other indicates a problem with the constant variance assumption, and again a transformation may be needed.

The diagonal lines we see in the Residuals vs. Fitted plot are the result of the fact that both the outcome (SLPWKEND) and a key predictor (SLPWKDAYS) aren't really continuous in the data, as most of the responses to those questions were either integers, or used 0.5 as the fraction. So those two variables are more discrete than we might have expected.

### 5.2.6.2 Normal Q-Q plot of standardized residuals

The top right plot (Normal Q-Q) is a Normal Q-Q plot of the standardized regression residuals for our model m1. Substantial issues with skew (a curve in the plot) or a major problem with outliers (as indicated by a reverse S-shape) indicate potential concerns with the Normality assumption. Since the y-axis here shows standardized residuals, we can also assess whether what we're seeing is especially surprising relative to our expectations for any standardized values (for example, we should see values above +3 or below -3 approximately 3 times in 1000).

- Remember that this plot represents nobs $=1293$ residuals, so a few values near 3 in absolute value aren't surprising.
- We're looking for big deviations from Normality here.
- The plot() function in R will always identify three of the cases, by default, in these four plots.

Suppose we wanted to look at the data for case 210, identified by these plots as a potential outlier, or at least a poorly fit point.

```
dat1_aug <- augment(m1, data = dat1)
dat1_aug |> slice(210) |>
 select(SEQN, SLPWKEND, .fitted, .resid, .std.resid, everything())
```

```
A tibble: 1 x 13
 SEQN SLPWKEND .fitted .resid .std.resid SLPWKDAY SBP PHQ9 SLPTROUB SROH
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <fct>
1 111688 13 6.63 6.37 13 4.11 4 llllllll
i 3 more variables: .hat <dbl>, .sigma <dbl>, .cooksd <dbl>
```

We see that row 210 contains SEQN 111688, whose

- observed SLPWKEND is 13
- fitted SLPWKEND is 6.63
- yielding a residual of 6.37 ,
- or a standardized residual of 4.11

We can use the outlierTest() function in the car package to help assess whether this value is unusual enough to merit more careful consideration. This function actually works with the studentized residual, which is similar to the standardized residual we saw above. Here, this point (SEQN 111688) is fit poorly enough to be flagged by the Bonferroni outlier test as a mean-shift outlier.

```
outlierTest(m1)
 rstudent unadjusted p-value Bonferroni p
210 4.131972 3.8289e-05 0.049508
```

Having seen that, though, I'm going to essentially ignore it for the moment, and press on to the rest of our residual analysis.

### 5.2.6.3 Scale-Location plot

The bottom left plot in our set of four residual plots is the Scale-Location plot, which presents the square root of the standardized residuals against the fitted values. This plot provides another check on the "equal variance" assumption - if the plot shows a clear trend either up or down as we move left to right, then that indicates an issue with constant variance. While a loess smooth is provided (red curve) to help guide our thinking, it's important not to get too excited about small changes or changes associated with small numbers of observations.

You'll also note the presence of curves (in particular, little "V" shapes) formed by the points of the plot. Again, this is caused by the discrete nature of the outcome (and one of the key predictors) and wouldn't be evident if our outcome was more continuous.

Despite the drop in the red loess smooth as fitted values move from 5 to about 8, I don't see much of a pattern here to indicate trouble with non-constant variance.

### 5.2.6.4 Residuals vs. Leverage plot

The bottom-left plot is a plot of residuals vs. leverage, with influence contours.
Highly leveraged points have unusual combinations of predictor values.
Highly influential points have a big impact on the model, in that the model's coefficients or quality of fit would change markedly were those points to be removed from the model. To measure influence, we combine leverage and residuals together, with a measure like Cook's distance.

- To look for points with substantial leverage on the model by virtue of having unusual values of the predictors - look for points whose leverage is at least 3 times as large as the average leverage value.
- The average leverage is always $\mathrm{k} / \mathrm{n}$, where k is the number of coefficients fit by the model (including the slopes and intercept), and n is the number of observations in the model.
- To obtain the leverage values, the augment() function stores them in .hat.
- To look for points with substantial influence on the model, that is, removing them from the model would change it substantially, consider the Cook's distance, plotted in contours here.
- Any Cook's distance point $>1$ will likely have a substantial impact on the model.
- Any points with Cook's distance $>0.5$, if any, will be indicated in the bottom-right (Residuals vs. Leverage) plot, and are worthy of investigation.
- In model m1, we have no points with values of Cook's distance $>0.5$. To obtain the Cook's distance values for each point, use the augment () function, which stores them in . cooksd.

Here, for example, we identify the points with largest leverage and with largest Cook's distance, across the points used to fit m 1 .

```
dat1_aug <- augment(m1, data = dat1)
dat1_aug |> slice_max(.hat) |>
 select(SEQN, .hat, .resid, .fitted, .cooksd, everything())
```

```
A tibble: 1 x 13
 SEQN .hat .resid .fitted .cooksd SLPWKEND SLPWKDAY SBP PHQ9 SLPTROUB
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>
1123474 0.0268 -1.03 8.03 0.00250
i 3 more variables: SROH <fct>, .sigma <dbl>, .std.resid <dbl>
```

```
 dat1_aug |> slice_max(.cooksd) |>
 select(SEQN, .hat, .resid, .fitted, .cooksd, everything())
```

\# A tibble: $1 \times 13$
SEQN .hat .resid .fitted .cooksd SLPWKEND SLPWKDAY SBP PHQ9 SLPTROUB
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>
$\begin{array}{llllllllll}1 & 122894 & 0.0113 & 5.38 & 5.62 & 0.0277 & 11 & 2 & 114 & 2\end{array}$
\# i 3 more variables: SROH <fct>, .sigma <dbl>, .std.resid <dbl>

It turns out that SEQN 123474 has the largest value of leverage (.hat) and SEQN 122894 has the largest value of influence (.cooksd) in our model. We will worry about .cooksd values above 0.5 , but the largest value in this model is much smaller than that, so I think we're OK for now.

### 5.2.7 Fitting and Displaying Model m2

We will now move on to compare the results of this model (m1) to a smaller model.
Our second model, m 2 is a subset of m 1 , including only the two predictors directly related to sleep, SLPWKDAY and SLPTROUB.

```
m2 <- lm(SLPWKEND ~ SLPWKDAY + SLPTROUB, data = dat1)
m2
Call:
lm(formula = SLPWKEND ~ SLPWKDAY + SLPTROUB, data = dat1)
Coefficients:
(Intercept) SLPWKDAY SLPTROUB
 4.4813 0.5301 -0.2862
```

Note that the slopes of both SLPWKDAY and SLPTROUB have changed from model m1 (although not very much), and that the intercept has changed more substantially.

### 5.2.8 Using broom functions on m2

```
tidy(m2, conf.int = TRUE, conf.level \(=0.90\)) \(\mid>\)
 kable(digits = 3)
```

| term | estimate | std.error | statistic | p.value | conf.low | conf.high |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 4.481 | 0.219 | 20.475 | 0.000 | 4.121 | 4.842 |
| SLPWKDAY | 0.530 | 0.029 | 18.268 | 0.000 | 0.482 | 0.578 |
| SLPTROUB | -0.286 | 0.095 | -3.025 | 0.003 | -0.442 | -0.130 |

```
glance(m2) |>
 select(r2 = r.squared, adjr2 = adj.r.squared,
 AIC, BIC, sigma, nobs, df, df.res = df.residual) |>
 kable(digits = c(3, 3, 1, 1, 2, 0, 0, 0))
\begin{tabular}{rrrrrrrr}
\hline r2 & adjr2 & AIC & BIC & sigma & nobs & df & df.res \\
\hline 0.21 & 0.209 & 4824.1 & 4844.8 & 1.56 & 1293 & 2 & 1290 \\
\hline
\end{tabular}
```

Since we want to compare the fit of m 1 to that of m 2 , we probably want to do so in a single table, like this:

```
temp1 <- glance(m1) |>
 select(r2 = r.squared, adjr2 = adj.r.squared,
 AIC, BIC, sigma, nobs, df, df.res = df.residual) |>
 mutate(model = "m1") |>
 relocate(model)
temp2 <- glance(m2) |>
 select(r2 = r.squared, adjr2 = adj.r.squared,
 AIC, BIC, sigma, nobs, df, df.res = df.residual) |>
 mutate(model = "m2") |>
 relocate(model)
bind_rows(temp1, temp2) |>
 kable(digits = c(0, 3, 3, 1, 1, 2, 1, 0, 0, 0))
```

| model | r2 | adjr2 | AIC | BIC | sigma | nobs | df | df.res |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| m1 | 0.217 | 0.215 | 4816.6 | 4847.6 | 1.55 | 1293 | 4 | 1288 |


| model | r2 | adjr2 | AIC | BIC | sigma | nobs | df | df.res |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| m 2 | 0.210 | 0.209 | 4824.1 | 4844.8 | 1.56 | 1293 | 2 | 1290 |

Each model uses the same number of observations to predict the same outcome (SLPWKEND). So we can compare them directly. As compared to model m2, model m1 has:

- the larger $R^{2}$ (as it must, since model m 2 includes a subset of the predictors in model m1),
- the larger adjusted $R^{2}$,
- the smaller AIC (Akaike Information Criterion: smaller values are better),
- the larger BIC (Bayes Information Criterion: again, smaller values are better),
- and the smaller residual standard error ( $\sigma$ ) (smaller values are better.)

The key realizations for these data are that the AIC, adjusted $R^{2}$ and $\sigma$ results favor model m 1 while the BIC favors model m 2 .

### 5.2.9 Residual Plots for Model m2

```
I used #/ fig.height: 8 in this code chunk
to make the plots tall enough to see well
par(mfrow = c(2,2)); plot(m2); par(mfrow = c(1,1))
```



Fitted values


Fitted values


Theoretical Quantiles


The residual plots here show (even more starkly than in model m1) the discrete nature of our outcome and the two variables we're using to predict it. I see no especially serious problems with the assumptions of linearity or constant variance here, and while there are still some fairly poorly fit values, there are no highly influential points, so I'll accept these residual plots as indicative of a fairly reasonable model on the whole.

### 5.2.10 Conclusions

Three of our four in-sample measures of fit quality (AIC, $\sigma$ and adjusted $R^{2}$ ) favor the larger model m 1 over m 2 , but there's not a lot to choose from here. Neither model showed important problems with regression assumptions, so I would probably wind up choosing m1 based on the analyses we've done in this Chapter.

However, a more appropriate strategy for prediction assessment would be to partition the data into separate samples for model training (the development or building sample) and model testing. We adopt such a model validation strategy in our next little study.

### 5.3 Modeling High-Sensitivity C-Reactive Protein

In this, our second linear modeling example, we will try to predict High-Sensitivity C-Reactive Protein levels (HSCRP) on the basis of these three predictor variables:

- the participant's mean pulse rate, specifically the mean of the two gathered pulse rates, PULSE1 and PULSE2
- the participant's self-reported overall health (SROH, which is an ordinal factor with levels Excellent, Very Good, Good, Fair and Poor)
- HOSPITAL, a 1-0 binary variable indicating whether or not the participant was hospitalized in the past year.

In this case, we'll use all NHANES participants with complete data on the relevant variables to fit the three-predictor model, and then a second model using mean pulse rate alone.

```
dat2 <- nh432 |>
 select(SEQN, HSCRP, PULSE1, PULSE2, SROH, HOSPITAL) |>
 drop_na() |>
 mutate(MEANPULSE = 0.5*(PULSE1 + PULSE2))
glimpse(dat2)
```

```
Rows: 3,117
Columns: 7
$ SEQN <chr> "109271", "109273", "109291", "109292", "109293", "109295", ~
$ HSCRP <dbl> 28.68, 0.98, 5.31, 3.08, 15.10, 6.28, 0.56, 1.45, 0.32, 0.86~
$ PULSE1 <dbl> 73, 71, 77, 93, 62, 93, 74, 59, 66, 83, 64, 55, 54, 63, 68, ~
$ PULSE2 <dbl> 71, 70, 76, 91, 64, 93, 74, 58, 64, 87, 68, 55, 54, 63, 70, ~
$ SROH <fct> Fair, Good, Fair, Very Good, Good, Good, Very Good, Excellen~
$ HOSPITAL <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
$ MEANPULSE <dbl> 72.0, 70.5, 76.5, 92.0, 63.0, 93.0, 74.0, 58.5, 65.0, 85.0, ~
```


### 5.3.1 Partitioning the Data

Before partitioning, it's always a good idea to be sure that the number of rows in the tibble matches the number of distinct (unique) values in the identifier column.

```
identical(nrow(dat2), n_distinct(dat2 |> select(SEQN)))
```


## [1] TRUE

OK. Now, be sure to set a seed so that we can replicate the selection. We'll put $70 \%$ of the data in our training sample, setting aside the remaining $30 \%$ for the test sample.

```
set.seed(432005)
dat2_train <- slice_sample(dat2, prop = 0.70)
dat2_test <- anti_join(dat2, dat2_train, by = "SEQN")
c(nrow(dat2), nrow(dat2_train), nrow(dat2_test))
[1] 3117 2181 936
```

In what follows, we'll work with the dat2_train sample, and set aside the dat2_test sample for a while.

### 5.3.2 Transforming the Outcome?

Let's use the Box-Cox approach to help us think about which potential transformations of our outcome might be helpful, within our training sample.

```
m_temp <- lm(HSCRP ~ MEANPULSE + SROH + HOSPITAL, data = dat2_train)
boxCox(m_temp)
```

Profile Log-likelihood


The estimated $\lambda$ value is very close to 0 , which according to the ladder of power transformations, suggests we take the logarithm of our outcome, so as to improve the residual plots for the model. This will also, as it turns out, lead to a much less right-skewed outcome variable.

```
p1 <- ggplot(dat2_train, aes(sample = HSCRP)) +
 geom_qq() + geom_qq_line(col = "red") +
 labs(title = "Normal Q-Q: untransformed HSCRP")
p2 <- ggplot(dat2_train, aes(sample = log(HSCRP))) +
 geom_qq() + geom_qq_line(col = "red") +
 labs(title = "Normal Q-Q: Natural Log of HSCRP")
p1 + p2
```



Clearly, one benefit of the transformation is some improvement in the Normality of our outcome's distribution.

### 5.3.3 Scatterplot Matrix and Collinearity

To build the relevant scatterplot matrix with our transformed outcome, I'll create a variable containing the result of the transformation within our training sample.

```
dat2_train <- dat2_train |>
 mutate(logHSCRP = log(HSCRP))
names(dat2_train)
```

[1] "SEQN" "HSCRP" "PULSE1" "PULSE2" "SROH" "HOSPITAL"
[7] "MEANPULSE" "logHSCRP"

```
ggpairs(dat2_train, columns = c(7,5,6,8), switch = "both",
 lower=list(combo=wrap("facethist", bins=25)))
```



As a collinearity check, we'll run vif() from the car package here.

```
m3 <- lm(log(HSCRP) ~ MEANPULSE + SROH + HOSPITAL,
 data = dat2_train)
vif(m3)
```

GVIF Df $\operatorname{GVIF}^{\wedge}(1 /(2 * D f))$

| MEANPULSE | 1.036382 | 1 | 1.018028 |
| :--- | :--- | :--- | :--- |
| SROH | 1.063545 | 4 | 1.007731 |
| HOSPITAL | 1.027860 | 1 | 1.013834 |

Again, no signs of meaningful collinearity. Note the presentation of the factor variable SROH in the scatterplot matrix, and in the generalized VIF output.

### 5.3.4 Fit Model m3

```
m3 <- lm(log(HSCRP) ~ MEANPULSE + SROH + HOSPITAL,
 data = dat2_train)
```

```
tidy(m3, conf.int = TRUE, conf.level = 0.90) |>
 kable(digits = 3)
```

| term | estimate | std.error | statistic | p.value | conf.low | conf.high |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | -1.108 | 0.160 | -6.914 | 0.000 | -1.372 | -0.845 |
| MEANPULSE | 0.020 | 0.002 | 9.359 | 0.000 | 0.017 | 0.024 |
| SROHVery | 0.237 | 0.081 | 2.939 | 0.003 | 0.104 | 0.370 |
| Good |  |  |  |  |  |  |
| SROHGood | 0.532 | 0.078 | 6.857 | 0.000 | 0.404 | 0.660 |
| SROHFair | 0.641 | 0.087 | 7.353 | 0.000 | 0.497 | 0.784 |
| SROHPoor | 0.860 | 0.143 | 6.020 | 0.000 | 0.625 | 1.095 |
| HOSPITAL | 0.052 | 0.088 | 0.594 | 0.552 | -0.092 | 0.197 |

- If Harry and Sally have the same values of HOSPITAL and MEANPULSE, but Harry's SROH is "Very Good" while Sally's is "Excellent", then model m3 predicts that Harry will have a $\log (\mathrm{HSCRP})$ that is $0.237(90 \% \mathrm{CI}: 0.104,0.370)$ larger than Sally's $\log (H S C R P)$.
- On the other hand, if Harry and Gary have the same values of HOSPITAL and MEANPULSE, but Harry's SROH remains "Very Good" while Gary's is only "Good", then model m 3 predicts that Gary will have a $\log (\mathrm{HSCRP})$ that is $(0.532-0.237=0.295)$ larger than Harry's $\log$ (HSCRP).


### 5.3.5 Residual Plots for m 3

```
don't forget to use #| fig.height: 8
to make the residual plots taller
par(mfrow = c(2,2)); plot(m3); par(mfrow = c(1,1))
```



Fitted values


Fitted values



I see no serious concerns with regression assumptions here. The residuals vs. fitted plot shows no signs of meaningful non-linearity or heteroscedasticity. The standardized residuals in the Normal Q-Q plot follow the reference line closely. There is no clear trend in the scale-location plot, and the residuals vs. leverage plot reveals no particularly influential points.

### 5.3.6 Fit Model m4

Let's now fit the simple regression model, m4, with only MEANPULSE as a predictor of the $\log$ of HSCRP.

```
m4 <- lm(log(HSCRP) ~ MEANPULSE,
 data = dat2_train)
```

Now, let's look at the tidied coefficients.

```
tidy(m4, conf.int = TRUE, conf.level = 0.90) |>
 kable(digits = 3)
```

| term | estimate | std.error | statistic | p.value | conf.low | conf.high |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | -0.929 | 0.154 | -6.048 | 0 | -1.181 | -0.676 |
| MEANPULSE | 0.023 | 0.002 | 10.934 | 0 | 0.020 | 0.027 |

- If Harry's mean pulse rate is one beat per minute higher than Sally's, then model m4 predicts that the logarithm of Harry's HSCRP will be 0.023 higher than Sally's, with $90 \%$ CI (0.020, 0.027).
- Note that if Harry's mean pulse rate is ten beats per minute higher than Sally's, then model m 4 predicts that the logarithm of Harry's HSCRP will be 0.23 higher than Sally's, with $90 \%$ CI ( $0.20,0.27$ ).


### 5.3.7 Residual Plots for m 4

```
par(mfrow = c(2,2)); plot(m4); par(mfrow = c(1,1))
```



Fitted values


Fitted values



### 5.3.8 In-Sample Fit Quality Comparison (m3 vs. m4)

```
g3 <- glance(m3) |>
 select(r2 = r.squared, adjr2 = adj.r.squared,
 AIC, BIC, sigma, nobs, df, df.res = df.residual) |>
 mutate(model = "m3") |>
 relocate(model)
g4 <- glance(m4) |>
 select(r2 = r.squared, adjr2 = adj.r.squared,
 AIC, BIC, sigma, nobs, df, df.res = df.residual) |>
 mutate(model = "m4") |>
 relocate(model)
bind_rows(g3, g4) |> kable()
```

| model | r2 | adjr2 | AIC | BIC | sigma | nobs | df | df.res |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| m 3 | 0.0907079 | 0.0881984 | 6636.024 | 6681.525 | 1.105532 | 2181 | 6 | 2174 |
| m 4 | 0.0520082 | 0.0515731 | 6716.928 | 6733.990 | 1.127517 | 2181 | 1 | 2179 |

The larger model (model m 3 ) has better results than model m 4 in the sense that it produces a larger adjusted $R^{2}$, and smaller values for AIC, BIC and $\sigma$. Based on this comparison within the training sample, we clearly prefer m 3 , since each model shows reasonable adherence to the assumptions of a linear regression model.

### 5.3.9 Testing the models in new data

At last we return to the dat2_test sample which was not used in fitting models m3 and m4 to investigate which of these models has better predictive results in new data. When doing this sort of testing, I recommend a look at the following 4 summaries, each of which is based on the fitted (predicted) and observed values of our outcome in our new data, using the models we want to compare:

- squared correlation of predicted with observed values (validated $R^{2}$; higher values are better)
- mean absolute prediction error (MAPE; smaller values indicate smaller errors, hence better prediction)
- square root of the mean squared prediction error (RMSPE; again, smaller values indicate better predictions)
- maximum (in absolute value) prediction error (Max Error)

To obtain observed, predicted, and error (observed - predicted) values for each new data point when we apply model m 3 , we first use the augment() function from the broom package to obtain our .fitted values.

```
m3_test_aug <- augment(m3, newdata = dat2_test)
head(m3_test_aug)
```

\# A tibble: 6 x 9

| SEQN | HSCRP | PULSE1 | PULSE2 | SROH | HOSPITAL MEANPULSE | .fitted | .resid |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | <chr> | <dbl> | <dbl> | <dbl> | <fct> | <dbl> | <dbl> | <dbl> | <dbl> |
| 1 | 109273 | 0.98 | 71 | 70 | Good | 0 | 70.5 | 0.839 | -0.859 |
| 2 | 109293 | 15.1 | 62 | 64 | Good | 0 | 63 | 0.688 | 2.03 |
| 3 | 109312 | 0.86 | 83 | 87 | Very Good | 0 | 85 | 0.835 | -0.985 |
| 4 | 109332 | 2.29 | 63 | 63 | Excellent | 0 | 63 | 0.156 | 0.673 |
| 5 | 109340 | 4.64 | 78 | 78 | Fair | 0 | 78 | 1.10 | 0.437 |
| 6 | 109342 | 5.51 | 72 | 70 | Good | 0 | 71 | 0.849 | 0.858 |

Remember, however, that our models m 3 and m 4 do not predict HSCRP, but rather the logarithm of HSCRP, so we need to exponentiate the .fitted values to get what we want.

```
m3_test_aug <- augment(m3, newdata = dat2_test) |>
 mutate(fits = exp(.fitted),
 resid = HSCRP - fits) |>
 select(SEQN, HSCRP, fits, resid, everything())
head(m3_test_aug)
A tibble: 6 x 11
 SEQN HSCRP fits resid PULSE1 PULSE2 SROH HOSPITAL MEANPULSE .fitted .resid
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>
1109273 0.98 2.31-1.33 71 70 Good 0
```



```
3 109312 0.86 2.30-1.44 83 87 Very~ 0 0 % 0 0 0 0.835 -0.985
4109332 2.29 1.17 1.12 63 63 Exce~
5 109340 4.64 3.00 1.64 78 78 78 Fair
6 109342 5.51 2.34 3.17 笽 (2 % 70 Good
```

Now, we can obtain our summaries, as follows.

```
 m3_test_results <- m3_test_aug |>
 summarize(validated_R_sq = cor(HSCRP, fits)^2,
 MAPE = mean(abs(resid)),
 RMSPE = sqrt(mean(resid^2)),
 max_Error = max(abs(resid)))
 m3_test_results
A tibble: 1 x 4
 validated_R_sq MAPE RMSPE max_Error
 <dbl> <dbl> <dbl> <dbl>
 0.114 3.45 10.7 177.
```

For model m4, we have:

```
 m4_test_aug <- augment(m4, newdata = dat2_test) |>
 mutate(fits = exp(.fitted),
 resid = HSCRP - fits) |>
 select(SEQN, HSCRP, fits, resid, everything())
 m4_test_results <- m4_test_aug |>
 summarize(validated_R_sq = cor(HSCRP, fits)^2,
 MAPE = mean(abs(resid)),
 RMSPE = sqrt(mean(resid^2)),
 max_Error = max(abs(resid)))
 m4_test_results
A tibble: 1 x 4
 validated_R_sq MAPE RMSPE max_Error
 <dbl> <dbl> <dbl> <dbl>
 0.102 3.50 10.8 177.
```

1

And we can put the two sets of results together into a nice table.

```
bind_rows(m3_test_results, m4_test_results) |>
 mutate(model = c("m3", "m4")) |>
 relocate(model) |>
 kable()
```

| model | validated_R_sq | MAPE | RMSPE | max_Error |
| :--- | ---: | ---: | ---: | ---: |
| m 3 | 0.1135858 | 3.451295 | 10.72894 | 176.9855 |
| m 4 | 0.1015280 | 3.496673 | 10.79613 | 177.0716 |

Based on these out-of-sample validation results, it seems that Model m3 has the better results across each of these four summaries than Model 4 does.

### 5.3.10 Conclusions

We fit two models to predict HSCRP, a larger model (m3) containing three predictors (MEANPULSE, SROH and HOSPITAL), and a smaller model (m4) containing only the MEANPULSE as a predictor.

- Both models (after transforming to $\log (H S C R P)$ for our outcome) seem to generally meet the assumptions of linear regression
- Model m3 had a raw $R^{2}$ value of 0.091 , so it accounted for about $9.1 \%$ of the variation in $\log$ (HSCRP) within our training sample. Model m4 accounted for $5.2 \%$.
- In our in-sample checks, Model m3 had better results in terms of adjusted $R^{2}$, AIC, BIC and $\sigma$.
- In a validation (test) sample, our Model m3 also showed superior predictive performance, including better results in terms of MAPE, RMSPE and maximum absolute error, as well as a validated $R^{2}$ of $11.4 \%$, higher than model m 4 's result of $10.2 \%$.

Overall, model m3 seems like the meaningfully better choice.

## 6 BRFSS SMART Data

The Centers for Disease Control analyzes Behavioral Risk Factor Surveillance System (BRFSS) survey data for specific metropolitan and micropolitan statistical areas (MMSAs) in a program called the Selected Metropolitan/Micropolitan Area Risk Trends of BRFSS (SMART BRFSS.)

In this work, we will focus on data from the 2017 SMART, and in particular on data from the state of Ohio, and from the Cleveland-Elyria, OH, Metropolitan Statistical Area. The purpose of this survey is to provide localized health information that can help public health practitioners identify local emerging health problems, plan and evaluate local responses, and efficiently allocate resources to specific needs.

In this chapter, I describe some cleaning of the BRFSS SMART data, and break it out into national, statewide, and local samples.

The data files produced by this chapter include:

- smart_ohio.Rds which includes data on approximately 100 variables for over 7000 subjects in six MMSAs that are at least partially located in the state of Ohio.
- smart_cle.Rds which includes data on those same variables for a little over 1000 subjects in the Cleveland-Elyria-Lorain OH MMSA.


### 6.1 R Setup Used Here

```
knitr::opts_chunk$set(comment = NA)
library(janitor)
library(Hmisc)
library(patchwork)
library(tidyverse)
theme_set(theme_bw())
```


### 6.2 Key resources

- the "raw" data, in the form of the 2017 SMART BRFSS MMSA Data, found in a zipped SAS Transport Format file. The data were released in October 2018.
- the MMSA Variable Layout which simply lists the variables included in the data file
- the Calculated Variables PDF which describes the risk factors by data variable names there is also an online summary matrix of these calculated variables.
- the lengthy 2017 Survey Questions PDF which lists all questions asked as part of the BRFSS in 2017
- the enormous Codebook for the 2017 BRFSS Survey PDF which identifies the variables by name for us.

Also, for each subject, we are also provided with a sampling weight, in _MMSAWT, which will help us incorporate the sampling design later. These weights are at the MMSA level, and are used for generating MMSA-level estimates for variables in the data set. Details on the weighting methodology are available at this PDF.

### 6.3 Ingesting the Raw Data

To create the data files we'll use, I used the read_xpt function from the haven package to bring in the SAS XPT data file that is provided by CDC. The codes I used (but won't use in these Notes) were:

```
smart_raw <- read_xpt("MMSA2017/MMSA2017.xpt")
```

This gives the nationwide data, which has 230,875 rows and 177 columns.
But for the purposes of putting these Notes online, I needed to crank down the sample size enormously. To that end, I created a new data file, which I developed by

- importing the MMSA2017.xpt file as above
- filtering away all observations except those from MMSAs which include Ohio in their name, and
- saving the result, which now has 7,412 rows and 177 columns.

The code (again, not run here) that I used to filter to the OH-based MMSAs was:

```
smart_ohio_raw <- smart_raw |>
 filter(str_detect(MMSANAME, "OH"))
write_csv(smart_ohio_raw, "data/smart_ohio_raw.csv")
```

So, for purposes of these notes, our complete data set is actually coming from smart_ohio_raw.csv and consists only of the 7,412 observations associated with the six MMSAs that include Ohio in their names.

### 6.4 Ingesting from our CSV file

Note that the smart_ohio_raw.csv and other data files we're developing in this Chapter are available on our 432-Data website

```
smart_ohio_raw <- read_csv("data/smart_ohio_raw.csv", show_col_types = FALSE)
dim(smart_ohio_raw)
```

[1] 7412177

### 6.5 What does the raw data look like?

Here is a list of all variable names included in this file. We're not going to use all of those variables, but this will give you a sense of what is available.

```
names(smart_ohio_raw)
```

|  |  |  |  |  | "GENHL TH" |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | "POORHLTH" |  | C2" | "MEDCOST" |  |
| [13] | "BPHIGH4" | "BPMEDS | "CH | 'TOLDHI2" | "CHOLMED1" |  |
| [19] | "CVDCR | "CVDSTRK3 | "ASTHMA3" | 'ASTHNOW" | "CHCSCNCR" |  |
| 5] | "CHCCOPD1 | "HAV | 'AD | "CHCKIDNY | D |  |
| [31] | "LMTJOIN3 | "ARTHDIS2" | "ARTHSOCL | "JO | "SE | 寺 |
|  | "EDUCA" | "RENTHOM1 | "NUMHHOL2 | "NUMPHON2 | "CPDEM01 | "VETE |
| [43] | "EMPLOY1" | "CH | "INCOME2 | "INTERNET" | "WEIGHT2" | HEIGHT3 |
| [49] | "PREGNAN | "DE | BL | DE | "DIFFWALK" | DIFFDRES |
|  | "DI | "SMOKE1 | " | 'S | "LASTSMK2" | USENOW3 |
|  | "ECIGARET | "ECIGNOW" | "ALCDAY5" | "AVEDR | "DRNK3GE5" | "MAX |
| [67] | "FRUIT2" | "FRUITJU2" | "FVGREEN1 | "FRENCHF1" | "POTATOE1" | "VEGETAB2 |
| 3] | "EXERANY2" | "EXRACT11 | " | 'EXERHM | "EXRACT21" |  |
| [79] | "EXERHMM2 | "STRENGTH" | SEATBEL | "FLUSHOT6" | "FLSHTMY2" | , |
|  | "Shingle2" | "HIVTST6" | "HIVTSTD3" | "HIVRISK5" | "CASTHDX2" |  |
| 1] | "CALLBCKZ" | "WDUSENOW" | INFTRK" | "WDHOWOFT" | ARE" |  |

```
 [97] "NAMOTHR" "_URBNRRL" "_STSTR" "_IMPSEX" "_RFHLTH" "_PHYS14D"
[103] "_MENT14D" "_HCVU651" "_RFHYPE5" "_CHOLCH1" "_RFCHOL1" "_MICHD"
[109] "_LTASTH1" "_CASTHM1" "_ASTHMS1" "_DRDXAR1" "_LMTACT1" "_LMTWRK1"
[115] "_LMTSCL1" "_PRACE1" "_MRACE1" "_HISPANC" "_RACE" "_RACEG21"
[121] "_RACEGR3" "_AGEG5YR" "_AGE65YR" "_AGE80" "_AGE_G" "WTKG3"
[127] "_BMI5" "_BMI5CAT" "_RFBMI5" "_EDUCAG" "_INCOMG" "_SMOKER3"
[133] "_RFSMOK3" "_ECIGSTS" "_CURECIG" "DRNKANY5" "_RFBING5" "_DRNKWEK"
[139] "_RFDRHV5" "FTJUDA2_" "FRUTDA2_" "GRENDA1_" "FRNCHDA_" "POTADA1_"
[145] "VEGEDA2_" "_MISFRT1" "_MISVEG1" "_FRTRES1" "_VEGRES1" "_FRUTSU1"
[151] "_VEGESU1" "_FRTLT1A" "_VEGLT1A" "_FRT16A" "_VEG23A" "_FRUITE1"
[157] "_VEGETE1" "_TOTINDA" "_MINAC11" "_MINAC21" "_PACAT1" "_PAINDX1"
[163] "_PA150R2" "_PA300R2" "_PA30021" "_PASTRNG" "_PAREC1" "_PASTAE1"
[169] "_RFSEAT2" "_RFSEAT3" "_FLSHOT6" "_PNEUMO2" "_AIDTST3" "_MMSA"
[175] "_MMSAWT" "SEQNO" "MMSANAME"
```


### 6.6 Cleaning the BRFSS Data

### 6.6.1 Identifying Information

The identifying variables for each subject are gathered in SEQNO, which I'll leave alone.

- Each statistical (geographic) area is identified by a _MMSA variable, which I'll rename mmsa_code, and by an MMSANAME which I'll rename as mmsa_name
- For each subject, we are also provided with a sampling weight, in _MMSAWT, which will help us incorporate the sampling design later in the semester. We'll rename this as mmsa_wt. Details on the weighting methodology are available at https://www.cdc.gov/brfss/annual_data/2017/pdf/2017_SMART_BRFSS_MMSA_Methodology508.pdf
smart_ohio_raw <- smart_ohio_raw |>
mutate (mmsa_code $={ }^{-}{ }^{\text {MMSA }}{ }^{-}$,
mmsa_name = `MMSANAME`, mmsa_wt = `_MMSAWT`)
smart_ohio_raw |> count(mmsa_code, mmsa_name)
\# A tibble: $6 \times 3$
mmsa_code mmsa_name n
<dbl> <chr>
<int>
1
17140 Cincinnati, OH-KY-IN, Metropolitan Statistical Area

| 2 | 17460 Cleveland-Elyria, OH, Metropolitan Statistical Area | 1133 |
| :--- | :--- | :--- | ---: |
| 3 | 18140 Columbus, OH, Metropolitan Statistical Area | 2033 |
| 4 | 19380 Dayton, OH, Metropolitan Statistical Area | 587 |
| 5 | 26580 Huntington-Ashland, WV-KY-OH, Metropolitan Statistical Area | 1156 |
| 6 | 45780 Toledo, OH, Metropolitan Statistical Area | 766 |

Those names are very long. I'll build some shorter ones, by dropping everything after the comma.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(mmsa = str_replace_all(string = mmsa_name, pattern="\\,.*$",replacement=" "))
smart_ohio_raw |> count(mmsa, mmsa_name)
A tibble: 6 x 3
 mmsa mmsa_name n
 <chr> <chr> <int>
1 "Cincinnati " Cincinnati, OH-KY-IN, Metropolitan Statistical Ar~ 1737
2 "Cleveland-Elyria " Cleveland-Elyria, OH, Metropolitan Statistical Ar~ 1133
3 "Columbus " Columbus, OH, Metropolitan Statistical Area 2033
4 ~ " D a y t o n ~ " ~ D a y t o n , ~ O H , ~ M e t r o p o l i t a n ~ S t a t i s t i c a l ~ A r e a ~ 5 8 7 ~
5 \text { "Huntington-Ashland " Huntington-Ashland, WV-KY-OH, Metropolitan Statis~ } 1 1 5 6
6 "Toledo " Toledo, OH, Metropolitan Statistical Area 766
```

And here are the sampling weights for the subjects in the Cleveland-Elyria MSA.

```
smart_ohio_raw |>
 filter(mmsa_code == 17460) %>%
 ggplot(., aes(x = mmsa_wt)) +
 geom_histogram(bins = 30, fill = "blue", col = "white")
```



### 6.6.2 Survey Method

### 6.6.2.1 DISPCODE and its cleanup to completed

DISPCODE which is 1100 if the subject completed the interview, and 1200 if they partially completed the interview. We'll create a variable called completed that indicates ( $1=$ complete, $0=$ not) whether the subject completed the interview.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(completed = 12 - (DISPCODE/100))
smart_ohio_raw |> count(DISPCODE, completed)
```

\# A tibble: 2 x 3

|  | DISPCODE <br> cdbl> | completed | n |
| ---: | ---: | ---: | ---: |
|  | <dbl> | <int> |  |
| 1 | 1100 | 1 | 6277 |
| 2 | 1200 | 0 | 1135 |

### 6.6.2.2 STATERE1 and SAFETIME and their reduction to landline

BRFSSS is conducted by telephone. The next two variables help us understand whether the subject was contacted via land line or via cellular phone.

- STATERE1 is 1 if the subject is a resident of the state (only asked of people in the land line version of the survey).
- SAFETIME is 1 if this is a safe time to talk (only asked of people in the cell phone version of the survey).
- We'll use STATERE1 and SAFETIME to create an indicator variable landline that specifies how the respondent was surveyed ( $1=$ land line, $0=$ cell phone), as follows...

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(landline = replace_na(STATERE1, 0))
smart_ohio_raw |> count(STATERE1, SAFETIME, landline)
```

\# A tibble: 2 x 4
STATERE1 SAFETIME landline $n$
<dbl> <dbl> <dbl> <int>
1
1 NA 113649
$\begin{array}{llll}\text { NA } & 1 & 0 & 3763\end{array}$

### 6.6.2.3 HHADULT and its cleanup to hhadults

- HHADULT is the response to "How many members of your household, including yourself, are 18 years of age or older?"
- The permitted responses range from 1-76, with special values 77 for Don't Know/Not Sure and 99 for refused, with BLANK for missing or not asked.
- So we should change all numerical values above 76 to NA for our analyses (the blanks are already regarded as NAs by R in the ingestion process.)

```
smart_ohio_raw |> tabyl(HHADULT)
```

| HHADULT | n | percent | valid_percent |
| ---: | ---: | ---: | ---: |
| 1 | 274 | 0.0369670804 | 0.236206897 |
| 2 | 603 | 0.0813545602 | 0.519827586 |
| 3 | 170 | 0.0229357798 | 0.146551724 |
| 4 | 73 | 0.0098488937 | 0.062931034 |
| 5 | 28 | 0.0037776579 | 0.024137931 |

```
 6 4 0.0005396654 0.003448276
 7 3 0.0004047491 0.002586207
 8 1 0.0001349164 0.000862069
 10 1 0.0001349164 0.000862069
 11 1 0.0001349164 0.000862069
 99 2 0.0002698327 0.001724138
 NA 6252 0.8434970318 NA
smart_ohio_raw <- smart_ohio_raw |>
 mutate(hhadults = HHADULT,
 hhadults = replace(hhadults, hhadults > 76, NA))
smart_ohio_raw |> count(HHADULT, hhadults) |> tail()
A tibble: 6 x 3
 HHADULT hhadults n
 <dbl> <dbl> <int>
 7 7 7 3
 8 8 1
 10 10 1
 11 11 1
 99 NA 2
 NA NA }625
```


### 6.6.3 Health Status (1 item)

The next variable describes relate to the subject's health status.

### 6.6.3.1 GENHLTH and its cleanup to genhealth

- GENHLTH, the General Health variable, which is the response to "Would you say that in general your health is ..."
$-1=$ Excellent
$-2=$ Very good
$-3=$ Good
$-4=$ Fair
$-5=$ Poor
$-7=$ Don't know/Not sure
$-9=$ Refused
- BLANK $=$ Not asked or missing

To clean up the GENHLTH data into a new variable called genhealth we'll need to - convince $R$ that the 7 and 9 values are in fact best interpreted as NA, - and perhaps change the variable to a factor and incorporate the names into the levels.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(genhealth = fct_recode(factor(GENHLTH),
 "1_Excellent" = "1",
 "2_VeryGood" = "2",
 "3_Good" = "3",
 "4_Fair" = "4",
 "5_Poor" = "5",
 NULL = "7",
 NULL = "9"))
smart_ohio_raw |> count(GENHLTH, genhealth)
A tibble: 7 x 3
 GENHLTH genhealth n
 <dbl> <fct> <int>
 1 1_Excellent 1057
 2 2_VeryGood 2406
 3 3_Good 2367
 4 4_Fair 1139
 5_Poor 428
 7 <NA> 10
 9 <NA> 5
```


### 6.6.4 Healthy Days - Health-Related Quality of Life (3 items)

The next three variables describe the subject's health-related quality of life.

### 6.6.4.1 PHYSHLTH and its cleanup to physhealth

PHYSHLTH ${ }^{‘}$, the Number of Days Physical Health Not Good variable, which is the response to "Now thinking about your physical health, which includes physical illness and injury, for how many days during the past 30 days was your physical health not good?"

- Values of 1-30 are numeric and reasonable.
- A value of 88 indicates "none" and should be recoded to 0 .
- 77 is the code for Don't know/Not sure
- 99 is the code for Refused
- BLANK indicates Not asked or missing, and R recognizes this as NA properly.

To clean up PHYSHLTH to a new variable called physhealth, we'll need: - to convince R that the 77 and 99 values are in fact best interpreted as NA, and - to convince $R$ that the 88 should be interpreted as 0 .

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(physhealth = PHYSHLTH,
 physhealth = replace(physhealth, physhealth %in% c(77, 99), NA),
 physhealth = replace(physhealth, physhealth == 88, 0))
smart_ohio_raw |> count(PHYSHLTH, physhealth) |> tail()
A tibble: 6 x 3
PHYSHLTH physhealth n
 <dbl> <dbl> <int>
1 28 28 12
 29 29 14
 30 30 677
 77 NA 123
 88 0 4380
 99 NA 15
```

2

Note that we present the tail of the counts in this case so we can see what happens to the key values $(77,88,99)$ of our original variable PHYSHLTH.

### 6.6.4.2 MENTHLTH and its cleanup to menthealth

MENTHLTH ${ }^{‘}$, the Number of Days Mental Health Not Good variable, which is the response to "Now thinking about your mental health, which includes stress, depression, and problems with emotions, for how many days during the past 30 days was your mental health not good?"

- This is coded just like the PHYSHLTH variable, so we need to do the same cleaning we did there.

To clean up MENTHLTH to a new variable called menthealth, we'll need: - to convince $R$ that the 77 and 99 values are in fact best interpreted as NA, and - to convince $R$ that the 88 should be interpreted as 0 .

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(menthealth = MENTHLTH,
 menthealth = replace(menthealth, menthealth %in% c(77, 99), NA),
 menthealth = replace(menthealth, menthealth == 88, 0))
smart_ohio_raw |> count(MENTHLTH, menthealth) |> tail()
A tibble: 6 x 3
 MENTHLTH menthealth n
 <dbl> <dbl> <int>
 28 28 7
 29 29 10
 30 30 475
 77 NA 86
 88 O 4823
 99 NA 28
```


### 6.6.4.3 POORHLTH and its cleanup to poorhealth

POORHLTH, the Poor Physical or Mental Health variable, which is the response to "During the past 30 days, for about how many days did poor physical or mental health keep you from doing your usual activities, such as self-care, work, or recreation?"

- Again, we recode just like the PHYSHLTH variable.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(poorhealth = POORHLTH,
 poorhealth = replace(poorhealth, poorhealth %in% c(77, 99), NA),
 poorhealth = replace(poorhealth, poorhealth == 88, 0))
smart_ohio_raw |> count(POORHLTH, poorhealth) |> tail()
A tibble: 6 x 3
 POORHLTH poorhealth n
 <dbl> <dbl> <int>
4 88 0 2194
5 99 NA 11
N NA NA 3337
```

1
2
3

There's a lot more missingness in the poorhealth counts than in the other health-related quality of life measures. There's also a strong mode at 0 , and a smaller mode at 30 in each variable.

```
p1 <- ggplot(smart_ohio_raw, aes(x = physhealth)) +
 geom_histogram(binwidth = 1, fill = "orange") +
 labs(title = paste0("Bad Physical Health Days (",
 sum(is.na(smart_ohio_raw$physhealth)),
 " NA)"))
p2 <- ggplot(smart_ohio_raw, aes(x = menthealth)) +
 geom_histogram(binwidth = 1, fill = "blue") +
 labs(title = paste0("Bad Mental Health Days (",
 sum(is.na(smart_ohio_raw$menthealth)),
 " NA)"))
p3 <- ggplot(smart_ohio_raw, aes(x = poorhealth)) +
 geom_histogram(binwidth = 1, fill = "red") +
 labs(title = paste0("Unable to Do Usual Activities Days (",
 sum(is.na(smart_ohio_raw$poorhealth)),
 " NA)"))
(p1 + p2) / p3 +
 plot_annotation(title = "Health Related Quality of Life Measures in BRFSS/SMART (Ohio
```



### 6.6.5 Health Care Access (4 items)

The next four variables relate to the subject's health care access.

### 6.6.5.1 HLTHPLN1 and its cleanup to healthplan

HLTHPLN1, the Have any health care coverage variable, is the response to "Do you have any kind of health care coverage, including health insurance, prepaid plans such as HMOs, or government plans such as Medicare, or Indian Health Service?"

- $1=$ Yes
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused

To clean up the HLTHPLN1 data into a new variable called healthplan we'll - convince R that the 7 and 9 values are in fact best interpreted as NA, - and turn it into an indicator variable, e.g., we will leave the variable as numeric, but change the values to $1=$ Yes and $0=$ No.

```
 smart_ohio_raw <- smart_ohio_raw |>
 mutate(healthplan = HLTHPLN1,
 healthplan = replace(healthplan, healthplan %in% c(7, 9), NA),
 healthplan = replace(healthplan, healthplan == 2, 0))
smart_ohio_raw |> count(HLTHPLN1, healthplan)
A tibble: 4 x 3
 HLTHPLN1 healthplan n
 <dbl> <dbl> <int>
1 1 1 6994
2 2 0 398
3 7 NA 10
4 9 NA 10
```


### 6.6.5.2 PERSDOC2 and its cleanup to hasdoc and to numdocs2

PERSDOC2, the Multiple Health Care Professionals variable, is the response to "Do you have one person you think of as your personal doctor or health care provider?" where if the response is "No", the survey then asks "Is there more than one or is there no person who you think of as your personal doctor or health care provider?"

- $1=$ Yes, only one
- $2=$ More than one
- $3=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

To clean up the PERSDOC2 data into a new variable called hasdoc we'll

- convince $R$ that the 7 and 9 values are in fact best interpreted as NA, - and turn it into an indicator variable, e.g., we will leave the variable as numeric, but change the values to $1=$ Yes and $0=$ No, so that the original 1 and 2 become 1 , and the original 3 becomes 0 .

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(hasdoc = PERSDOC2,
 hasdoc = replace(hasdoc, hasdoc %in% c(7, 9), NA),
 hasdoc = replace(hasdoc, hasdoc %in% c(1, 2), 1),
 hasdoc = replace(hasdoc, hasdoc == 3, 0))
smart_ohio_raw |> count(PERSDOC2, hasdoc)
```

| \# A tibble: $5 \times 3$ |  |  |  |
| ---: | ---: | ---: | ---: |
| PERSDOC2 | hasdoc | n |  |
|  | <dbl> | <dbl> | <int> |
| 1 | 1 | 1 | 5784 |
| 2 | 2 | 1 | 623 |
| 3 | 3 | 0 | 990 |
| 4 | 7 | NA | 14 |
| 5 | 9 | NA | 1 |

### 6.6.5.3 MEDCOST and its cleanup to costprob

MEDCOST, the Could Not See Doctor Because of Cost variable, is the response to "Was there a time in the past 12 months when you needed to see a doctor but could not because of cost?"

- $1=$ Yes
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

This is just like HLTHPLAN.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(costprob = MEDCOST,
 costprob = replace(costprob, costprob %in% c(7, 9), NA),
 costprob = replace(costprob, costprob == 2, 0))
smart_ohio_raw |> count(MEDCOST, costprob)
A tibble: 4 x 3
 MEDCOST costprob n
 <dbl> <dbl> <int>
1 1 1 1 714
2 2 0 6680
3 7 NA 14
4 9 NA 4
```


### 6.6.5.4 CHECKUP1 and its cleanup to $t_{-}$checkup

CHECKUP1, the Length of time since last routine checkup variable, is the response to "About how long has it been since you last visited a doctor for a routine checkup? [A routine checkup is a general physical exam, not an exam for a specific injury, illness, or condition.]"

- $1=$ Within past year (anytime less than 12 months ago)
- $2=$ Within past 2 years ( 1 year but less than 2 years ago)
- $3=$ Within past 5 years ( 2 years but less than 5 years ago)
- $4=5$ or more years ago
- $7=$ Don't know/Not sure
- $8=$ Never
- $9=$ Refused
- BLANK $=$ Not asked or missing

To clean up the CHECKUP1 data into a new variable called t_checkup we'll - convince R that the 7 and 9 values are in fact best interpreted as NA, - relabel options $1,2,3,4$ and 8 while turning the variable into a factor.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(t_checkup = fct_recode(factor(CHECKUP1),
 "1_In-past-year" = "1",
 "2_1-to-2-years" = "2",
 "3_2-to-5-years" = "3",
 "4_5_plus_years" = "4",
 "8_Never" = "8",
 NULL = "7",
 NULL = "9"))
smart_ohio_raw |> count(CHECKUP1, t_checkup)
A tibble: 7 x 3
 CHECKUP1 t_checkup n
 <dbl> <fct> <int>
 1 1_In-past-year 5803
 2 2_1-to-2-years 714
 3 3_2-to-5-years 413
 4 4_5_plus_years 376
 7 <NA> 68
 8_Never 32
 9 <NA> 6
```


### 6.6.6 Blood Pressure (2 measures)

### 6.6.6.1 BPHIGH4 and its cleanup to bp_high

BPHIGH4 is asking about awareness of a hypertension diagnosis. It's the response to the question: "Have you EVER been told by a doctor, nurse or other health professional that you have
high blood pressure?" In addition, if the answer was "Yes" and the respondent is female, they were then asked "Was this only when you were pregnant?"

The available codes are:

- $1=$ Yes
- $2=$ Yes, but female told only during pregnancy
- $3=$ No
- $4=$ Told borderline high or pre-hypertensive
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

To clean up the BPHIGH4 data into a new variable called bp_high we'll - convince R that the 7 and 9 values are in fact best interpreted as NA, - relabel (and re-order) options 1, 2, 3, 4 while turning the variable into a factor.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(bp_high = fct_recode(factor(BPHIGH4),
 "O_No" = "3",
 "1_Yes" = "1",
 "2_Only_while_pregnant" = "2",
 "4_Borderline" = "4",
 NULL = "7",
 NULL = "9"),
 bp_high = fct_relevel(bp_high,
 "O_No", "1_Yes",
 "2_Only_while_pregnant",
 "4_Borderline"))
smart_ohio_raw |> count(BPHIGH4, bp_high)
```

\# A tibble: 6 x 3
BPHIGH4 bp_high n
<dbl> <fct> <int>
1 1 1_Yes 3161
2 2 2_Only_while_pregnant 67
3 3 O_No 4114
4 4 4_Borderline 49
57 <NA> 19
69 <NA> 2

### 6.6.6.2 BPMEDS and its cleanup to bp_meds

BPMEDS is the response to the question "Are you currently taking medicine for your high blood pressure?"

- $1=\mathrm{Yes}$
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

To clean up the BPMEDS data into a new variable called bp_meds we'll treat it just as we did with HLTHPLN1 and - convince R that the 7 and 9 values are in fact best interpreted as NA, and turn it into an indicator variable, e.g., we will leave the variable as numeric, but change the values to $1=$ Yes and $0=$ No.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(bp_meds = BPMEDS,
 bp_meds = replace(bp_meds, bp_meds %in% c(7, 9), NA),
 bp_meds = replace(bp_meds, bp_meds == 2, 0))
smart_ohio_raw |> count(BPMEDS, bp_meds)
A tibble: 5 x 3
\begin{tabular}{rrr}
BPMEDS & bp_meds & n \\
<dbl> & <dbl> & <int> \\
1 & 1 & 2675 \\
2 & 0 & 481 \\
7 & \(N A\) & 4 \\
9 & \(N A\) & 1 \\
NA & \(N A\) & 4251
\end{tabular}
```

What is the relationship between our two blood pressure variables? Only the people with bp_meds = "1_Yes" were asked the bp_meds question.
smart_ohio_raw |> tabyl(bp_high, bp_meds)
bp_high $0 \quad 1$ NA_
O_No 0 04114
1_Yes 48126755
2_Only_while_pregnant $0 \quad 0 \quad 67$

```
4_Borderline 0 0 49
 <NA> 0 0 21
```


### 6.6.7 Cholesterol (3 items)

### 6.6.7.1 CHOLCHK1 and its cleanup to t_chol

CHOLCHK1, the Length of time since cholesterol was checked, is the response to "Blood cholesterol is a fatty substance found in the blood. About how long has it been since you last had your blood cholesterol checked?"

- $1=$ Never
- $2=$ Within past year (anytime less than 12 months ago)
- $3=$ Within past 2 years ( 1 year but less than 2 years ago)
- $4=$ Within past 5 years ( 2 years but less than 5 years ago)
- $5=5$ or more years ago
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK = Not asked or missing

To clean up the CHOLCHK1 data into a new variable called t_chol we'll - convince $R$ that the 7 and 9 values are in fact best interpreted as NA, - relabel options $1,2,3,4$ and 8 while turning the variable into a factor.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(t_chol = fct_recode(factor(CHOLCHK1),
 "1_Never" = "1",
 "2_In-past-year" = "2",
 "3_1-to-2-years" = "3",
 "4_2-to-5-years" = "4",
 "5_5_plus_years" = "5",
 NULL = "7",
 NULL = "9"))
smart_ohio_raw |> count(CHOLCHK1, t_chol)
A tibble: 8 x 3
CHOLCHK1 t_chol n
 <dbl> <fct> <int>
 1 1_Never 424
 2 2_In-past-year 5483
 3 3_1-to-2-years 559
```

| 4 | 4_2-to-5-years | 289 |
| ---: | ---: | ---: |
| 5 | $5 \_5$ _plus_years | 272 |
| 7 <NA> | 376 |  |
| 9 <NA> | 8 |  |
| NA <NA> | 1 |  |

The next two measures are not gathered from the people who answered "Never" to this question.

### 6.6.7.2 TOLDHI2 and its cleanup to chol_high

TOLDHI2 is asking about awareness of a diagnosis of high cholesterol. It's the response to the question: "Have you EVER been told by a doctor, nurse or other health professional that your blood cholesterol is high?"

The available codes are:

- $1=$ Yes
- $2=\mathrm{No}$
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK = Not asked or missing

To clean up the TOLDHI2 data into a new variable called chol_high we'll treat it like BPMEDS and HLTHPLN1 - convince $R$ that the 7 and 9 values are in fact best interpreted as NA, - and turn it into an indicator variable, e.g., we will leave the variable as numeric, but change the values to $1=$ Yes and $0=$ No.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(chol_high = TOLDHI2,
 chol_high = replace(chol_high, chol_high %in% c(7, 9), NA),
 chol_high = replace(chol_high, chol_high == 2, 0))
smart_ohio_raw |> count(TOLDHI2, chol_high)
A tibble: 5 x 3
TOLDHI2 chol_high n
 <dbl> <dbl> <int>
\begin{tabular}{rrrr}
1 & 1 & 1 & 2612 \\
2 & 2 & 0 & 4286 \\
3 & 7 & NA & 70 \\
4 & 9 & NA & 4 \\
5 & NA & NA & 440
\end{tabular}
```


### 6.6.7.3 CHOLMED1 and its cleanup to chol_meds

CHOLMED1 is the response to the question "Are you currently taking medicine prescribed by a doctor or other health professional for your blood cholesterol?"

- $1=$ Yes
- $2=\mathrm{No}$
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

To clean up the CHOLMED1 data into a new variable called chol_meds we'll treat it just as we did with HLTHPLN1 and - convince $R$ that the 7 and 9 values are in fact best interpreted as NA, - and turn it into an indicator variable, e.g., we will leave the variable as numeric, but change the values to $1=$ Yes and $0=$ No.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(chol_meds = CHOLMED1,
 chol_meds = replace(chol_meds, chol_meds %in% c(7, 9), NA),
 chol_meds = replace(chol_meds, chol_meds == 2, 0))
smart_ohio_raw |> count(CHOLMED1, chol_meds)
A tibble: 4 x 3
 CHOLMED1 chol_meds n
 <dbl> <dbl> <int>
2 2 0 826
3 7 NA 5
N NA NA 4800
```

1

### 6.6.8 Chronic Health Conditions ( 14 items)

### 6.6.8.1 Self-reported diagnosis history (11 items)

The next few variables describe whether or not the subject meets a particular standard, and are all coded in the raw data the same way:

- $1=$ Yes
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing
and we'll recode them all to $1=$ Yes, $0=$ No, otherwise NA, as we've done previously.
The questions are all started with "Has a doctor, nurse, or other health professional ever told you that you had any of the following? For each, tell me Yes, No, or you're Not sure."

| Original | Revised | Details |
| :--- | :--- | :--- |
| CVDINFR4 | hx_mi | (Ever told) you had a heart attack, also called a myocardial <br> infarction? |
| CVDCRHD4 | hx_chd | (Ever told) you had angina or coronary heart disease? <br> CVDSTRK3 |
| hx_stroke | (Ever told) you had a stroke? |  |
| ASTHMA3 | hx_asthma | (Ever told) you had asthma? |
| ASTHNOW | now_asthma | Do you still have asthma? (only asked of those with Yes in <br> ASTHMA3) |
| CHCSCNCR | hx_skinc | (Ever told) you had skin cancer? |
| CHCOCNCR | hx_otherc | (Ever told) you had any other types of cancer? <br> (Ever told) you have Chronic Obstructive Pulmonary Disease or |
| CHCCOPD1 | hx_copd | COPD, emphysema or chronic bronchitis? |
| HAVARTH3 | hx_arthr | (Ever told) you have some form of arthritis, rheumatoid <br> arthritis, gout, lupus, or fibromyalgia? (Arthritis diagnoses <br> include: rheumatism, polymyalgia rheumatica; osteoarthritis <br> (not osteporosis); tendonitis, bursitis, bunion, tennis elbow; |
| carpal tunnel syndrome, tarsal tunnel syndrome; joint infection, |  |  |
| etc.) |  |  |

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(hx_mi = CVDINFR4,
 hx_mi = replace(hx_mi, hx_mi %in% c(7, 9), NA),
 hx_mi = replace(hx_mi, hx_mi == 2, 0),
 hx_chd = CVDCRHD4,
 hx_chd = replace(hx_chd, hx_chd %in% c(7, 9), NA),
 hx_chd = replace(hx_chd, hx_chd == 2, 0),
 hx_stroke = CVDSTRK3,
 hx_stroke = replace(hx_stroke, hx_stroke %in% c(7, 9), NA),
 hx_stroke = replace(hx_stroke, hx_stroke == 2, 0),
 hx_asthma = ASTHMA3,
 hx_asthma = replace(hx_asthma, hx_asthma %in% c(7, 9), NA),
```

```
hx_asthma = replace(hx_asthma, hx_asthma == 2, 0),
now_asthma = ASTHNOW,
now_asthma = replace(now_asthma, now_asthma %in% c(7, 9), NA),
now_asthma = replace(now_asthma, now_asthma == 2, 0),
hx_skinc = CHCSCNCR,
hx_skinc = replace(hx_skinc, hx_skinc %in% c(7, 9), NA),
hx_skinc = replace(hx_skinc, hx_skinc == 2, 0),
hx_otherc = CHCOCNCR,
hx_otherc = replace(hx_otherc, hx_otherc %in% c(7, 9), NA),
hx_otherc = replace(hx_otherc, hx_otherc == 2, 0),
hx_copd = CHCCOPD1,
hx_copd = replace(hx_copd, hx_copd %in% c(7, 9), NA),
hx_copd = replace(hx_copd, hx_copd == 2, 0),
hx_arthr = HAVARTH3,
hx_arthr = replace(hx_arthr, hx_arthr %in% c(7, 9), NA),
hx_arthr = replace(hx_arthr, hx_arthr == 2, 0),
hx_depress = ADDEPEV2,
hx_depress = replace(hx_depress, hx_depress %in% c(7, 9), NA),
hx_depress = replace(hx_depress, hx_depress == 2, 0),
hx_kidney = CHCKIDNY,
hx_kidney = replace(hx_kidney, hx_kidney %in% c(7, 9), NA),
hx_kidney = replace(hx_kidney, hx_kidney == 2, 0))
```

We definitely should have written a function to do that, of course.

### 6.6.8.2 _ASTHMS1 and its cleanup to asthma

_ASTHMS1 categorizes subjects by asthma status as:

- $1=$ Current
- $2=$ Former
- $3=$ Never
- $9=$ Don’t Know / Not Sure / Refused / Missing

We'll turn this into a factor with appropriate levels and NA information.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(asthma = fct_recode(
 factor(`_ASTHMS1`),
 "Current" = "1",
 "Former" = "2",
 "Never" = "3",
```

```
 NULL = "9"))
 smart_ohio_raw |> count(`_ASTHMS1`, asthma)
A tibble: 4 x 3
 `_ASTHMS1` asthma n
 <dbl> <fct> <int>
1 1 Current 734
2 2 Former 248
3 Never 6376
4 9 <NA> 54
```


### 6.6.8.3 DIABETE3 and its cleanup to hx _diabetes and dm_status

DIABETE3, the (Ever told) you have diabetes variable, is the response to "(Ever told) you have diabetes (If Yes and respondent is female, ask Was this only when you were pregnant?. If Respondent says pre-diabetes or borderline diabetes, use response code 4.)"

- $1=$ Yes
- $2=$ Yes, but female told only during pregnancy
- $3=$ No
- $4=$ No, pre-diabetes or borderline diabetes
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

I'll create one variable called hx_diabetes which is 1 if DIABETE3 $=1$, and 0 otherwise, with appropriate NAs, like our other variables. Then I'll create dm_status to include all of this information in a factor, but again recode the missing values properly.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(hx_diabetes = DIABETE3,
 hx_diabetes = replace(hx_diabetes, hx_diabetes %in% c(7, 9), NA),
 hx_diabetes = replace(hx_diabetes, hx_diabetes %in% 2:4, 0),
 dm_status = fct_recode(factor(DIABETE3),
 "Diabetes" = "1",
 "Pregnancy-Induced" = "2",
 "No-Diabetes" = "3",
 "Pre-Diabetes" = "4",
 NULL = "7",
 NULL = "9"),
```

```
 dm_status = fct_relevel(dm_status,
 "No-Diabetes",
 "Pre-Diabetes",
 "Pregnancy-Induced",
 "Diabetes"))
smart_ohio_raw |> count(DIABETE3, hx_diabetes, dm_status)
A tibble: 6 x 4
 DIABETE3 hx_diabetes dm_status n
 <dbl> <dbl> <fct> <int>
1 1 1 Diabetes 1098
2 0 Pregnancy-Induced 67
3 3 0 No-Diabetes 6100
4 4 0 Pre-Diabetes 133
5 7 NA <NA> 12
6 9 NA <NA> 2
```


### 6.6.8.4 DIABAGE2 and its cleanup to dm_age

DIABAGE2, the Age When Told Diabetic variable, is the response to "How old were you when you were told you have diabetes?" It is asked only of people with DIABETE3 = 1 (Yes).

- The response is $1-97$, with special values 98 for Don't Know/Not Sure and 99 for refused, with BLANK for missing or not asked. People 97 years of age and above were listed as 97.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(dm_age = DIABAGE2,
 dm_age = replace(dm_age, dm_age > 97, NA))
smart_ohio_raw |> count(DIABAGE2, dm_age) |> tail()
```

| \# A tibble: 6 x 3 |  |  |  |
| ---: | ---: | ---: | ---: |
|  | DIABAGE2 | dm_age | n |
|  | <dbl> | <dbl> | <int> |
| 1 | 84 | 84 | 1 |
| 2 | 85 | 85 | 2 |
| 3 | 90 | 90 | 1 |
| 4 | 98 | $N A$ | 61 |


| 5 | 99 | NA | 4 |
| :--- | ---: | ---: | ---: |
| 6 | NA | NA | 6314 |

### 6.6.9 Arthritis Burden (4 items)

The first two measures are only asked of people with $\mathrm{hx} \mathrm{x}_{\mathrm{a}}$ arthr $=1$, and are coded as:

- $1=\mathrm{Yes}$
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK = Not asked or missing
and we'll recode them to $1=$ Yes, $0=$ No, otherwise NA, as we've done previously.


### 6.6.9.1 LMTJOIN3 (Limited because of joint symptoms), and its cleanup to arth_lims

This is the response to "Are you now limited in any way in any of your usual activities because of arthritis or joint symptoms?"

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(arth_lims = LMTJOIN3,
 arth_lims = replace(arth_lims, arth_lims %in% c(7, 9), NA),
 arth_lims = replace(arth_lims, arth_lims == 2, 0))
smart_ohio_raw |> count(hx_arthr, LMTJOIN3, arth_lims)
A tibble: 6 x 4
hx_arthr LMTJOIN3 arth_lims n
 <dbl> <dbl> <dbl> <int>
 N NA NA 4587
 1 1 1 1378
 1 2 0 1388
 1 7 N NA 17
 1 9 NA
 NA NA NA 40
```


### 6.6.9.2 ARTHDIS2 (Does Arthritis Affect Whether You Work), and its cleanup to arth_work

This is the response to "Do arthritis or joint symptoms now affect whether you work, the type of work you do or the amount of work you do?"

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(arth_work = ARTHDIS2,
 arth_work = replace(arth_work, arth_work %in% c(7, 9), NA),
 arth_work = replace(arth_work, arth_work == 2, 0))
smart_ohio_raw |> count(ARTHDIS2, arth_work)
A tibble: 5 x 3
 ARTHDIS2 arth_work n
 <dbl> <dbl> <int>
 1 1 925
 2 0 1808
 7 NA 42
 9 NA 10
 NA NA 4627
```


### 6.6.9.3 ARTHSOCL (Social Activities Limited Because of Joint Symptoms) and its cleanup to arth_soc

This is the response to "During the past 30 days, to what extent has your arthritis or joint symptoms interfered with your normal social activities, such as going shopping, to the movies, or to religious or social gatherings?"

The responses are:

- $1=\mathrm{A}$ lot
- $2=$ A little
- $3=$ Not at all
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(arth_soc = fct_recode(factor(ARTHSOCL),
 "A lot" = "1",
 "A little" = "2",
```

```
 "Not at all" = "3",
 NULL = "7",
 NULL = "9"))
smart_ohio_raw |> count(ARTHSOCL, arth_soc)
A tibble: 6 x 3
 ARTHSOCL arth_soc n
 <dbl> <fct> <int>
3 Not at all }142
4 7 <NA> 15
5 9 <NA> 3
6 NA <NA> 4627
```

1
2

### 6.6.9.4 JOINPAI1 (How Bad Was Joint Pain - scale of 0-10) and its cleanup to joint_pain

This is the response to the following question: "Please think about the past 30 days, keeping in mind all of your joint pain or aching and whether or not you have taken medication. On a scale of 0 to 10 where 0 is no pain or aching and 10 is pain or aching as bad as it can be, DURING THE PAST 30 DAYS, how bad was your joint pain ON AVERAGE?"

The available values are 0-10, plus codes 77 (Don't Know / Not Sure), 99 (Refused) and BLANK.

To clean up JOINPAI1 to a new variable called joint_pain, we'll need to convince $R$ that the 77 and 99 values are, like BLANK, in fact best interpreted as NA.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(joint_pain = JOINPAI1,
 joint_pain = replace(joint_pain, joint_pain %in% c(77, 99), NA))
smart_ohio_raw |> count(JOINPAI1, joint_pain) |> tail()
A tibble: 6 x 3
 JOINPAI1 joint_pain n
 <dbl> <dbl> <int>
1 8 8 277
2 9 9
```

| 3 | 10 | 10 | 158 |
| :--- | :--- | ---: | ---: |
| 4 | 77 | NA | 28 |
| 5 | 99 | NA | 5 |
| 6 | NA | NA | 4627 |

### 6.6.10 Demographics (25 items)

### 6.6.10.1 _AGEG5YR, which we'll edit into agegroup

The _AGEG5YR variable is a calculated variable (by CDC) obtained from the subject's age. Since the age data are not available, we instead get these groupings, which we'll rearrange into the agegroup factor.

| _AGEG5YR | Age range | agegroup |
| ---: | :--- | :--- |
| 1 | $18<=\mathrm{AGE}<=24$ | $18-24$ |
| 2 | $25<=\mathrm{AGE}<=29$ | $25-29$ |
| 3 | $30<=\mathrm{AGE}<=34$ | $30-34$ |
| 4 | $35<=\mathrm{AGE}<=39$ | $35-39$ |
| 5 | $40<=\mathrm{AGE}<=44$ | $40-44$ |
| 6 | $45<=\mathrm{AGE}<=49$ | $45-49$ |
| 7 | $50<=\mathrm{AGE}<=54$ | $50-54$ |
| 8 | $55<=\mathrm{AGE}<=59$ | $55-59$ |
| 9 | $60<=\mathrm{AGE}<=64$ | $60-64$ |
| 10 | $65<=\mathrm{AGE}<=69$ | $65-69$ |
| 11 | $70<=\mathrm{AGE}<=74$ | $70-74$ |
| 12 | $75<=\mathrm{AGE}<=79$ | $75-79$ |
| 13 | AGE $>=80$ | 80 plus |
| 14 | Don't Know, Refused or Missing | NA |

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(agegroup = fct_recode(factor(`_AGEG5YR`),
 "18-24" = "1",
 "25-29" = "2",
 "30-34" = "3",
 "35-39" = "4",
 "40-44" = "5",
 "45-49" = "6",
 "50-54" = "7",
 "55-59" = "8",
 "60-64" = "9",
```

```
 "65-69" = "10",
 "70-74" = "11",
 "75-79" = "12",
 "80-96" = "13",
 NULL = "14"))
smart_ohio_raw |> count(`_AGEG5YR`, agegroup)
A tibble: 14 x 3
 `_AGEG5YR` agegroup n
 <dbl> <fct> <int>
 1 18-24 448
 2 25-29 327
 3 30-34 375
 4 35-39 446
 5 40-44 426
 6 45-49 509
 7 50-54 604
 85-59 786
 9 60-64 837
 10 65-69 810
 11 70-74 685
 12 75-79 499
 13 80-96 592
 14 <NA> 68
```


### 6.6.10.2 _MRACE1 recoded to race

We'll create three variables describing race/ethnicity. The first comes from the _MRACE1 variable categorized by CDC, and the available responses are:

- $1=$ White only
- $2=$ Black or African-American only
- $3=$ American Indian or Alaskan Native only
- $4=$ Asian only
- $5=$ Native Hawaiian or Pacific Islander only
- $6=$ Other race only
- $7=$ Multiracial
- $77=$ Don't know / Not Sure
- $99=$ Refused
- $\operatorname{BLANK}=$ Missing

We'll create a factor out of this information, with appropriate level names.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(race = fct_recode(factor(`_MRACE1`),
 "White" = "1",
 "Black or African A" = "2",
 "Amer Indian or Alaskan" = "3",
 "Asian" = "4",
 "Hawaiian or Pac Island" = "5",
 "Other Race" = "6",
 "Multiracial" = "7",
 NULL = "77",
 NULL = "99"))
smart_ohio_raw |> count(`_MRACE1`, race)
A tibble: 9 x 3
 `_MRACE1` race n
 <dbl> <fct> <int>
 1 \text { White 6177}
 2 Black or African A 739
 3 Amer Indian or Alaskan 66
 4 \text { Asian 115}
 5 \text { Hawaiian or Pac Island 5}
 6 \text { Other Race 43}
 7 Multiracial 153
 77 <NA> 14
 99 <NA> 100
```

1

### 6.6.10.3 _HISPANC recoded to hispanic

The _HISPANC variable specifies whether or not the respondent is of Hispanic or Latinx origin. The available responses are:

- $1=$ Hispanic, Latinx or Spanish origin
- $2=$ Not of Hispanic, Latinx or Spanish origin
- $9=$ Don't Know, Refused, or Missing

We'll turn the 9 s into NA, and create an indicator variable $(1=$ Hispanic or Latinx, $0=$ not $)$

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(hispanic = 2 - `_HISPANC`,
 hispanic = replace(hispanic, hispanic < 0, NA))
smart_ohio_raw |> count(`_HISPANC`, hispanic)
A tibble: 3 x 3
 ` _HISPANC` hispanic n
 <dbl> <dbl> <int>
 1 1 146
 2 0}721
 N NA 49
```


### 6.6.10.4 _RACEGR3 recoded to race_eth

The _RACEGR3 variable is a five-level combination of race and ethnicity. The responses are:

- $1=$ White non-Hispanic
- $2=$ Black non-Hispanic
- $3=$ Other race non-Hispanic
- $4=$ Multiracial non-Hispanic
- $5=$ Hispanic
- $9=$ Don’t Know / Not Sure / Refused

We'll create a factor out of this information, with appropriate level names.

```
 smart_ohio_raw <- smart_ohio_raw |>
 mutate(race_eth = fct_recode(
 factor(`_RACEGR3`),
 "White non-Hispanic" = "1",
 "Black non-Hispanic" = "2",
 "Other race non-Hispanic" = "3",
 "Multiracial non-Hispanic" = "4",
 "Hispanic" = "5",
 NULL = "9"))
smart_ohio_raw |> count(`_RACEGR3`, race_eth)
A tibble: 6 x 3
 `_RACEGR3` race_eth n
 <dbl> <fct> <int>
```

```
1 White non-Hispanic 6086
2
3
4
5
6
2 Black non-Hispanic 725
3 Other race non-Hispanic 193
4 \text { Multiracial non-Hispanic 143}
5 \text { Hispanic 146}
9 <NA> 119
```


### 6.6.10.5 SEX recoded to female

The available levels of SEX are:

- $1=$ Male
- $2=$ Female
- $9=$ Refused

We'll recode that to female $=1$ for Female, 0 Male, otherwise NA. Note the trick here is to subtract one from the coded SEX to get the desired female, but this requires that we move 8 to NA, rather than 9 .

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(female = SEX - 1,
 female = replace(female, female == 8, NA))
smart_ohio_raw |> count(SEX, female)
A tibble: 2 x 3
 SEX female n
<dbl> <dbl> <int>
1 1 0 3136
2 2 1 4276
```


### 6.6.10.6 MARITAL status, revised to marital

The available levels of MARITAL are:

- $1=$ Married
- $2=$ Divorced
- $3=$ Widowed
- $4=$ Separated
- $5=$ Never married
- $6=\mathrm{A}$ member of an unmarried couple
- $9=$ Refused
- BLANK $=$ Not asked or missing

We'll just turn this into a factor, and move 9 to NA.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(marital = fct_recode(factor(MARITAL),
 "Married" = "1",
 "Divorced" = "2",
 "Widowed" = "3",
 "Separated" = "4",
 "Never_Married" = "5",
 "Unmarried_Couple" = "6",
 NULL = "9"))
smart_ohio_raw |> count(MARITAL, marital)
```

\# A tibble: 7 x 3
MARITAL marital n
<dbl> <fct> <int>
11 Married 3668
2 Divorced 1110
3 Widowed 978
44 Separated 142
55 Never_Married 1248
66 Unmarried_Couple 208
79 <NA> 58

### 6.6.10.7 EDUCA recoded to educgroup

The available levels of EDUCA (Education Level) are responses to: "What is the highest grade or year of school you completed?"

- $1=$ Never attended school or only kindergarten
- $2=$ Grades 1 through 8 (Elementary)
- $3=$ Grades 9 through 11 (Some high school)
- $4=$ Grade 12 or GED (High school graduate)
- $5=$ College 1 year to 3 years (Some college or technical school)
- $6=$ College 4 years or more (College graduate)
- $9=$ Refused
- BLANK $=$ Not asked or missing

We'll just turn this into a factor, and move 9 to NA.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(educgroup = fct_recode(factor(EDUCA),
 "Kindergarten" = "1",
 "Elementary" = "2",
 "Some_HS" = "3",
 "HS_Grad" = "4",
 "Some_College" = "5",
 "College_Grad" = "6",
 NULL = "9"))
smart_ohio_raw |> count(EDUCA, educgroup)
```

\# A tibble: $7 \times 3$
EDUCA educgroup $n$
<dbl> <fct> <int>
1 Kindergarten3
$\begin{array}{lr}1 \text { Kindergarten } & 3 \\ 2 \text { Elementary } & 117\end{array}$
3 Some_HS 332
4 HS_Grad 2209
5 Some_College 2079
6 College_Grad 2646
9 <NA>
26

### 6.6.10.8 RENTHOM1 recoded to home_own

The available levels of RENTHOM1 (Own or Rent Home) are responses to: "Do you own or rent your home? (Home is defined as the place where you live most of the time/the majority of the year.)"

- $1=$ Own
- $2=$ Rent
- $3=$ Other Arrangement
- $7=$ Don't know/Not Sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

We'll recode as home_own $=1$ if they own their home, and 0 otherwise, and dealing with missingness properly.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(home_own = RENTHOM1,
 home_own = replace(home_own, home_own %in% c(7,9), NA),
 home_own = replace(home_own, home_own %in% c(2,3), 0))
smart_ohio_raw |> count(RENTHOM1, home_own)
A tibble: 5 x 3
 RENTHOM1 home_own n
 <dbl> <dbl> <int>
 1 1 5216
 2 0}179
 0 0 348
 7 NA 28
5 9 NA 27
```


### 6.6.10.9 CPDEMO1A and its cleanup to cell_own

CPDEM01A is the response to "Including phones for business and personal use, do you have a cell phone for personal use?"

Available responses are:

- $1=\mathrm{Yes}$
- $2=\mathrm{No}$
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing
and we'll recode them to $1=$ Yes, $0=$ No, otherwise NA, as we've done previously.

```
 smart_ohio_raw <- smart_ohio_raw |>
 mutate(cell_own = 2 - CPDEMO1A,
 cell_own = replace(cell_own, cell_own < 0, NA))
 smart_ohio_raw |> count(CPDEM01A, cell_own)
A tibble: 5 x 3
 CPDEMO1A cell_own n
 <dbl> <dbl> <int>
1 1 1 2930
```

| 2 | 2 | 0 | 698 |
| :--- | ---: | ---: | ---: |
| 3 | 7 | NA | 2 |
| 4 | 9 | NA | 19 |
| 5 | NA | NA | 3763 |

### 6.6.10.10 VETERAN3 and its cleanup to veteran

veteran3, the Are You A Veteran variable, is the response to "Have you ever served on active duty in the United States Armed Forces, either in the regular military or in a National Guard or military reserve unit? (Active duty does not include training for the Reserves or National Guard, but DOES include activation, for example, for the Persian Gulf War.)"

- $1=\mathrm{Yes}$
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(veteran = VETERAN3,
 veteran = replace(veteran, veteran %in% c(7, 9), NA),
 veteran = replace(veteran, veteran == 2, 0))
smart_ohio_raw |> count(VETERAN3, veteran)
```

\# A tibble: 3 x 3
VETERAN3 veteran n
<dbl> <dbl> <int>
$\begin{array}{llll}1 & 1 & 1 & 927\end{array}$
$2 \quad 2 \quad 0 \quad 6479$

### 6.6.10.11 EMPLOY1 and its cleanup to employment

EMPLOY1, the Employment Status variable, is the response to "Are you currently ... ?"

- $1=$ Employed for wages
- $2=$ Self-employed
- $3=$ Out of work for 1 year or more
- $4=$ Out of work for less than 1 year
- $5=\mathrm{A}$ homemaker
- $6=$ A student
- $7=$ Retired
- $8=$ Unable to work
- $9=$ Refused
- BLANK $=$ Not asked or missing

We'll just turn this into a factor, and move 9 to NA.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(employment = fct_recode(factor(EMPLOY1),
 "Employed_for_wages" = "1",
 "Self-employed" = "2",
 "Outofwork_1yearormore" = "3",
 "Outofwork_lt1year" = "4",
 "Homemaker" = "5",
 "Student" = "6",
 "Retired" = "7",
 "Unable_to_work" = "8",
 NULL = "9"))
smart_ohio_raw |> count(EMPLOY1, employment)
\# A tibble: 9 x 3
 EMPLOY1 employment n
 <dbl> <fct> <int>
11 Employed_for_wages 3119
22 Self-employed 466
33 Outofwork_1yearormore 254
44 Outofwork_lt1year 134
55 Homemaker 411
66 Student 190
\(7 \quad 7\) Retired 2202
88 Unable_to_work 603
9 <NA> 33
```


### 6.6.10.12 CHILDREN and its cleanup to kids

CHILDREN, the Number of Children in Household variable, is the response to "How many children less than 18 years of age live in your household?"

- 1-87 $=$ legitimate responses
- $88=$ None
- $99=$ Refused
- BLANK = Not asked or missing

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(kids = CHILDREN,
 kids = replace(kids, kids == 99, NA),
 kids \(=\) replace(kids, kids == 88, 0))
smart_ohio_raw |> count(CHILDREN, kids) |> tail()
```

\# A tibble: 6 x 3
CHILDREN kids n
<dbl> <dbl> <int>
1
$\begin{array}{llll}2 & 7 & 7 & 5\end{array}$
$\begin{array}{llll}3 & 8 & 8 & 2\end{array}$
$\begin{array}{llll}4 & 12 & 12 & 1\end{array}$
$5 \quad 88 \quad 0 \quad 5449$
$6 \quad 99$ NA 43

### 6.6.10.13 INCOME2 to incomegroup

The available levels of INCOME2 (Income Level) are responses to: "Is your annual household income from all sources ..."

- $1=$ Less than $\$ 10,000$
- $2=\$ 10,000$ to less than $\$ 15,000$
- $3=\$ 15,000$ to less than $\$ 20,000$
- $4=\$ 20,000$ to less than $\$ 25,000$
- $5=\$ 25,000$ to less than $\$ 35,000$
- $6=\$ 35,000$ to less than $\$ 50,000$
- $7=\$ 50,000$ to less than $\$ 75,000$
- $8=\$ 75,000$ or more
- $77=$ Don't know/Not sure
- $99=$ Refused
- BLANK $=$ Not asked or missing

We'll just turn this into a factor, and move 77 and 99 to NA.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(incomegroup = fct_recode(factor(`INCOME2`),
```

```
 "0-9K" = "1",
 "10-14K" = "2",
 "15-19K" = "3",
 "20-24K" = "4",
 "25-34K" = "5",
 "35-49K" = "6",
 "50-74K" = "7",
 "75K+" = "8",
 NULL = "77",
 NULL = "99"))
 smart_ohio_raw |> count(`INCOME2`, incomegroup)
A tibble: 11 x 3
 INCOME2 incomegroup n
 <dbl> <fct> <int>
1 1 0-9K 285
2 2 10-14K 306
3 3 15-19K 477
4 4 20-24K 589
5 5 25-34K 685
6 6 35-49K 922
7 7 50-74K 928
8 8 75K+ 1910
9 77 <NA> 610
10 99 <NA> 678
11 NA <NA> 22
```


### 6.6.10.14 INTERNET and its cleanup to internet30

INTERNET, the Internet use in the past 30 days variable, is the response to "Have you used the internet in the past 30 days?"

- $1=\mathrm{Yes}$
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(internet30 = INTERNET,
 internet30 = replace(internet30, internet30 %in% c(7, 9), NA),
 internet30 = replace(internet30, internet30 == 2, 0))
smart_ohio_raw |> count(INTERNET, internet30)
A tibble: 5 x 3
INTERNET internet30 n
 <dbl> <dbl> <int>
2 2 0 1335
3 7 7 NA 10
4 9 NA 10
5 NA NA 37
```

1

### 6.6.10.15 WTKG3 is weight_kg

WTKG3 is computed by CDC, as the respondent's weight in kilograms with two implied decimal places. We calculate the actual weight in kg , with the following:

```
 smart_ohio_raw <- smart_ohio_raw |>
 mutate(weight_kg = WTKG3/100)
smart_ohio_raw |> count(WTKG3, weight_kg) |> tail()
A tibble: 6 x 3
 WTKG3 weight_kg n
 <dbl> <dbl> <int>
119051 191. 1
2 19278 193. 1
319504 195. 1
420412 204. 2
520865 209. 1
NA NA 462
```


### 6.6.10.16 HEIGHT3 is replaced with height_m

HEIGHT3 is strangely gathered to allow people to specify their height in either feet and inches or in meters and centimeters.

- 200-711 indicates height in feet (first digit) and inches (second two digits)
- 9000-9998 indicates height in meters (second digit) and centimeters (last two digits)
- $7777=$ Don't know/Not sure
- $9999=$ Refused

Note that there is one impossible value of 575 in the data set. We'll make that an NA, and we'll also make NA any heights below 3 feet, or above 2.24 meters. Specifically, we calculate the actual height in meters, with the following:

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(height_m = case_when(
 HEIGHT3 >= 300 & HEIGHT3 <= 511 ~ round((12*floor(HEIGHT3/100) + (HEIGHT3 - 100*fl
 HEIGHT3 >= 600 & HEIGHT3 <= 711 ~ round((12*floor(HEIGHT3/100) + (HEIGHT3 - 100*fl
 HEIGHT3 >= 9000 & HEIGHT3 <= 9224 ~ ((HEIGHT3 - 9000)/100)))
smart_ohio_raw |> count(HEIGHT3, height_m) |> tail()
A tibble: 6 x 3
 HEIGHT3 height_m n
 <dbl> <dbl> <int>
 607 2.01 2
 608 2.03 6
 609 2.06 1
 7777 NA 27
 9999 NA 86
 NA NA 67
```


### 6.6.10.17 bmi is calculated from height_m and weight_kg

We'll calculate body-mass index from height and weight.

```
 smart_ohio_raw <- smart_ohio_raw |>
 mutate(bmi = round(weight_kg/(height_m)^2,2))
smart_ohio_raw |> count(height_m, weight_kg, bmi)# |> tail()
```

\# A tibble: 1,806 x 4
height_m weight_kg bmi n
<dbl> <dbl> <dbl> <int>
$\begin{array}{lllll}1 & 1.35 & 39.0 & 21.4 & 1\end{array}$
$\begin{array}{lllll}2 & 1.35 & 52.2 & 28.6 & 1\end{array}$

| 3 | 1.4 | 89.8 | 45.8 | 1 |
| :---: | :---: | ---: | :---: | :---: |
| 4 | 1.42 | 31.8 | 15.8 | 1 |
| 5 | 1.42 | 45.4 | 22.5 | 1 |
| 6 | 1.42 | 55.8 | 27.7 | 1 |
| 7 | 1.42 | 58.5 | 29.0 | 1 |
| 8 | 1.42 | 59.9 | 29.7 | 1 |
| 9 | 1.42 | 60.8 | 30.1 | 1 |
| 10 | 1.42 | 71.2 | 35.3 | 1 |
| \# i 1,796 more rows |  |  |  |  |

### 6.6.10.18 bmigroup is calculated from bmi

We'll then divide the respondents into adult BMI categories, in the usual way.

- $\mathrm{BMI}<18.5$ indicates underweight
- BMI from 18.5 up to 25 indicates normal weight
- BMI from 25 up to 30 indicates overweight
- BMI of 30 and higher indicates obesity

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(bmigroup = factor(cut2(as.numeric(bmi),
 cuts = c(18.5, 25.0, 30.0))))
smart_ohio_raw |> count(bmigroup)
```

\# A tibble: 5 x 2
bmigroup $n$
<fct> <int>
1 [13.3,18.5) 119
$2[18.5,25.0) 2017$
3 [25.0,30.0) 2445
4 [30.0,75.5] 2338
5 <NA> 493

### 6.6.10.19 PREGNANT and its cleanup to pregnant

PREGNANT, the Pregnancy Status variable, is the response to "To your knowledge, are you now pregnant?"

- $1=\mathrm{Yes}$
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused
- $\operatorname{BLANK}=$ Not asked or missing (includes SEX $=$ male)

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(pregnant = PREGNANT,
 pregnant = replace(pregnant, pregnant \%in\% c(7, 9), NA),
 pregnant \(=\) replace (pregnant, pregnant \(==2,0)\))
smart_ohio_raw |> count(PREGNANT, pregnant)
```

\# A tibble: 5 x 3
PREGNANT pregnant n
<dbl> <dbl> <int>
$\begin{array}{lll}1 & 1 & 41\end{array}$
$2 \quad 0 \quad 1329$
7 NA 3
9 NA 3
NA NA 6036

### 6.6.10.20 DEAF and its cleanup to deaf

DEAF, the Are you deaf or do you have serious difficulty hearing variable, is the response to "Are you deaf or do you have serious difficulty hearing?"

- $1=$ Yes
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

```
 smart_ohio_raw <- smart_ohio_raw |>
 mutate(deaf = DEAF,
 deaf = replace(deaf, deaf %in% c(7, 9), NA),
 deaf = replace(deaf, deaf == 2, 0))
smart_ohio_raw |> count(DEAF, deaf)
A tibble: 5 x 3
 DEAF deaf n
 <dbl> <dbl> <int>
```

| 1 | 1 | 1 | 708 |
| :--- | ---: | ---: | ---: |
| 2 | 2 | 0 | 6551 |
| 3 | 7 | $N A$ | 15 |
| 4 | 9 | $N A$ | 4 |
| 5 | $N A$ | $N A$ | 134 |

### 6.6.10.21 BLIND and its cleanup to blind

BLIND, the Blind or Difficulty seeing variable, is the response to "Are you blind or do you have serious difficulty seeing, even when wearing glasses?"

- $1=$ Yes
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(blind = BLIND,
 blind = replace(blind, blind %in% c(7, 9), NA),
 blind = replace(blind, blind == 2, 0))
smart_ohio_raw |> count(BLIND, blind)
A tibble: 5 x 3
 BLIND blind n
 <dbl> <dbl> <int>
1 1 1 415
2 2 0 6834
3 7 NA 14
4 9 NA 1
NA NA 148
```


### 6.6.10.22 DECIDE and its cleanup to decide

DECIDE, the Difficulty Concentrating or Remembering variable, is the response to "Because of a physical, mental, or emotional condition, do you have serious difficulty concentrating, remembering, or making decisions?"

- $1=\mathrm{Yes}$
- $2=\mathrm{No}$
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(decide = DECIDE,
 decide = replace(decide, decide %in% c(7, 9), NA),
 decide = replace(decide, decide == 2, 0))
smart_ohio_raw |> count(DECIDE, decide)
```

\# A tibble: 5 x 3
DECIDE decide n
<dbl> <dbl> <int>
$\begin{array}{llll}1 & 1 & 1 & 870\end{array}$
$\begin{array}{llll}2 & 2 & 0 & 6348\end{array}$
$\begin{array}{llll}3 & 7 & \mathrm{NA} & 30\end{array}$
$4 \quad 9 \quad \mathrm{NA} \quad 2$
5 NA NA 162

### 6.6.10.23 DIFFWALK and its cleanup to diffwalk

DIFFWALK, the Difficulty Walking or Climbing Stairs variable, is the response to "Do you have serious difficulty walking or climbing stairs?"

- $1=\mathrm{Yes}$
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(diffwalk = DIFFWALK,
 diffwalk = replace(diffwalk, diffwalk %in% c(7, 9), NA),
 diffwalk = replace(diffwalk, diffwalk == 2, 0))
smart_ohio_raw |> count(DIFFWALK, diffwalk)
A tibble: 5 x 3
 DIFFWALK diffwalk n
 <dbl> <dbl> <int>
```

| 1 | 1 | 1 | 1482 |
| :--- | ---: | ---: | ---: |
| 2 | 2 | 0 | 5738 |
| 3 | 7 | NA | 19 |
| 4 | 9 | NA | 2 |
| 5 | NA | NA | 171 |

### 6.6.10.24 DIFFDRES and its cleanup to diffdress

DIFFDRES, the Difficulty Dressing or Bathing variable, is the response to "Do you have difficulty dressing or bathing?"

- $1=\mathrm{Yes}$
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(diffdress = DIFFDRES,
 diffdress = replace(diffdress, diffdress %in% c(7, 9), NA),
 diffdress = replace(diffdress, diffdress == 2, 0))
smart_ohio_raw |> count(DIFFDRES, diffdress)
```

\# A tibble: 5 x 3
DIFFDRES diffdress n
<dbl> <dbl> <int>
1
2

| 3 | 7 | NA | 12 |
| :--- | :--- | :--- | :--- |

4
5 NA NA 179

### 6.6.10.25 DIFFALON and its cleanup to diffalone

DIFFALON, the Difficulty Doing Errands Alone variable, is the response to "Because of a physical, mental, or emotional condition, do you have difficulty doing errands alone such as visiting a doctor's office or shopping?"

- $1=\mathrm{Yes}$
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(diffalone = DIFFALON,
 diffalone = replace(diffalone, diffalone \%in\% c(7, 9), NA),
 diffalone \(=\) replace(diffalone, diffalone \(==2,0)\))
smart_ohio_raw |> count(DIFFALON, diffalone)
```

\# A tibble: 5 x 3
DIFFALON diffalone n
<dbl> <dbl> <int>
$\begin{array}{llll}1 & 1 & 1 & 636\end{array}$
$\begin{array}{llll}2 & 2 & 0 & 6560\end{array}$
$\begin{array}{llll}3 & 7 & \text { NA } & 15\end{array}$
$4 \quad 9 \quad$ NA 4
5 NA NA 197

### 6.6.11 Tobacco Use (2 items)

### 6.6.11.1 SMOKE100 and its cleanup to smoke100

SMOKE100, the Smoked at Least 100 Cigarettes variable, is the response to "Have you smoked at least 100 cigarettes in your entire life? [Note: 5 packs $=100$ cigarettes]"

- $1=\mathrm{Yes}$
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused

```
smart_ohio_raw <- smart_ohio_raw |>
```

    mutate(smoke100 = SMOKE100,
            smoke100 = replace(smoke100, smoke100 \%in\% c(7, 9), NA),
            smoke100 \(=\) replace(smoke100, smoke100 == 2, 0))
    smart_ohio_raw |> count(SMOKE100, smoke100)
\# A tibble: 5 x 3
SMOKE100 smoke100 n

|  | <dbl> | <dbl> | <int> |
| :--- | ---: | ---: | ---: |
| 1 | 1 | 1 | 3294 |
| 2 | 2 | 0 | 3881 |
| 3 | 7 | NA | 31 |
| 4 | 9 | NA | 4 |
| 5 | NA | NA | 202 |

### 6.6.11.2 _SMOKER3 and its cleanup to smoker

_SMOKER3, is a calculated variable which categorizes subjects by their smoking status:

- $1=$ Current smoker who smokes daily
- $2=$ Current smoker but not every day
- $3=$ Former smoker
- $4=$ Never smoked
- $9=$ Don't Know / Refused / Missing

We'll reclassify this as a factor with appropriate labels and NAs.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(smoker = fct_recode(factor(` _SMOKER3`),
 "Current_daily" = "1",
 "Current_not_daily" = "2",
 "Former" = "3",
 "Never" = "4",
 NULL = "9"))
smart_ohio_raw |> count(`_SMOKER3`, smoker)
A tibble: 5 x 3
 `_SMOKER3` smoker n
 <dbl> <fct> <int>
1 1 Current_daily 990
 2 Current_not_daily }30
 3 Former 1999
 4 \text { Never } 3 8 8 1
 9 <NA> 242
```

2
3
4
5

### 6.6.12 E-Cigarettes (2 items)

### 6.6.12.1 ECIGARET and its cleanup to ecig_ever

ECIGARET, the Ever used an e-cigarette variable, is the response to "Have you ever used an e-cigarette or other electronic vaping product, even just one time, in your entire life?"

- $1=\mathrm{Yes}$
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(ecig_ever = ECIGARET,
 ecig_ever = replace(ecig_ever, ecig_ever %in% c(7, 9), NA),
 ecig_ever = replace(ecig_ever, ecig_ever == 2, 0))
smart_ohio_raw |> count(ECIGARET, ecig_ever)
```

\# A tibble: 5 x 3

| ECIGARET | ecig_ever | n |
| ---: | ---: | ---: |
| <dbl> | <dbl> | <int> |
| 1 | 1 | 1354 |
| 2 | 0 | 5799 |
| 7 | $N A$ | 9 |
| 9 | $N A$ | 3 |
| NA | NA | 247 |

### 6.6.12.2 _ECIGSTS and its cleanup to ecigs

_ECIGSTS, is a calculated variable which categorizes subjects by their smoking status:

- $1=$ Current and uses daily
- $2=$ Current user but not every day
- $3=$ Former user
- $4=$ Never used e-cigarettes
- $9=$ Don’t Know / Refused / Missing

We'll reclassify this as a factor with appropriate labels and NAs.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(ecigs = fct_recode(factor(`_ECIGSTS`),
 "Current_daily" = "1",
 "Current_not_daily" = "2",
 "Former" = "3",
 "Never" = "4",
 NULL = "9"))
smart_ohio_raw |> count(`_ECIGSTS`, ecigs)
A tibble: 5 x 3
 `_ECIGSTS` ecigs n
 <dbl> <fct> <int>
 1 \text { Current_daily } 1 0 2
 2 Current_not_daily 165
 3 Former 1085
 4 \text { Never } 5 7 9 9
 9 <NA> 261
```


### 6.6.13 Alcohol Consumption (6 items)

### 6.6.13.1 ALCDAY5 and its cleanup to alcdays

ALCDAY5, the Days in past 30 had alcoholic beverage variable, is the response to "During the past 30 days, how many days per week or per month did you have at least one drink of any alcoholic beverage such as beer, wine, a malt beverage or liquor?"

- 101-107 = \# of days per week ( $101=1$ day per week, $107=7$ days per week $)$
- $201-230=\#$ of days in past 30 days ( $201=1$ day in last $30,230=30$ days in last 30 )
- $777=$ Don't know/Not sure
- $888=$ No drinks in past 30 days
- $999=$ Refused
- BLANK $=$ Not asked or Missing

We're going to convert this to a single numeric value. Answers in days per week (in the past 7 days) will be converted (after rounding) to days in the past 30 . This is a little bit of a mess, really, but we can do it.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(alcdays = as.numeric(ALCDAY5)) |>
 mutate(alcdays = replace(alcdays, alcdays == 888, 0),
```

```
 alcdays = replace(alcdays, alcdays %in% c(777, 999), NA)) |>
 mutate(alcdays = case_when(ALCDAY5 > 199 & ALCDAY5 < 231 ~ ALCDAY5 - 200,
 ALCDAY5 > 100 & ALCDAY5 < 108 ~ round((ALCDAY5 - 100)*30/7,
 TRUE ~ alcdays))
smart_ohio_raw |> count(ALCDAY5, alcdays)
A tibble: 39 x 3
 ALCDAY5 alcdays n
 <dbl> <dbl> <int>
 1 101 4 263
2 102 9}19
3 103 13 142
4 104 17 17 76
5 105 21 53
6 106 26 18
7 107 30 114
8 201 1 621
9 202 2 448
10 203 3 233
i 29 more rows
```


### 6.6.13.2 AVEDRNK2 and its cleanup to avgdrinks

AVEDRNK2, the Avg alcoholic drinks per day in past 30 variable, is the response to "One drink is equivalent to a 12 -ounce beer, a 5 -ounce glass of wine, or a drink with one shot of liquor. During the past 30 days, on the days when you drank, about how many drinks did you drink on the average? (A 40 ounce beer would count as 3 drinks, or a cocktail drink with 2 shots would count as 2 drinks.)"

- $1-76=\#$ of drinks per day
- $77=$ Don't know/Not sure
- $99=$ Refused
- $\operatorname{BLANK}=$ Not asked or Missing (always happens when ALCDAY5 $=777,888$ or 999)

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(avgdrinks = AVEDRNK2,
 avgdrinks = replace(avgdrinks, avgdrinks > 76, NA))
smart_ohio_raw |> count(AVEDRNK2, avgdrinks) |> tail()
```

\# A tibble: 6 x 3
AVEDRNK2
avgdrinks

<dbl> $\quad$| <dbl> |
| ---: | <int>

### 6.6.13.3 MAXDRNKS and its cleanup to maxdrinks

MAXDRINKS, the most drinks on a single occasion in the past 30 days variable, is the response to "During the past 30 days, what is the largest number of drinks you had on any occasion?"

- $1-76=\#$ of drinks
- $77=$ Don't know/Not sure
- 99 = Refused
- $\operatorname{BLANK}=$ Not asked or Missing (always happens when ALCDAY5 $=777,888$ or 999)

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(maxdrinks = MAXDRNKS,
 maxdrinks = replace(maxdrinks, maxdrinks > 76, NA))
```

smart_ohio_raw |> count(MAXDRNKS, maxdrinks) |> tail()
\# A tibble: 6 x 3
MAXDRNKS maxdrinks n
<dbl> <dbl> <int>
$42 \quad 421$
$48 \quad 48 \quad 1$
$76 \quad 76 \quad 2$
77 NA 94
99 NA 11
NA NA 3899

### 6.6.13.4 _RFBING5 and its cleanup to binge

_RFBING5 identifies binge drinkers (males having five or more drinks on one occasion, females having four or more drinks on one occasion in the past 30 days)

The values are

- $1=\mathrm{No}$
- $2=\mathrm{Yes}$
- $9=$ Don’t Know / Refused / Missing

People who reported no alcdays are reported here as "No", so we'll adjust this into an indicator variable, and create the necessary NAs.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(binge = `_RFBING5` - 1,
 binge = replace(binge, binge > 1, NA))
smart_ohio_raw |> count(`_RFBING5`, binge)
```

\# A tibble: 3 x 3
- _RFBING5' binge n
<dbl> <dbl> <int>
$1 \quad 1 \quad 0 \quad 6035$
$2 \quad 2 \quad 1 \quad 1000$
$3 \quad 9 \quad$ NA 377

### 6.6.13.5 _DRNKWEK and its cleanup to drinks_wk

_DRNKWEK provides the computed number of alcoholic drinks per week, with two implied decimal places. The code 99900 is used for "Don't know / Not sure / Refused / Missing" so we'll fix that, and also divide by 100 to get an average with a decimal point.

Note: We're also going to treat all results of 100 or more drinks per week as incorrect, and thus indicate them as missing data here.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(drinks_wk = ` _DRNKWEK` / 100,
 drinks_wk = replace(drinks_wk, drinks_wk > 99, NA))
smart_ohio_raw |> count(`_DRNKWEK`, drinks_wk) |> tail(12)
```

\# A tibble: 12 x 3
- _DRNKWEK` drinks_wk n
<dbl> <dbl> <int>
$\begin{array}{lrll}1 & 9333 & 93.3 & 2 \\ 2 & 10000 & \text { NA } & 1 \\ 3 & 10500 & \text { NA } & 2\end{array}$

| 4 | 11667 | NA | 1 |
| ---: | ---: | ---: | ---: |
| 5 | 14000 | NA | 2 |
| 6 | 16800 | NA | 2 |
| 7 | 17500 | NA | 1 |
| 8 | 18200 | NA | 1 |
| 9 | 28000 | NA | 1 |
| 10 | 29400 | NA | 1 |
| 11 | 53200 | NA | 1 |
| 12 | 99900 | NA | 379 |

### 6.6.13.6 _RFDRHV5 and its cleanup to drink_heavy

_RFDRHV5 identifies heavy drinkers (males having 14 or more drinks per week, females having 7 or more drinks per week)

The values are

- $1=$ No
- $2=\mathrm{Yes}$
- $9=$ Don't Know / Refused / Missing

People who reported no alcdays are reported here as "No", so we'll adjust this into an indicator variable, and create the necessary NAs.

```
 smart_ohio_raw <- smart_ohio_raw |>
 mutate(drink_heavy = ` _RFDRHV5` - 1,
 drink_heavy = replace(drink_heavy, drink_heavy > 1, NA))
 smart_ohio_raw |> count(`_RFDRHV5`, drink_heavy)
A tibble: 3 x 3
 `_RFDRHV5` drink_heavy n
 <dbl> <dbl> <int>
1 1 0 6607
2 2 1 426
```


### 6.6.14 Fruits and Vegetables (8 items)

### 6.6.14.1 _FRUTSU1 and its cleanup to fruit_day

_FRUTSU1 provides the computed number of fruit servings consumed per day, with two implied decimal places. We'll divide by 100 to insert the decimal point.

Note: We're also going to treat all results exceeding 16 servings per day as implausible, and thus indicate them as missing data here, following some CDC procedures.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(fruit_day = `_FRUTSU1` / 100,
 fruit_day = replace(fruit_day, fruit_day > 16, NA))
smart_ohio_raw |> count(`_FRUTSU1`, fruit_day) |> tail()
A tibble: 6 x 3
 `_FRUTSU1` fruit_day n
 <dbl> <dbl> <int>
 913 9.13 1
 1000 10 4
 1400 14 1
 3000 NA 1
 7600 NA 1
 NA NA 555
```


### 6.6.14.2 _VEGESU1 and its cleanup to veg_day

_VEGESU1 provides the computed number of vegetable servings consumed per day, with two implied decimal places. We'll divide by 100 to insert the decimal point.

Note: We're also going to treat all results exceeding 23 servings per day as implausible, and thus indicate them as missing data here, following some CDC procedures.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(veg_day = ` _VEGESU1` / 100,
 veg_day = replace(veg_day, veg_day > 23, NA))
smart_ohio_raw |> count(` _VEGESU1`, veg_day) |> tail()
```



### 6.6.14.3 FTJUDA2_ and its cleanup to eat_juice

FTJUDA2_ provides the servings of fruit juice consumed per day, with two implied decimal places. We'll divide by 100 to insert the decimal point.
Note: We're also going to treat all results exceeding 16 servings per day as implausible, and thus indicate them as missing data here.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(eat_juice = `FTJUDA2_` / 100,
 eat_juice = replace(eat_juice, eat_juice > 16, NA))
smart_ohio_raw |> count(`FTJUDA2_`, eat_juice) |> tail()
A tibble: 6 x 3
 FTJUDA2_ eat_juice n
 <dbl> <dbl> <int>
 500 5 6
 600 6 1
 700 7 1
 1200 12 1
 7500 NA 1
 NA NA 469
```


### 6.6.14.4 FRUTDA2_ and its cleanup to eat_fruit

FRUTDA2_ provides the servings of fruit consumed per day, with two implied decimal places. We'll divide by 100 to insert the decimal point.

Note: We're also going to treat all results exceeding 16 servings per day as implausible, and thus indicate them as missing data here.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(eat_fruit = `FRUTDA2_` / 100,
 eat_fruit = replace(eat_fruit, eat_fruit > 16, NA))
smart_ohio_raw |> count(`FRUTDA2_`, eat_fruit) |> tail()
A tibble: 6 x 3
 FRUTDA2_ eat_fruit n
 <dbl> <dbl> <int>
1
2
3 900 1
4 1000
5 3000 NA 1
N NA NA 456
```


### 6.6.14.5 GRENDA1_ and its cleanup to eat_greenveg

GRENDA1_ provides the servings of dark green vegetables consumed per day, with two implied decimal places. We'll divide by 100 to insert the decimal point.

Note: We're also going to treat all results exceeding 16 servings per day as implausible, and thus indicate them as missing data here.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate (eat_greenveg = `GRENDA1_` / 100,
 eat_greenveg = replace(eat_greenveg, eat_greenveg > 16, NA))
smart_ohio_raw |> count(`GRENDA1_`, eat_greenveg) |> tail()
\# A tibble: 6 x 3
 GRENDA1_ eat_greenveg n
 <dbl> <dbl> <int>
 70074
 \(786 \quad 7.86 \quad 1\)
 \(800 \quad 8 \quad 2\)
 2000 NA 1
 3000 NA 1
 NA NA 447
```


### 6.6.14.6 FRNCHDA_ and its cleanup to eat_fries

FRNCHDA_ provides the servings of french fries consumed per day, with two implied decimal places. We'll divide by 100 to insert the decimal point.

Note: We're also going to treat all results exceeding 16 servings per day as implausible, and thus indicate them as missing data here.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(eat_fries = `FRNCHDA_` / 100,
 eat_fries = replace(eat_fries, eat_fries > 16, NA))
smart_ohio_raw |> count(`FRNCHDA_`, eat_fries) |> tail()
A tibble: 6 x 3
 FRNCHDA_ eat_fries n
 <dbl> <dbl> <int>
 300 3 9
 314 3.14 1
 400 4 3
 500 5 1
 700 7 1
 NA NA 453
```


### 6.6.14.7 POTADA1_ and its cleanup to eat_potato

POTADA1_ provides the servings of potatoes consumed per day, with two implied decimal places. We'll divide by 100 to insert the decimal point.

Note: We're also going to treat all results exceeding 16 servings per day as implausible, and thus indicate them as missing data here.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(eat_potato = `POTADA1_` / 100,
 eat_potato = replace(eat_potato, eat_potato > 16, NA))
smart_ohio_raw |> count(`POTADA1_`, eat_potato) |> tail()
A tibble: 6 x 3
 POTADA1_ eat_potato n
 <dbl> <dbl> <int>
```

| 1 | 314 | 3.14 | 1 |
| :--- | ---: | :---: | ---: |
| 2 | 329 | 3.29 | 1 |
| 3 | 400 | 4 | 3 |
| 4 | 471 | 4.71 | 1 |
| 5 | 700 | 7 | 1 |
| 6 | NA | NA | 501 |

### 6.6.14.8 VEGEDA2_ and its cleanup to eat_otherveg

VEGEDA2_ provides the servings of other vegetables consumed per day, with two implied decimal places. We'll divide by 100 to insert the decimal point.

Note: We're also going to treat all results exceeding 16 servings per day as implausible, and thus indicate them as missing data here.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(eat_otherveg = `VEGEDA2_` / 100,
 eat_otherveg = replace(eat_otherveg, eat_otherveg > 16, NA))
smart_ohio_raw |> count(`VEGEDA2_`, eat_otherveg) |> tail()
A tibble: 6 x 3
 VEGEDA2_ eat_otherveg n
 <dbl> <dbl> <int>
 600 6 3
 700 7 11
 800 8 1
 1000 10 2
 1100 11 1
 NA NA 509
```


### 6.6.15 Exercise and Physical Activity (8 items)

### 6.6.15.1 _TOTINDA and its cleanup to exerany

_TOTINDA, the Exercise in Past 30 Days variable, is the response to "During the past month, other than your regular job, did you participate in any physical activities or exercises such as running, calisthenics, golf, gardening, or walking for exercise?"

- $1=\mathrm{Yes}$
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused
- BLANK $=$ Not asked or missing

This is just like HLTHPLAN.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(exerany = ` _TOTINDA`,
 exerany = replace(exerany, exerany %in% c(7, 9), NA),
 exerany = replace(exerany, exerany == 2, 0))
smart_ohio_raw |> count(`_TOTINDA`, exerany)
A tibble: 3 x 3
 `_TOTINDA` exerany n
 <dbl> <dbl> <int>
1 1 1 4828
2 2 0 2137
3 9 NA 447
```


### 6.6.15.2 _PACAT1 and its cleanup to activity

_PACAT1 contains physical activity categories, estimated from responses to the BRFSS. The categories are:

- $1=$ Highly Active
- $2=$ Active
- $3=$ Insufficiently Active
- $4=$ Inactive
- $9=$ Don't Know / Not Sure / Refused / Missing

So we'll create a factor.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(activity = factor(` _PACAT1`),
 activity = fct_recode(activity,
 "Highly_Active" = "1",
 "Active" = "2",
 "Insufficiently_Active" = "3",
 "Inactive" = "4",
 NULL = "9"))
```

```
smart_ohio_raw |> count(`_PACAT1`, activity)
A tibble: 5 x 3
 ` _PACAT1` activity n
 <dbl> <fct> <int>
 1 Highly_Active 2053
 2 \text { Active } 1 1 3 2
 3 Insufficiently_Active 1293
 4 \text { Inactive 2211}
 9 <NA> 723
```


### 6.6.15.3 _PAINDX1 and its cleanup to rec_aerobic

_PAINDX1 indicates whether the respondent's stated levels of physical activity meet recommendations for aerobic activity. The responses are:

- $1=\mathrm{Yes}$
- $2=$ No
- $9=$ Don’t know/Not sure/Refused/Missing
smart_ohio_raw <- smart_ohio_raw |> mutate (rec_aerobic = 2 - '_PAINDX1`, rec_aerobic = replace(rec_aerobic, rec_aerobic < 0, NA)) smart_ohio_raw |> count(`_PAINDX1`, rec_aerobic) \# A tibble: 3 x 3 `_PAINDX1` rec_aerobic n <dbl> <dbl> <int>
1

| 1 | 1 | 3228 |
| :--- | ---: | ---: |
| 2 | 0 | 3504 |
| 9 | $N$ | 680 |

9 NA 680

### 6.6.15.4 _PASTRNG and its cleanup to rec_strength

_PASTRNG indicates whether the respondent's stated levels of physical activity meet recommendations for strength-building activity. The responses are:

- $1=$ Yes
- $2=$ No
- $9=$ Don't know/Not sure/Refused/Missing

```
 smart_ohio_raw <- smart_ohio_raw |>
 mutate(rec_strength = 2 - `_PASTRNG`,
 rec_strength = replace(rec_strength, rec_strength < 0, NA))
smart_ohio_raw |> count(` _PASTRNG`, rec_strength)
A tibble: 3 x 3
 `_PASTRNG` rec_strength n
 <dbl> <dbl> <int>
 1 1 1852
 2 0 5004
 N NA 556
```


### 6.6.15.5 EXRACT11 and its cleanup to exer1_type

Respondents are asked "What type of physical activity or exercise did you spend the most time doing during the past month?" and these responses are gathered into a set of 76 named categories, including an "other" category. Codes 77 (Don't Know / Not Sure) and 99 (Refused) are dropped into NA in my code below, and Code 98 ("Other type of activity") remains. Then I went through the tedious work of converting the factor levels from numbers to names, following the value labels provided by BRFSS.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(exer1_type = factor(EXRACT11),
 exer1_type = fct_recode(
 exer1_type,
 "Active Gaming Devices" = "1",
 "Aerobics video or class" = "2",
 "Backpacking" = "3",
 "Badminton" = "4",
 "Basketball" = "5",
 "Bicycling machine" = "6",
 "Bicycling" = "7",
 "Boating" = "8",
 "Bowling" = "9",
 "Boxing" = "10",
 "Calisthenics" = "11",
 "Canoeing" = "12",
 "Carpentry" = "13",
```

```
"Dancing" = "14",
"Elliptical machine" = "15",
"Fishing" = "16",
"Frisbee" = "17",
"Gardening" = "18",
"Golf with cart" = "19",
"Golf without cart" = "20",
"Handball" = "21",
"Hiking" = "22",
"Hockey" = "23",
"Horseback riding" = "24",
"Hunting large game" = "25",
"Hunting small game" = "26",
"Inline skating" = "27",
"Jogging" = "28",
"Lacrosse" = "29",
"Mountain climbing" = "30",
"Mowing lawn" = "31",
"Paddleball" = "32",
"Painting house" = "33",
"Pilates" = "34",
"Racquetball" = "35",
"Raking lawn" = "36",
"Running" = "37",
"Rock climbing" = "38",
"Rope skipping" = "39",
"Rowing machine" = "40",
"Rugby" = "41",
"Scuba diving" = "42",
"Skateboarding" = "43",
"Skating" = "44",
"Sledding" = "45",
"Snorkeling" = "46",
"Snow blowing" = "47",
"Snow shoveling" = "48",
"Snow skiing" = "49",
"Snowshoeing" = "50",
"Soccer" = "51",
"Softball/Baseball" = "52",
"Squash" = "53",
"Stair Climbing" = "54",
```

```
 "Stream fishing" = "55",
 "Surfing" = "56",
 "Swimming" = "57",
 "Swimming in laps" = "58",
 "Table tennis" = "59",
 "Tai Chi" = "60",
 "Tennis" = "61",
 "Touch football" = "62",
 "Volleyball" = "63",
 "Walking" = "64",
 "Waterskiing" = "66",
 "Weight lifting" = "67",
 "Wrestling" = "68",
 "Yoga" = "69",
 "Child Care" = "71",
 "Farm Work" = "72",
 "Household Activities" = "73",
 "Martial Arts" = "74",
 "Upper Body Cycle" = "75",
 "Yard Work" = "76",
 "Other Activities" = "98",
 NULL = "77",
 NULL = "99")
)
```

Warning: There was 1 warning in ‘mutate()`. i In argument: `exer1_type = fct_recode(...)`. Caused by warning: ! Unknown levels in `f`: 3, 17, 21, 32, 36, 41, 42, 45, 47, 53, 55, 56, 59

The warning generated here is caused by the fact that some of the available types of exercise were not mentioned by people in our sample. Looking at the last few results, we can see how many people fell into several categories.

```
smart_ohio_raw |> count(EXRACT11, exer1_type) |> tail()
A tibble: 6 x 3
 EXRACT11 exer1_type n
 <dbl> <fct> <int>
175 Upper Body Cycle 6
2 76 Yard Work 78
```

| 3 | 77 <NA> | 10 |
| :--- | :--- | ---: |
| 4 | 98 | Other Activities |
| 5 | 99 <NA> | 276 |
| 6 | NA <NA> | 4 |
|  | 2588 |  |

The most common activities are:

```
 smart_ohio_raw |> count(exer1_type, sort = TRUE) |> head(10)
A tibble: 10 x 2
 exer1_type n
 <fct> <int>
 Walking 2605
 <NA> 2602
 Running 324
 Other Activities 276
 Gardening 242
 Weight lifting 189
 Aerobics video or class 103
 Bicycling machine 103
 Bicycling 96
1 0 \text { Golf with cart 90}
```


### 6.6.15.6 EXRACT21 and its cleanup to exer2_type

As a follow-up, respondents are asked "What other type of physical activity gave you the next most exercise during the past month?" and these responses are also gathered into the same set of 76 named categories, including an "other" category, but now also adding a "No Other Activity" category (code 88). Codes 77 (Don't Know / Not Sure) and 99 (Refused) are dropped into NA in my code below, and Code 98 ("Other type of activity") remains. Then I went through the tedious work of converting the factor levels from numbers to names, following the value labels provided by BRFSS. I'm sure there's a better way to do this.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(exer2_type = factor(EXRACT21),
 exer2_type = fct_recode(
 exer2_type,
 "Active Gaming Devices" = "1",
 "Aerobics video or class" = "2",
 "Backpacking" = "3",
 "Badminton" = "4",
```

```
"Basketball" = "5",
"Bicycling machine" = "6",
"Bicycling" = "7",
"Boating" = "8",
"Bowling" = "9",
"Boxing" = "10",
"Calisthenics" = "11",
"Canoeing" = "12",
"Carpentry" = "13",
"Dancing" = "14",
"Elliptical machine" = "15",
"Fishing" = "16",
"Frisbee" = "17",
"Gardening" = "18",
"Golf with cart" = "19",
"Golf without cart" = "20",
"Handball" = "21",
"Hiking" = "22",
"Hockey" = "23",
"Horseback riding" = "24",
"Hunting large game" = "25",
"Hunting small game" = "26",
"Inline skating" = "27",
"Jogging" = "28",
"Lacrosse" = "29",
"Mountain climbing" = "30",
"Mowing lawn" = "31",
"Paddleball" = "32",
"Painting house" = "33",
"Pilates" = "34",
"Racquetball" = "35",
"Raking lawn" = "36",
"Running" = "37",
"Rock climbing" = "38",
"Rope skipping" = "39",
"Rowing machine" = "40",
"Rugby" = "41",
"Scuba diving" = "42",
"Skateboarding" = "43",
"Skating" = "44",
"Sledding" = "45",
```

```
 "Snorkeling" = "46",
 "Snow blowing" = "47",
 "Snow shoveling" = "48",
 "Snow skiing" = "49",
 "Snowshoeing" = "50",
 "Soccer" = "51",
 "Softball/Baseball" = "52",
 "Squash" = "53",
 "Stair Climbing" = "54",
 "Stream fishing" = "55",
 "Surfing" = "56",
 "Swimming" = "57",
 "Swimming in laps" = "58",
 "Table tennis" = "59",
 "Tai Chi" = "60",
 "Tennis" = "61",
 "Touch football" = "62",
 "Volleyball" = "63",
 "Walking" = "64",
 "Waterskiing" = "66",
 "Weight lifting" = "67",
 "Wrestling" = "68",
 "Yoga" = "69",
 "Child Care" = "71",
 "Farm Work" = "72",
 "Household Activities" = "73",
 "Martial Arts" = "74",
 "Upper Body Cycle" = "75",
 "Yard Work" = "76",
 "No Other Activity" = "88",
 "Other Activities" = "98",
NULL = "77",
NULL = "99")
```

)

Warning: There was 1 warning in `mutate()`. i In argument: `exer2_type = fct_recode(...)`. Caused by warning:
! Unknown levels in `f`: 3, 21, 30, 39, 41, 46, 50, 62

```
smart_ohio_raw |> count(EXRACT21, exer2_type) |> tail()
```

```
A tibble: 6 x 3
 EXRACT21 exer2_type n
 <dbl> <fct> <int>
1 76 Yard Work 153
2 77 <NA> 26
3 N8 No Other Activity }185
4 98 Other Activities 246
5 99 <NA> 19
6 NA <NA> 2627
```

The most common activity types in this group are:

```
smart_ohio_raw |> count(exer2_type, sort = TRUE) |> head(10)
```

\# A tibble: 10 x 2
$\begin{array}{lr}\text { exer2_type } \\ \text { <fct> } & \text { <int> }\end{array}$
1 <NA> 2672
2 No Other Activity 1854
3 Walking 629
4 Weight lifting 272
5 Other Activities 246
6 Gardening 202
7 Household Activities 169
8 Yard Work 153
9 Running 148
10 Bicycling 118

### 6.6.15.7 _MINAC11 and its cleanup to exer1_min

_MINAC11 is minutes of physical activity per week for the first activity (listed as exer1_type above.) Since there are only about 10,080 minutes in a typical week, we'll treat as implausible any values larger than 4200 minutes (which would indicate 70 hours per week.)

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(exer1_min = `_MINAC11`,
 exer1_min = replace(exer1_min, exer1_min > 4200, NA))
smart_ohio_raw |> count(`_MINAC11`, exer1_min) |> tail()
```

```
A tibble: 6 x 3
 `_MINAC11` exer1_min n
 <dbl> <dbl> }<\mathrm{ <int>
 3959 3959 1
 3960 3960 1
 4 1 9 3 ~ 4 1 9 3 ~ 6 ~
 27000 NA 1
 NA NA 2760
```


### 6.6.15.8 _MINAC21 and its cleanup to exer2_min

_MINAC21 is minutes of physical activity per week for the second activity (listed as exer2_type above.) Again, we'll treat as implausible any values larger than 4200 minutes (which would indicate 70 hours per week.)

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(exer2_min = `_MINAC21`,
 exer2_min = replace(exer2_min, exer2_min > 4200, NA))
smart_ohio_raw |> count(`_MINAC21`, exer2_min) |> tail()
A tibble: 6 x 3
 `_MINAC21` exer2_min n
 <dbl> <dbl> <int>
1 3360 3360 3
2 3780
3 4193 4193 3
4 6120 NA 1
5 8400 NA 1
N NA NA 2770
```


### 6.6.16 Seatbelt Use (1 item)

### 6.6.16.1 SEATBELT and its cleanup to seatbelt

This question asks "How often do you use seat belts when you drive or ride in a car?" Possible responses are:

- 1 = Always
- $2=$ Nearly always
- $3=$ Sometimes
- $4=$ Seldom
- $5=$ Never
- $7=$ Don't know / Not sure
- $8=$ Never drive or ride in a car
- $9=$ Refused

We'll treat codes 7, 8 and 9 as NA, and turn this into a factor.

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(seatbelt = fct_recode(factor(SEATBELT),
 "Always" = "1",
 "Nearly_always" = "2",
 "Sometimes" = "3",
 "Seldom" = "4",
 "Never" = "5",
 NULL = "7",
 NULL = "8",
 NULL = "9"))
smart_ohio_raw |> count(SEATBELT, seatbelt)
A tibble: 9 x 3
 SEATBELT seatbelt n
 <dbl> <fct> <int>
1 1 Always 6047
2 2 Nearly_always 409
3 Sometimes 191
4 4 Seldom 81
5 5 Never 148
6 7 <NA> 7
7 8 <NA> 21
8 9 <NA> 2
9 NA <NA> 506
```


### 6.6.17 Immunization (3 items)

### 6.6.17.1 FLUSHOT6 and its cleanup to vax_flu

FLUSHOT6 gives the response to "During the past 12 months, have you had either a flu shot or a flu vaccine that was sprayed in your nose?" The responses are:

- $1=\mathrm{Yes}$
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(vax_flu = 2 - FLUSHOT6,
 vax_flu = replace(vax_flu, vax_flu < 0, NA))
smart_ohio_raw |> count(FLUSHOT6, vax_flu)
```

\# A tibble: 5 x 3
FLUSHOT6 vax_flu n
<dbl> <dbl> <int>
$\begin{array}{llll}1 & 1 & 1 & 3453\end{array}$
$\begin{array}{llll}2 & 2 & 0 & 3410\end{array}$
$\begin{array}{llll}3 & 7 & \text { NA } & 26\end{array}$
$4 \quad 9 \quad \mathrm{NA} \quad 3$
5 NA NA 520

### 6.6.17.2 PNEUVAC3 and its cleanup to vax_pneumo

PNEUVAC3 gives the response to "A pneumonia shot or pneumococcal vaccine is usually given only once or twice in a person's lifetime and is different from the flu shot. Have you ever had a pneumonia shot?" The responses are:

- $1=\mathrm{Yes}$
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused
smart_ohio_raw <- smart_ohio_raw |> mutate(vax_pneumo = 2 - PNEUVAC3, vax_pneumo = replace(vax_pneumo, vax_pneumo < 0, NA))
smart_ohio_raw |> count (PNEUVAC3, vax_pneumo)
\# A tibble: 5 x 3
PNEUVAC3 vax_pneumo n <dbl> <dbl> <int>
1
1
13112

| 2 | 2 | 0 | 3262 |
| :--- | ---: | ---: | ---: |
| 3 | 7 | NA | 509 |
| 4 | 9 | NA | 3 |
| 5 | NA | NA | 526 |

### 6.6.17.3 SHINGLE2 and its cleanup to vax_shingles

SHINGLE2 gives the response to "Have you ever had the shingles or zoster vaccine?" The responses are:

- $1=\mathrm{Yes}$
- $2=\mathrm{No}$
- $7=$ Don't know/Not sure
- $9=$ Refused

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(vax_shingles = 2 - SHINGLE2,
 vax_shingles = replace(vax_shingles, vax_shingles < 0, NA))
smart_ohio_raw |> count(SHINGLE2, vax_shingles)
```

\# A tibble: $4 \times 3$
SHINGLE2 vax_shingles n
<dbl> <dbl> <int>
1
11503
202979
7 NA 78
NA NA 2852

### 6.6.18 HIV/AIDS (2 items)

### 6.6.18.1 HIVTST6 and its cleanup to hiv_test

HIVTST6 gives the response to "Have you ever been tested for HIV? Do not count tests you may have had as part of a blood donation. Include testing fluid from your mouth." The responses are:

- $1=\mathrm{Yes}$
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(hiv_test = 2 - HIVTST6,
 hiv_test = replace(hiv_test, hiv_test < 0, NA))
smart_ohio_raw |> count(HIVTST6, hiv_test)
A tibble: 5 x 3
 HIVTST6 hiv_test n
 <dbl> <dbl> <int>
1 1 1 2017
2 2 0 4565
3 7 N NA 260
4 9 NA 14
N NA NA 556
```


### 6.6.18.2 HIVRISK5 and its cleanup to hiv_risk

HIVRISK5 gives the response to "I am going to read you a list. When I am done, please tell me if any of the situations apply to you. You do not need to tell me which one. You have injected any drug other than those prescribed for you in the past year. You have been treated for a sexually transmitted disease or STD in the past year. You have given or received money or drugs in exchange for sex in the past year." The responses are:

- $1=\mathrm{Yes}$
- $2=$ No
- $7=$ Don't know/Not sure
- $9=$ Refused

```
smart_ohio_raw <- smart_ohio_raw |>
 mutate(hiv_risk = 2 - HIVRISK5,
 hiv_risk = replace(hiv_risk, hiv_risk < 0, NA))
smart_ohio_raw |> count(HIVRISK5, hiv_risk)
```

| \# A tibble: 5 x 3 |  |  |  |
| :--- | ---: | ---: | ---: |
| HIVRISK5 | hiv_risk | n |  |
|  | <dbl> | <dbl> | <int> |
| 1 | 1 | 1 | 277 |
| 2 | 2 | 0 | 6537 |
| 3 | 7 | NA | 2 |


| 4 | 9 | NA | 17 |
| :--- | ---: | ---: | ---: |
| 5 | NA | NA | 579 |

### 6.7 Imputing Age and Income as Quantitative from Thin Air

This section is purely for teaching purposes. I would never use the variables created in this section for research work.

### 6.7.1 age_imp: Imputing Age Data

I want a quantitative age variable, so I'm going to create an imputed age_imp value for each subject based on their agegroup. For each age group, I will assume that each of the ages represented by a value in that age group will be equally likely, and will draw from the relevant uniform distribution to impute age.

```
set.seed(2020432002)
smart_ohio_raw <- smart_ohio_raw |>
 mutate(age_low = as.numeric(str_sub(as.character(agegroup), 1, 2))) |>
 mutate(age_high = as.numeric(str_sub(as.character(agegroup), 4, 5))) |>
 rowwise() |>
 mutate(age_imp = ifelse(!is.na(agegroup),
 round(runif(1, min = age_low, max = age_high),0),
 NA))
smart_ohio_raw |> count(agegroup, age_imp) #|> tail()
A tibble: 80 x 3
Rowwise:
agegroup age_imp n
<fct> <dbl> <int>
1 18-24 18 46
2 18-24 19 75
3 18-24 20 76
4 18-24 21 82
5 18-24 22 80
6 18-24 23 54
7 18-24 24 35
8 25-29 25 42
9 25-29 26 93
```

```
10 25-29 27 77
i 70 more rows
```

Here is a histogram of the age_imp variable.

```
ggplot(smart_ohio_raw, aes(x = age_imp)) +
 geom_histogram(fill = "navy", col = "white",
 binwidth = 1) +
 scale_x_continuous(breaks = c(18, 25, 35, 45, 55, 65, 75, 85, 96)) +
 labs(x = "Imputed Age in Years",
 title = paste0("Imputed Income: ",
 sum(is.na(smart_ohio_raw$age_imp)),
 " respondents have missing age group"))
```

Imputed Income: 68 respondents have missing age group


### 6.7.2 inc_imp: Imputing Income Data

I want a quantitative income variable, so I'm going to create an imputed inc_imp value for each subject based on their incomegroup. For most income groups, I will assume that each of the incomes represented by a value in that income group will be equally likely, and will draw from the relevant uniform distribution to impute income. The exception is the highest income group, where I will impute a value drawn from a distribution that places all values at $\$ 75,000$ or more, but has a substantial right skew and long tail.

```
 set.seed(2020432001)
 smart_ohio_raw <- smart_ohio_raw |>
 mutate(inc_imp = case_when(
 incomegroup == "0-9K" ~ round(runif(1, min = 100, max = 9999)),
 incomegroup == "10-14K" ~ round(runif(1, min = 10000, max = 14999)),
 incomegroup == "15-19K" ~ round(runif(1, min = 15000, max = 19999)),
 incomegroup == "20-24K" ~ round(runif(1, min = 20000, max = 24999)),
 incomegroup == "25-34K" ~ round(runif(1, min = 25000, max = 34999)),
 incomegroup == "35-49K" ~ round(runif(1, min = 35000, max = 49999)),
 incomegroup == "50-74K" ~ round(runif(1, min = 50000, max = 74999)),
 incomegroup == "75K+" ~ round((rnorm(n = 1, mean = 0, sd = 300)^2) + 74999)))
 smart_ohio_raw |> count(incomegroup, inc_imp) |> tail()
```

\# A tibble: 6 x 3
\# Rowwise:
incomegroup inc_imp n
<fct> <dbl> <int>
$175 \mathrm{~K}+\quad 774009 \quad 1$
$275 \mathrm{~K}+\quad 798174 \quad 1$
$375 \mathrm{~K}+\quad 806161 \quad 1$
$475 \mathrm{~K}+\quad 847758 \quad 1$
$575 \mathrm{~K}+\quad 1085111 \quad 1$
6 <NA> NA 1310

Here are density plots of the inc_imp variable. The top picture shows the results on a linear scale, and the bottom shows them on a log (base 10) scale.

```
p1 <- ggplot(smart_ohio_raw, aes(x = inc_imp/1000)) +
 geom_density(fill = "darkgreen", col = "white") +
 labs(x = "Imputed Income in Thousands of Dollars",
 title = "Imputed Income on the Linear scale") +
 scale_x_continuous(breaks = c(25, 75, 250, 1000))
p2 <- ggplot(smart_ohio_raw, aes(x = inc_imp/1000)) +
 geom_density(fill = "darkgreen", col = "white") +
 labs(x = "Imputed Income in Thousands of Dollars",
 title = "Imputed Income on the Log (base 10) scale") +
 scale_x_log10(breaks = c(0.1, 1, 5, 25, 75, 250, 1000))
```

```
p1 / p2 +
```

    plot_annotation(title =
    paste0("Imputed Income: ", sum(is.na(smart_ohio_raw\$inc_imp)), "
    Imputed Income: 1310 respondents have missing income group Imputed Income on the Linear scale


Imputed Income on the Log (base 10) scale


### 6.8 Clean Data in the State of Ohio

There are six MMSAs associated with the state of Ohio. We're going to create a smart_ohio that includes each of them. First, I'll ungroup the data that I created earlier, so I get a clean tibble.

```
smart_ohio_raw <- smart_ohio_raw |> ungroup()
```

Next, I'll select the variables I want to retain (they are the ones I created, plus SEQNO.)

```
smart_ohio <- smart_ohio_raw |>
 select(SEQNO, mmsa, mmsa_code, mmsa_name, mmsa_wt, completed,
 landline, hhadults,
 genhealth, physhealth, menthealth, poorhealth,
 agegroup, age_imp, race, hispanic, race_eth,
 female, marital, kids, educgroup, home_own,
```

```
 veteran, employment, incomegroup, inc_imp,
 cell_own, internet30,
 weight_kg, height_m, bmi, bmigroup,
 pregnant, deaf, blind, decide,
 diffwalk, diffdress, diffalone,
 smoke100, smoker, ecig_ever, ecigs,
 healthplan, hasdoc, costprob, t_checkup,
 bp_high, bp_meds,
 t_chol, chol_high, chol_meds,
 asthma, hx_asthma, now_asthma,
 hx_mi, hx_chd, hx_stroke, hx_skinc, hx_otherc,
 hx_copd, hx_depress, hx_kidney,
 hx_diabetes, dm_status, dm_age,
 hx_arthr, arth_lims, arth_work, arth_soc,
 joint_pain, alcdays, avgdrinks, maxdrinks,
 binge, drinks_wk, drink_heavy,
 fruit_day, veg_day, eat_juice, eat_fruit,
 eat_greenveg, eat_fries, eat_potato,
 eat_otherveg, exerany, activity, rec_aerobic,
 rec_strength, exer1_type, exer2_type,
 exer1_min, exer2_min, seatbelt,
 vax_flu, vax_pneumo, vax_shingles,
 hiv_test, hiv_risk)
saveRDS(smart_ohio, "data/smart_ohio.Rds")
write_csv(smart_ohio, "data/smart_ohio.csv")
```

The smart_ohio file should contain 99 variables, describing 7412 respondents.

### 6.9 Clean Cleveland-Elyria Data

### 6.9.1 Cleveland - Elyria Data

The mmsa_name variable is probably the simplest way for us to filter our data down to the MMSA we are interested in. Here, I'm using the str_detect function to identify the values of mmsa_name that contain the text "Cleveland".

```
smart_cle <- smart_ohio |>
 filter(str_detect(mmsa_name, 'Cleveland'))
```

```
saveRDS(smart_cle, "data/smart_cle.Rds")
```

In the Cleveland-Elyria MSA, we have 1133 observations on the same 99 variables. We'll build a variety of smaller subsets from these data, eventually.

## 7 Dealing with Missingness: Single Imputation

### 7.1 R Setup Used Here

```
knitr::opts_chunk$set(comment = NA)
library(janitor)
library(ggridges)
library(knitr)
library(naniar)
library(simputation)
library(Hmisc)
library(mosaic)
library(patchwork)
library(visdat)
library(tidyverse)
theme_set(theme_bw())
```


### 7.1.1 Data Load

```
smart_cle <- readRDS("data/smart_cle.Rds")
```

7.2 Selecting Some Variables from the smart_cle data

```
smart_cle1 <- smart_cle |>
 select(SEQNO, physhealth, genhealth, bmi,
 age_imp, female, race_eth, internet30,
 smoke100, activity, drinks_wk, veg_day)
```

The smart_cle.Rds data file available on the Data and Code page of our website describes information on 99 variables for 1133 respondents to the BRFSS 2017, who live in the ClevelandElyria, OH, Metropolitan Statistical Area. The variables in the smart_cle1.csv file are listed below, along with the items that generate these responses.


## 7.3 smart_cle1: Seeing our Missing Data

The naniar package provides several useful functions for summarizing missingness in our data set. Like all tidy data sets, our smart_cle1 tibble contains rows which describe observations, sometimes called cases, and also contains columns which describe variables.

Overall, there are 1133 cases, and 1133 observations in our smart_cle1 tibble.

- We can obtain a count of the number of missing cells in the entire tibble.

```
smart_cle1 |> n_miss()
```

[1] 479

- We can use the miss_var_summary function to get a sorted table of each variable by number missing.
miss_var_summary(smart_cle1) |> kable()

| variable | n_miss | pct_miss |
| :--- | ---: | ---: |
| activity | 109 | 9.62 |
| veg_day | 101 | 8.91 |
| bmi | 91 | 8.03 |
| drinks_wk | 66 | 5.83 |
| smoke100 | 40 | 3.53 |
| race_eth | 26 | 2.29 |
| physhealth | 24 | 2.12 |
| age_imp | 11 | 0.971 |
| internet30 | 7 | 0.618 |
| genhealth | 4 | 0.353 |
| SEQNO | 0 | 0 |
| female | 0 | 0 |

- Or we can use the miss_var_table function to tabulate the number of variables that have each observed level of missingness.

```
miss_var_table(smart_cle1)
```

\# A tibble: 11 x 3
n_miss_in_var n_vars pct_vars

| <int> | <int> | <dbl> |
| ---: | ---: | :---: |
| 0 | 2 | 16.7 |
| 4 | 1 | 8.33 |
| 7 | 1 | 8.33 |
| 11 | 1 | 8.33 |
| 24 | 1 | 8.33 |
| 26 | 1 | 8.33 |
| 40 | 1 | 8.33 |
| 66 | 1 | 8.33 |
| 91 | 1 | 8.33 |
| 101 | 1 | 8.33 |
| 109 | 1 | 8.33 |

- Or we can get a count for a specific variable, like activity:

```
smart_cle1 |> select(activity) |> n_miss()
```

[1] 109

- We can also use prop_miss_case or pct_miss_case to specify the proportion (or percentage) of missing observations across an entire data set, or within a specific variable.

```
prop_miss_case(smart_cle1)
```

[1] 0.2127096

```
smart_cle1 |> select(activity) |> pct_miss_case()
```

[1] 9.620477

- We can also use prop_miss_var or pct_miss_var to specify the proportion (or percentage) of variables with missing observations across an entire data set.

```
prop_miss_var(smart_cle1)
```

[1] 0.8333333

```
pct_miss_var(smart_cle1)
```

- We use miss_case_table to identify the number of missing values for each of the cases (rows) in our tibble.
miss_case_table(smart_cle1)

| \# A tibble: $7 \times 3$ |  |  |  |
| :--- | ---: | ---: | :---: |
| n_miss_in_case | n_cases | pct_cases |  |
|  | <int> | <int> | <dbl> |
| 1 | 0 | 892 | 78.7 |
| 2 | 1 | 129 | 11.4 |
| 3 | 2 | 51 | 4.50 |
| 4 | 3 | 22 | 1.94 |
| 5 | 4 | 21 | 1.85 |
| 6 | 5 | 10 | 0.883 |
| 7 | 6 | 8 | 0.706 |

- Use miss_case_summary to specify individual observations and count their missing values.

```
 miss_case_summary(smart_cle1)
```

\# A tibble: 1,133 x 3
case n_miss pct_miss
<int> <int> <dbl>

| 1 | 17 | 6 | 50 |
| :--- | :--- | :--- | :--- |


| 2 | 42 | 6 | 50 |
| :--- | :--- | :--- | :--- |


| 3 | 254 | 6 |
| :--- | :--- | :--- |


| 4 | 425 | 6 | 50 |
| :--- | :--- | :--- | :--- |


| 5 | 521 | 6 | 50 |
| :--- | :--- | :--- | :--- |

$\begin{array}{llll}6 & 729 & 6 & 50\end{array}$

| 7 | 757 | 6 | 50 |
| :--- | :--- | :--- | :--- |


| 8 | 1051 | 6 | 50 |
| :--- | :--- | :--- | :--- |


| 9 | 89 | 5 | 41.7 |
| :--- | :--- | :--- | :--- |


| 10 | 94 | 5 | 41.7 |
| :--- | :--- | :--- | :--- |

\# i 1,123 more rows

The case numbers identified here are row numbers. Extract the data for case 17, for instance, with the slice function.

```
 smart_cle1 |> slice(17)
```

\# A tibble: 1 x 12
SEQNO physhealth genhealth bmi age_imp female race_eth internet30 smoke100
<dbl> <dbl> <fct> <dbl> <dbl> <dbl> <fct> <dbl> <dbl>
$12.02 e 9 \quad 0$ 1_Excell~ NA $50 \quad 0$ White n~ NA NA
\# i 3 more variables: activity <fct>, drinks_wk <dbl>, veg_day <dbl>

### 7.3.1 Plotting Missingness

The gg_miss_var function plots the number of missing observations in each variable in our data set.

```
gg_miss_var(smart_cle1)
```



So the most commonly missing variable is activity.
To get a general sense of the missingness in our data, we might use either the vis_dat or the vis_miss function from the visdat package.

```
vis_miss(smart_cle1)
```




### 7.4 Missing-data mechanisms

My source for this description of mechanisms is Chapter 25 of @GelmanHill2007, and that chapter is available at this link.

1. MCAR $=$ Missingness completely at random. A variable is missing completely at random if the probability of missingness is the same for all units, for example, if for each subject, we decide whether to collect the diabetes status by rolling a die and refusing to answer if a " 6 " shows up. If data are missing completely at random, then throwing out cases with missing data does not bias your inferences.
2. Missingness that depends only on observed predictors. A more general assumption, called missing at random or MAR, is that the probability a variable is missing depends only on available information. Here, we would have to be willing to assume that the probability of nonresponse to diabetes depends only on the other, fully recorded variables in the data. It is often reasonable to model this process as a logistic regression, where the outcome variable equals 1 for observed cases and 0 for missing. When an outcome variable is missing at random, it is acceptable to exclude the missing cases (that is, to treat them as NA), as long as the regression controls for all the variables that affect the probability of missingness.
3. Missingness that depends on unobserved predictors. Missingness is no longer "at random" if it depends on information that has not been recorded and this information also predicts the missing values. If a particular treatment causes discomfort, a patient
is more likely to drop out of the study. This missingness is not at random (unless "discomfort" is measured and observed for all patients). If missingness is not at random, it must be explicitly modeled, or else you must accept some bias in your inferences.
4. Missingness that depends on the missing value itself. Finally, a particularly difficult situation arises when the probability of missingness depends on the (potentially missing) variable itself. For example, suppose that people with higher earnings are less likely to reveal them.

Essentially, situations 3 and 4 are referred to collectively as non-random missingness, and cause more trouble for us than 1 and 2 .

### 7.5 Options for Dealing with Missingness

There are several available methods for dealing with missing data that are MCAR or MAR, but they basically boil down to:

- Complete Case (or Available Case) analyses
- Single Imputation
- Multiple Imputation


### 7.6 Complete Case (and Available Case) analyses

In Complete Case analyses, rows containing NA values are omitted from the data before analyses commence. This is the default approach for many statistical software packages, and may introduce unpredictable bias and fail to include some useful, often hard-won information.

- A complete case analysis can be appropriate when the number of missing observations is not large, and the missing pattern is either MCAR (missing completely at random) or MAR (missing at random.)
- Two problems arise with complete-case analysis:

1. If the units with missing values differ systematically from the completely observed cases, this could bias the complete-case analysis.
2. If many variables are included in a model, there may be very few complete cases, so that most of the data would be discarded for the sake of a straightforward analysis.

- A related approach is available-case analysis where different aspects of a problem are studied with different subsets of the data, perhaps identified on the basis of what is missing in them.


### 7.7 Single Imputation

In single imputation analyses, NA values are estimated/replaced one time with one particular data value for the purpose of obtaining more complete samples, at the expense of creating some potential bias in the eventual conclusions or obtaining slightly less accurate estimates than would be available if there were no missing values in the data.

- A single imputation can be just a replacement with the mean or median (for a quantity) or the mode (for a categorical variable.) However, such an approach, though easy to understand, underestimates variance and ignores the relationship of missing values to other variables.
- Single imputation can also be done using a variety of models to try to capture information about the NA values that are available in other variables within the data set.
- The simputation package can help us execute single imputations using a wide variety of techniques, within the pipe approach used by the tidyverse. Another approach I have used in the past is the mice package, which can also perform single imputations.


### 7.8 Multiple Imputation

Multiple imputation, where NA values are repeatedly estimated/replaced with multiple data values, for the purpose of obtaining mode complete samples and capturing details of the variation inherent in the fact that the data have missingness, so as to obtain more accurate estimates than are possible with single imputation.

- We'll postpone the discussion of multiple imputation for a while.


### 7.9 Approach 1: Building a Complete Case Analysis: smart_cle1_cc

In the 431 course, we usually dealt with missing data by restricting our analyses to respondents with complete data on all variables. Let's start by doing that here. We'll create a new tibble called smart_cle1_cc which includes all respondents with complete data on all of these variables.

```
smart_cle1_cc <- smart_cle1 |>
 drop_na()
dim(smart_cle1_cc)
```

Our smart_cle1_cc tibble now has many fewer observations than its predecessors, but all of the variables in this complete cases tibble have no missing observations.

| Data Set | Rows | Columns | Missingness? |
| ---: | ---: | ---: | ---: |
| smart_cle | 1133 | 99 | Quite a bit. |
| smart_cle1 | 1133 | 12 | Quite a bit. |
| smart_cle1_cc | 892 | 12 | None. |

### 7.10 Approach 2: Single Imputation to create smart_cle1_sh

Next, we'll create a data set which has all of the rows in the original smart_cle1 tibble, but deals with missingness by imputing (estimating / filling in) new values for each of the missing values. To do this, we'll make heavy use of the simputation package in $R$.

The simputation package is designed for single imputation work. Note that we'll eventually adopt a multiple imputation strategy in some of our modeling work, and we'll use some specialized tools to facilitate that later.

To begin, we'll create a "shadow" in our tibble to track what we'll need to impute.

```
smart_cle1_sh <- bind_shadow(smart_cle1)
names(smart_cle1_sh)
\begin{tabular}{llll}
[1] & "SEQNO" & "physhealth" & "genhealth" \\
[5] & "age_imp" & "female" & "race_eth"
\end{tabular} "internet30"
```

Note that the bind_shadow() function doubles the number of variables in our tibble, specifically by creating a new variable for each that takes the value !NA or NA. For example, consider

```
smart_cle1_sh |> count(activity, activity_NA)
```



The activity_NA variable takes the value ! NA (meaning not missing) when the value of the activity variable is known, and takes the value NA for observations where the activity variable is missing. This background tracking will be helpful to us when we try to assess the impact of imputation on some of our summaries.

### 7.10.1 What Type of Missingness Do We Have?

There are three types of missingness that we might assume in any given setting: missing completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR). Together, MCAR and MAR are sometimes called ignorable non-response, which essentially means that imputation provides a way to useful estimates. MNAR or missing NOT at random is sometimes called non-ignorable missingness, implying that even high-quality imputation may not be sufficient to provide useful information to us.

Missing Completely at Random means that the missing data points are a random subset of the data. Essentially, there is nothing that makes some data more likely to be missing than others. If the data truly match the standard for MCAR, then a complete-case analysis will be about as good as an analysis after single or multiple imputation.

Missing at Random means that there is a systematic relationship between the observed data and the missingness mechanism. Another way to say this is that the missing value is not related to the reason why it is missing, but is related to the other variables collected in the study. The implication is that the missingness can be accounted for by studying the variables with complete information. Imputation strategies can be very helpful here, incorporating what we know (or think we know) about the relationships between the results that are missing and the results that we see.

- Wikipedia provides a nice example. If men are less likely to fill in a depression survey, but this has nothing to do with their level of depression after accounting for the fact that they are male, then the missingess can be assumed MAR.
- Determining whether missingness is MAR or MNAR can be tricky. We'll spend more time discussing this later.

Missing NOT at Random means that the missing value is related to the reason why it is missing.

- Continuing the Wikipedia example, if men failed to fill in a depression survey because of their level of depression, then this would be MNAR.
- Single imputation is most helpful in the MAR situation, although it is also appropriate when we assume MCAR.
- Multiple imputation will, similarly, be more helpful in MCAR and MAR situations than when data are missing NOT at random.

It's worth noting that many people are unwilling to impute values for outcomes or key predictors in a modeling setting, but are happy to impute for less important covariates. For now, we'll assume MCAR or MAR for all of the missingness in our smart_cle1 data, which will allow us to adopt a single imputation strategy.

### 7.10.2 Single imputation into smart_cle1_sh

Which variables in smart_cle1_sh contain missing data?

| \# A tibble: $24 \times 3$ |  |
| :---: | :---: |
| variable | n_miss pct_miss |
| <chr> | <int> <num> |
| 1 activity | 1099.62 |
| 2 veg_day | 1018.91 |
| 3 bmi | 918.03 |
| 4 drinks_wk | $66 \quad 5.83$ |
| 5 smoke100 | $40 \quad 3.53$ |
| 6 race_eth | $26 \quad 2.29$ |
| 7 physhealth | $24 \quad 2.12$ |
| 8 age_imp | $11 \quad 0.971$ |
| 9 internet30 | $7 \quad 0.618$ |
| 10 genhealth | 40.353 |
| \# i 14 more rows |  |

We will impute these variables using several different strategies, all supported nicely by the simputation package.

These include imputation methods based solely on the distribution of the complete cases of the variable being imputed.

- impute_median: impute the median value of all non-missing observations into the missing values for the variable
- impute_rhd: random "hot deck" imputation involves drawing at random from the complete cases for that variable

Also available are imputation strategies that impute predicted values from models using other variables in the data set besides the one being imputed.

- impute_pmm: imputation using predictive mean matching
- impute_rlm: imputation using robust linear models
- impute_cart: imputation using classification and regression trees
- impute_knn: imputation using k-nearest neighbors methods


### 7.10.3 Imputing Binary Categorical Variables

Here, we'll arbitrarily impute our $1 / 0$ variables as follows:

- For internet30 we'll use the impute_rhd approach to draw a random observation from the existing set of 1 s and 0 s in the complete internet 30 data.
- For smoke100 we'll use a method called predictive mean matching (impute_pmm) which takes the result from a model based on the (imputed) internet 30 value and whether or not the subject is female, and converts it to the nearest value in the observed smoke100 data. This is a good approach for imputing discrete variables.

These are completely arbitrary choices, for demonstration purposes.

```
set.seed(2020001)
smart_cle1_sh <- smart_cle1_sh |> data.frame() |>
 impute_rhd(internet30 ~ 1) |>
 impute_pmm(smoke100 ~ internet30 + female) |>
 as_tibble()
smart_cle1_sh |> count(smoke100, smoke100_NA)
A tibble: 4 x 3
 smoke100 smoke100_NA n
 <dbl> <fct> <int>
 0 !NA 579
 O NA 21
 1 !NA 514
 1 \mathrm { NA } 1 9
```

1
2
3
4

```
A tibble: 4 x 3
 internet30 internet30_NA n
 <dbl> <fct> <int>
1 0 !NA 207
2 NA 1
3 ! NA 919
4 NA 6
```

smart_cle1_sh |> count(internet30, internet30_NA)

Other approaches that may be used with $1 / 0$ variables include impute_knn and impute_pmm.

### 7.10.4 Imputing Quantitative Variables

We'll demonstrate a different approach for imputing each of the quantitative variables with missing observations. Again, we're making purely arbitrary decisions here about what to include in each imputation. In practical work, we'd want to be a bit more thoughtful about this.

Note that I'm choosing to use impute_pmm with the physhealth and age_imp variables. This is (in part) because I want my imputations to be integers, as the other observations are for those variables. impute_rhd would also accomplish this.

```
set.seed(2020001)
smart_cle1_sh <- smart_cle1_sh |> data.frame() |>
 impute_rhd(veg_day ~ 1) |>
 impute_median(drinks_wk ~ 1) |>
 impute_pmm(physhealth ~ drinks_wk + female + smoke100) |>
 impute_pmm(age_imp ~ drinks_wk + physhealth) |>
 impute_rlm(bmi ~ physhealth + smoke100) |>
 as_tibble()
```


### 7.10.5 Imputation Results

Let's plot a few of these results, so we can see what imputation has done to the distribution of these quantities.

1. veg_day
```
ggplot(smart_cle1_sh, aes(x = veg_day_NA, y = veg_day)) +
 geom_count() +
 labs(title = "Imputation Results for veg_day")
Imputation Results for veg_day
```



```
favstats(veg_day ~ veg_day_NA, data = smart_cle1_sh)
 veg_day_NA min Q1 median Q3 max mean sd n missing
```

1
2
2. drinks_wk for which we imputed the median value...

```
ggplot(smart_cle1_sh, aes(x = drinks_wk_NA, y = drinks_wk)) +
 geom_count() +
 labs(title = "Imputation Results for drinks_wk")
```

Imputation Results for drinks_wk

smart_cle1_sh |> filter(drinks_wk_NA == "NA") |>
smart_cle1_sh |> filter(drinks_wk_NA == "NA") |>
tabyl(drinks_wk)
tabyl(drinks_wk)
drinks_wk n percent
drinks_wk n percent
0.23661
3. physhealth, a count between 0 and 30 ...
ggplot(smart_cle1_sh,
ggplot(smart_cle1_sh,
aes(x = physhealth, y = physhealth_NA)) +
aes(x = physhealth, y = physhealth_NA)) +
geom_density_ridges() +
geom_density_ridges() +
labs(title = "Imputation Results for physhealth")
labs(title = "Imputation Results for physhealth")

Picking joint bandwidth of 0.426

smart_cle1_sh |> filter(physhealth_NA == "NA") |> tabyl (physhealth)

```
physhealth n percent
 3 1 0.04166667
 4 0.08333333
 5 13 0.54166667
 6 8 0.33333333
```

4. age_imp, in (integer) years
```
ggplot(smart_cle1_sh,
 aes(x = age_imp, color = age_imp_NA)) +
 geom_freqpoly(binwidth = 2) +
 labs(title = "Imputation Results for age_imp")
```


5. bmi or body mass index

```
ggplot(smart_cle1_sh, aes(x = bmi, fill = bmi_NA)) +
 geom_histogram(bins = 30) +
 labs(title = "Histogram of BMI and imputed BMI")
```


favstats(bmi ~ bmi_NA, data = smart_cle1_sh)
bmi_NA min Q1 median Q3 max mean sd $n$
$1 \quad!N A \quad 13.3000 \quad 24.1100 \quad 27.30000 \quad 31.68000 \quad 70.56000 \quad 28.40947 \quad 6.62892861042$
$2 \quad N A 27.069327 .069327 .5022927 .6657430 .7589827 .660570 .8964101 \quad 91$
missing
10
20

### 7.10.6 Imputing Multi-Categorical Variables

The three multi-categorical variables we have left to impute are activity, race_eth and genhealth, and each is presented as a factor in $R$, rather than as a character variable.
We'll arbitrarily decide to impute

- activity and genhealth with a classification tree using physhealth, bmi and smoke100,
- and then impute race_eth with a random draw from the distribution of complete cases.

```
set.seed(2020001)
smart_cle1_sh <- smart_cle1_sh |>
```

```
data.frame() |>
 impute_cart(activity + genhealth ~ physhealth + bmi + smoke100) |>
 impute_rhd(race_eth ~ 1) |>
as_tibble()
```

Let's check our results.

```
smart_cle1_sh |> count(activity_NA, activity)
```

\# A tibble: 6 x 3
activity_NA activity n
<fct> <fct> <int>
1 !NA Highly_Active 338
2 !NA Active 173
3 !NA Insufficiently_Active 201
4 !NA Inactive 312
5 NA Highly_Active 90
6 NA Inactive 19
smart_cle1_sh |> count(race_eth_NA, race_eth)
\# A tibble: 9 x 3
race_eth_NA race_eth n
<fct> <fct> <int>
1 !NA White non-Hispanic 805
2 !NA Black non-Hispanic 222
3 !NA Other race non-Hispanic 24
4 !NA Multiracial non-Hispanic 22
5 !NA Hispanic 34
6 NA White non-Hispanic 19
7 NA Black non-Hispanic 4
8 NA Multiracial non-Hispanic 2
9 NA Hispanic 1
smart_cle1_sh |> count(genhealth_NA, genhealth)
\# A tibble: 7 x 3
genhealth_NA genhealth n
<fct> <fct> <int>

| 1 | $!$ NA | 1_Excellent | 164 |
| :--- | :--- | :--- | ---: |
| 2 ! NA | 2_VeryGood | 383 |  |
| 3 !NA | 3_Good | 364 |  |
| 4 !NA | 4_Fair | 158 |  |
| 5 ! NA | 5_Poor | 60 |  |
| 6 NA | 2_VeryGood | 3 |  |
| 7 NA | 3_Good | 1 |  |

And now, we should have no missing values in the data, at all.
miss_case_table(smart_cle1_sh)
\# A tibble: 1 x 3
n_miss_in_case n_cases pct_cases
<int> <int> <dbl>
1
$\begin{array}{lll}0 & 1133 & 100\end{array}$

### 7.10.7 Saving the new tibbles

```
saveRDS(smart_cle1_cc, ("data/smart_cle1_cc.Rds"))
saveRDS(smart_cle1_sh, ("data/smart_cle1_sh.Rds"))
```


## 8 Summarizing smart_cle1

In this chapter, we'll work with the two data files we built in Chapter 7.

### 8.1 R Setup Used Here

```
knitr::opts_chunk$set(comment = NA)
library(janitor)
library(broom)
library(Hmisc)
library(mosaic)
library(knitr)
library(tidyverse)
theme_set(theme_bw())
```


### 8.1.1 Data Load

```
smart_cle1_sh <- read_rds("data/smart_cle1_sh.Rds")
smart_cle1_cc <- read_rds("data/smart_cle1_cc.Rds")
```


### 8.2 What's in these data?

Those files (_sh contains single imputations, and a shadow set of variables which have _NA at the end of their names, while _cc contains only the complete cases) describe information on the following variables from the BRFSS 2017, who live in the Cleveland-Elyria, OH, Metropolitan Statistical Area.

| Variable | Description |
| ---: | :--- |
| SEQNO | respondent identification number (all begin with 2016) |


| Variable | Description |
| ---: | :--- |
| physhealth | Now thinking about your physical health, which includes physical illness and <br> injury, for how many days during the past 30 days was your physical health |
| not good? |  |

### 8.3 General Approaches to Obtaining Numeric Summaries

### 8.3.1 summary for a data frame

Of course, we can use the usual summary to get some basic information about the data.

```
summary(smart_cle1_cc)
```



| Min. $\quad 0.000$ | Min. $: 0.0000$ | Highly_Active :308 | Min. : 0.000 |
| :---: | :---: | :---: | :---: |
| 1st Qu.:1.000 | 1st Qu.:0.0000 | Active :155 | 1st Qu.: 0.000 |
| Median :1.000 | Median :0.0000 | Insufficiently_Active:167 | Median : 0.470 |
| Mean :0.833 | Mean :0.4787 | Inactive :262 | Mean : 2.727 |
| 3rd Qu.:1.000 | 3rd Qu.:1.0000 |  | 3rd Qu.: 2.850 |
| $\begin{gathered} \text { Max. } \quad: 1.000 \\ \text { veg_day } \end{gathered}$ | Max. :1.0000 |  | Max. :56.000 |
| Min. $: 0.000$ |  |  |  |
| 1st Qu.:1.280 |  |  |  |
| Median :1.730 |  |  |  |
| Mean : 1.919 |  |  |  |
| 3rd Qu.:2.422 |  |  |  |
| Max. :7.300 |  |  |  |

### 8.3.2 The inspect function from the mosaic package

```
inspect(smart_cle1_cc)
```

categorical variables:
name class levels $n$ missing
1 genhealth factor 58920
2 race_eth factor 58920
3 activity factor 48920
distribution
1 2_VeryGood (35.2\%), 3_Good (31.8\%) ...
2 White non-Hispanic (74.1\%) ...
3 Highly_Active (34.5\%) ...
quantitative variables:

|  | name class | min | Q1 | median | Q3 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | SEQNO numeric | $2.017 \mathrm{e}+09$ | $2.0170 \mathrm{e}+09$ | $2.017001 \mathrm{e}+09$ | $2.017001 \mathrm{e}+09$ |
| 2 | physhealth numeric | $0.000 \mathrm{e}+00$ | $0.0000 \mathrm{e}+00$ | $0.000000 \mathrm{e}+00$ | $3.000000 \mathrm{e}+00$ |
| 3 | bmi numeric | $1.330 \mathrm{e}+01$ | $2.4235 \mathrm{e}+01$ | $2.747500 \mathrm{e}+01$ | $3.181500 \mathrm{e}+01$ |
| 4 | age_imp numeric | $1.800 \mathrm{e}+01$ | $4.3000 \mathrm{e}+01$ | $5.800000 \mathrm{e}+01$ | $6.900000 \mathrm{e}+01$ |
| 5 | female numeric | $0.000 \mathrm{e}+00$ | $0.0000 \mathrm{e}+00$ | $1.000000 \mathrm{e}+00$ | $1.000000 \mathrm{e}+00$ |
| 6 | internet30 numeric | $0.000 \mathrm{e}+00$ | $1.0000 \mathrm{e}+00$ | $1.000000 \mathrm{e}+00$ | $1.000000 \mathrm{e}+00$ |
| 7 | smoke100 numeric | $0.000 \mathrm{e}+00$ | $0.0000 \mathrm{e}+00$ | $0.000000 \mathrm{e}+00$ | $1.000000 \mathrm{e}+00$ |
| 8 | drinks_wk numeric | $0.000 \mathrm{e}+00$ | $0.0000 \mathrm{e}+00$ | $4.700000 \mathrm{e}-01$ | $2.850000 \mathrm{e}+00$ |
| 9 | veg_day numeric | $0.000 \mathrm{e}+00$ | $1.2800 \mathrm{e}+00$ | $1.730000 \mathrm{e}+00$ | $2.422500 \mathrm{e}+00$ |


| 1 | 2017001133.0 | $2.017001 \mathrm{e}+09$ | 326.8928344 | 892 | 0 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 2 | 30.0 | $4.360987 \mathrm{e}+00$ | 8.8153373 | 892 | 0 |
| 3 | 63.0 | $2.850905 \mathrm{e}+01$ | 6.5057975 | 892 | 0 |
| 4 | 95.0 | $5.645516 \mathrm{e}+01$ | 18.0333027 | 892 | 0 |
| 5 | 1.0 | $5.807175 \mathrm{e}-01$ | 0.4937185 | 892 | 0 |
| 6 | 1.0 | $8.329596 \mathrm{e}-01$ | 0.3732212892 | 0 |  |
| 7 | 1.0 | $4.786996 \mathrm{e}-01$ | 0.4998263892 | 0 |  |
| 8 | 56.0 | $2.726525 \mathrm{e}+00$ | 5.7172011892 | 0 |  |
| 9 | 7.3 | $1.918643 \mathrm{e}+00$ | 1.0262415892 | 0 |  |

### 8.3.3 The describe function in Hmisc

This provides some useful additional summaries, including a list of the lowest and highest values (which is very helpful when checking data.)

```
smart_cle1_cc |>
 select(bmi, genhealth, female) |>
 describe()
```

select(smart_cle1_cc, bmi, genhealth, female)
3 Variables 892 Observations
bmi

| n | missing distinct | Info | Mean | Gmd | .05 | .10 |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 892 | 0 | 481 | 1 | 28.51 | 6.952 | 20.09 | 21.40 |
| .25 | .50 | .75 | .90 | .95 |  |  |  |
| 24.23 | 27.48 | 31.81 | 36.78 | 41.09 |  |  |  |

lowest : 13.313 .6415 .7115 .7517 .07 , highest: 52.7456 .3157 .1258 .9863

genhealth
n missing distinct
89205

| Value | 1_Excellent | 2_VeryGood | 3_Good | 4_Fair | 5_Poor |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Frequency | 134 | 314 | 284 | 114 | 46 |
| Proportion | 0.150 | 0.352 | 0.318 | 0.128 | 0.052 |

female
n missing distinct Info Sum Mean Gmd

- The Info measure is used for quantitative and binary variables. It is a relative information measure that increases towards 1 for variables with no ties, and is smaller for variables with many ties.
- The Gmd is the Gini mean difference. It is a measure of spread (or dispersion), where larger values indicate greater spread in the distribution, like the standard deviation or the interquartile range. It is defined as the mean absolute difference between any pairs of observations.

See the Help file for describe in the Hmisc package for more details on these measures, and on the settings for describe.

### 8.4 Counting as exploratory data analysis

Counting and/or tabulating things can be amazingly useful. Suppose we want to understand the genhealth values, after our single imputation.

```
smart_cle1_sh |> count(genhealth) |>
 mutate(percent = 100*n / sum(n))
```

\# A tibble: 5 x 3
genhealth $n$ percent
<fct> <int> <dbl>
1 1_Excellent 16414.5
2 2_VeryGood $386 \quad 34.1$
3 3_Good $365 \quad 32.2$
4 4_Fair $158 \quad 13.9$
5 5_Poor $60 \quad 5.30$

We might use tabyl to do this job...

```
smart_cle1_sh |>
 tabyl(genhealth) |>
 adorn_pct_formatting(digits = 1) |>
 kable()
```

| genhealth | n | percent |
| :--- | ---: | :--- |
| 1_Excellent | 164 | $14.5 \%$ |
| 2_VeryGood | 386 | $34.1 \%$ |
| 3_Good | 365 | $32.2 \%$ |
| 4_Fair | 158 | $13.9 \%$ |
| 5_Poor | 60 | $5.3 \%$ |

### 8.4.1 Did genhealth vary by smoking status?

```
smart_cle1_sh |>
 count(genhealth, smoke100) |>
 mutate(percent = 100*n / sum(n))
```

\# A tibble: 10 x 4
genhealth smoke100 $n$ percent
<fct> <dbl> <int> <dbl>
1 1_Excellent $0 \quad 105 \quad 9.27$
2 1_Excellent $1159 \quad 5.21$
3 2_VeryGood $\quad 0 \quad 220 \quad 19.4$
4 2_VeryGood $11 \quad 166 \quad 14.7$
5 3_Good $\quad 0 \quad 184 \quad 16.2$
6 3_Good $11181 \quad 16.0$
7 4_Fair $\quad 0 \quad 67 \quad 5.91$
8 4_Fair $1101 \quad 8.03$
9 5_Poor $0 \quad 24 \quad 2.12$
10 5_Poor $\quad 1 \quad 36 \quad 3.18$

Suppose we want to find the percentage within each smoking status group. Here's one approach...

```
smart_cle1_sh |>
 count(smoke100, genhealth) |>
 group_by(smoke100) |>
 mutate(prob = 100*n / sum(n))
```

\# A tibble: 10 x 4
\# Groups: smoke100 [2]
smoke100 genhealth n prob

```
<dbl> <fct> <int> <dbl>
 0 1_Excellent 105 17.5
 0 2_VeryGood 220 36.7
 0 3_Good 184 30.7
 0 4_Fair }6711.
 0 5_Poor 24 4
 1 1_Excellent 59 11.1
 1 2_VeryGood 166 31.1
 1 3_Good 181 34.0
 1 4_Fair }9117.
 1 5_Poor }\quad36\quad6.7
```

And here's another ...

```
 smart_cle1_sh |>
 tabyl(smoke100, genhealth) |>
 adorn_totals(where = c("row", "col")) |>
 adorn_percentages(denominator = "row") |>
 adorn_pct_formatting(digits = 1) |>
 adorn_ns(position = "front")
smoke100 1_Excellent 2_VeryGood 3_Good 4_Fair 5_Poor
 0 105 (17.5%) 220(36.7%) 184 (30.7%) 67 (11. 2%) 24 (4.0%)
 1 59 (11.1%) 166 (31.1%) 181 (34.0%) 91 (17.1%) 36 (6.8%)
 Total 164 (14.5%) 386 (34.1%) 365 (32.2%) 158 (13.9%) 60 (5.3%)
 Total
 600 (100.0%)
 533 (100.0%)
1,133(100.0%)
```


### 8.4.2 What's the distribution of physhealth?

We can count quantitative variables with discrete sets of possible values, like physhealth, which is captured as an integer (that must fall between 0 and 30.)

```
smart_cle1_sh |> count(physhealth)
```

\# A tibble: 21 x 2
physhealth n
<dbl> <int>

| 1 | 0 | 690 |
| ---: | ---: | ---: |
| 2 | 1 | 49 |
| 3 | 2 | 61 |
| 4 | 3 | 39 |
| 5 | 4 | 17 |
| 6 | 5 | 43 |
| 7 | 6 | 13 |
| 8 | 7 | 18 |
| 9 | 8 | 5 |
| 10 |  | 10 |
| \# i | 11 more rows |  |

Of course, a natural summary of a quantitative variable like this would be graphical.

```
ggplot(smart_cle1_sh, aes(physhealth)) +
 geom_histogram(binwidth = 1,
 fill = "dodgerblue", col = "white") +
 labs(title = "Days with Poor Physical Health in the Past 30",
 subtitle = "Most subjects are pretty healthy in this regard, but there are some
```

Days with Poor Physical Health in the Past 30
Most subjects are pretty healthy in this regard, but there are some 30s


### 8.4.3 What's the distribution of bmi?

bmi is the body-mass index, an indicator of size (thickness, really.)

```
ggplot(smart_cle1_sh, aes(bmi)) +
 geom_histogram(bins = 30,
 fill = "firebrick", col = "white") +
 labs(title = paste0("Body-Mass Index for ",
 nrow (smart_cle1_sh),
 " BRFSS respondents"))
```

Body-Mass Index for 1133 BRFSS respondents


### 8.4.4 How many of the respondents have a BMI below 30 ?

```
smart_cle1_sh |> count(bmi < 30) |>
 mutate(proportion = n / sum(n))
```

\# A tibble: 2 x 3
`bmi < 30` n proportion
<lgl> <int> <dbl>
1 FALSE $330 \quad 0.291$
2 TRUE $803 \quad 0.709$
8.4.5 How many of the respondents with a BMI < 30 are highly active?

```
smart_cle1_sh |>
 filter(bmi < 30) |>
 tabyl(activity) |>
 adorn_pct_formatting()
 activity n percent
 Highly_Active 343 42.7%
 Active 133 16.6%
Insufficiently_Active 129 16.1%
 Inactive 198 24.7%
```


### 8.4.6 Is obesity associated with smoking history?

```
smart_cle1_sh |> count(smoke100, bmi < 30) |>
 group_by(smoke100) |>
 mutate(percent = 100*n/sum(n))
```

\# A tibble: 4 x 4
\# Groups: smoke100 [2]
smoke100 `bmi < 30` n percent
<dbl> <lgl> <int> <dbl>
$1 \quad 0$ FALSE $163 \quad 27.2$
20 TRUE $437 \quad 72.8$
3 1 FALSE $167 \quad 31.3$
$\begin{array}{llll}4 & 1 & \text { TRUE } & 366 \\ 68.7\end{array}$

### 8.4.7 Comparing drinks_wk summaries by obesity status

Can we compare the drinks_wk means, medians and $75^{\text {th }}$ percentiles for respondents whose BMI is below 30 to the respondents whose BMI is not?

```
smart_cle1_sh |>
 group_by(bmi < 30) |>
 summarize(mean(drinks_wk), median(drinks_wk),
 q75 = quantile(drinks_wk, 0.75))
```

```
A tibble: 2 x 4
 `bmi < 30` `mean(drinks_wk)` `median(drinks_wk)` q75
 <lgl> <dbl> <dbl> <dbl>
1 FALSE 1.67 0.23 1.17
2 TRUE 2.80 0.23 2.8
```


### 8.5 Can bmi predict physhealth?

We'll start with an effort to predict physhealth using bmi. A natural graph would be a scatterplot.

```
ggplot(data = smart_cle1_sh, aes(x = bmi, y = physhealth)) +
 geom_point()
```



A good question to ask ourselves here might be: "In what BMI range can we make a reasonable prediction of physhealth?"

Now, we might take the plot above and add a simple linear model ...

```
 ggplot(data = smart_cle1_sh, aes(x = bmi, y = physhealth)) +
 geom_point() +
 geom_smooth(method = "lm", se = FALSE, col = "red")
`geom_smooth()` using formula = 'y ~ x'
```


which shows the same least squares regression model that we can fit with the lm command.

### 8.5.1 Fitting a Simple Regression Model

```
model_A <- lm(physhealth ~ bmi, data = smart_cle1_sh)
model_A
```

Call:
lm(formula $=$ physhealth $\sim$ bmi, data $=$ smart_cle1_sh)

Coefficients:

```
(Intercept) bmi
 -2.8121 0.2643
 summary(model_A)
Call:
lm(formula = physhealth ~ bmi, data = smart_cle1_sh)
Residuals:
\begin{tabular}{rrrrr}
Min & \(1 Q\) & Median & 3Q & Max \\
-10.5258 & -4.5943 & -3.5608 & -0.5106 & 29.2965
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.81208 1.21672 -2.311 0.021 *
bmi 0.26433 0.04188 6.312 3.95e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.968 on 1131 degrees of freedom
Multiple R-squared: 0.03403, Adjusted R-squared: 0.03317
F-statistic: 39.84 on 1 and 1131 DF, p-value: 3.95e-10
 confint(model_A, level = 0.95)
 2.5 % 97.5 %
(Intercept) -5.1993624 -0.4247909
bmi 0.1821599 0.3464915
```

The model coefficients can be obtained by printing the model object, and the summary function provides several useful descriptions of the model's residuals, its statistical significance, and quality of fit.

### 8.5.2 Model Summary for a Simple (One-Predictor) Regression

The fitted model predicts physhealth using a prediction equation we can read off from the model coefficient estimates. Specifically, we have:

```
 coef(model_A)
```

```
(Intercept) bmi
 -2.8120766 0.2643257
```

so the equation is physhealth $=-2.82+0.265 \mathrm{bmi}$.
Each of the 1133 respondents included in the smart_cle1_sh data makes a contribution to this model.

### 8.5.2.1 Residuals

Suppose Harry is one of the people in that group, and Harry's data is bmi $=20$, and physhealth $=3$.

- Harry's observed value of physhealth is just the value we have in the data for them, in this case, observed physhealth $=3$ for Harry.
- Harry's fitted or predicted physhealth value is the result of calculating $-2.82+0.265$ bmi for Harry. So, if Harry's BMI was 20, then Harry's predicted physhealth value is $-2.82+0.265(20)=2.48$.
- The residual for Harry is then his observed outcome minus his fitted outcome, so Harry has a residual of $3-2.48=0.52$.
- Graphically, a residual represents vertical distance between the observed point and the fitted regression line.
- Points above the regression line will have positive residuals, and points below the regression line will have negative residuals. Points on the line have zero residuals.

The residuals are summarized at the top of the summary output for linear model.

```
summary(model_A)
```

Call:
lm(formula $=$ physhealth $\sim$ bmi, data $=$ smart_cle1_sh)

Residuals:

| Min | $1 Q$ | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -10.5258 | -4.5943 | -3.5608 | -0.5106 | 29.2965 |

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
```

```
(Intercept) -2.81208 1.21672 -2.311 0.021 *
bmi 0.26433 0.04188 6.312 3.95e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.968 on 1131 degrees of freedom
Multiple R-squared: 0.03403, Adjusted R-squared: 0.03317
F-statistic: 39.84 on 1 and 1131 DF, p-value: 3.95e-10
```

- The mean residual will always be zero in an ordinary least squares model, but a five number summary of the residuals is provided by the summary, as is an estimated standard deviation of the residuals (called here the Residual standard error.)
- In the smart_cle1_sh data, the minimum residual was -10.53 , so for one subject, the observed value was 10.53 days smaller than the predicted value. This means that the prediction was 10.53 days too large for that subject.
- Similarly, the maximum residual was 29.30 days, so for one subject the prediction was 29.30 days too small. Not a strong performance.
- In a least squares model, the residuals are assumed to follow a Normal distribution, with mean zero, and standard deviation (for the smart_cle1_sh data) of about 9.0 days. We know this because the residual standard error is specified as 8.968 later in the linear model output. Thus, by the definition of a Normal distribution, we'd expect
- about $68 \%$ of the residuals to be between -9 and +9 days,
- about $95 \%$ of the residuals to be between -18 and +18 days,
- about all $(99.7 \%)$ of the residuals to be between -27 and +27 days.


### 8.5.2.2 Coefficients section

The summary for a linear model shows Estimates, Standard Errors, t values and $p$ values for each coefficient fit.

```
summary(model_A)
```

Call:
lm(formula $=$ physhealth ~ bmi, data = smart_cle1_sh)
Residuals:
Min 1Q Median 3Q Max
$\begin{array}{lllll}-10.5258 & -4.5943 & -3.5608 & -0.5106 & 29.2965\end{array}$

Coefficients:

```
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.81208 1.21672 -2.311 0.021 *
bmi 0.26433 0.04188 6.312 3.95e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 ' ' 1
Residual standard error: 8.968 on 1131 degrees of freedom
Multiple R-squared: 0.03403, Adjusted R-squared: 0.03317
F-statistic: 39.84 on 1 and 1131 DF, p-value: 3.95e-10
```

- The Estimates are the point estimates of the intercept and slope of bmi in our model.
- In this case, our estimated slope is 0.265 , which implies that if Harry's BMI is 20 and Sally's BMI is 21, we predict that Sally's physhealth will be 0.265 days larger than Harry's.
- The Standard Errors are also provided for each estimate. We can create rough $95 \%$ uncertainty intervals for these estimated coefficients by adding and subtracting two standard errors from each coefficient, or we can get a slightly more accurate answer with the confint function.
- Here, the $95 \%$ uncertainty interval for the slope of bmi is estimated to be ( $0.18,0.35$ ). This is a good measure of the uncertainty in the slope that is captured by our model. We are $95 \%$ confident in the process of building this interval, but this doesn't mean we're $95 \%$ sure that the true slope is actually in that interval.

Also available are a $t$ value (just the Estimate divided by the Standard Error) and the appropriate $p$ value for testing the null hypothesis that the true value of the coefficient is 0 against a two-tailed alternative.

- If a slope coefficient is statistically detectably different from 0 , this implies that 0 will not be part of the uncertainty interval obtained through confint.
- If the slope was zero, it would suggest that bmi would add no predictive value to the model. But that's unlikely here.

If the bmi slope coefficient is associated with a small $p$ value, as in the case of our model_A, it suggests that the model including bmi is statistically detectably better at predicting physhealth than the model without bmi.

- Without bmi our model_A would become an intercept-only model, in this case, which would predict the mean physhealth for everyone, regardless of any other information.


### 8.5.2.3 Model Fit Summaries

```
 summary(model_A)
Call:
lm(formula = physhealth ~ bmi, data = smart_cle1_sh)
Residuals:
\begin{tabular}{rrrrr}
Min & \(1 Q\) & Median & 3Q & Max \\
-10.5258 & -4.5943 & -3.5608 & -0.5106 & 29.2965
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.81208 1.21672 -2.311 0.021 *
bmi 0.26433 0.04188 6.312 3.95e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.968 on 1131 degrees of freedom
Multiple R-squared: 0.03403, Adjusted R-squared: 0.03317
F-statistic: 39.84 on 1 and 1131 DF, p-value: 3.95e-10
```

The summary of a linear model also displays:

- The residual standard error and associated degrees of freedom for the residuals.
- For a simple (one-predictor) least regression like this, the residual degrees of freedom will be the sample size minus 2 .
- The multiple R-squared (or coefficient of determination)
- This is interpreted as the proportion of variation in the outcome (physhealth) accounted for by the model, and will always fall between 0 and 1 as a result.
- Our model _A accounts for a mere $3.4 \%$ of the variation in physhealth.
- The Adjusted R-squared value "adjusts" for the size of our model in terms of the number of coefficients included in the model.
- The adjusted R-squared will always be smaller than the Multiple R-squared.
- We still hope to find models with relatively large adjusted $R^{2}$ values.
- In particular, we hope to find models where the adjusted $R^{2}$ isn't substantially less than the Multiple R-squared.
- The adjusted R-squared is usually a better estimate of likely performance of our model in new data than is the Multiple R-squared.
- The adjusted R-squared result is no longer interpretable as a proportion of anything in fact, it can fall below 0 .
- We can obtain the adjusted $R^{2}$ from the raw $R^{2}$, the number of observations $N$ and the number of predictors $p$ included in the model, as follows:

$$
R_{a d j}^{2}=1-\frac{\left(1-R^{2}\right)(N-1)}{N-p-1},
$$

- The F statistic and $p$ value from a global ANOVA test of the model.
- Obtaining a statistically significant result here is usually pretty straightforward, since the comparison is between our model, and a model which simply predicts the mean value of the outcome for everyone.
- In a simple (one-predictor) linear regression like this, the t statistic for the slope is just the square root of the F statistic, and the resulting $p$ values for the slope's t test and for the global F test will be identical.
- To see the complete ANOVA F test for this model, we can run anova(model_A).

```
 anova(model_A)
Analysis of Variance Table
Response: physhealth
 Df Sum Sq Mean Sq F value Pr(>F)
bmi 1 3204 3204.4 39.84 3.95e-10 ***
Residuals 1131 90968 80.4

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


### 8.5.3 Using the broom package

The broom package has three functions of particular use in a linear regression model:

### 8.5.3.1 The tidy function

tidy builds a data frame/tibble containing information about the coefficients in the model, their standard errors, t statistics and $p$ values.

```
tidy(model_A)
```

| term | estimate | std.error | statistic | p.value |
| :---: | :---: | :---: | :---: | :---: |
| <chr> | <dbl> | <dbl> | <dbl> | <dbl> |
| 1 (Intercept) | -2.81 | 1.22 | -2.31 | $2.10 \mathrm{e}-2$ |
| 2 bmi | 0.264 | 0.0419 | 6.31 | $3.95 \mathrm{e}-10$ |

It's often useful to include other summaries in this tidying, for instance:

```
tidy(model_A, conf.int = TRUE, conf.level = 0.9) |>
 select(term, estimate, conf.low, conf.high)
```

\# A tibble: 2 x 4
term estimate conf.low conf.high
<chr> <dbl> <dbl> <dbl>
1 (Intercept) -2.81 $-4.82 \quad-0.809$
$\begin{array}{llll}2 \mathrm{bmi} & 0.264 & 0.195 & 0.333\end{array}$

### 8.5.3.2 The glance function

glance‘ builds a data frame/tibble containing summary statistics about the model, including

- the (raw) multiple $R^{2}$ and adjusted $\mathrm{R}^{\wedge} 2$
- sigma which is the residual standard error
- the F statistic, p.value model df and df. residual associated with the global ANOVA test, plus
- several statistics that will be useful in comparing models down the line:
- the model's log likelihood function value, logLik
- the model's Akaike's Information Criterion value, AIC
- the model's Bayesian Information Criterion value, BIC
- and the model's deviance statistic

```
glance(model_A)
A tibble: 1 x 12
 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
10.0340 0.0332 8.97 39.8 3.95e-10 1 -4092. 8190. 8205.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
```


### 8.5.3.3 The augment function

augment builds a data frame/tibble which adds fitted values, residuals and other diagnostic summaries that describe each observation to the original data used to fit the model, and this includes

- .fitted and .resid, the fitted and residual values, in addition to
- .hat, the leverage value for this observation
- . cooksd, the Cook's distance measure of influence for this observation
- . stdresid, the standardized residual (think of this as a z-score - a measure of the residual divided by its associated standard deviation .sigma)
- and se.fit which will help us generate prediction intervals for the model downstream

Note that each of the new columns begins with . to avoid overwriting any data.

```
head(augment(model_A))
```

|  | physhealth | bmi | .fitted | .resid | . hat | . sigma | . cooksd | .std.resid |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | <dbl> |
| 1 | 4 | 27.9 | 4.57 | -0.572 | 0.000886 | 8.97 | 0.00000181 | -0.0638 |
| 2 | 0 | 23.0 | 3.28 | -3.28 | 0.00149 | 8.97 | 0.000100 | -0.366 |
| 3 | 0 | 26.9 | 4.31 | -4.31 | 0.000927 | 8.97 | 0.000107 | -0.480 |
| 4 | 0 | 26.5 | 4.20 | -4.20 | 0.000956 | 8.97 | 0.000105 | -0.468 |
| 5 | 0 | 24.2 | 3.60 | -3.60 | 0.00125 | 8.97 | 0.000101 | -0.401 |
| 6 | 2 | 27.7 | 4.51 | -2.51 | 0.000891 | 8.97 | 0.0000351 | -0.281 |

For more on the broom package, you may want to look at this vignette.

### 8.5.4 How does the model do? (Residuals vs. Fitted Values)

- Remember that the $R^{2}$ value was about $3.4 \%$.

```
plot(model_A, which = 1)
```



Fitted values
Im(physhealth ~ bmi)

This is a plot of residuals vs. fitted values. The goal here is for this plot to look like a random scatter of points, perhaps like a "fuzzy football", and that's not what we have. Why?

If you prefer, here's a ggplot2 version of a similar plot, now looking at standardized residuals instead of raw residuals, and adding a loess smooth and a linear fit to the result.

```
ggplot(augment(model_A), aes(x = .fitted, y = .std.resid)) +
 geom_point() +
 geom_smooth(method = "lm", se = FALSE, col = "red", linetype = "dashed") +
 geom_smooth(method = "loess", se = FALSE, col = "navy") +
 theme_bw()
`geom_smooth()` using formula = 'y ~ x'
```



The problem we're having here becomes, I think, a little more obvious if we look at what we're predicting. Does physhealth look like a good candidate for a linear model?

```
ggplot(smart_cle1_sh, aes(x = physhealth)) +
 geom_histogram(bins = 30, fill = "dodgerblue",
 color = "royalblue")
```


smart_cle1_sh |> count(physhealth == 0, physhealth == 30)
\# A tibble: 3 x 3
`physhealth == 0` `physhealth == 30` n
<lgl> <lgl> <int>
1 FALSE FALSE 343
2 FALSE TRUE 100
3 TRUE FALSE 690

No matter what model we fit, if we are predicting physhealth, and most of the data are values of 0 and 30 , we have limited variation in our outcome, and so our linear model will be somewhat questionable just on that basis.

A normal Q-Q plot of the standardized residuals for our model_A shows this problem, too.

```
plot(model_A, which = 2)
```



We're going to need a method to deal with this sort of outcome, that has both a floor and a ceiling. We'll get there eventually, but linear regression alone doesn't look promising.

All right, so that didn't go anywhere great. We'll try again, with a new outcome, in the next chapter.

## 9 Analysis of Variance with SMART

In this chapter, we'll work with the smart_cle1_sh data file again.

### 9.1 R Setup Used Here

```
knitr::opts_chunk$set(comment = NA)
library(janitor)
library(broom)
library(knitr)
library(mosaic)
library(tidyverse)
theme_set(theme_bw())
```


### 9.1.1 Data Load

```
smart_cle1_sh <- read_rds("data/smart_cle1_sh.Rds")
```

The variables we'll look at in this chapter are as follows.
Variable Description
SEQNO respondent identification number (all begin with 2016)
bmi Body mass index, in $\mathrm{kg} / \mathrm{m}^{2}$
female $\quad$ Sex, $1=$ female, $0=$ male
smoke100 Have you smoked at least 100 cigarettes in your life? $(1=$ yes, $0=$ no $)$
activity Physical activity (Highly Active, Active, Insufficiently Active, Inactive)
drinks_wk On average, how many drinks of alcohol do you consume in a week?
physhealth Now thinking about your physical health, which includes physical illness and injury, for how many days during the past 30 days was your physical health not good?

### 9.2 A One-Factor Analysis of Variance

We'll be predicting body mass index, at first using a single factor as a predictor: the activity level.

### 9.2.1 Can activity be used to predict bmi?

```
ggplot(smart_cle1_sh, aes(x = activity, y = bmi,
 fill = activity)) +
 geom_violin(alpha = 0.3) +
 geom_boxplot(width = 0.3, notch = TRUE) +
 guides(fill = "none") +
 coord_flip() +
 labs(title = "BMI as a function of Activity Level",
 subtitle = "Subjects in the SMART CLE data",
 x = "", y = "Body Mass Index")
```

BMI as a function of Activity Level Subjects in the SMART CLE data


Here's a numerical summary of the distributions of bmi within each activity group.

```
favstats(bmi ~ activity, data = smart_cle1_sh)
```



### 9.2.2 Should we transform bmi?

The analysis of variance is something of a misnomer. What we're doing is using the variance to say something about population means. In light of the apparent right skew of the bmi results in each activity group, might it be a better choice to use a logarithmic transformation? We'll use the natural logarithm here, which in R, is symbolized by log.

```
ggplot(smart_cle1_sh, aes(x = activity, y = log(bmi),
 fill = activity)) +
 geom_violin(alpha = 0.3) +
 geom_boxplot(width = 0.3, notch = TRUE) +
 guides(fill = "none") +
 coord_flip() +
 labs(title = "log(BMI) as a function of Activity Level",
 subtitle = "Subjects in the SMART CLE data",
 x = "", y = "log(Body Mass Index)")
```

$\log (\mathrm{BMI})$ as a function of Activity Level
Subjects in the SMART CLE data


The logarithmic transformation yields distributions that look much more symmetric in each activity group, so we'll proceed to build our regression model predicting log(bmi) using activity. Here's the numerical summary of these logged results:

```
favstats(log(bmi) ~ activity, data = smart_cle1_sh)
 activity min Q1 median Q3 max mean
1 Highly_Active 2.587764 3.162411 3.295466 3.364879 3.921181 3.279246
2 Active 2.837323 3.188004 3.298400 3.385068 3.799302 3.292032
3 Insufficiently_Active 2.861629 3.220874 3.329979 3.471345 3.911623 3.348383
4 Inactive 2.613007 3.227439 3.344274 3.519721 4.256463 3.376468
 sd n missing
1 0.1851478 428 0
2 0.1850568 173 0
3 0.2007241 201 0
4 0.2411196 331 0
```


### 9.2.3 Building the ANOVA model

```
model_5a <- lm(log(bmi) ~ activity, data = smart_cle1_sh)
model_5a
Call:
lm(formula = log(bmi) ~ activity, data = smart_cle1_sh)
Coefficients:
 (Intercept) activityActive
 3.27925 0.01279
activityInsufficiently_Active activityInactive
 0.06914 0.09722
```

The activity data is categorical and there are four levels. The model equation is:

```
log(bmi) = 3.279 + 0.013 (activity = Active)
 + 0.069 (activity = Insufficiently Active)
 + 0.097 (activity = Inactive)
```

where, for example, (activity = Active) is 1 if activity is Active, and 0 otherwise. The fourth level (Highly Active) is not shown here and is used as a baseline. Thus the model above can be interpreted as follows.

| activity | Predicted $\log (\mathrm{bmi})$ | Predicted bmi |
| :---: | :---: | :---: |
| Highly Active | 3.279 | $\exp (3.279)=26.55$ |
| Active | $3.279+0.013=3.292$ | $\exp (3.292)=26.90$ |
| Insufficiently Active | $3.279+0.069=3.348$ | $\exp (3.348)=28.45$ |
| Inactive | $3.279+0.097=3.376$ | $\exp (3.376)=29.25$ |

Those predicted $\log$ (bmi) values should look familiar. They are just the means of $\log$ (bmi) in each group, but I'm sure you'll also notice that the predicted bmi values are not exact matches for the observed means of bmi.

```
smart_cle1_sh |> group_by(activity) |>
 summarise(mean(log(bmi)), mean(bmi))
```

```
A tibble: 4 x 3
 activity `mean(log(bmi))` `mean(bmi)`
 <fct> <dbl> <dbl>
1 Highly_Active 3.28 27.0
2 Active 3.29 27.4
3 Insufficiently_Active 3.35 29.0
4 Inactive 3.38 30.2
```


### 9.2.4 The ANOVA table

Now, let's press on to look at the ANOVA results for this model.

```
anova(model_5a)
Analysis of Variance Table
Response: log(bmi)
 Df Sum Sq Mean Sq F value Pr(>F)
activity 3 2.060 0.68652 16.225 2.496e-10 ***
Residuals 1129 47.772 0.04231
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- The total variation in $\log$ (bmi), our outcome, is captured by the sums of squares here. $\mathrm{SS}($ Total $)=2.058+47.770=49.828$
- Here, the activity variable (with 4 levels, so $4-1=3$ degrees of freedom) accounts for $4.13 \%(2.058 / 49.828)$ of the variation in $\log (\mathrm{bmi})$. Another way of saying this is that the model $R^{2}$ or $\eta^{2}$ is 0.0413 .
- The variation accounted for by the activity categories meets the standard for a statistically detectable result, according to the ANOVA F test, although that's not really important.
- The square root of the Mean Square(Residuals) is the residual standard error, $\sigma$, we've seen in the past. MS(Residual) estimates the variance (0.0423), so the residual standard error is $\sqrt{0.0423} \approx 0.206$.


### 9.2.5 The Model Coefficients

To address the question of effect size for the various levels of activity on $\log (b m i)$, we could look directly at the regression model coefficients. For that, we might look at the model summary.

```
summary(model_5a)
```

```
Call:
lm(formula = log(bmi) ~ activity, data = smart_cle1_sh)
```

Residuals:

| Min | $1 Q$ | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -0.76346 | -0.12609 | -0.00286 | 0.11055 | 0.88000 |

Coefficients:
Estimate Std. Error $t$ value $\operatorname{Pr}(>|t|)$
(Intercept) $3.2792460 .009943329 .806<2 \mathrm{e}-16$ ***
$\begin{array}{lllll}\text { activityActive } & 0.012785 & 0.018532 & 0.690 & 0.49\end{array}$
activityInsufficiently_Active $0.069137 \quad 0.017589 \quad 3.9318 .99 \mathrm{e}-05$ ***
activityInactive $0.0972210 .015056 \quad 6.4571 .58 \mathrm{e}-10$ ***
Signif. codes: $0^{\prime * * * '} 0.001^{\prime * * '} 0.01^{\prime *} *^{\prime} 0.05 '^{\prime} 0.1^{\prime} 1$
Residual standard error: 0.2057 on 1129 degrees of freedom
Multiple R-squared: 0.04133, Adjusted R-squared: 0.03878
F-statistic: 16.22 on 3 and 1129 DF, p-value: $2.496 \mathrm{e}-10$

If we want to see the confidence intervals around these estimates, we could use

```
confint(model_5a, conf.level = 0.95)
```

|  | $2.5 \%$ | $97.5 \%$ |
| :--- | ---: | ---: |
| (Intercept) | 3.25973769 | 3.29875522 |
| activityActive | -0.02357630 | 0.04914707 |
| activityInsufficiently_Active | 0.03462572 | 0.10364764 |
| activityInactive | 0.06767944 | 0.12676300 |

The model suggests, based on these 1133 subjects, that (remember that the baseline category is Highly Active)

- a $95 \%$ confidence (uncertainty) interval for the difference between Active and Highly Active subjects in $\log (\mathrm{BMI})$ ranges from -0.024 to 0.049
- a $95 \%$ confidence (uncertainty) interval for the difference between Insufficiently Active and Highly Active subjects in $\log$ (BMI) ranges from 0.035 to 0.104
- a $95 \%$ confidence (uncertainty) interval for the difference between Inactive and Highly Active subjects in $\log (\mathrm{BMI})$ ranges from 0.068 to 0.127
- the model accounts for $4.13 \%$ of the variation in $\log (\mathrm{BMI})$, so that knowing the respondent's activity level somewhat reduces the size of the prediction errors as compared to an intercept only model that would predict the overall mean $\log (\mathrm{BMI})$, regardless of activity level, for all subjects.
- from the summary of residuals, we see that one subject had a residual of 0.88 - that means they were predicted to have a $\log (\mathrm{BMI}) 0.88$ lower than their actual $\log (\mathrm{BMI})$ and one subject had a $\log (\mathrm{BMI})$ that is 0.76 larger than their actual $\log (\mathrm{BMI})$, at the extremes.


### 9.2.6 Using tidy to explore the coefficients

A better strategy for displaying the coefficients in any regression model is to use the tidy function from the broom package.

```
tidy(model_5a, conf.int = TRUE, conf.level = 0.95) |>
 kable(digits = 3)
```

| term | estimate | std.error | statistic | p.value | conf.low | conf.high |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 3.279 | 0.010 | 329.806 | 0.00 | 3.260 | 3.299 |
| activityActive | 0.013 | 0.019 | 0.690 | 0.49 | -0.024 | 0.049 |
| activityInsufficiently_Active | 0.069 | 0.018 | 3.931 | 0.00 | 0.035 | 0.104 |
| activityInactive | 0.097 | 0.015 | 6.457 | 0.00 | 0.068 | 0.127 |

### 9.2.7 Using glance to summarize the model's fit

```
glance(model_5a) |> select(1:3) |>
 kable(digits \(=c(4,4,3))\)
\begin{tabular}{rrr}
r.squared & adj.r.squared & sigma \\
\hline 0.0413 & 0.0388 & 0.206 \\
\hline
\end{tabular}
```

- The r.squared or $R^{2}$ value is interpreted for a linear model as the percentage of variation in the outcome (here, $\log (\mathrm{bmi})$ ) that is accounted for by the model.
- The adj.r.squared or adjusted $R^{2}$ value incorporates a small penalty for the number of predictors included in the model. Adjusted $R^{2}$ is useful for models with more than one predictor, not simple regression models like this one. Like $R^{2}$ and most of these other
summaries, its primary value comes when making comparisons between models for the same outcome.
- The sigma or $\sigma$ is the residual standard error. Doubling this value gives us a good idea of the range of errors made by the model (approximately $95 \%$ of the time if the normal distribution assumption for the residuals holds perfectly.)

```
glance(model_5a) |> select(4:7) |>
 kable(digits = c(2, 3, 0, 2))
```

| statistic | p.value | df | logLik |
| ---: | ---: | ---: | ---: |
| 16.22 | 0 | 3 | 185.99 |

- The statistic and p.value shown here refer to the ANOVA F test and $p$ value. They test the null hypothesis that the activity information is of no use in separating out the bmi data, or, equivalently, that the true $R^{2}$ is 0 .
- The df indicates the model degrees of freedom, and in this case simply specifies the number of parameters fitted attributed to the model. Models that require more df for estimation require larger sample sizes.
- The logLik is the log likelihood for the model. This is a function of the sample size, but we can compare the fit of multiple models by comparing this value across different models for the same outcome. You want to maximize the log-likelihood.

```
glance(model_5a) |> select(8:9) |>
 kable(digits = 2)
```

| AIC | BIC |
| ---: | ---: |
| -361.98 | -336.82 |

- The AIC (or Akaike information criterion) and BIC (Bayes information criterion) are also used only to compare models. You want to minimize AIC and BIC in selecting a model. AIC and BIC are unique only up to a constant, so different packages or routines in R may give differing values, but in comparing two models - the difference in AIC (or BIC) should be consistent.


### 9.2.8 Using augment to make predictions

We can obtain residuals and predicted (fitted) values for the points used to fit the model with augment from the broom package.

```
augment(model_5a, se_fit = TRUE) |>
 select(1:5) |> slice(1:4) |>
 kable(digits = 3)
```

| $\log (\mathrm{bmi})$ | activity | .fitted | .se.fit | .resid |
| ---: | :--- | ---: | ---: | ---: |
| 3.330 | Inactive | 3.376 | 0.011 | -0.047 |
| 3.138 | Inactive | 3.376 | 0.011 | -0.239 |
| 3.293 | Insufficiently_Active | 3.348 | 0.015 | -0.055 |
| 3.278 | Highly_Active | 3.279 | 0.010 | -0.002 |

- The .fitted value is the predicted value of $\log (\mathrm{bmi})$ for this subject.
- The . se.fit value shows the standard error associated with the fitted value.
- The .resid is the residual value (observed - fitted $\log (\mathrm{bmi})$ )

```
augment(model_5a, se_fit = TRUE) |>
 select(1:2, 6:9) |> slice(1:4) |>
 kable(digits = 3)
```

| $\log (\mathrm{bmi})$ | activity | .hat | .sigma | .cooksd | .std.resid |
| ---: | :--- | ---: | ---: | ---: | ---: |
| 3.330 | Inactive | 0.003 | 0.206 | 0.000 | -0.227 |
| 3.138 | Inactive | 0.003 | 0.206 | 0.001 | -1.163 |
| 3.293 | Insufficiently_Active | 0.005 | 0.206 | 0.000 | -0.269 |
| 3.278 | Highly_Active | 0.002 | 0.206 | 0.000 | -0.008 |

- The .hat value shows the leverage index associated with the observation (this is a function of the predictors - higher leveraged points have more unusual predictor values)
- The .sigma value shows the estimate of the residual standard deviation if this observation were to be dropped from the model, and thus indexes how much of an outlier this observation's residual is.
- The .cooksd or Cook's distance value shows the influence that the observation has on the model - it is one of a class of leave-one-out diagnostic measures. Larger values of Cook's distance indicate more influential points.
- The .std.resid shows the standardized residual (which is designed to have mean 0 and standard deviation 1, facilitating comparisons across models for differing outcomes)


### 9.3 A Two-Factor ANOVA (without Interaction)

Let's add race_eth to the predictor set for $\log (B M I)$.

```
 model_5b <- lm(log(bmi) ~ activity + race_eth, data = smart_cle1_sh)
 anova(model_5b)
Analysis of Variance Table
Response: log(bmi)
 Df Sum Sq Mean Sq F value Pr(>F)
activity 3 2.060 0.68652 16.5090 1.676e-10 ***
race_eth 4 0.989 0.24716 5.9435 9.843e-05 ***
Residuals 1125 46.783 0.04158

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Notice that the ANOVA model assesses these variables sequentially, so the $\mathrm{SS}($ activity $)=$ 2.058 is accounted for before we consider the SS (race_eth) $=0.990$. Thus, in total, the model accounts for $2.058+0.990=3.048$ of the sums of squares in $\log$ (bmi) in these data.

If we flip the order in the model, like this:

```
lm(log(bmi) ~ race_eth + activity, data = smart_cle1_sh) |>
 anova()
```

```
Analysis of Variance Table
Response: log(bmi)
 Df Sum Sq Mean Sq F value Pr(>F)
race_eth 4 1.119 0.27981 6.7287 2.371e-05 ***
activity 3 1.929 0.64299 15.4620 7.332e-10 ***
Residuals 1125 46.783 0.04158

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- After flipping the order of the predictors, race_eth accounts for a larger Sum of Squares than it did previously, but activity accounts for a smaller amount, and the total between race_eth and activity remains the same, as $1.121+1.927$ is still 3.048 .


### 9.3.1 Model Coefficients

The model coefficients are unchanged regardless of the order of the variables in our two-factor ANOVA model.

```
tidy(model_5b, conf.int = TRUE, conf.level = 0.95) |>
 select(term, estimate, std.error, conf.low, conf.high) |>
 kable(digits = 3)
```

| term | estimate | std.error | conf.low | conf.high |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 3.268 | 0.010 | 3.247 | 3.288 |
| activityActive | 0.012 | 0.018 | -0.024 | 0.048 |
| activityInsufficiently_Active | 0.073 | 0.018 | 0.039 | 0.108 |
| activityInactive | 0.092 | 0.015 | 0.063 | 0.122 |
| race_ethBlack non-Hispanic | 0.066 | 0.015 | 0.036 | 0.096 |
| race_ethOther race non-Hispanic | -0.086 | 0.042 | -0.169 | -0.002 |
| race_ethMultiracial non-Hispanic | 0.020 | 0.042 | -0.063 | 0.103 |
| race_ethHispanic | 0.012 | 0.035 | -0.057 | 0.082 |

The model_5b equation is:

```
log(BMI) = 3.268
 + 0.012 (activity = Active)
 + 0.073 (activity = Insufficiently Active)
 + 0.092 (activity = Inactive)
 + 0.066 (race_eth = Black non-Hispanic)
 - 0.086 (race_eth = Other race non-Hispanic)
 + 0.020 (race_eth = Multiracial non-Hispanic)
 + 0.012 (race_eth = Hispanic)
```

and we can make predictions by filling in appropriate 1s and 0 s for the indicator variables in parentheses.

For example, the predicted $\log$ (BMI) for a White Highly Active person is 3.268 , as White and Highly Active are the baseline categories in our two factors.

For all other combinations, we can make predictions as follows:

```
new_dat = tibble(
 race_eth = rep(c("White non-Hispanic",
 "Black non-Hispanic",
 "Other race non-Hispanic",
 "Multiracial non-Hispanic",
 "Hispanic"), 4),
 activity = c(rep("Highly_Active", 5),
 rep("Active", 5),
```

```
 rep("Insufficiently_Active", 5),
 rep("Inactive", 5))
)
```

augment (model_5b, newdata = new_dat)

| \# A tibble: 20 x 3 |  |  |
| :--- | :--- | ---: |
| race_eth | activity | fitted |
| <chr> | <chr> | <dbl> |
| 1 White non-Hispanic | Highly_Active | 3.27 |
| 2 Black non-Hispanic | Highly_Active | 3.33 |
| 3 Other race non-Hispanic | Highly_Active | 3.18 |
| 4 Multiracial non-Hispanic | Highly_Active | 3.29 |
| 5 Hispanic | Highly_Active | 3.28 |
| 6 White non-Hispanic | Active | 3.28 |
| 7 Black non-Hispanic | Active | 3.35 |
| 8 Other race non-Hispanic | Active | 3.19 |
| 9 Multiracial non-Hispanic | Active | 3.30 |
| 10 Hispanic | Active | 3.29 |
| 11 White non-Hispanic | Insufficiently_Active | 3.34 |
| 12 Black non-Hispanic | Insufficiently_Active | 3.41 |
| 13 Other race non-Hispanic | Insufficiently_Active | 3.26 |
| 14 Multiracial non-Hispanic | Insufficiently_Active | 3.36 |
| 15 Hispanic | Insufficiently_Active | 3.35 |
| 16 White non-Hispanic | Inactive | 3.36 |
| 17 Black non-Hispanic | Inactive | 3.43 |
| 18 Other race non-Hispanic | Inactive | 3.27 |
| 19 Multiracial non-Hispanic | Inactive | 3.38 |
| 20 Hispanic | Inactive | 3.37 |

```
augment (model_5b, newdata = new_dat) |>
 mutate(race_eth = fct_relevel(factor (race_eth),
 "White non-Hispanic",
 "Black non-Hispanic",
 "Other race non-Hispanic",
 "Multiracial non-Hispanic",
 "Hispanic"),
 activity = fct_relevel(factor(activity),
 "Highly_Active",
 "Active",
 "Insufficiently_Active",
```

```
 "Inactive")) %>%
ggplot(., aes(x = activity, y = .fitted,
 col = race_eth, group = race_eth)) +
geom_point(size = 2) +
geom_line() +
labs(title = "Model 5b predictions for log(BMI)",
 subtitle = "race_eth and activity, no interaction so lines are parallel",
 y = "Model Predicted log(BMI)",
 x = "")
```

Model 5b predictions for $\log$ (BMI) race_eth and activity, no interaction so lines are parallel


The lines joining the points for each race_eth category are parallel to each other. The groups always hold the same position relative to each other, regardless of their activity levels, and vice versa. There is no interaction in this model allowing the predicted effects of, say, activity on $\log$ (BMI) values to differ for the various race_eth groups. To do that, we'd have to fit the two-factor ANOVA model incorporating an interaction term.

### 9.4 A Two-Factor ANOVA (with Interaction)

Let's add the interaction of activity and race_eth (symbolized in R by activity * race_eth) to the model for $\log (B M I)$.

```
 model_5c <-
 lm(log(bmi) ~ activity * race_eth, data = smart_cle1_sh)
 anova(model_5c)
Analysis of Variance Table
Response: log(bmi)
 Df Sum Sq Mean Sq F value Pr(>F)
activity 3 2.060 0.68652 16.4468 1.839e-10 ***
race_eth 4 0.989 0.24716 5.9211 0.0001026 ***
activity:race_eth 12 0.324 0.02700 0.6469 0.8028368
Residuals 1113 46.459 0.04174

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The ANOVA model shows that the SS (interaction) $=\mathrm{SS}$ (activity:race_eth) is 0.324, and uses 12 degrees of freedom. The model including the interaction term now accounts for $2.058+$ $0.990+0.324=3.372$, which is $6.8 \%$ of the variation in $\log (\mathrm{BMI})$ overall (which is calculated as $\mathrm{SS}($ Total $)=2.058+0.990+0.324+46.456=49.828$.

### 9.4.1 Model Coefficients

The model coefficients now include additional product terms that incorporate indicator variables for both activity and race_eth. For each of the product terms to take effect, both their activity and race_eth status must yield a 1 in the indicator variables.

```
tidy(model_5c, conf.int = TRUE, conf.level = 0.95) |>
 select(term, estimate, std.error, conf.low, conf.high) |>
 kable(digits = 3)
```

| term | estimate | std.error | conf.low | conf.high |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 3.264 | 0.011 | 3.242 | 3.287 |
| activityActive | 0.021 | 0.021 | -0.021 | 0.062 |
| activityInsufficiently_Active | 0.079 | 0.020 | 0.039 | 0.118 |
| activityInactive | 0.097 | 0.018 | 0.063 | 0.132 |
| race_ethBlack non-Hispanic | 0.062 | 0.026 | 0.011 | 0.113 |
| race_ethOther race non-Hispanic | -0.070 | 0.078 | -0.223 | 0.083 |
| race_ethMultiracial non-Hispanic | 0.067 | 0.060 | -0.051 | 0.185 |


| term | estimate | std.error | conf.low | conf.high |
| :--- | ---: | ---: | ---: | ---: |
| race_ethHispanic | 0.110 | 0.060 | -0.008 | 0.228 |
| activityActive:race_ethBlack non-Hispanic | -0.001 | 0.048 | -0.096 | 0.094 |
| activityInsufficiently_Active:race_ethBlack | 0.005 | 0.046 | -0.086 | 0.096 |
| non-Hispanic |  |  |  |  |
| activityInactive:race_ethBlack non-Hispanic | 0.008 | 0.037 | -0.065 | 0.080 |
| activityActive:race_ethOther race non-Hispanic | -0.065 | 0.165 | -0.389 | 0.259 |
| activityInsufficiently_Active:race_ethOther race | -0.035 | 0.101 | -0.233 | 0.163 |
| non-Hispanic |  |  |  |  |
| activityInactive:race_ethOther race non-Hispanic | 0.033 | 0.129 | -0.221 | 0.287 |
| activityActive:race_ethMultiracial non-Hispanic | -0.208 | 0.134 | -0.470 | 0.054 |
| activityInsufficiently_Active:race_ethMultiracial | -0.050 | 0.120 | -0.285 | 0.184 |
| non-Hispanic |  |  |  |  |
| activityInactive:race_ethMultiracial non-Hispanic | -0.056 | 0.110 | -0.272 | 0.160 |
| activityActive:race_ethHispanic | -0.104 | 0.096 | -0.291 | 0.084 |
| activityInsufficiently_Active:race_ethHispanic | -0.240 | 0.214 | -0.660 | 0.179 |
| activityInactive:race_ethHispanic | -0.169 | 0.082 | -0.331 | -0.008 |

The model_5c equation is:

```
log(BMI) = 3.264
 + 0.021 (activity = Active)
 + 0.079 (activity = Insufficiently Active)
 + 0.097 (activity = Inactive)
 + 0.062 (race_eth = Black non-Hispanic)
 - 0.070 (race_eth = Other race non-Hispanic)
 + 0.067 (race_eth = Multiracial non-Hispanic)
 + 0.110 (race_eth = Hispanic)
 - 0.002 (activity = Active)(race_eth = Black non-Hispanic)
 + 0.005 (Insufficiently Active)(Black non-Hispanic)
 + 0.008 (Inactive)(Black non-Hispanic)
 - 0.065 (Active)(Other race non-Hispanic)
 - 0.035 (Insufficiently Active)(Other race non-Hispanic)
 + 0.033 (Inactive)(Other race non-Hispanic)
 - 0.208 (Active)(Multiracial non-Hispanic)
 - 0.050 (Insufficiently Active)(Multiracial non-Hispanic)
 - 0.056 (Inactive)(Multiracial non-Hispanic)
 - 0.104 (Active)(Hispanic)
 - 0.240 (Insufficiently Active)(Hispanic)
 - 0.169 (Inactive)(Hispanic)
```

and again, we can make predictions by filling in appropriate 1 s and 0 s for the indicator variables in parentheses.

For example, the predicted $\log$ (BMI) for a White Highly Active person is 3.264 , as White and Highly Active are the baseline categories in our two factors.

But the predicted $\log (\mathrm{BMI})$ for a Hispanic Inactive person would be $3.264+0.097+0.110-$ $0.169=3.302$.

Again, we'll plot the predicted $\log (B M I)$ predictions for each possible combination.

```
new_dat = tibble(
 race_eth = rep(c("White non-Hispanic",
 "Black non-Hispanic",
 "Other race non-Hispanic",
 "Multiracial non-Hispanic",
 "Hispanic"), 4),
 activity = c(rep("Highly_Active", 5),
 rep("Active", 5),
 rep("Insufficiently_Active", 5),
 rep("Inactive", 5))
)
augment(model_5c, newdata = new_dat) |>
 mutate(race_eth = fct_relevel(factor(race_eth),
 "White non-Hispanic",
 "Black non-Hispanic",
 "Other race non-Hispanic",
 "Multiracial non-Hispanic",
 "Hispanic"),
 activity = fct_relevel(factor(activity),
 "Highly_Active",
 "Active",
 "Insufficiently_Active",
 "Inactive")) %>%
 ggplot(., aes(x = activity, y = .fitted,
 col = race_eth, group = race_eth)) +
 geom_point(size = 2) +
 geom_line() +
 labs(title = "Model 5c predictions for log(BMI)",
 subtitle = "race_eth and activity, with interaction",
 y = "Model Predicted log(BMI)",
 x = "")
```



Note that the lines joining the points for each race_eth category are no longer parallel to each other. The race-ethnicity group relative positions on $\log$ (BMI) is now changing depending on the activity status.

### 9.4.2 Is the interaction term necessary?

We can assess this in three ways, in order of importance:

1. With an interaction plot
2. By assessing the fraction of the variation in the outcome accounted for by the interaction
3. By assessing whether the interaction accounts for statistically detectable outcome variation

### 9.4.2.1 The Interaction Plot

A simple interaction plot is just a plot of the unadjusted outcome means, stratified by the two factors. For example, consider this plot for our two-factor ANOVA model. To obtain this plot, we first summarize the means within each group.

```
summaries_5 <- smart_cle1_sh |>
 group_by(activity, race_eth) |>
```

```
summarize(n = n(), mean = mean(log(bmi)),
 sd = sd(log(bmi)))
```

`summarise()` has grouped output by 'activity'. You can override using the -.groups` argument.

```
summaries_5
```

\# A tibble: 20 x 5
\# Groups: activity [4]
activity race_eth $n$ mean sd
<fct> <fct>
1 Highly_Active
2 Highly_Active
3 Highly_Active
4 Highly_Active
5 Highly_Active
6 Active
7 Active
8 Active
9 Active Multiracial non-Hispanic
$\begin{array}{rrr}\text { <int> } & \text { <dbl> } & \text { <dbl> } \\ 320 & 3.26 & 0.176\end{array}$
White non-Hispanic
Black non-Hispanic
$\begin{array}{lll}77 & 3.33 & 0.190\end{array}$
$\begin{array}{lllll}\text { Other race non-Hispanic } & 7 & 3.19 & 0.198\end{array}$
Multiracial non-Hispanic
$12 \quad 3.33 \quad 0.187$
Hispanic
$\begin{array}{lll}12 & 3.37 & 0.296\end{array}$
White non-Hispanic
$129 \quad 3.28 \quad 0.173$
Black non-Hispanic
$31 \quad 3.35 \quad 0.224$
Other race non-Hispanic
$\begin{array}{lll}2 & 3.15 & 0.0845\end{array}$
$\begin{array}{lll}3 & 3.14 & 0.121\end{array}$
10 Active Hispanic
$8 \quad 3.29 \quad 0.213$
11 Insufficiently_Active White non-Hispanic
$\begin{array}{lll}150 & 3.34 & 0.194\end{array}$
12 Insufficiently_Active Black non-Hispanic
$\begin{array}{lll}35 & 3.41 & 0.213\end{array}$
13 Insufficiently_Active Other race non-Hispanic $\quad 11 \quad 3.24 \quad 0.137$
14 Insufficiently_Active Multiracial non-Hispanic $\quad 4 \quad 3.36 \quad 0.374$
15 Insufficiently_Active Hispanic $1 \quad 3.21$ NA
16 Inactive White non-Hispanic $225 \quad 3.36$
17 Inactive Black non-Hispanic $\quad 83 \quad 3.43 \quad 0.247$
18 Inactive $\quad$ Other race non-Hispanic $4 \quad 3.32 \quad 0.238$
19 Inactive Multiracial non-Hispanic $\quad \begin{array}{llllll}5 & 3.37 & 0.129\end{array}$
20 Inactive Hispanic $14 \quad 3.30 \quad 0.264$
ggplot(summaries_5, aes $(x=$ activity, $y=$ mean,

$\quad \begin{aligned} & \text { color }= \\ & \text { group }= \\ & \text { race_eth, }\end{aligned}$
geom_point $($ size $=3)+$
geom_line ()$+$
labs (title $=$

```
subtitle = "SMART CLE means by activity and race_eth",
x = "", y = "Mean of log(BMI)")
```



The interaction plot suggests that there is a modest interaction here. The White non-Hispanic and Black non-Hispanic groups appear pretty parallel (and they are the two largest groups) and Other race non-Hispanic has a fairly similar pattern, but the other two groups (Hispanic and Multiracial non-Hispanic) bounce around quite a bit based on activity level.

An alternative would be to include a small "dodge" for each point and include error bars (means $\pm$ standard deviation) for each combination.

```
pd = position_dodge(0.2)
ggplot(summaries_5, aes(x = activity, y = mean,
 color = race_eth,
 group = race_eth)) +
 geom_errorbar(aes(ymin = mean - sd,
 ymax = mean + sd),
 width = 0.2, position = pd) +
 geom_point(size = 3, position = pd) +
 geom_line(position = pd) +
 labs(title = "Interaction Plot for log(BMI) with Error Bars",
```



Here, we see a warning flag because we have one combination (which turns out to be Insufficiently Active and Hispanic) with only one observation in it, so a standard deviation cannot be calculated. In general, I'll stick with the simpler means plot most of the time.

### 9.4.2.2 Does the interaction account for substantial variation?

In this case, we can look at the fraction of the overall sums of squares accounted for by the interaction.

```
 anova(model_5c)
Analysis of Variance Table
Response: log(bmi)
 Df Sum Sq Mean Sq F value Pr(>F)
activity 3 2.060 0.68652 16.4468 1.839e-10 ***
race_eth 4 0.989 0.24716 5.9211 0.0001026 ***
```

```
activity:race_eth 12 0.324 0.02700 0.6469 0.8028368
Residuals 1113 46.459 0.04174

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Here we have

$$
\eta^{2}(\text { Interaction })=\frac{0.324}{2.058+0.990+0.324+46.456}=0.0065
$$

so the interaction accounts for $0.65 \%$ of the variation in bmi. That looks pretty modest.

### 9.4.2.3 Does the interaction account for statistically detectable variation?

We can test this directly with the p value from the ANOVA table, which shows $\mathrm{p}=0.803$, which is far above any of our usual standards for a statistically detectable effect.

On the whole, I don't think the interaction term is especially helpful in improving this model.
In the next chapter, we'll look at two different examples of ANOVA models, now in more designed experiments. We'll also add some additional details on how the analyses might proceed.
We'll return to the SMART CLE data later in these Notes.

## 10 Two-Way ANOVA and Interaction

### 10.1 R Setup Used Here

```
knitr::opts_chunk$set(comment = NA)
library(janitor)
library(broom)
library(ggridges)
library(glue)
library(gt)
library(mosaic)
library(patchwork)
library(tidyverse)
theme_set(theme_bw())
```


### 10.1.1 Data Load

```
bonding <- read_csv("data/bonding.csv", show_col_types = FALSE)
cortisol <- read_csv("data/cortisol.csv", show_col_types = FALSE)
```


### 10.2 The bonding data: A Designed Dental Experiment

The bonding data describe a designed experiment into the properties of four different resin types (resin = A, B, C, D) and two different curing light sources (light = Halogen, LED) as they relate to the resulting bonding strength (measured in $\mathrm{MPa}^{1}$ ) on the surface of teeth. The source is @Kim2014.

[^15]The experiment involved making measurements of bonding strength under a total of 80 experimental setups, or runs, with 10 runs completed at each of the eight combinations of a light source and a resin type. The data are gathered in the bonding.csv file.

```
 bonding
A tibble: 80 x 4
 runID light resin strength
 <chr> <chr> <chr> <dbl>
 1 R101 LED B 12.8
 2 R102 Halogen B 22.2
 3 R103 Halogen B 24.6
 4 ~ R 1 0 4 ~ L E D ~ A ~ 1 7 ~
 5 R105 LED C 32.2
 6 ~ R 1 0 6 ~ H a l o g e n ~ B ~ 2 7 . 1
 7 R107 LED A 23.4
 8 R108 Halogen A 23.5
 9 R109 Halogen D 37.3
10 R110 Halogen A 19.7
i 70 more rows
```


### 10.3 A One-Factor Analysis of Variance

Suppose we are interested in the distribution of the strength values for the four different types of resin.

```
bonding |> group_by(resin) |>
 summarise(n = n(), mean(strength), median(strength))
```

\# A tibble: 4 x 4
resin $n$ `mean(strength)` `median(strength)`
<chr> <int> <dbl> <dbl>
$\begin{array}{llll}1 \mathrm{~A} & 20 & 18.4 & 18.0\end{array}$
$\begin{array}{llll}2 & \text { B } & 20 & 22.2\end{array}$
$\begin{array}{llll}3 & \text { C } & 20 & 25.2\end{array}$
$\begin{array}{llll}4 \text { D } & 20 & 32.1 & 35.3\end{array}$

I'd begin serious work with a plot.

### 10.3.1 Look at the Data!

```
ggplot(bonding, aes(x = resin, y = strength)) +
 geom_violin(aes(fill = resin)) +
 geom_boxplot(width = 0.2)
```



Another good plot for this purpose is a ridgeline plot.

```
ggplot(bonding, aes(x = strength, y = resin, fill = resin)) +
 geom_density_ridges2() +
 guides(fill = "none")
```

Picking joint bandwidth of 3.09


### 10.3.2 Table of Summary Statistics

With the small size of this experiment ( $n=20$ for each resin type), graphical summaries may not perform as well as they often do. We'll also produce a quick table of summary statistics for strength within each resin type.

|  | resin | min | Q1 | median | Q3 | max | mean | sd | n | missing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A | 9.3 | 15.725 | 17.95 | 20.40 | 28.0 | 18.415 | 4.805948 | 20 | 0 |
| 2 | B | 11.8 | 18.450 | 22.70 | 25.75 | 35.2 | 22.230 | 6.748263 | 20 | 0 |
| 3 | C | 14.5 | 20.650 | 25.70 | 30.70 | 34.5 | 25.155 | 6.326425 |  | 0 |
| 4 | D | 17.3 | 21.825 | 35.30 | 40.15 | 47.2 | 32.075 | 9.735063 |  | 0 |

Since the means and medians within each group are fairly close, and the distributions (with the possible exception of resin D) are reasonably well approximated by the Normal, I'll fit an ANOVA model ${ }^{2}$.

```
anova(lm(strength ~ resin, data = bonding))
```

[^16]```
Analysis of Variance Table
Response: strength
    Df Sum Sq Mean Sq F value Pr(>F)
resin 3 1999.7 666.57 13.107 5.52e-07 ***
Residuals 76 3865.2 50.86
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

It appears that the resin types have a significant association with mean strength of the bonds. Can we identify which resin types have generally higher or lower strength?

```
t_bond <- TukeyHSD(aov(strength ~ resin, data = bonding),
        ordered = TRUE, conf.level = 0.90)
tidy(t_bond) |>
    select(-c(term, null.value)) |>
    mutate(across(.cols = -contrast, num, digits = 3)) |>
    arrange(desc(estimate)) |>
    gt() |>
    tab_header(title = "Comparing Mean Bond Strength across pairs of resin types",
            subtitle = "90% Tukey HSD Confidence Intervals") |>
    tab_footnote(footnote = glue(nrow(bonding), " teeth in bonding data"))
```

Warning: There was 1 warning in ‘mutate()`. i In argument: `across(.cols = -contrast, num, digits = 3)`. Caused by warning: ! The `...`argument of`across()` is deprecated as of dplyr 1.1.0. Supply arguments directly to '.fns` through an anonymous function instead.

```
# Previously
across(a:b, mean, na.rm = TRUE)
# Now
across(a:b, \(x) mean(x, na.rm = TRUE))
```

Comparing Mean Bond Strength across pairs of resin types 90% Tukey HSD Confidence Intervals

```
contrast estimate conf.low conf.high adj.p.value
```

D-A	13.660	8.403	18.917	0.000
D-B	9.845	4.588	15.102	0.000
D-C	6.920	1.663	12.177	0.015
C-A	6.740	1.483	11.997	0.019
B-A	3.815	-1.442	9.072	0.335
C-B	2.925	-2.332	8.182	0.568

80 teeth in bonding data

```
tidy(t_bond) |>
    mutate(contrast = fct_reorder(contrast, estimate, .desc = TRUE)) %>%
    ggplot(., aes(x = contrast, y = estimate, ymin = conf.low, ymax = conf.high)) +
    geom_pointrange() +
    geom_hline(yintercept = 0, col = "red", linetype = "dashed") +
    geom_label(aes(label = round_half_up(estimate, 2))) +
    labs(title = "Comparing Mean Bond Strength across pairs of resin types",
        subtitle = "90% Tukey HSD Confidence intervals",
        caption = glue(nrow(bonding), " teeth in bonding data"),
        x = "Pairwise Difference between resin types",
        y = "Difference in Mean Bond Strength")
```

 Comparing Mean Bond Strength across pairs of resin types
 \(90 \%\) Tukey HSD Confidence intervals

80 teeth in bonding data

Based on these confidence intervals (which have a family-wise 90% confidence level), we see
that D shows arger mean strength than A or B or C, and that C is also associated with larger mean strength than A.

10.4 A Two-Way ANOVA: Looking at Two Factors

Now, we'll now add consideration of the light source into our study. We can look at the distribution of the strength values at the combinations of both light and resin, with a plot like this one.

```
ggplot(bonding, aes(x = resin, y = strength, color = light)) +
    geom_point(size = 2, alpha = 0.5) +
    facet_wrap(~ light) +
    guides(color = "none") +
    scale_color_manual(values = c("purple", "darkorange")) +
    theme_bw()
```


10.5 A Means Plot (with standard deviations) to check for interaction

Sometimes, we'll instead look at a plot simply of the means (and, often, the standard deviations) of strength at each combination of light and resin. We'll start by building up a data set with the summaries we want to plot.

```
bond.sum <- bonding |>
    group_by(resin, light) |>
    summarize(mean.str = mean(strength), sd.str = sd(strength))
```

```
`summarise()` has grouped output by 'resin'. You can override using the
`.groups` argument.
bond.sum
# A tibble: 8 x 4
# Groups: resin [4]
    resin light mean.str sd.str
    <chr> <chr> <dbl> <dbl>
1 A Halogen 17.8 4.02
2 A LED 19.1 5.63
3 B Halogen 19.9 5.62
4 B LED 24.6 7.25
5 C Halogen 22.5 6.19
6 C LED 27.8 5.56
7 D Halogen 40.3 4.15
8 D LED 23.8 5.70
```

Now, we'll use this new data set to plot the means and standard deviations of strength at each combination of resin and light.

```
## The error bars will overlap unless we adjust the position.
pd <- position_dodge(0.2) # move them . 1 to the left and right
ggplot(bond.sum, aes(x = resin, y = mean.str, col = light)) +
    geom_errorbar(aes(ymin = mean.str - sd.str,
            ymax = mean.str + sd.str),
            width = 0.2, position = pd) +
```

```
    geom_point(size = 2, position = pd) +
    geom_line(aes(group = light), position = pd) +
    scale_color_manual(values = c("purple", "darkorange")) +
    theme_bw() +
    labs(y = "Bonding Strength (MPa)", x = "Resin Type",
        title = "Observed Means (+/- SD) of Bonding Strength")
```

Observed Means (+/- SD) of Bonding Strength

Is there evidence of a meaningful interaction between the resin type and the light source on the bonding strength in this plot?

- Sure. A meaningful interaction just means that the strength associated with different resin types depends on the light source.
- With LED light, it appears that resin C leads to the strongest bonding strength.
- With Halogen light, though, it seems that resin D is substantially stronger.
- Note that the lines we see here connecting the light sources aren't in parallel (as they would be if we had zero interaction between resin and light), but rather, they cross.

10.5.1 Summarizing the data after grouping by resin and light

We might want to look at a numerical summary of the strengths within these groups, too.

```
favstats(strength ~ resin + light, data = bonding) |>
    select(resin.light, median, mean, sd, n, missing)
```

resin.light median mean sd n missing
1 A.Halogen $18.3517 .774 .02410810 \quad 0$
2 B.Halogen $21.7519 .90 \quad 5.61763110 \quad 0$
3 C.Halogen $21.3022 .54 \quad 6.19106910 \quad 0$
4 D.Halogen $40.4040 .304 .14755610 \quad 0$
5 A.LED $17.8019 .06 \quad 5.625181 \quad 10 \quad 0$
6 B.LED $24.45 \quad 24.56 \quad 7.246792 \quad 10 \quad 0$
$7 \quad$ C.LED $28.45 \quad 27.77 \quad 5.564980 \quad 10 \quad 0$
8 D.LED $21.45 \quad 23.85 \quad 5.70404310 \quad 0$

10.6 Fitting the Two-Way ANOVA model with Interaction

```
c3_m1 <- lm(strength ~ resin * light, data = bonding)
summary(c3_m1)
```

```
Call:
lm(formula = strength ~ resin * light, data = bonding)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-11.760 & -3.663 & -0.320 & 3.697 & 11.250
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{lrrrrr} 
(Intercept) & 17.770 & 1.771 & 10.033 & \(2.57 e-15\) & \(* * *\) \\
resinB & 2.130 & 2.505 & 0.850 & 0.3979 & \\
resinC & 4.770 & 2.505 & 1.904 & 0.0609 &. \\
resinD & 22.530 & 2.505 & 8.995 & \(2.13 e-13\) & \(* * *\) \\
lightLED & 1.290 & 2.505 & 0.515 & 0.6081 & \\
resinB:lightLED & 3.370 & 3.542 & 0.951 & 0.3446 & \\
resinC:lightLED & 3.940 & 3.542 & 1.112 & 0.2697 & \\
resinD:lightLED & -17.740 & 3.542 & -5.008 & \(3.78 e-06 \quad * * *\)
\end{tabular}
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 5.601 on 72 degrees of freedom
Multiple R-squared: 0.6149, Adjusted R-squared: 0.5775
F-statistic: 16.42 on 7 and 72 DF, p-value: $9.801 \mathrm{e}-13$

10.6.1 The ANOVA table for our model

In a two-way ANOVA model, we begin by assessing the interaction term. If it's important, then our best model is the model including the interaction. If it's not important, we will often move on to consider a new model, fit without an interaction.

The ANOVA table is especially helpful in this case, because it lets us look specifically at the interaction effect.

```
anova(c3_m1)
Analysis of Variance Table
Response: strength
    Df Sum Sq Mean Sq F value Pr(>F)
resin 3 1999.72 666.57 21.2499 5.792e-10 ***
light 1 34.72 34.72 1.1067 0.2963
resin:light 3 1571.96 523.99 16.7043 2.457e-08 ***
Residuals 72 2258.52 31.37
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


10.6.2 Is the interaction important?

In this case, the interaction:

- is evident in the means plot, and
- is highly statistically significant, and
- accounts for a sizable fraction (27%) of the overall variation

$$
\eta_{\text {interaction }}^{2}=\frac{\mathrm{SS}(\text { resin }: \text { light })}{S S(\text { Total })}=\frac{1571.96}{1999.72+34.72+1571.96+2258.52}=0.268
$$

If the interaction were either large or significant we would be inclined to keep it in the model. In this case, it's both, so there's no real reason to remove it.

10.6.3 Interpreting the Interaction

Recall the model equation, which is:

```
c3_m1
```

Call:
lm(formula $=$ strength \sim resin * light, data $=$ bonding)

Coefficients:

(Intercept)	resinB	resinC	resinD
17.77	2.13	4.77	22.53
lightLED	resinB:lightLED	resinC:lightLED	resinD:lightLED
1.29	3.37	3.94	-17.74

So, if light $=$ Halogen, our equation is:

$$
\text { strength }=17.77+2.13 \text { resin } B+4.77 \text { resin } C+22.53 \text { resin } D
$$

And if light $=$ LED, our equation is:

$$
\text { strength }=19.06+5.50 \text { resin } B+8.71 \text { resin } C+4.79 \text { resin } D
$$

Note that both the intercept and the slopes change as a result of the interaction. The model yields a different prediction for every possible combination of a resin type and a light source.

10.7 Comparing Individual Combinations of resin and light

To make comparisons between individual combinations of a resin type and a light source, using something like Tukey's HSD approach for multiple comparisons, we first refit the model using the aov structure, rather than 1 m .

```
c3m1_aov <- aov(strength ~ resin * light, data = bonding)
summary(c3m1_aov)
```

```
        Df Sum Sq Mean Sq F value Pr(>F)
resin 3 1999.7 666.6 21.250 5.79e-10 ***
light 1 34.7 34.7 1.107 0.296
resin:light 3 1572.0 524.0 16.704 2.46e-08 ***
Residuals 72 2258.5 31.4
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

And now, we can obtain Tukey HSD comparisons (which will maintain an overall 90% familywise confidence level) across the resin types, the light sources, and the combinations, with the TukeyHSD command. This approach is only completely appropriate if these comparisons are pre-planned, and if the design is balanced (as this is, with the same sample size for each combination of a light source and resin type.)

TukeyHSD (c3m1_aov, conf.level = 0.9)

Tukey multiple comparisons of means
90% family-wise confidence level

Fit: aov(formula $=$ strength \sim resin $*$ light, data $=$ bonding)
\$resin

	diff	lwr	upr	p adj
B-A	3.815	-0.3176052	7.947605	0.1461960
C-A	6.740	2.6073948	10.872605	0.0016436
D-A	13.660	9.5273948	17.792605	0.0000000
C-B	2.925	-1.2076052	7.057605	0.3568373
D-B	9.845	5.7123948	13.977605	0.0000026
D-C	6.920	2.7873948	11.052605	0.0011731

\$light

	diff	lwr	upr	p adj
LED-Halogen	-1.3175	-3.404306	0.7693065	0.2963128

\$`resin:light`

	diff	lwr	upr	p adj
B:Halogen-A:Halogen	2.13	-4.9961962	9.256196	0.9893515
C:Halogen-A:Halogen	4.77	-2.3561962	11.896196	0.5525230
D:Halogen-A:Halogen	22.53	15.4038038	29.656196	0.0000000
A:LED-A:Halogen	1.29	-5.8361962	8.416196	0.9995485
B:LED-A:Halogen	6.79	-0.3361962	13.916196	0.1361092
C:LED-A:Halogen	10.00	2.8738038	17.126196	0.0037074

D:LED-A:Halogen	6.08	-1.0461962	13.206196	0.2443200
C:Halogen-B:Halogen	2.64	-4.4861962	9.766196	0.9640100
D:Halogen-B:Halogen	20.40	13.2738038	27.526196	0.0000000
A:LED-B:Halogen	-0.84	-7.9661962	6.286196	0.9999747
B:LED-B:Halogen	4.66	-2.4661962	11.786196	0.5818695
C:LED-B:Halogen	7.87	0.7438038	14.996196	0.0473914
D:LED-B:Halogen	3.95	-3.1761962	11.076196	0.7621860
D:Halogen-C:Halogen	17.76	10.6338038	24.886196	0.0000000
A:LED-C:Halogen	-3.48	-10.6061962	3.646196	0.8591455
B:LED-C:Halogen	2.02	-5.1061962	9.146196	0.9922412
C:LED-C:Halogen	5.23	-1.8961962	12.356196	0.4323859
D:LED-C:Halogen	1.31	-5.8161962	8.436196	0.9995004
A:LED-D:Halogen	-21.24	-28.3661962	-14.113804	0.0000000
B:LED-D:Halogen	-15.74	-22.8661962	-8.613804	0.0000006
C:LED-D:Halogen	-12.53	-19.6561962	-5.403804	0.0001014
D:LED-D:Halogen	-16.45	-23.5761962	-9.323804	0.0000002
B:LED-A:LED	5.50	-1.6261962	12.626196	0.3665620
C:LED-A:LED	8.71	1.5838038	15.836196	0.0185285
D:LED-A:LED	4.79	-2.3361962	11.916196	0.5471915
C:LED-B:LED	3.21	-3.9161962	10.336196	0.9027236
D:LED-B:LED	-0.71	-7.8361962	6.416196	0.9999920
D:LED-C:LED	-3.92	-11.0461962	3.206196	0.7690762

One conclusion from this is that the combination of D and Halogen appears stronger than each of the other seven combinations.

10.8 The bonding model without Interaction

It seems incorrect in this situation to fit a model without the interaction term, but we'll do so just so you can see what's involved.

```
c3_m2 <- lm(strength ~ resin + light, data = bonding)
summary(c3_m2)
```

Call:

```
lm(formula = strength ~ resin + light, data = bonding)
```

Residuals:

In the no-interaction model, if light $=$ Halogen, our equation is:

$$
\text { strength }=19.07+3.82 \text { resin } B+6.74 \text { resin } C+13.66 \text { resin } D
$$

And if light $=$ LED, our equation is:

$$
\text { strength }=17.75+3.82 \text { resin } B+6.74 \text { resin } C+13.66 \text { resin } D
$$

So, in the no-interaction model, only the intercept changes.

```
anova(c3_m2)
Analysis of Variance Table
Response: strength
    Df Sum Sq Mean Sq F value Pr (>F)
resin 3 1999.7 666.57 13.0514 6.036e-07 ***
light 1 1 34.7 34.72 0.6797 0.4123
Residuals 75 3830.5 51.07
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

And, it appears, if we ignore the interaction, then resin type has a large impact on strength but light source doesn't. This is clearer when we look at boxplots of the separated light and resin groups.

```
p1 <- ggplot(bonding, aes(x = light, y = strength)) +
        geom_boxplot()
p2 <- ggplot(bonding, aes(x = resin, y = strength)) +
        geom_boxplot()
p1 + p2
```


10.9 cortisol: A Hypothetical Clinical Trial

156 adults who complained of problems with a high-stress lifestyle were enrolled in a hypothetical clinical trial of the effectiveness of a behavioral intervention designed to help reduce stress levels, as measured by salivary cortisol.

The subjects were randomly assigned to one of three intervention groups (usual care, low dose, and high dose.) The "low dose" subjects received a one-week intervention with a follow-up at week 5 . The "high dose" subjects received a more intensive three-week intervention, with follow up at week 5 .

Since cortisol levels rise and fall with circadian rhythms, the cortisol measurements were taken just after rising for all subjects. These measurements were taken at baseline, and again at five weeks. The difference (baseline - week 5) in cortisol level (in micrograms / l) serves as the primary outcome.

10.9.1 Codebook and Raw Data for cortisol

The data are gathered in the cortisol data set. Included are:

Variable	Description
subject	subject identification code
interv	intervention group (UC = usual care, Low, High)
waist	waist circumference at baseline (in inches)
sex	male or female
cort.1	salivary cortisol level (microg/l) week 1
cort.5	salivary cortisol level (microg/l) week 5

 cortisol

10.10 Creating a factor combining sex and waist

Next, we'll put the waist and sex data in the cortisol example together. We want to build a second categorical variable (called fat_est) combining this information, to indicate "healthy" vs. "unhealthy" levels of fat around the waist.

- Male subjects whose waist circumference is 40 inches or more, and
- Female subjects whose waist circumference is 35 inches or more, will fall in the "unhealthy" group.

```
cortisol <- cortisol |>
    mutate(
            fat_est = factor(case_when(
                sex == "M" & waist >= 40 ~ "unhealthy",
                sex == "F" & waist >= 35 ~ "unhealthy",
                TRUE ~ "healthy")),
            cort_diff = cort.1 - cort.5)
summary(cortisol)
```

subject	interv	waist	sex
Length:156	Length: 156	Min. : 20.80	Length: 156
Class : character	Class : character	1st Qu.:33.27	Class : character
Mode :character	Mode :character	Median : 40.35	Mode :character
		Mean : 40.42	
		3rd Qu.:47.77	
		Max. :59.90	
cort. 1	cort. 5	fat_est co	diff
Min. : 6.000	Min. : 4.2 hea	hy : 56 Min.	: -2.3000
1st Qu.: 9.675	1st Qu.: 9.6 unh	lthy:100 1st	. $:-0.5000$
Median : 12.400	Median :12.6	Medi	n : 0.2000
Mean :12.686	Mean :12.4	Mean	: 0.2821
3rd Qu.:16.025	3rd Qu.:15.7	3rd	u.: 1.2000
Max. : 19.000	Max. : 19.7	Max.	: 2.0000

10.11 A Means Plot for the cortisol trial (with standard errors)

Again, we'll start by building up a data set with the summaries we want to plot.

```
cort.sum <- cortisol |>
    group_by(interv, fat_est) |>
    summarize(mean.cort = mean(cort_diff),
    se.cort = sd(cort_diff)/sqrt(n()))
```

```
`summarise()` has grouped output by 'interv'. You can override using the
`.groups` argument.
```

```
cort.sum
```

\# A tibble: 6 x 4
\# Groups: interv [3]
interv fat_est mean.cort se.cort
<chr> <fct> <dbl> <dbl>
1 High healthy 0.6950 .217
2 High unhealthy 0.3520 .150
3 Low healthy $0.5 \quad 0.182$
4 Low unhealthy $0.327 \quad 0.190$
5 UC healthy $0.347 \quad 0.225$
6 UC unhealthy -0.226 0.155

Now, we'll use this new data set to plot the means and standard errors.

```
## The error bars will overlap unless we adjust the position.
pd <- position_dodge(0.2) # move them . }1\mathrm{ to the left and right
ggplot(cort.sum, aes(x = interv, y = mean.cort, col = fat_est)) +
    geom_errorbar(aes(ymin = mean.cort - se.cort,
            ymax = mean.cort + se.cort),
            width = 0.2, position = pd) +
    geom_point(size = 2, position = pd) +
    geom_line(aes(group = fat_est), position = pd) +
    scale_color_manual(values = c("royalblue", "darkred")) +
    theme_bw() +
    labs(y = "Salivary Cortisol Level", x = "Intervention Group",
            title = "Observed Means (+/- SE) of Salivary Cortisol")
```


10.12 A Two-Way ANOVA model for cortisol with Interaction

```
c3_m3 <- lm(cort_diff ~ interv * fat_est, data = cortisol)
anova(c3_m3)
```

Analysis of Variance Table
Response: cort_diff

	Df	Sum Sq Mean Sq F value	$\operatorname{Pr}(>F)$		
interv	2	7.847	3.9235	4.4698	$0.01301 *$
fat_est	1	4.614	4.6139	5.2564	$0.02326 *$
interv:fat_est	2	0.943	0.4715	0.5371	0.58554
Residuals	150	131.666	0.8778		

Signif. codes: $0{ }^{\prime * * * '} 0.001^{\prime * * '} 0.01^{\prime *} *^{\prime} 0.05 '^{\prime} 0.1^{\prime} \quad 1$

Does it seem like we need the interaction term in this case?

```
summary(c3_m3)
```

```
Call:
lm(formula = cort_diff ~ interv * fat_est, data = cortisol)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-2.62727 & -0.75702 & 0.08636 & 0.84848 & 2.12647
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.6950 0.2095 3.317 0.00114 **
intervLow -0.1950 0.3001 -0.650 0.51689
intervUC -0.3479 0.3091 -1.126 0.26206
fat_estunhealthy -0.3435 0.2655 -1.294 0.19774
intervLow:fat_estunhealthy 0.1708 0.3785 0.451 0.65256
intervUC:fat_estunhealthy -0.2300 0.3846 -0.598 0.55068
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9369 on 150 degrees of freedom
Multiple R-squared: 0.0924, Adjusted R-squared: 0.06214
F-statistic: 3.054 on 5 and 150 DF, p-value: 0.01179
```


10.12.1 Notes on this Question

When we're evaluating a two-factor ANOVA model with an interaction, we are choosing between models with either:

1. just one factor
2. both factors, but only as main effects
3. both factors and an interaction between them

But we don't get to pick models that include any other combination of terms. For this two-way ANOVA, then, our choices are:

- a model with 'interv only
- a model with 'fat_est only
- a model with both interv and fat_est but not their interaction
- a model with interv and fat_est and their interaction

Those are the only modeling options available to us.
First, consider the ANOVA table, repeated below...

```
anova(c3_m3)
```

```
Analysis of Variance Table
```

Response: cort_diff
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
interv 27.8473 .92354 .46980 .01301 *
fat_est $144.6144 .6139 \quad 5.25640 .02326$ *
interv:fat_est $20.9430 .4715 \quad 0.53710 .58554$
Residuals 150131.6660 .8778

Signif. codes: $0{ }^{\prime} * * * ' 0.001{ }^{\prime} * * ' 0.01 '^{\prime \prime} 0.05 '^{\prime} 0.1 '^{\prime} 1$

The conclusions here are as follows:

1. The interaction effect (interv:fat_est) has a large p value (0.58554) and assesses whether the two interaction terms (product terms) included in the model add detectable predictive value to the main effects model that includes only interv and fat_est alone. You are right to say that this ANOVA is sequential, which means that the p value for the interaction effect is looking at the additional effect of the interaction once we already have the main effects interv and fat_est included.
2. The interv and fat_est terms aren't usually evaluated with hypothesis tests or interpreted in the ANOVA for this setting, since if we intend to include the interaction term (as this model does) we also need these main effects. If we wanted to look at those terms individually in a model without the interaction, then we'd want to fit that model (without the interaction term) to do so.

Next, let's look at the summary of the c3_m3 model, specifically the coefficients...

```
summary(c3_m3)
```

Call:
lm(formula = cort_diff ~ interv * fat_est, data = cortisol)

Residuals:

Min	$1 Q$	Median	3Q	Max
-2.62727	-0.75702	0.08636	0.84848	2.12647

Coefficients:

So here, we see two p values associated with the interaction terms (the two product terms at the bottom of the regression) but these aren't especially helpful, because we're either going to include the interaction (in which case both of these terms will be in the model) or we're not going to include the interaction (in which case neither of these terms will be in the model.)

So the p values provided here aren't very helpful - like all such p values for t tests, they are looking at the value of the term in their row as the last predictor in to the model, essentially comparing the full model to the model without that specific component, but none of those tests enable us to decide which of the 4 available model choices is our best fit.

Now, let's consider the reason why, for example, the p value for fat_est in the summary() which is looking at comparing the following models ...

- a model including interv (which has 2 coefficients to account for its 3 categories), fat_est (which has 1 coefficient to account for its 2 categories), and the interv*fat_est interaction terms (which are 2 terms)
- a model including interv and the interv*fat_est interaction (but somehow not the main effect of fat_est, which actually makes no sense: if we include the interaction we always include the main effect)
to the p value for fat_est in the ANOVA which is looking at comparing
- the model with interv alone to
- the model with interv and fat_est as main effects, but no interaction

Only the ANOVA p value is therefore in any way useful, and it suggests that once you have the main effect of interv, adding fat_est's main effect adds statistically detectable value (p $=0.023$)

10.13 A Two-Way ANOVA model for cortisol without Interaction

10.13.1 The Graph

```
p1 <- ggplot(cortisol, aes(x = interv, y = cort_diff)) +
    geom_boxplot()
p2 <- ggplot(cortisol, aes(x = fat_est, y = cort_diff)) +
p1 + p2
```


10.13.2 The ANOVA Model

```
c3_m4 <- lm(cort_diff ~ interv + fat_est, data = cortisol)
anova(c3_m4)
```

Analysis of Variance Table
Response: cort_diff

```
        Df Sum Sq Mean Sq F value Pr(>F)
interv 2 7.847 3.9235 4.4972 0.01266 *
fat_est 1 4.614 4.6139 5.2886 0.02283 *
Residuals 152 132.609 0.8724
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

How do these results compare to those we saw in the model with interaction?

10.13.3 The Regression Summary

```
summary(c3_m4)
```

Call:
lm(formula = cort_diff ~ interv + fat_est, data = cortisol)

Residuals:

Min	$1 Q$	Median	3Q	Max
-2.55929	-0.74527	0.05457	0.86456	2.05489

Coefficients:

	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$				
(Intercept)	0.70452	0.16093	4.378	$2.22 \mathrm{e}-05$	***
intervLow	-0.08645	0.18232	-0.474	0.63606	
intervUC	-0.50063	0.18334	-2.731	0.00707	
fat_estunhealthy	-0.35878	0.15601	-2.300	0.02283	*
Signif. codes:	$0^{\prime} * * *$ ' 0	'**' 0.	$1^{\prime} *$ '	. $05{ }^{\prime} .{ }^{\prime}$	

Residual standard error: 0.934 on 152 degrees of freedom Multiple R-squared: 0.0859, Adjusted R-squared: 0.06785 F-statistic: 4.761 on 3 and 152 DF, p-value: 0.00335

10.13.4 Tukey HSD Comparisons

Without the interaction term, we can make direct comparisons between levels of the intervention, and between levels of the fat_est variable. This is probably best done here in a Tukey HSD comparison.

```
    TukeyHSD(aov(cort_diff ~ interv + fat_est, data = cortisol), conf.level = 0.9)
    Tukey multiple comparisons of means
    90% family-wise confidence level
Fit: aov(formula = cort_diff ~ interv + fat_est, data = cortisol)
$interv
    diff lwr upr p adj
Low-High -0.09074746 -0.4677566 0.28626166 0.8724916
UC-High -0.51642619 -0.8952964 -0.13755598 0.0150150
UC-Low -0.42567873 -0.8063312 -0.04502625 0.0570728
$fat_est
    diff lwr upr p adj
unhealthy-healthy -0.3582443-0.6162415 -0.100247 0.0229266
```

What conclusions can we draw here?

11 Analysis of Covariance

11.1 R Setup Used Here

```
knitr::opts_chunk$set(comment = NA)
library(janitor)
library(broom)
library(mosaic)
library(tidyverse)
theme_set(theme_bw())
```


11.1.1 Data Load

```
emphysema <- read_csv("data/emphysema.csv", show_col_types = FALSE)
```


11.2 An Emphysema Study

My source for this example is @Riffenburgh2006, section 18.4. Serum theophylline levels (in $\mathrm{mg} / \mathrm{dl}$) were measured in 16 patients with emphysema at baseline, then 5 days later (at the end of a course of antibiotics) and then at 10 days after baseline. Clinicians anticipate that the antibiotic will increase the theophylline level. The data are stored in the emphysema.csv data file, and note that the age for patient 5 is not available.

11.2.1 Codebook

Variable	Description
patient	ID code
age	patient's age in years
sex	patient's sex (F or M)

Variable	Description
st_base	patient's serum theophylline at baseline $(\mathrm{mg} / \mathrm{dl})$
st_day5	patient's serum theophylline at day $5(\mathrm{mg} / \mathrm{dl})$
st_day10	patient's serum theophylline at day $10(\mathrm{mg} / \mathrm{dl})$

We're going to look at the change from baseline to day 5 as our outcome of interest, since the clinical expectation is that the antibiotic (azithromycin) will increase theophylline levels.

```
emphysema <- emphysema |>
    mutate(st_delta = st_day5 - st_base)
emphysema
# A tibble: 16 x 7
    patient age sex st_base st_day5 st_day10 st_delta
        <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
            1 lllllll
            2 lllllll
            3 65M M
            4 65M M 10.3 10.7 13.8
            5 NA M 
            6 [\begin{array}{lllll}{\textrm{M}}&{5.2}&{6.8}&{4.2}&{1.6}\end{array}\mp@code{l}
            7 72
            10.4 14.6 14.1 4.2
            10.5 7.2 5.4 -3.3
            5 5 5.1 0
            8.6 8.1 7.4 -0.5
            11
            13 51 F 12.2 11 12.3 -1.2
            14 71 M 
            15 64 F 
            16 50 M
            10.2 10.8 11.2 0.600
```


11.3 Does sex affect the mean change in theophylline?

```
favstats(~ st_delta, data = emphysema)
    min Q1 median Q3 max mean sd n missing
-11.8 -1.925 -0.35 0.65 4.2 -0.99375 3.484149 16 0
```

```
    favstats(st_delta ~ sex, data = emphysema)
\begin{tabular}{rrrrrrrrrr} 
& sex & min & Q1 & median & Q3 & max & mean & sd & missing \\
1 & F & -11.8 & -2.925 & -1.75 & -1.325 & -0.2 & -3.333333 & 4.267864 & 6
\end{tabular}
```

Overall, the mean change in theophylline during the course of the antibiotic is -0.99 , but this is -3.33 for female patients and 0.41 for male patients.

A one-way ANOVA model looks like this:

```
    anova(lm(st_delta ~ sex, data = emphysema))
Analysis of Variance Table
Response: st_delta
        Df Sum Sq Mean Sq F value Pr(>F)
sex 1 52.547 52.547 5.6789 0.03189 *
Residuals 14 129.542 9.253
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The ANOVA F test finds a fairly large difference between the mean st_delta among males and the mean st_delta among females. But is there more to the story?

11.4 Is there an association between age and sex in this study?

```
    favstats(age ~ sex, data = emphysema)
    sex min Q1 median Q3 max mean sd n missing
1 F 51 61.75 64.5 68 70 63.33333 6.889606 6 0
2 M 50 65.00 66.0 71 76 66.44444 7.568208 9 % 1
```

But we note that the male patients are also older than the female patients, on average (mean age for males is 66.4 , for females 63.3)

- Does the fact that male patients are older affect change in theophylline level?
- And how should we deal with the one missing age value (in a male patient)?

11.5 Adding a quantitative covariate, age, to the model

We could fit an ANOVA model to predict st_delta using sex and age directly, but only if we categorized age into two or more groups. Because age is not categorical, we cannot include it in an ANOVA. But if age is an influence, and we don't adjust for it, it may well bias the outcome of our initial ANOVA. With a quantitative variable like age, we will need a method called ANCOVA, for analysis of covariance.

11.5.1 The ANCOVA model

ANCOVA in this case is just an ANOVA model with our outcome (st_delta) adjusted for a continuous covariate, called age. For the moment, we'll ignore the one subject with missing age and simply fit the regression model with sex and age.

```
summary(lm(st_delta ~ sex + age, data = emphysema))
```

Call:
lm(formula = st_delta ~ sex + age, data = emphysema)
Residuals:

Min	$1 Q$	Median	3Q	Max
-8.3352	-0.4789	0.6948	1.5580	3.5202

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -6.90266 7.92948 -0.8710 .4011
$\begin{array}{llllll}\text { sexM } & 3.52466 & 1.75815 & 2.005 & 0.0681 .\end{array}$
$\begin{array}{lllll}\text { age } & 0.05636 & 0.12343 & 0.457 & 0.6561\end{array}$

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.255 on 12 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.2882, Adjusted R-squared: 0.1696
F-statistic: 2.43 on 2 and 12 DF , p -value: 0.13

This model assumes that the slope of the regression line between st_delta and age is the same for both sexes.

Note that the model yields st_delta $=-6.9+3.52(\operatorname{sex}=$ male $)+0.056$ age, or

- st_delta $=-6.9+0.056$ age for female patients, and
- st_delta $=(-6.9+3.52)+0.056$ age $=-3.38+0.056$ age for male patients.

Note that we can test this assumption of equal slopes by fitting an alternative model (with a product term between sex and age) that doesn't require the assumption, and we'll do that later.

11.5.2 The ANCOVA Table

First, though, we'll look at the ANCOVA table.

```
    anova(lm(st_delta ~ sex + age, data = emphysema))
Analysis of Variance Table
Response: st_delta
        Df Sum Sq Mean Sq F value Pr(>F)
sex 1 49.284 49.284 4.6507 0.05203 .
age 1 2.209 2.209 0.2085 0.65612
Residuals 12 127.164 10.597
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

When we tested sex without accounting for age, we found a p value of 0.032 , which is less than our usual cutpoint of 0.05 . But when we adjusted for age, we find that sex's p value rises, even though age doesn't seem to have a particularly strong influence on st_delta by itself, according to the ANCOVA table.

11.6 Rerunning the ANCOVA model after simple imputation

We could have imputed the missing age value for patient 5, rather than just deleting that patient. Suppose we do the simplest potentially reasonable thing to do: insert the mean age in where the NA value currently exists.

```
emph_imp <- replace_na(emphysema, list(age = mean(emphysema$age, na.rm = TRUE)))
emph_imp
```

	patient	age	sex	st_base	st_day5	st_day10	st_delta
	<dbl>	<dbl>	<chr>	<dbl>	<dbl>	<dbl>	<dbl>
1	1	61	F	14.1	2.3	10.3	-11.8
2	2	70	F	7.2	5.4	7.3	-1.8
3	3	65	M	14.2	11.9	11.3	-2.3
4	4	65	M	10.3	10.7	13.8	0.400
5	5	65.2	M	9.9	10.7	11.7	0.800
6	6	76	M	5.2	6.8	4.2	1.6
7	7	72	M	10.4	14.6	14.1	4.2
8	8	69	F	10.5	7.2	5.4	-3.3
9	9	66	M	5	5	5.1	0
10	10	62	M	8.6	8.1	7.4	-0.5
11	11	65	F	16.6	14.9	13	-1.70
12	12	71	M	16.4	18.6	17.1	2.20
13	13	51	F	12.2	11	12.3	-1.2
14	14	71	M	6.6	3.7	4.5	-2.9
15	15	64	F	15.4	15.2	13.6	-0.200
16	16	50	M	10.2	10.8	11.2	0.600

More on simple imputation and missing data is coming soon.
For now, we can rerun the ANCOVA model on this new data set, after imputation...

```
anova(lm(st_delta ~ sex + age, data = emph_imp))
Analysis of Variance Table
Response: st_delta
    Df Sum Sq Mean Sq F value Pr(>F)
sex 1 52.547 52.547 5.3623 0.03755 *
age 1
Residuals 13 127.392 9.799
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

When we do this, we see that now the sex variable returns to a p value below 0.05 . Our complete case analysis (which omitted patient 5) gives us a different result than the ANCOVA based on the data after mean imputation.

11.7 Looking at a factor-covariate interaction

Let's run a model including the interaction (product) term between age and sex, which implies that the slope of age on our outcome (st_delta) depends on the patient's sex. We'll use the imputed data again. Here is the new ANCOVA table, which suggests that the interaction of age and sex is small (because it accounts for only a small amount of the total Sum of Squares) with a p value of 0.91 .

```
    anova(lm(st_delta ~ sex * age, data = emph_imp))
Analysis of Variance Table
Response: st_delta
        Df Sum Sq Mean Sq F value Pr(>F)
sex 1 52.547 52.547 4.9549 0.04594 *
age 1 2.151 2.151 0.2028 0.66051
```



```
Residuals 12 127.261 10.605
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Since the interaction term isn't accounting for much variation, we probably don't need it here. But let's look at its interpretation anyway, just to fix ideas. To do that, we'll need the coefficients from the underlying regression model.

```
    tidy(lm(st_delta ~ sex * age, data = emph_imp))
# A tibble: 4 x 5
    term estimate std.error statistic p.value
    <chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -5.65 13.5 
2 sexM 1.72 16.8 0.102 0.920
3 age 0.0365 0.211 0.173 0.866
4 sexM:age 0.0289 0.260 0.111 0.914
```

Our ANCOVA model for st_delta incorporating the age x sex product term is $-5.65+1.72$ $(\operatorname{sex}=\mathrm{M})+0.037$ age $+0.029(\operatorname{sex}=\mathrm{M})($ age $)$. So that means:

- our model for females is st_delta $=-5.65+0.037$ age
- our model for males is st_delta $=(-5.65+1.72)+(0.037+0.029)$ age, or $-3.93+$ 0.066 age
but, again, our conclusion from the ANCOVA table is that this increase in complexity (letting both the slope and intercept vary by sex) doesn't add much in the way of predictive value for our st_delta outcome.

11.8 Centering the Covariate to Facilitate ANCOVA Interpretation

When developing an ANCOVA model, we will often center or even center and rescale the covariate to facilitate interpretation of the product term. In this case, let's center age and rescale it by dividing by two standard deviations.

```
favstats(~ age, data = emph_imp)
min Q1 median Q3 max mean sd n missing
    50 63.5 65.1 70.25 76 65.2 6.978061 16 0
```

Note that in our imputed data, the mean age is 65.2 and the standard deviation of age is 7 years.

So we build the rescaled age variable that I'll call age_z, and then use it to refit our model.

```
    emph_imp <- emph_imp |>
        mutate(age_z = (age - mean(age))/ (2 * sd(age)))
anova(lm(st_delta ~ sex * age_z, data = emph_imp))
Analysis of Variance Table
Response: st_delta
            Df Sum Sq Mean Sq F value Pr(>F)
sex 1 52.547 52.547 4.9549 0.04594 *
age_z 1
sex:age_z 1 0.130 0.130}00.0123 0.91355
Residuals 12 127.261 10.605
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    tidy(lm(st_delta ~ sex * age_z, data = emph_imp))
```

\# A tibble: 4	x 5				
term	estimate	std.error	statistic	p.value	
	<chr>	<dbl>	<dbl>	<dbl>	<dbl>
1 (Intercept)	-3.27	1.39	-2.35	0.0364	
2 sexM	3.60	1.74	2.08	0.0601	
3 age_z	0.510	2.95	0.173	0.866	
4 sexM:age_z	0.403	3.63	0.111	0.914	

Comparing the two models, we have:

- (unscaled): st_delta $=-5.65+1.72(\operatorname{sex}=\mathrm{M})+0.037$ age $+0.029($ sex $=\mathrm{M}) \times($ age $)$
- (rescaled): st_delta $=-3.27+3.60($ sex $=M)+0.510$ rescaled age_z $+0.402($ sex $=$ M) x (rescaled age_z)

In essence, the rescaled model on age_z is:

- st_delta $=-3.27+0.510$ age_z for female subjects, and
- st_delta $=(-3.27+3.60)+(0.510+0.402)$ age_z $=0.33+0.912$ age_z for male subjects

Interpreting the centered, rescaled model, we have:

- no change in the ANOVA results or R-squared or residual standard deviation compared to the uncentered, unscaled model, but
- the intercept (-3.27) now represents the st_delta for a female of average age,
- the sex slope (3.60) represents the (male - female) difference in predicted st_delta for a person of average age,
- the age_z slope (0.510) represents the difference in predicted st_delta for a female one standard deviation older than the mean age as compared to a female one standard deviation younger than the mean age, and
- the product term's slope (0.402) represents the male - female difference in the slope of age_z, so that if you add the age_z slope (0.510) and the interaction slope (0.402) you see the difference in predicted st_delta for a male one standard deviation older than the mean age as compared to a male one standard deviation younger than the mean age.

12 Analysis of Covariance with the SMART data

In this chapter, we'll work with the smart_cle1_sh data file that we developed in Chapter 7.

12.1 R Setup Used Here

```
knitr::opts_chunk$set(comment = NA)
library(janitor)
library(broom)
library(mosaic)
library(tidyverse)
theme_set(theme_bw())
```


12.1.1 Data Load

```
smart_cle1_sh <- readRDS("data/smart_cle1_sh.Rds")
```


12.2 A New Small Study: Predicting BMI

We'll begin by investigating the problem of predicting bmi, at first with just three regression inputs: smoke100, female and physhealth, in our smart_cle1_sh data set.

- The outcome of interest is bmi.
- Inputs to the regression model are:
- smoke100 $=1$ if the subject has smoked 100 cigarettes in their lifetime
$-\mathrm{female}=1$ if the subject is female, and 0 if they are male
- physhealth $=$ number of poor physical health days in past 30 (treated as quantitative)

12.2.1 Does smoke100 predict bmi well?

12.2.1.1 Graphical Assessment

```
ggplot(smart_cle1_sh, aes (x = smoke100, y = bmi)) +
    geom_point()
```


Not so helpful. We should probably specify that smoke100 is a factor, and try another plotting approach.

```
ggplot(smart_cle1_sh, aes(x = factor(smoke100), y = bmi)) +
    geom_boxplot()
```


The median BMI looks a little higher for those who have smoked 100 cigarettes. Let's see if a model reflects that.

12.3 mod1: A simple t-test model

```
mod1 <- lm(bmi ~ smoke100, data = smart_cle1_sh)
mod1
Call:
lm(formula = bmi ~ smoke100, data = smart_cle1_sh)
Coefficients:
(Intercept) smoke100
        27.9390 0.8722
    summary(mod1)
```

```
Call:
lm(formula = bmi ~ smoke100, data = smart_cle1_sh)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-15.511 & -4.019 & -0.870 & 2.841 & 41.749
\end{tabular}
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) \(27.9390 \quad 0.2594107 .722 \quad<2 \mathrm{e}-16\) ***
smoke100 0.8722 0.3781 2.307 0.0213 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.353 on 1131 degrees of freedom
Multiple R-squared: 0.004682, Adjusted R-squared: 0.003802
F-statistic: 5.321 on 1 and 1131 DF, p-value: 0.02125
    confint(mod1)
\begin{tabular}{lrr} 
& \(2.5 \%\) & \(97.5 \%\) \\
(Intercept) & 27.4301016 & 28.447875 \\
smoke100 & 0.1303021 & 1.614195
\end{tabular}
    tidy(mod1, conf.int = TRUE, conf.level = 0.95)
# A tibble: 2 x 7
    term estimate std.error statistic p.value conf.low conf.high
    <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 27.9 0.259 108. 0 28.4
2 smoke100 0.872 0.378 <lllll
    glance(mod1)
# A tibble: 1 x 12
    r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.00468 0.00380 6.35 5.32 0.0213 1 -3702. 7409.7424.
# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
```

The model suggests, based on these 1133 subjects, that

- our best prediction for non-smokers is $\mathrm{BMI}=27.94 \mathrm{~kg} / \mathrm{m}^{2}$, and
- our best prediction for those who have smoked 100 cigarettes is $\mathrm{BMI}=27.94+0.87=$ $28.81 \mathrm{~kg} / \mathrm{m}^{2}$.
- the mean difference between smokers and non-smokers is $+0.87 \mathrm{~kg} / \mathrm{m}^{2}$ in BMI
- a 95% confidence (uncertainty) interval for that mean smoker - non-smoker difference in BMI ranges from 0.13 to 1.61
- the model accounts for 0.47% of the variation in BMI, so that knowing the respondent's tobacco status does very little to reduce the size of the prediction errors as compared to an intercept only model that would predict the overall mean BMI for each of our subjects.
- the model makes some enormous errors, with one subject being predicted to have a BMI 42 points lower than his/her actual BMI.

Note that this simple regression model just gives us the t-test.

```
t.test(bmi ~ smoke100, var.equal = TRUE, data = smart_cle1_sh)
```


Two Sample t-test

data: bmi by smoke100
$\mathrm{t}=-2.3066, \mathrm{df}=1131$, p -value $=0.02125$
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 95 percent confidence interval:
-1.6141946-0.1303021
sample estimates:
mean in group 0 mean in group 1
$27.93899 \quad 28.81124$

12.4 mod2: Adding another predictor (two-way ANOVA without interaction)

When we add in the information about female (sex) to our original model, we might first picture the data. We could look at separate histograms,

```
ggplot(smart_cle1_sh, aes(x = bmi)) +
    geom_histogram(bins = 30) +
    facet_grid(female ~ smoke100, labeller = label_both)
```


or maybe boxplots?

```
ggplot(smart_cle1_sh, aes(x = factor(female), y = bmi)) +
    geom_boxplot() +
    facet_wrap(~ smoke100, labeller = label_both)
```



```
ggplot(smart_cle1_sh, aes(x = female, y = bmi))+
    geom_point(size = 3, alpha = 0.2) +
    theme_bw() +
    facet_wrap(~ smoke100, labeller = label_both)
```


OK. Let's try fitting a model.

```
mod2 <- lm(bmi ~ female + smoke100, data = smart_cle1_sh)
mod2
```

Call:
lm(formula $=$ bmi \sim female + smoke100, data $=$ smart_cle1_sh)

Coefficients:
$\begin{array}{rrr}\text { (Intercept) } & \text { female } & \text { smoke100 } \\ 28.0265 & -0.1342 & 0.8555\end{array}$

This new model predicts only four predicted values:

- $\mathrm{bmi}=28.0265$ if the subject is male and has not smoked 100 cigarettes (so female $=0$ and smoke100 $=0$)
- $\mathrm{bmi}=28.0265-0.1342=27.8923$ if the subject is female and has not smoked 100 cigarettes ($\mathrm{female}=1$ and smoke100 $=0$)
- $\mathrm{bmi}=28.0265+0.8555=28.8820$ if the subject is male and has smoked 100 cigarettes (so female $=0$ and smoke100 = 1), and, finally
- $\mathrm{bmi}=28.0265-0.1342+0.8555=28.7478$ if the subject is female and has smoked 100 cigarettes (so both female and smoke100 = 1).

Another way to put this is that for those who have not smoked 100 cigarettes, the model is:

- bmi $=28.0265-0.1342$ female
and for those who have smoked 100 cigarettes, the model is:
- bmi $=28.8820-0.1342$ female

Only the intercept of the bmi-female model changes depending on smoke100.

```
summary(mod2)
```

Call:
lm(formula $=$ bmi \sim female + smoke100, data $=$ smart_cle1_sh)

```
Residuals:
```


confint (mod2)
$2.5 \% \quad 97.5 \%$
(Intercept) 27.316114028 .7368281
female -0.8944773 0.6259881
smoke100 0.1072974 1.6037825

The slopes of both female and smoke100 have confidence intervals that are completely below zero, indicating that both female sex and smoke100 appear to be associated with reductions in bmi.

The R^{2} value suggests that 0.4788% of the variation in bmi is accounted for by this ANOVA model.

In fact, this regression (on two binary indicator variables) is simply a two-way ANOVA model without an interaction term.

```
anova(mod2)
Analysis of Variance Table
Response: bmi
    Df Sum Sq Mean Sq F value Pr (>F)
female 1 16 16.301 0.4036 0.52538
smoke100 1 203 203.296 5.0330 0.02506 *
Residuals 1130 45644 40.393
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


12.5 mod3: Adding the interaction term (Two-way ANOVA with interaction)

Suppose we want to let the effect of female vary depending on the smoke100 status. Then we need to incorporate an interaction term in our model.

```
mod3 <- lm(bmi ~ female * smoke100, data = smart_cle1_sh)
mod3
Call:
lm(formula = bmi ~ female * smoke100, data = smart_cle1_sh)
Coefficients:
    (Intercept) female smoke100 female:smoke100
            28.2690 -0.5064 0.4119 0.7536
```

So, for example, for a male who has smoked 100 cigarettes, this model predicts

- $\mathrm{bmi}=28.269-0.506(0)+0.412(1)+0.754(0)(1)=28.269+0.412=28.681$

And for a female who has smoked 100 cigarettes, the model predicts

- $\mathrm{bmi}=28.269-0.506(1)+0.412(1)+0.754(1)(1)=28.269-0.506+0.412+0.754=$ 28.929

For those who have not smoked 100 cigarettes, the model is:

- bmi $=28.269-0.506$ female

But for those who have smoked 100 cigarettes, the model is:

- $\mathrm{bmi}=(28.269+0.412)+(-0.506+0.754)$ female, or ${ }^{\prime}$,
- $\mathrm{bmi}=28.681-0.248$ female

Now, both the slope and the intercept of the bmi-female model change depending on smoke100.

```
summary (mod3)
```

Call:
lm(formula $=$ bmi ~ female $*$ smoke100, data $=$ smart_cle1_sh)

Residuals:

Residual standard error: 6.356 on 1129 degrees of freedom Multiple R-squared: 0.005621, Adjusted R-squared: 0.002979 F-statistic: 2.127 on 3 and 1129 DF, p-value: 0.09507
confint (mod3)

	2.5%	97.5%
(Intercept)	27.4063783	29.1315563
female	-1.5749026	0.5621793
smoke100	-0.7547605	1.5786121
female:smoke100	-0.7670239	2.2742178

In fact, this regression (on two binary indicator variables and a product term) is simply a two-way ANOVA model with an interaction term.

```
anova(mod3)
Analysis of Variance Table
Response: bmi
\begin{tabular}{lrrrrl} 
& Df & Sum Sq Mean Sq F value & \(\operatorname{Pr}(>F)\) \\
female & 1 & 16 & 16.301 & 0.4035 & 0.52539 \\
smoke100 & 1 & 203 & 203.296 & 5.0327 & \(0.02507 *\) \\
female:smoke100 & 1 & 38 & 38.194 & 0.9455 & 0.33107 \\
Residuals & 1129 & 45606 & 40.395 & &
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The interaction term doesn't change very much here. Its uncertainty interval includes zero, and the overall model still accounts for less than 1% of the variation in bmi.

12.6 mod4: Using smoke100 and physhealth in a model for bmi

```
ggplot(smart_cle1_sh, aes(x = physhealth, y = bmi, color = factor(smoke100))) +
    geom_point() +
    guides(col = "none") +
    geom_smooth(method = "lm", se = FALSE) +
    facet_wrap(~ smoke100, labeller = label_both)
`geom_smooth()` using formula = 'y ~ x'
```


Does the difference in slopes of bmi and physhealth for those who have and haven't smoked at least 100 cigarettes appear to be substantial and important?

```
mod4 <- lm(bmi ~ smoke100 * physhealth, data = smart_cle1_sh)
summary(mod4)
```

Call:
lm(formula $=$ bmi \sim smoke100 * physhealth, data $=$ smart_cle1_sh)

Residuals:

Min	$1 Q$	Median	3Q	Max
-19.011	-3.811	-0.559	2.609	38.249

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	27.49077	0.28369	96.904	$<2 \mathrm{e}-16 \quad * * *$	
smoke100	0.57017	0.41911	1.360	0.173965	
physhealth	0.10840	0.02995	3.619	$0.000308 \quad * * *$	
smoke100: physhealth	0.03326	0.04093	0.813	0.416561	

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.252 on 1129 degrees of freedom
Multiple R-squared: 0.03782, Adjusted R-squared: 0.03526
F-statistic: 14.79 on 3 and 1129 DF, p-value: 1.886e-09
```

Does it seem as though the addition of physhealth has improved our model substantially over a model with smoke100 alone (which, you recall, was mod1)?

Since the mod4 model contains the mod1 model's predictors as a subset and the outcome is the same for each model, we consider the models nested and have some extra tools available to compare them.

- I might start by looking at the basic summaries for each model.
glance (mod4)

```
# A tibble: 1 x 12
    r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.0378 0.0353 6.25 14.8 0.00000000189 3 -3682. 7375.7400.
# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
```

 glance(mod1)
 \# A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
$10.00468 \quad 0.00380 \quad 6.35 \quad 5.32 \quad 0.0213 \quad 1-3702.7409 .7424$.
\# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

- The R^{2} is much larger for the model with physhealth, but still very tiny.
- Smaller AIC and smaller BIC statistics are more desirable. Here, there's little to choose from, so mod4 looks better, too.
- We might also consider a significance test by looking at an ANOVA model comparison. This is only appropriate because mod1 is nested in mod4.

```
anova(mod4, mod1)
```

```
Analysis of Variance Table
Model 1: bmi ~ smoke100 * physhealth
Model 2: bmi ~ smoke100
    Res.Df RSS Df Sum of Sq F Pr (>F)
1 112944129
2 1131 45649 -2 -1519.7 19.44 5.005e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The addition of the physhealth term appears to be an improvement, not that that means very much.

12.7 Making Predictions with a Linear Regression Model

Recall model 4, which yields predictions for body mass index on the basis of the main effects of having smoked (smoke100) and days of poor physical health (physhealth) and their interaction.

```
mod4
```

Call:
lm(formula $=$ bmi \sim smoke100 * physhealth, data $=$ smart_cle1_sh)

Coefficients:
(Intercept) smoke100 physhealth
smoke100: physhealth
0.03326

12.7.1 Fitting an Individual Prediction and 95\% Prediction Interval

What do we predict for the bmi of a subject who has smoked at least 100 cigarettes in their life and had 8 poor physical health days in the past 30 ?

```
new1 <- tibble(smoke100 = 1, physhealth = 8)
predict(mod4, newdata = new1, interval = "prediction", level = 0.95)
```

```
    fit lwr upr
1 29.19423 16.91508 41.47338
```

The predicted bmi for this new subject is shown above. The prediction interval shows the bounds of a 95% uncertainty interval for a predicted bmi for an individual smoker ${ }^{1}$ who has 8 days of poor physical health out of the past 30 . From the predict function applied to a linear model, we can get the prediction intervals for any new data points in this manner.

12.7.2 Confidence Interval for an Average Prediction

- What do we predict for the average body mass index of a population of subjects who are smokers and have physhealth $=8 ?$

```
predict(mod4, newdata = new1, interval = "confidence", level = 0.95)
```

 fit lwr upr
 129.1942328 .6426729 .74579

- How does this result compare to the prediction interval?

12.7.3 Fitting Multiple Individual Predictions to New Data

- How does our prediction change for a respondent if they instead have 7 , or 9 poor physical health days? What if they have or don't have a history of smoking?
c8_new2 <- tibble(subjectid = 1001:1006, smoke100 = c(1, 1, 1, 0, 0, 0), physhealth = c(7, pred2 <- predict(mod4, newdata = c8_new2, interval = "prediction", level = 0.95) |> as_tib

```
result2 <- bind_cols(c8_new2, pred2)
```

result2
\# A tibble: 6 x 6
subjectid smoke100 physhealth fit lwr upr
<int> <dbl> <dbl> <dbl> <dbl> <dbl>

1	1001	1	7	29.1	16.8	41.3
2	1002	1	8	29.2	16.9	41.5
3	1003	1	9	29.3	17.1	41.6

[^17]| 4 | 1004 | 0 | 7 | 28.2 | 16.0 | 40.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 1005 | 0 | 8 | 28.4 | 16.1 | 40.6 |
| 6 | 1006 | 0 | 9 | 28.5 | 16.2 | 40.7 |

The result2 tibble contains predictions for each scenario.

- Which has a bigger impact on these predictions and prediction intervals? A one category change in smoke100 or a one hour change in physhealth?

12.8 Centering the model

Our model mod4 has four predictors (the constant, physhealth, smoke100 and their interaction) but just two inputs (smoke100 and physhealth.) If we center the quantitative input physhealth before building the model, we get a more interpretable interaction term.

```
smart_cle1_sh_c <- smart_cle1_sh |>
    mutate(physhealth_c = physhealth - mean(physhealth))
mod4_c <- lm(bmi ~ smoke100 * physhealth_c, data = smart_cle1_sh_c)
summary(mod4_c)
```

Call:
lm(formula $=$ bmi ~ smoke100 * physhealth_c, data $=$ smart_cle1_sh_c)
Residuals:

Min	$1 Q$	Median	3Q	Max
-19.011	-3.811	-0.559	2.609	38.249

Coefficients:

| | Estimate | Std. Error t value $\operatorname{Pr}(>\|t\|)$ | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 27.99821 | 0.25576 | 109.471 | $<2 \mathrm{e}-16$ | $* * *$ |
| smoke100 | 0.72589 | 0.37288 | 1.947 | 0.051818 | . |
| physhealth_c | 0.10840 | 0.02995 | 3.619 | 0.000308 | $* * *$ |
| smoke100:physhealth_c | 0.03326 | 0.04093 | 0.813 | 0.416561 | |

Residual standard error: 6.252 on 1129 degrees of freedom

Multiple R-squared: 0.03782, Adjusted R-squared: 0.03526
F-statistic: 14.79 on 3 and 1129 DF, p-value: 1.886e-09

What has changed as compared to the original mod4?

- Our original model was bmi $=27.5+0.57$ smoke100 +0.11 physhealth -0.03 smoke100 x physhealth
- Our new model is bmi $=28.0+0.73$ smoke100 +0.11 centered physhealth +0.03 smoke100 x centered physhealth.

So our new model on centered data is:

- $28.0+0.11$ centered physhealth_c for non-smokers, and
- $(28.0+0.73)+(0.11-0.03)$ centered physhealth_c, or $28.73+0.08$ centered physhealth_c for smokers.

In our new (centered physhealth_c) model,

- the main effect of smoke100 now corresponds to a predictive difference (smoker - nonsmoker) in bmi with physhealth at its mean value, 4.68 days,
- the intercept term is now the predicted bmi for a non-smoker with an average physhealth, and
- the product term corresponds to the change in the slope of centered physhealth_c on bmi for a smoker rather than a non-smoker, while
- the residual standard deviation and the R -squared values remain unchanged from the model before centering.

12.8.1 Plot of Model 4 on Centered physhealth: mod4_c

```
ggplot(smart_cle1_sh_c, aes(x = physhealth_c, y = bmi, group = smoke100, col = factor(smok
    geom_point(alpha = 0.5, size = 2) +
    geom_smooth(method = "lm", se = FALSE, formula = y ~ x) +
    guides(color = "none") +
    labs(x = "Poor Physical Health Days, centered", y = "Body Mass Index",
            title = "Model `mod4` on centered data") +
    facet_wrap(~ smoke100, labeller = label_both)
```


12.9 Rescaling an input by subtracting the mean and dividing by 2 standard deviations

Centering helped us interpret the main effects in the regression, but it still leaves a scaling problem.

- The smoke100 coefficient estimate is much larger than that of physhealth, but this is misleading, considering that we are comparing the complete change in one variable (smoking or not) to a 1-day change in physhealth.
- @GelmanHill2007 recommend all continuous predictors be scaled by dividing by 2 standard deviations, so that:
- a 1-unit change in the rescaled predictor corresponds to a change from 1 standard deviation below the mean, to 1 standard deviation above.
- an unscaled binary ($1 / 0$) predictor with 50% probability of occurring will be exactly comparable to a rescaled continuous predictor done in this way.

```
smart_cle1_sh_rescale <- smart_cle1_sh |>
    mutate(physhealth_z = (physhealth - mean(physhealth))/(2*sd(physhealth)))
```


12.9.1 Refitting model mod4 to the rescaled data

```
mod4_z <- lm(bmi ~ smoke100 * physhealth_z, data = smart_cle1_sh_rescale)
summary(mod4_z)
```

Call:
lm(formula = bmi ~ smoke100 * physhealth_z, data = smart_cle1_sh_rescale)
Residuals:

Min	$1 Q$	Median	3Q	Max
-19.011	-3.811	-0.559	2.609	38.249

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

(Intercept)	27.9982	0.2558	109.471	$<2 \mathrm{e}-16$	$* * *$
smoke100	0.7259	0.3729	1.947	0.051818	.
physhealth_z	1.9774	0.5463	3.619	0.000308	$* * *$
smoke100:physhealth_z	0.6068	0.7467	0.813	0.416561	

Signif. codes: $0{ }^{\prime} * * * ' 0.001{ }^{\prime} * * ' 0.01 '^{\prime \prime} 0.05 '^{\prime} 0.1$ ' 1
Residual standard error: 6.252 on 1129 degrees of freedom
Multiple R-squared: 0.03782, Adjusted R-squared: 0.03526
F-statistic: 14.79 on 3 and 1129 DF, p-value: $1.886 \mathrm{e}-09$

12.9.2 Interpreting the model on rescaled data

What has changed as compared to the original mod4?

- Our original model was bmi $=27.5+0.57$ smoke $100+0.11$ physhealth +0.03 smoke 100 x physhealth
- Our model on centered physhealth was bmi $=28.0+0.73$ smoke100 +0.11 centered physhealth +0.03 smoke100 x centered physhealth.
- Our new model on rescaled physhealth is bmi $=28.0+0.73$ smoke100 +1.98 rescaled physhealth +0.61 smoke100 x rescaled physhealth

So our rescaled model is:

- $28.0+1.98$ rescaled physhealth_z for non-smokers, and
- $(28.0+0.73)+(1.98+0.61)$ rescaled physhealth_z, or $28.73+2.59$ rescaled physhealth_z for smokers.

In this new rescaled (physhealth_z) model, then,

- the main effect of smoke100, 0.73 , still corresponds to a predictive difference (smoker -non-smoker) in bmi with physhealth at its mean value, 4.68 days,
- the intercept term is still the predicted bmi for a non-smoker with an average physhealth count, and
- the residual standard deviation and the R -squared values remain unchanged,
as before, but now we also have that:
- the coefficient of physhealth_z indicates the predictive difference in bmi associated with a change in physhealth of 2 standard deviations (from one standard deviation below the mean of 4.68 to one standard deviation above 4.68.)
- Since the standard deviation of physhealth is 9.12 (see below), this covers a massive range of potential values of physhealth from 0 all the way up to $4.68+2(9.12)=$ 22.92 days.

```
favstats(~ physhealth, data = smart_cle1_sh)
min Q1 median Q3 max mean sd n missing
    0
```

- the coefficient of the product term (0.61) corresponds to the change in the coefficient of physhealth_z for smokers as compared to non-smokers.

12.9.3 Plot of model on rescaled data

```
    ggplot(smart_cle1_sh_rescale, aes(x = physhealth_z, y = bmi,
        group = smoke100, col = factor(smoke100))) +
        geom_point(alpha = 0.5) +
        geom_smooth(method = "lm", se = FALSE, size = 1.5) +
        scale_color_discrete(name = "Is subject a smoker?") +
        labs(x = "Poor Physical Health Days, standardized (2 sd)", y = "Body Mass Index",
        title = "Model `mod4_z` on rescaled data")
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.
```

```
`geom_smooth()` using formula = 'y ~ x'
```


There's very little difference here.

12.10 mod5: What if we add more variables?

We can boost our R^{2} a bit, to nearly 5%, by adding in two new variables, related to whether or not the subject (in the past 30 days) used the internet, and the average number of alcoholic drinks per week consumed by ths subject.

```
mod5 <- lm(bmi ~ smoke100 + female +physhealth + internet30 + drinks_wk,
    data = smart_cle1_sh)
summary(mod5)
```

Call:
lm(formula $=$ bmi ~ smoke100 + female + physhealth + internet30 + drinks_wk, data = smart_cle1_sh)

Residuals:

1. Here's the ANOVA for this model. What can we study with this?
```
anova(mod5)
```

Analysis of Variance Table

Response: bmi
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
smoke100 $12215 \quad 214.75 \quad 5.5304 \quad 0.018861$ *

female	1	5	4.85	0.1249	0.723878

physhealth $1 \quad 15081508.0838 .83726 .497 e-10$ ***
$\begin{array}{lllllll}\text { internet30 } & 1 & 15 & 14.69 & 0.3783 & 0.538650\end{array}$
drinks_wk $\quad 1 \quad 359 \quad 359.05 \quad 9.2466 \quad 0.002414$ **
Residuals 11274376238.83

Signif. codes: $0{ }^{\prime} * * * ' 0.001{ }^{\prime} * * ' 0.01 '^{\prime \prime} 0.05 '^{\prime} 0.1 '^{\prime} 1$
2. Consider the revised output below. Now what can we study?

```
anova(lm(bmi ~ smoke100 + internet30 + drinks_wk + female + physhealth,
    data = smart_cle1_sh))
```

Analysis of Variance Table

Response: bmi

3. What does the output below let us conclude?

```
anova(lm(bmi ~ smoke100 + internet30 + drinks_wk + female + physhealth,
        data = smart_cle1_sh),
    lm(bmi ~ smoke100 + female + drinks_wk,
            data = smart_cle1_sh))
```

Analysis of Variance Table

Model 1: bmi ~ smoke100 + internet30 + drinks_wk + female + physhealth
Model 2: bmi ~ smoke100 + female + drinks_wk
Res.Df RSS Df Sum of Sq F $\operatorname{Pr}(>F)$
1112743762
$2112945166-2 \quad-1403.718 .0751 .877 e-08 * * *$

Signif. codes: $0{ }^{\prime} * * * ' 0.001{ }^{\prime} * * ' 0.01{ }^{\prime} *^{\prime} 0.05 '^{\prime} 0.1 \mathrm{I}^{\prime} 1$
4. What does it mean for the models to be "nested"?

12.11 mod6: Would adding self-reported health help?

And we can do even a bit better than that by adding in a multi-categorical measure: selfreported general health.

```
mod6 <- lm(bmi ~ female + smoke100 + physhealth + internet30 + drinks_wk + genhealth,
    data = smart_cle1_sh)
summary(mod6)
```

```
Call:
lm(formula = bmi ~ female + smoke100 + physhealth + internet30 +
    drinks_wk + genhealth, data = smart_cle1_sh)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-19.216 & -3.659 & -0.736 & 2.669 & 36.810
\end{tabular}
Coefficients:
\begin{tabular}{rrrrl} 
Estimate & Std. Error t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) & \\
25.20736 & 0.71106 & 35.450 & \(<2 \mathrm{e}-16\) & \(* * *\) \\
-0.31949 & 0.37667 & -0.848 & 0.3965 & \\
0.45866 & 0.37214 & 1.232 & 0.2180 & \\
0.04353 & 0.02506 & 1.737 & 0.0827 &. \\
0.93270 & 0.48273 & 1.932 & 0.0536 &. \\
-0.07712 & 0.03294 & -2.341 & 0.0194 & \(*\) \\
1.21169 & 0.56838 & 2.132 & 0.0332 & \(*\) \\
3.22783 & 0.58009 & 5.564 & \(3.29 \mathrm{e}-08\) & \(* * *\) \\
4.14497 & 0.73284 & 5.656 & \(1.96 \mathrm{e}-08\) & \(* * *\) \\
5.86335 & 1.09253 & 5.367 & \(9.73 \mathrm{e}-08\) & \(* * *\)
\end{tabular}
genhealth5_Poor
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.089 on 1123 degrees of freedom
Multiple R-squared: 0.09206, Adjusted R-squared: 0.08478
F-statistic: 12.65 on 9 and 1123 DF, p-value: < 2.2e-16
```

1. If Harry and Marty have the same values of female, smoke100, physhealth, internet30 and drinks_wk, but Harry rates his health as Good, and Marty rates his as Fair, then what is the difference in the predictions? Who is predicted to have a larger BMI, and by how much?
2. What does this normal probability plot of the residuals suggest?
```
plot(mod6, which = 2)
```


12.12 Key Regression Assumptions for Building Effective Prediction Models

1. Validity - the data you are analyzing should map to the research question you are trying to answer.

- The outcome should accurately reflect the phenomenon of interest.
- The model should include all relevant predictors. (It can be difficult to decide which predictors are necessary, and what to do with predictors that have large standard errors.)
- The model should generalize to all of the cases to which it will be applied.
- Can the available data answer our question reliably?

2. Additivity and linearity - most important assumption of a regression model is that its deterministic component is a linear function of the predictors. We often think about transformations in this setting.
3. Independence of errors - errors from the prediction line are independent of each other
4. Equal variance of errors - if this is violated, we can more efficiently estimate parameters using weighted least squares approaches, where each point is weighted inversely proportional to its variance, but this doesn't affect the coefficients much, if at all.
5. Normality of errors - not generally important for estimating the regression line

12.12.1 Checking Assumptions in model mod6

1. How does the assumption of linearity behind this model look?
```
plot(mod6, which = 1)
```


We see no strong signs of serious non-linearity here. There's no obvious curve in the plot, for example. We may have a problem with increasing variance as we move to the right.
2. What can we conclude from the plot below?

```
plot(mod6, which = 5)
```


This plot can help us identify points with large standardized residuals, large leverage values, and large influence on the model (as indicated by large values of Cook's distance.) In this case, I see no signs of any points used in the model with especially large influence, although there are some poorly fitted points (with especially large standardized residuals.)

We might want to identify the point listed here as 961 , which appears to have an enormous standardized residual. To do so, we can use the slice function from dplyr.

```
smart_cle1_sh |> slice(961) |> select(SEQNO)
# A tibble: 1 x 1
    SEQNO
    <dbl>
12017000961
```

Now we know exactly which subject we're talking about.
3. What other residual plots are available with plot and how do we interpret them?

```
plot(mod6, which = 2)
```


Q-Q Residuals

 Theoretical Quantiles
 $\mathrm{m}(\mathrm{bmi} \sim$ female + smoke100 + physhealth + internet30 + drinks_wk + genh

This plot is simply a Normal Q-Q plot of the standardized residuals from our model. We're looking here for serious problems with the assumption of Normality.

```
plot(mod6, which = 3)
```


Fitted values
m (bmi \sim female + smoke100 + physhealth + internet30 + drinks_wk + genh

This is a scale-location plot, designed to help us see non-constant variance in the residuals as we move across the fitted values as a linear trend, rather than as a fan shape, by plotting the square root of the residuals on the vertical axis.

```
plot(mod6, which = 4)
```


Cook's distance

Obs. number
m(bmi ~ female + smoke100 + physhealth + internet30 + drinks_wk + genh

Finally, this is an index plot of the Cook's distance values, allowing us to identify points that are particularly large. Remember that a value of 0.5 (or perhaps even 1.0) is a reasonable boundary for a substantially influential point.

13 Adding Non-linear Terms to a Linear Regression

13.1 R Setup Used Here

```
knitr::opts_chunk$set(comment = NA)
library(janitor)
library(broom)
library(car)
library(Hmisc)
library(mosaic)
library(rms)
library(patchwork)
library(tidyverse)
theme_set(theme_bw())
```


13.1.1 Data Load

```
pollution <- read_csv("data/pollution.csv", show_col_types = FALSE)
```


13.2 The pollution data

Consider the pollution data set, which contain 15 independent variables and a measure of mortality, describing 60 US metropolitan areas in 1959-1961. The data come from @McDonald1973, and are available at http://www4.stat.ncsu.edu/~boos/var.select/pollution.html and our web site.

```
pollution
```


Here's a codebook:

Variable	Description
y	Total Age Adjusted Mortality Rate
x1	Mean annual precipitation in inches
x2	Mean January temperature in degrees Fahrenheit
x3	Mean July temperature in degrees Fahrenheit
x4	Percent of 1960 SMSA population that is 65 years of age or over
x5	Population per household, 1960 SMSA
x6	Median school years completed for those over 25 in 1960 SMSA
x7	Percent of housing units that are found with facilities
x8	Population per square mile in urbanized area in 1960
x9	Percent of 1960 urbanized area population that is non-white
x10	Percent employment in white-collar occupations in 1960 urbanized area
x11	Percent of families with income under $\$ 30,000$ in 1960 urbanized area
x12	Relative population potential of hydrocarbons, HC
x13	Relative pollution potential of oxides of nitrogen, NOx
x14	Relative pollution potential of sulfur dioxide, SO2
x15	Percent relative humidity, annual average at 1 p.m.

13.3 Fitting a straight line model to predict y from $x 2$

Consider the relationship between y, the age-adjusted mortality rate, and x2, the mean January temperature, across these 60 areas. I'll include both a linear model (in blue) and a loess smooth (in red.) Does the relationship appear to be linear?

```
ggplot(pollution, aes(x = x2, y = y)) +
    geom_point() +
    geom_smooth(method = "lm", col = "blue", se = F) +
    geom_smooth(method = "loess", col = "red", se = F)
```

`geom_smooth()` using formula = 'y ~ x'
`geom_smooth()' using formula = 'y ~ x'

Suppose we plot the residuals that emerge from the linear model shown in blue, above. Do we see a curve in a plot of residuals against fitted values?

```
plot(lm(y ~ x2, data = pollution), which = 1)
```


13.4 Quadratic polynomial model to predict y using x2

A polynomial in the variable x of degree D is a linear combination of the powers of x up to D.

For example:

- Linear: $y=\beta_{0}+\beta_{1} x$
- Quadratic: $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}$
- Cubic: $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}$
- Quartic: $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\beta_{4} x^{4}$
- Quintic: $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\beta_{4} x^{4}+\beta_{5} x^{5}$

Fitting such a model creates a polynomial regression.

13.4.1 The raw quadratic model

Let's look at a quadratic model which predicts y using x2 and the square of x 2 , so that our model is of the form:

$$
y=\beta_{0}+\beta_{1} x_{2}+\beta_{2} x_{2}^{2}+\text { error }
$$

There are several ways to fit this exact model.

- One approach is to calculate the square of $x 2$ within our pollution data set, and then feed both $x 2$ and $\times 2$ squared to 1 m .
- Another approach uses the I function within our lm to specify the use of both x2 and its square.
- Yet another approach uses the poly function within our $1 m$, which can be used to specify raw models including $x 2$ and $x 2$ squared.

```
pollution <- pollution |>
    mutate(x2squared = x2^2)
mod2a <- lm(y ~ x2 + x2squared, data = pollution)
mod2b <- lm(y ~ x2 + I(x2~2), data = pollution)
mod2c <- lm(y ~ poly(x2, degree = 2, raw = TRUE), data = pollution)
```

Each of these approaches produces the same model, as they are just different ways of expressing the same idea.

```
summary(mod2a)
```

```
Call:
lm(formula = y ~ x2 + x2squared, data = pollution)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-148.977 & -38.651 & 6.889 & 35.312 & 189.346
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 785.77449 79.54086 9.879 5.87e-14 ***
x2 8.87640 4.27394 2.077 0.0423 *
x2squared -0.11704 0.05429 -2.156 0.0353*
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 60.83 on 57 degrees of freedom
Multiple R-squared: 0.07623, Adjusted R-squared: 0.04382
F-statistic: 2.352 on 2 and 57 DF, p-value: 0.1044
```

And if we plot the fitted values for this mod2 using whatever approach you like, we get exactly the same result.

```
mod2a_aug <- augment(mod2a, pollution)
ggplot(mod2a_aug, aes(x = x2, y = y)) +
    geom_point() +
    geom_line(aes(x = x2, y = .fitted), col = "red") +
    labs(title = "Model 2a: Quadratic fit using x2 and x2^2")
```

Model 2a: Quadratic fit using x2 and x2^2


```
mod2b_aug <- augment(mod2b, pollution)
mod2c_aug <- augment(mod2c, pollution)
p1 <- ggplot(mod2b_aug, aes(x = x2, y = y)) +
    geom_point() +
    geom_line(aes(x = x2, y = .fitted), col = "red") +
    labs(title = "Model 2b: Quadratic fit")
p2 <- ggplot(mod2c_aug, aes(x = x2, y = y)) +
    geom_point() +
```

```
    geom_line(aes(x = x2, y = .fitted), col = "blue") +
    labs(title = "Model 2c: Quadratic fit")
p1 + p2
```


13.4.2 Raw quadratic fit after centering x 2

Sometimes, we'll center (and perhaps rescale, too) the x 2 variable before including it in a quadratic fit like this.

```
pollution <- pollution |>
    mutate(x2_c = x2 - mean(x2))
mod2d <- lm(y ~ x2_c + I(x2_c^2), data = pollution)
summary(mod2d)
Call:
lm(formula = y ~ x2_c + I(x2_c^2), data = pollution)
```

```
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-148.977 & -38.651 & 6.889 & 35.312 & 189.346
\end{tabular}
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept) 952.25941 9.59896 99.204 <2e-16 ***
x2_c 0.92163 0.93237 0.988
I (x2_c^2) -0.11704 0.05429 -2.156 0.0353 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 60.83 on 57 degrees of freedom
Multiple R-squared: 0.07623, Adjusted R-squared: 0.04382
F-statistic: 2.352 on 2 and 57 DF, p-value: 0.1044
```

Note that this model looks very different, with the exception of the second order quadratic term. But, it produces the same fitted values as the models we fit previously.

```
mod2d_aug <- augment(mod2d, pollution)
ggplot(mod2d_aug, aes(x = x2, y = y)) +
    geom_point() +
    geom_line(aes(x = x2, y = .fitted), col = "red") +
    labs(title = "Model 2d: Quadratic fit using centered x2 and x2^2")
```

Model 2d: Quadratic fit using centered x 2 and $\mathrm{x} 2^{\wedge} 2$

Or, if you don't believe me yet, look at the four sets of fitted values another way.

```
favstats(~ .fitted, data = mod2a_aug)
    min Q1 median Q3 max mean sd n missing
855.1041 936.7155 945.597 950.2883 954.073 940.3585 17.17507 60 0
```

 favstats (~ .fitted, data \(=\) mod2b_aug)
 min Q1 median Q3 max mean sd \(n\) missing
 $855.1041936 .7155945 .597950 .2883954 .073940 .358517 .1750760 \quad 0$
favstats (\sim.fitted, data $=$ mod2c_aug)
min Q1 median Q3 max mean sd n missing
855.1041936 .7155945 .597950 .2883954 .073940 .358517 .17507600

```
favstats(~ .fitted, data = mod2d_aug)
```

```
    min Q1 median Q3 max mean sd n missing
855.1041 936.7155 945.597 950.2883 954.073 940.3585 17.17507 60 0
```


13.5 Orthogonal Polynomials

Now, let's fit an orthogonal polynomial of degree 2 to predict y using x2.

```
mod2_orth <- lm(y ~ poly(x2, 2), data = pollution)
summary(mod2_orth)
```

Call:
$\operatorname{lm}(f o r m u l a=y \sim \operatorname{poly}(x 2,2)$, data $=$ pollution)

Residuals:

Residual standard error: 60.83 on 57 degrees of freedom
Multiple R-squared: 0.07623, Adjusted R-squared: 0.04382
F-statistic: 2.352 on 2 and 57 DF, p-value: 0.1044

Now this looks very different in the equation, but, again, we can see that this produces exactly the same fitted values as our previous models, and the same model fit summaries. Is it, in fact, the same model? Here, we'll plot the fitted Model 2 a in a red line, and this new Model 2 with Orthogonal Polynomials as blue points.

```
mod2orth_aug <- augment(mod2_orth, pollution)
ggplot(mod2orth_aug, aes(x = x2, y = y)) +
    geom_point() +
```

```
geom_point(aes(x = x2, y = .fitted),
            col = "blue", size = 2) +
geom_line(data = mod2a_aug, aes(x = x2, y = .fitted),
    col = "red") +
labs(title = "Model 2 with Orthogonal Polynomial, degree 2")
```

Model 2 with Orthogonal Polynomial, degree 2

Yes, it is again the same model in terms of the predictions it makes for y .
By default, with raw = FALSE, the poly() function within a linear model computes what is called an orthogonal polynomial. An orthogonal polynomial sets up a model design matrix using the coding we've seen previously: x2 and x2^2 in our case, and then scales those columns so that each column is orthogonal to the previous ones. This eliminates the collinearity (correlation between predictors) and lets our t tests tell us whether the addition of any particular polynomial term improves the fit of the model over the lower orders.

Would the addition of a cubic term help us much in predicting y from x 2 ?

```
mod3 <- lm(y ~ poly(x2, 3), data = pollution)
summary(mod3)
```

Call:

```
\(\operatorname{lm}(f o r m u l a=y \sim \operatorname{poly}(x 2,3)\), data \(=\) pollution \()\)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-146.262 & -39.679 & 5.569 & 35.984 & 191.536
\end{tabular}
Coefficients:
                    Estimate Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\)
(Intercept) \(940.358 \quad 7.917118 .772<2 e-16 * * *\)
poly (x2, 3) 1 \(-14.345 \quad 61.328-0.234 \quad 0.8159\)
poly \((x 2,3) 2-131.142 \quad 61.328-2.138 \quad 0.0369 *\)
\(\begin{array}{lllll}\text { poly }(x 2,3) 3 & 16.918 & 61.328 & 0.276 & 0.7837\end{array}\)
Signif. codes: \(0{ }^{\prime * * * '} 0.001{ }^{\prime * * '} 0.01 '^{\prime \prime} 0.05 '^{\prime} 0.1\) ' ' 1
Residual standard error: 61.33 on 56 degrees of freedom
Multiple R-squared: 0.07748, Adjusted R-squared: 0.02806
F-statistic: 1.568 on 3 and 56 DF, p-value: 0.2073
```

It doesn't appear that the cubic term adds much here, if anything. The p value is not significant for the third degree polynomial, the summaries of fit quality aren't much improved, and as we can see from the plot below, the predictions don't actually change all that much.

```
mod3_aug <- augment(mod3, pollution)
ggplot(mod3_aug, aes(x = x2, y = y)) +
    geom_point() +
    geom_line(aes(x = x2, y = .fitted),
            col = "blue") +
    geom_line(data = mod2orth_aug, aes(x = x2, y = .fitted),
        col = "red") +
    labs(title = "Quadratic (red) vs. Cubic (blue) Polynomial Fits")
```


13.6 Fit a cubic polynomial to predict y from $x 3$

What if we consider another predictor instead? Let's look at x3, the Mean July temperature in degrees Fahrenheit. Here is the loess smooth.

```
ggplot(pollution, aes(x = x3, y = y)) +
    geom_point() +
    geom_smooth(method = "loess")
`geom_smooth()` using formula = 'y ~ x'
```


That looks pretty curvy - perhaps we need a more complex polynomial. We'll consider a linear model (mod4_L), a quadratic fit (mod4_Q) and a polynomial of degree 3: a cubic fit (mod_4C)

```
mod4_L <- lm(y ~ x3, data = pollution)
summary(mod4_L)
```

Call:
$\operatorname{lm}(f o r m u l a=y \sim x 3$, data $=$ pollution)

Residuals:

Min	$1 Q$	Median	3Q	Max
-139.813	-34.341	4.271	38.197	149.587

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $670.529 \quad 123.140 \quad 5.445 \quad 1.1 e-06 * * *$
x3 $3.618 \quad 1.648 \quad 2.196 \quad 0.0321 *$

Signif. codes: $0{ }^{\prime} * * * ' 0.001 '^{\prime *} 0.01 '^{\prime \prime} 0.05 '^{\prime} 0.1 '^{\prime} 1$

Residual standard error: 60.29 on 58 degrees of freedom

```
Multiple R-squared: 0.07674, Adjusted R-squared: 0.06082
F-statistic: 4.821 on 1 and 58 DF, p-value: 0.03213
```

```
mod4_Q <- lm(y ~ poly(x3, 2), data = pollution)
```

mod4_Q <- lm(y ~ poly(x3, 2), data = pollution)
summary(mod4_Q)
summary(mod4_Q)
Call:
lm(formula = y ~ poly(x3, 2), data = pollution)
Residuals:

Min	$1 Q$	Median	3Q	Max
-132.004	-42.184	4.069	47.126	157.396

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 940.358 7.553 124.503 <2e-16 ***
poly(x3, 2)1 132.364 58.504 2.262 0.0275 *
poly(x3, 2)2 -125.270 58.504 -2.141 0.0365 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 58.5 on 57 degrees of freedom
Multiple R-squared: 0.1455, Adjusted R-squared: 0.1155
F-statistic: 4.852 on 2 and 57 DF, p-value: 0.01133
mod4_C <- lm(y ~ poly(x3, 3), data = pollution)
summary(mod4_C)
Call:
lm(formula = y ~ poly(x3, 3), data = pollution)
Residuals:

Min	$1 Q$	Median	3Q	Max
-148.004	-29.998	1.441	34.579	141.396

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 940.358 7.065 133.095 < 2e-16 ***

```
```

poly(x3, 3)1 132.364 54.728 2.419 0.01886 *
poly(x3, 3)2 -125.270 54.728 -2.289 0.02588 *
poly(x3, 3)3-165.439 54.728 -3.023 0.00377 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 ' ' 1
Residual standard error: 54.73 on 56 degrees of freedom
Multiple R-squared: 0.2654, Adjusted R-squared: 0.226
F-statistic: 6.742 on 3 and 56 DF, p-value: 0.0005799

```

It looks like the cubic polynomial term is of some real importance here. Do the linear, quadratic and cubic model fitted values look different?
```

mod4_L_aug <- augment(mod4_L, pollution)
mod4_Q_aug <- augment(mod4_Q, pollution)
mod4_C_aug <- augment(mod4_C, pollution)
ggplot(pollution, aes(x = x3, y = y)) +
geom_point() +
geom_line(data = mod4_L_aug, aes(x = x3, y = .fitted),
col = "blue", size = 1.25) +
geom_line(data = mod4_Q_aug, aes(x = x3, y = .fitted),
col = "black", size = 1.25) +
geom_line(data = mod4_C_aug, aes(x = x3, y = .fitted),
col = "red", size = 1.25) +
geom_text(x = 66, y = 930, label = "Linear Fit", col = "blue") +
geom_text(x = 64, y = 820, label = "Quadratic Fit", col = "black") +
geom_text(x = 83, y = 900, label = "Cubic Fit", col = "red") +
labs(title = "Linear, Quadratic and Cubic Fits predicting y with x3") +
theme_bw()

```

Warning: Using ‘size` aesthetic for lines was deprecated in ggplot2 3.4.0. i Please use `linewidth` instead.


\subsection*{13.7 Fitting a restricted cubic spline in a linear regression}
- A linear spline is a continuous function formed by connecting points (called knots of the spline) by line segments.
- A restricted cubic spline is a way to build highly complicated curves into a regression equation in a fairly easily structured way.
- A restricted cubic spline is a series of polynomial functions joined together at the knots.
- Such a spline gives us a way to flexibly account for non-linearity without over-fitting the model.
- Restricted cubic splines can fit many different types of non-linearities.
- Specifying the number of knots is all you need to do in R to get a reasonable result from a restricted cubic spline.

The most common choices are 3,4 , or 5 knots. Each additional knot adds to the non-linearity, and spends an additional degree of freedom:
- 3 Knots, 2 degrees of freedom, allows the curve to "bend" once.
- 4 Knots, 3 degrees of freedom, lets the curve "bend" twice.
- 5 Knots, 4 degrees of freedom, lets the curve "bend" three times.

For most applications, three to five knots strike a nice balance between complicating the model needlessly and fitting data pleasingly. Let's consider a restricted cubic spline model for our y based on x3 again, but now with:
- in mod5a, 3 knots,
- in mod5b, 4 knots, and
- in mod5c, 5 knots
```

mod5a_rcs <- lm(y ~ rcs(x3, 3), data = pollution)
mod5b_rcs <- lm(y ~ rcs(x3, 4), data = pollution)
mod5c_rcs <- lm(y ~ rcs(x3, 5), data = pollution)

```

Here, for instance, is the summary of the 5 -knot model:
```

summary(mod5c_rcs)

```
Call:
\(\operatorname{lm}(\) formula \(=y \sim \operatorname{rcs}(x 3,5)\), data \(=\) pollution)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-141.522 & -32.009 & 1.674 & 31.971 & 147.878
\end{tabular}
Coefficients:
\begin{tabular}{lrrrr} 
& Estimate Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 468.113 & 396.319 & 1.181 & 0.243 \\
rcs (x3, 5) x3 & 6.447 & 5.749 & 1.121 & 0.267 \\
rcs (x3, 5) x3' & -25.633 & 46.810 & -0.548 & 0.586 \\
rcs (x3, 5) x3'' & 323.137 & 293.065 & 1.103 & 0.275 \\
rcs (x3, 5)x3''' & -612.578 & 396.270 & -1.546 & 0.128
\end{tabular}
Residual standard error: 54.35 on 55 degrees of freedom
Multiple R-squared: 0.2883, Adjusted R-squared: 0.2366
F-statistic: 5.571 on 4 and 55 DF, p-value: 0.0007734

We'll begin by storing the fitted values from these three models and other summaries, for plotting.
```

mod5a_aug <- augment(mod5a_rcs, pollution)
mod5b_aug <- augment(mod5b_rcs, pollution)

```
```

mod5c_aug <- augment(mod5c_rcs, pollution)
p2 <- ggplot(pollution, aes(x = x3, y = y)) +
geom_point() +
geom_smooth(method = "loess", col = "purple", se = F) +
labs(title = "Loess Smooth") +
theme_bw()
p3 <- ggplot(mod5a_aug, aes(x = x3, y = y)) +
geom_point() +
geom_line(aes(x = x3, y = .fitted),
col = "blue", size = 1.25) +
labs(title = "RCS, 3 knots") +
theme_bw()
p4 <- ggplot(mod5b_aug, aes(x = x3, y = y)) +
geom_point() +
geom_line(aes(x = x3, y = .fitted),
col = "black", size = 1.25) +
labs(title = "RCS, 4 knots") +
theme_bw()
p5 <- ggplot(mod5c_aug, aes(x = x3, y = y)) +
geom_point() +
geom_line(aes(x = x3, y = .fitted),
col = "red", size = 1.25) +
labs(title = "RCS, 5 knots") +
theme_bw()
(p2 + p3) / (p4 + p5)
`geom_smooth()` using formula = 'y ~ x'

```


Does it seem like the fit improves markedly (perhaps approaching the loess smooth result) as we increase the number of knots?
```

anova(mod5a_rcs, mod5b_rcs, mod5c_rcs)
Analysis of Variance Table
Model 1: y ~ rcs(x3, 3)
Model 2: y ~ rcs(x3, 4)
Model 3: y ~ rcs(x3, 5)
Res.Df RSS Df Sum of Sq F Fr (>F)
1 57 194935
2 56 171448 1 23486.9 7.9503 0.006672 **
3 55 162481 1 8967.2 3.0354 0.087057.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

Based on an ANOVA comparison, the fourth knot adds significant predictive value ( \(\mathrm{p}=\) 0.0067 ), but the fifth knot is borderline ( \(p=0.0871\) ). From the glance function in the broom package, we can also look at some key summaries.
```

 glance(mod5a_rcs)

A tibble: 1 x 12

 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 10.146 0.116 58.5 4.88 0.0111 2 -328. 663. 672.

i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

 glance(mod5b_rcs)

A tibble: 1 x 12

 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 0.249 0.209 55.3 6.19 0.00104 3 -324. 658. 668.

i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

 glance(mod5c_rcs)

A tibble: 1 x 12

 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 0.288 0.237 54.4 5.57 0.000773 4 -322. 657. 669.

i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

```
\begin{tabular}{rrrrrr}
\hline Model & Knots & \(R^{2}\) & Adj. \(R^{2}\) & AIC & BIC \\
\hline 5 a & 3 & 0.146 & 0.116 & 663.4 & 671.8 \\
5 b & 4 & 0.249 & 0.209 & 657.7 & \(\mathbf{6 6 8 . 2}\) \\
5 c & 5 & 0.288 & \(\mathbf{0 . 2 3 7}\) & \(\mathbf{6 5 6 . 5}\) & 669.1 \\
\hline
\end{tabular}

Within our sample, the five-knot RCS outperforms the 3 - and 4 -knot versions on adjusted \(R^{2}\) and AIC (barely) and does a little worse than the 4 -knot RCS on BIC.

Of course, we could also use the cross-validation methods we've developed for other linear regressions to assess predictive capacity of these models. I'll skip that for now.

To see the values of x 3 where the splines place their knots, we can use the attributes function.
```

attributes(rcs(pollution\$x3, 5))

```
```

\$dim
[1] 60 4
\$dimnames
\$dimnames [[1]]
NULL
\$dimnames[[2]]
[1] "pollution" "pollution'" "pollution''" "pollution'''"
\$class
[1] "rms"
\$name
[1] "pollution"
\$label
[1] "pollution"
\$assume
[1] "rcspline"
\$assume.code
[1] 4
\$parms
[1] 68 72 74 77 82
\$nonlinear
[1] FALSE TRUE TRUE TRUE
\$colnames
[1] "pollution" "pollution'" "pollution''" "pollution'''"

```

The knots in this particular 5 -knot spline are placed by the computer at \(68,72,74,77\) and 82 , it seems.

There are two kinds of Multivariate Regression Models
1. [Prediction] Those that are built so that we can make accurate predictions.
2. [Explanatory] Those that are built to help understand underlying phenomena.

While those two notions overlap considerably, they do imply different things about how we strategize about model-building and model assessment. Harrell's primary concern is effective use of the available data for prediction - this implies some things that will be different from what we've seen in the past.

Harrell refers to multivariable regression modeling strategy as the process of spending degrees of freedom. The main job in strategizing about multivariate modeling is to
1. Decide the number of degrees of freedom that can be spent
2. Decide where to spend them
3. Spend them, wisely.

What this means is essentially linked to making decisions about predictor complexity, both in terms of how many predictors will be included in the regression model, and about how we'll include those predictors.

\section*{13.8 "Spending" Degrees of Freedom}
- "Spending" df includes
- fitting parameter estimates in models, or
- examining figures built using the outcome variable Y that tell you how to model the predictors.

If you use a scatterplot of Y vs. X or the residuals of the \(\mathrm{Y}-\mathrm{X}\) regression model vs. X to decide whether a linear model is appropriate, then how many degrees of freedom have you actually spent?

Grambsch and O'Brien conclude that if you wish to preserve the key statistical properties of the various estimation and fitting procedures used in building a model, you can't retrieve these degrees of freedom once they have been spent.

\subsection*{13.8.1 Overfitting and Limits on the \# of Predictors}

Suppose you have a total sample size of \(n\) observations, then you really shouldn't be thinking about estimating more than \(n / 15\) regression coefficients, at the most.
- If \(k\) is the number of parameters in a full model containing all candidate predictors for a stepwise analysis, then \(k\) should be no greater than \(n / 15\).
- \(k\) should include all variables screened for association with the response, including interaction terms.
- Sometimes I hold myself to a tougher standard, or \(n / 50\) predictors, at maximum.

So if you have 97 observations in your data, then you can probably just barely justify the use of a stepwise analysis using the main effects alone of 5 candidate variables (with one additional DF for the intercept term) using the \(n / 15\) limit.
@Harrell2001 also mentions that if you have a narrowly distributed predictor, without a lot of variation to work with, then an even larger sample size \(n\) should be required. See @Vittinghoff2012, Section 10.3 for more details.

\subsection*{13.8.2 The Importance of Collinearity}

Collinearity denotes correlation between predictors high enough to degrade the precision of the regression coefficient estimates substantially for some or all of the correlated predictors
- @Vittinghoff2012, section 10.4.1
- Can one predictor in a model be predicted well using the other predictors in the model?
- Strong correlations (for instance, \(r \geq 0.8\) ) are especially troublesome.
- Effects of collinearity
- decreases precision, in the sense of increasing the standard errors of the parameter estimates
- decreases power
- increases the difficulty of interpreting individual predictor effects
- overall F test is significant, but individual t tests may not be

Suppose we want to assess whether variable \(X_{j}\) is collinear with the other predictors in a model. We run a regression predicting \(X_{j}\) using the other predictors, and obtain the \(R^{2}\). The VIF is defined as \(1 /\left(1-\right.\) this \(\left.R^{2}\right)\), and we usually interpret VIFs above 5 as indicating a serious multicollinearity problem (i.e. \(R^{2}\) values for this predictor of 0.8 and above would thus concern us.)
```

vif(lm(y ~ x1 + x2 + x3 + x4 + x5 + x6, data = pollution))
x1 x2 x3 x4 x5 x6
2.238862 2.058731 2.153044 4.174448 3.447399 1.792996

```

Occasionally, you'll see the inverse of VIF reported, and this is called tolerance.
- tolerance \(=1 /\) VIF

\subsection*{13.8.3 Collinearity in an Explanatory Model}
- When we are attempting to identify multiple independent predictors (the explanatory model approach), then we will need to choose between collinear variables
- options suggested by @Vittinghoff2012, p. 422, include choosing on the basis of plausibility as a causal factor,
- choosing the variable that has higher data quality (is measured more accurately or has fewer missing values.)
- Often, we choose to include a variable that is statistically significant as a predictor, and drop others, should we be so lucky.
- Larger effects, especially if they are associated with predictors that have minimal correlation with the other predictors under study, cause less trouble in terms of potential violation of the \(n / 15\) rule for what constitutes a reasonable number of predictors.

\subsection*{13.8.4 Collinearity in a Prediction Model}
- If we are primarily building a prediction model for which inference on the individual predictors is not of interest, then it is totally reasonable to use both predictors in the model, if doing so reduces prediction error.
- Collinearity doesn't affect predictions in our model development sample.
- Collinearity doesn't affect predictions on new data so long as the new data have similar relationships between predictors.
- If our key predictor is correlated strongly with a confounder and if the predictor remains an important part of the model after adjustment for the confounder, then this suggests a meaningful independent effect.
* If the effects of the predictor are clearly confounded by the adjustment variable, we again have a clear result.
* If neither appears to add meaningful predictive value after adjustment, the data may be inadequate.
- If the collinearity is between adjustment variables, but doesn't involve the key predictor, then inclusion of the collinear variables is unlikely to cause substantial problems.

\subsection*{13.9 Spending DF on Non-Linearity: The Spearman Plot}

We need a flexible approach to assessing non-linearity and fitting models with non-linear predictors. This will lead us to a measure of what @Harrell2001 calls potential predictive punch which hides the true form of the regression from the analyst so as to preserve statistical properties, but that lets us make sensible decisions about whether a predictor should be
included in a model, and the number of parameters (degrees of freedom, essentially) we are willing to devote to it.

What if we want to consider where best to spend our degrees of freedom on non-linear predictor terms, like interactions, polynomial functions or curved splines to represent our input data? The approach we'll find useful in the largest variety of settings is a combination of
1. a rank correlation assessment of potential predictive punch (using a Spearman \(\rho^{2}\) plot, available in the Hmisc package), followed by
2. the application of restricted cubic splines to fit and assess models.

Let's try such a plot for our fifteen predictors:
```

sp2 <- spearman2(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 +
x8 + x9 + x10 + x11 + x12 + x13 +
x14 + x15, data = pollution)

```
plot(sp2)
Spearman \(\rho^{2}\) Response:y


The variable with the largest adjusted squared Spearman \(\rho\) statistic in this setting is x9, followed by x 6 and x 14 . With only 60 observations, we might well want to restrict ourselves to a very small model. What the Spearman plot suggests is that we focus any non-linear terms
on x 9 first, and then perhaps x 6 and x 14 as they have some potential predictive power. It may or may not work out that the non-linear terms are productive.

\subsection*{13.9.1 Fitting a Big Model to the pollution data}

So, one possible model built in reaction this plot might be to fit:
- a restricted cubic spline with 5 knots on x 9 ,
- a restricted cubic spline with 3 knots on x 6 ,
- a quadratic polynomial on \(\times 14\), and
- a linear fit to x 1 and x 13

That's way more degrees of freedom (4 for \(\mathrm{x} 9,2\) for \(\mathrm{x} 6,2\) for x 14 and 1 each for x 1 and x 13 makes a total of 10 without the intercept term) than we can really justify with a sample of 60 observations. But let's see what happens.
```

 mod_big <- lm(y ~ rcs(x9, 5) + rcs(x6, 3) + poly(x14, 2) +
 x1 + x13, data = pollution)
 anova(mod_big)
 Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr (>F)
rcs(x9, 5) 4 100164 25040.9 17.8482 4.229e-09 ***
rcs(x6, 3) 2 38306 19152.8 13.6513 1.939e-05 ***
poly(x14, 2) 2 15595 7797.7 5.5579 0.006677 **
x1 1 4787 4787.3 3.4122 0.070759 .
x13 1 7 712 711.9 0.5074 0.479635
Residuals 49 68747 1403.0
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 ' ' 1

```

This anova suggests that we have at least some predictive value in each spline ( x 9 and x 6 ) and some additional value in x 14 , although it's not as clear that the linear terms ( x 1 and x 13 ) did much good.

\subsection*{13.9.2 Limitations of 1 m for fitting complex linear regression models}

We can certainly assess this big, complex model using lm in comparison to other models:
- with in-sample summary statistics like adjusted \(R^{2}\), AIC and BIC,
- we can assess its assumptions with residual plots, and
- we can also compare out-of-sample predictive quality through cross-validation,

But to really delve into the details of how well this complex model works, and to help plot what is actually being fit, we'll probably want to fit the model using an alternative method for fitting linear models, called ols, from the rms package developed by Frank Harrell and colleagues. That's where we're heading, in Chapter 14.

\section*{14 Using ols to fit linear models}

Back at the end of Chapter 13, we fit a model to the pollution data that predicted an outcome \(\mathrm{y}=\) Age-Adjusted Mortality Rate, using:
- a restricted cubic spline with 5 knots on x 9
- a restricted cubic spline with 3 knots on x 6
- a polynomial in 2 degrees on x14
- linear terms for x 1 and x 13
but this model was hard to evaluate in some ways. Now, instead of using lm to fit this model, we'll use a new function called ols from the rms package developed by Frank Harrell and colleagues, in part to support ideas developed in @Harrell2001 for clinical prediction models.

\subsection*{14.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(janitor)
library(Hmisc)
library(rms)
library(tidyverse)
theme_set(theme_bw())

```

\subsection*{14.1.1 Data Load}
```

pollution <- read_csv("data/pollution.csv", show_col_types = FALSE)

```

\subsection*{14.2 Fitting a model with ols}

We will use the datadist approach when fitting a linear model with ols from the rms package, so as to store additional important elements of the model fit.
```

d <- datadist(pollution)
options(datadist = "d")

```

Next, we'll fit the model using ols and place its results in newmod.
```

newmod <- ols(y ~ rcs(x9, 5) + rcs(x6, 3) + pol(x14, 2) +
x1 + x13,
data = pollution, x = TRUE, y = TRUE)
newmod
Linear Regression Model
ols(formula = y ~ rcs(x9, 5) + rcs(x6, 3) + pol(x14, 2) + x1 +
x13, data = pollution, x = TRUE, y = TRUE)
Model Likelihood Discrimination
Ratio Test Indexes
Obs 60 LR chi2 72.02 R2 0.699
sigma37.4566 d.f. 10 R2 adj 0.637
d.f. 49 Pr(> chi2) 0.0000 g 58.961
Residuals

Min	1Q	Median	3Q	Max
-86.189	-18.554	-1.799	18.645	104.307

	Coef	S.E.	t	$\operatorname{Pr}(>\|t\|)$
Intercept	796.2658	162.3269	4.91	<0.0001
x9	-2.6328	6.3504	-0.41	0.6803
x9'	121.4651	124.4827	0.98	0.3340
x9''	-219.8025	227.6775	-0.97	0.3391
x9'' ' $^{\prime}$	151.5700	171.3867	0.88	0.3808
x6	7.6817	15.5230	0.49	0.6229
x6'	-29.4388	18.0531	-1.63	0.1094
x14	0.5652	0.2547	2.22	0.0311
x14²	-0.0010	0.0010	-0.96	0.3407
x1	1.0717	0.7317	1.46	0.1494

```
\(\begin{array}{lllll}x 13 & -0.1028 \quad 0.1443 & -0.71 & 0.4796\end{array}\)

Some of the advantages and disadvantages of fitting linear regression models with ols or lm will reveal themselves over time. For now, one advantage for ols is that the entire variancecovariance matrix is saved. Most of the time, there will be some value to considering both ols and 1 m approaches.

Most of this output should be familiar, but a few pieces are different.

\subsection*{14.2.1 The Model Likelihood Ratio Test}

The Model Likelihood Ratio Test compares newmod to the null model with only an intercept term. It is a goodness-of-fit test that we'll use in several types of model settings this semester.
- In many settings, the logarithm of the likelihood ratio, multiplied by -2 , yields a value which can be compared to a \(\chi^{2}\) distribution. So here, the value 72.02 is \(-2(\log\) likelihood), and is compared to a \(\chi^{2}\) distribution with 10 degrees of freedom. We reject the null hypothesis that newmod is no better than the null model, and conclude instead that at least one of these predictors adds some value.
- For ols, interpret the model likelihood ratio test like the global (ANOVA) F test in lm.
- The likelihood function is the probability of observing our data under the specified model.
- We can compare two nested models by evaluating the difference in their likelihood ratios and degrees of freedom, then comparing the result to a \(\chi^{2}\) distribution.

\subsection*{14.2.2 The \(g\) statistic}

The \(\mathbf{g}\) statistic is new and is referred to as the g-index. it's based on Gini's mean difference and is purported to be a robust and highly efficient measure of variation.
- Here, \(\mathrm{g}=58.961\), which implies that if you randomly select two of the 60 areas included in the model, the average difference in predicted y (Age-Adjusted Mortality Rate) using this model will be 58.961.
- Technically, g is Gini's mean difference of the predicted values.

\subsection*{14.3 ANOVA for an ols model}

One advantage of the ols approach is that when you apply an anova to it, it separates out the linear and non-linear components of restricted cubic splines and polynomial terms (as well as product terms, if your model includes them.)
```

anova(newmod)

Analysis of Variance				Response: y	
Factor	d.f.	Partial SS	MS	F	P
x9	4	35219.7647	8804.9412	6.28	0.0004
Nonlinear	3	1339.3081	446.4360	0.32	0.8121
x6	2	9367.6008	4683.8004	3.34	0.0437
Nonlinear	1	3730.7388	3730.7388	2.66	0.1094
x14	2	18679.6957	9339.8478	6.66	0.0028
Nonlinear	1	1298.7625	1298.7625	0.93	0.3407
x 1	1	3009.1829	3009.1829	2.14	0.1494
x 13	1	711.9108	711.9108	0.51	0.4796
TOTAL NONLINEAR	5	6656.1824	1331.2365	0.95	0.4582
REGRESSION	10	159563.8285	15956.3829	11.37	<. 0001
ERROR	49	68746.8004	1402.9959		

```

Unlike the anova approach in lm, in ols ANOVA, partial F tests are presented - each predictor is assessed as "last predictor in" much like the usual \(t\) tests in lm. In essence, the partial sums of squares and F tests here describe the marginal impact of removing each covariate from newmod.

We conclude that the non-linear parts of \(x 9\) and \(x 6\) and \(x 14\) combined don't seem to add much value, but that overall, x9, x6 and x 14 seem to be valuable. So it must be the linear parts of those variables within our model that are doing most of the predictive work.

\subsection*{14.4 Effect Estimates}

A particularly useful thing to get out of the ols approach that is not as easily available in lm (without recoding or standardizing our predictors) is a summary of the effects of each predictor in an interesting scale.
```

summary(newmod)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & Effects & & & Response & : y & \\
\hline Factor & Low & High & Diff. & Effect & S.E. & Lower 0.95 & Upper 0.95 \\
\hline x9 & 4.95 & 15.65 & 10.70 & 40.4060 & 14.0790 & 12.1120 & 68.6990 \\
\hline x6 & 10.40 & 11.50 & 1.10 & -18.2930 & 8.1499 & -34.6710 & -1.9153 \\
\hline x14 & 11.00 & 69.00 & 58.00 & 28.3480 & 10.6480 & 6.9503 & 49.7460 \\
\hline x 1 & 32.75 & 43.25 & 10.50 & 11.2520 & 7.6833 & -4.1878 & 26.6930 \\
\hline x13 & 4.00 & 23.75 & 19.75 & -2.0303 & 2.8502 & -7.7579 & 3.6973 \\
\hline
\end{tabular}

This "effects summary" shows the effect on y of moving from the 25 th to the 75 th percentile of each variable (along with a standard error and \(95 \%\) confidence interval) while holding the other variable at the level specified at the bottom of the output.

The most useful way to look at this sort of analysis is often a plot.
plot(summary (newmod))


For x 9 note from the summary above that the 25 th percentile is 4.95 and the 75 th is 15.65 . Our conclusion is that the estimated effect of moving x9 from 4.95 to 15.65 is an increase of 40.4 on y , with a \(95 \% \mathrm{CI}\) of (12.1, 68.7).

For a categorical variable, the low level is shown first and then the high level.

The plot shows the point estimate (arrow head) and then the \(90 \%\) (narrowest bar), \(95 \%\) (middle bar) and \(99 \%\) (widest bar in lightest color) confidence intervals for each predictor's effect.
- It's easier to distinguish this in the x 9 plot than the one for x 13 .
- Remember that what is being compared is the first value to the second value's impact on the outcome, with other predictors held constant.

\subsection*{14.4.1 Simultaneous Confidence Intervals}

These confidence intervals make no effort to deal with the multiple comparisons problem, but just fit individual \(95 \%\) (or whatever level you choose) confidence intervals for each predictor. The natural alternative is to make an adjustment for multiple comparisons in fitting the confidence intervals, so that the set of (in this case, five - one for each predictor) confidence intervals for effect sizes has a family-wise \(95 \%\) confidence level. You'll note that the effect estimates and standard errors are unchanged from those shown above, but the confidence limits are a bit wider.
```

summary(newmod, conf.type=c('simultaneous'))
Effects Response : y
Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
x9 4.95 15.65 10.70 40.4060 14.0790 3.11570 77.6960
x6 10.40 11.50 1.10 -18.2930 8.1499 -39.87900 3.2923
x14 11.00 69.00 58.00 28.3480 10.6480 0.14653 56.5500
x1 32.75 43.25 10.50 11.2520 7.6833 -9.09720
x13 4.00 23.75 19.75 -2.0303 2.8502 -9.57910 5.5185

```

Remember that if you're looking for the usual lm summary for an ols object, use summary.lm.

\subsection*{14.5 The Predict function for an ols model}

The Predict function is very flexible, and can be used to produce individual or simultaneous confidence limits.
```

Predict(newmod, x9 = 12, x6 = 12, x14 = 40, x1 = 40, x13 = 20)

```
```

 x9 x6 x14 x1 x13 yhat lower upper
 1 12 12 40 40 20 923.0982 893.0984 953.098

```
Response variable (y): y
Limits are 0.95 confidence limits
    \# individual limits
    Predict(newmod, x9 = 5:15) \# individual limits
    \(x 9\) x6 x14 x1 x13 yhat lower upper
\(1 \quad 511.05 \quad 3038 \quad 9913.7392889 .4802937 .9983\)
\(2 \quad 611.05 \quad 3038 \quad 9916.3490892 .0082940 .6897\)
\(3 \quad 711.05 \quad 3038 \quad 9 \quad 921.3093898 .9657943 .6529\)
\(4 \quad 8 \quad 11.05 \quad 3038 \quad 9927.6464907 .0355948 .2574\)
\(5 \quad 911.05 \quad 3038 \quad 9 \quad 934.3853913 .3761955 .3946\)
\(6 \quad 1011.05 \quad 3038 \quad 9 \quad 940.5510917 .8371963 .2648\)
\(\begin{array}{lllllllllll}7 & 11 & 11.05 & 30 & 38 & 9 & 945.2225 & 921.9971 & 968.4479\end{array}\)
\(8 \quad 1211.05 \quad 3038 \quad 9948.2885926 .4576970 .1194\)
\(9 \quad 1311.05 \quad 3038 \quad 9 \quad 950.2608930 .3003970 .2213\)
\(101411.05 \quad 3038 \quad 9951.6671932 .2370971 .0971\)
\(111511.053038 \quad 9953.0342932 .1662973 .9021\)
Response variable (y): y
Adjust to: \(\mathrm{x} 6=11.05 \mathrm{x} 14=30 \mathrm{x} 1=38 \mathrm{x} 13=9\)
Limits are 0.95 confidence limits
    Predict(newmod, x9 = 5:15, conf.type = 'simult')
    x9 x6 x14 x1 x13 yhat lower upper
\(1 \quad 5 \quad 11.05 \quad 3038 \quad 9913.7392882 .4255945 .0530\)
\(2 \quad 611.05 \quad 3038 \quad 9916.3490884 .9298947 .7682\)
\(3 \quad 7 \quad 11.05 \quad 3038 \quad 9 \quad 921.3093 \quad 892.4681 \quad 950.1506\)
\(4 \quad 8 \quad 11.05 \quad 3038 \quad 9 \quad 927.6464901 .0417954 .2512\)
\(5 \quad 9 \quad 11.05 \quad 3038 \quad 9 \quad 934.3853 \quad 907.2664961 .5042\)
\(6 \quad 1011.05 \quad 3038 \quad 9 \quad 940.5510911 .2318969 .8702\)
\(7 \quad 1111.05 \quad 3038 \quad 9 \quad 945.2225915 .2430 \quad 975.2020\)
\begin{tabular}{lllllllll}
8 & 12 & 11.05 & 30 & 38 & 9 & 948.2885 & 920.1091 & 976.4680 \\
9 & 13 & 11.05 & 30 & 38 & 9 & 950.2608 & 924.4957 & 976.0259 \\
10 & 14 & 11.05 & 30 & 38 & 9 & 951.6671 & 926.5866 & 976.7475 \\
11 & 15 & 11.05 & 30 & 38 & 9 & 953.0342 & 926.0976 & 979.9707
\end{tabular}

Response variable (y): y

Adjust to: \(\mathrm{x} 6=11.05 \mathrm{x} 14=30 \mathrm{x} 1=38 \mathrm{x} 13=9\)

Limits are 0.95 confidence limits

The plot below shows the individual effects in newmod in five subpanels, using the default approach of displaying the same range of values as are seen in the data. Note that each panel shows point and interval estimates of the effects, and spot the straight lines in x 1 and x 13 , the single bends in x14 and x6 and the wiggles in x 9 , corresponding to the amount of non-linearity specified in the model.
```

ggplot(Predict(newmod))

```


\subsection*{14.6 Checking Influence via dfbeta}

For an ols object, we have several tools for looking at residuals. The most interesting to me is which.influence which is reliant on the notion of dfbeta.
- DFBETA is estimated for each observation in the data, and each coefficient in the model.
- The DFBETA is the difference in the estimated coefficient caused by deleting the observation, scaled by the coefficient's standard error estimated with the observation deleted.
- The which.influence command applied to an ols model produces a list of all of the predictors estimated by the model, including the intercept.
- For each predictor, the command lists all observations (by row number) that, if removed from the model, would cause the estimated coefficient (the "beta") for that predictor to change by at least some particular cutoff.
- The default is that the DFBETA for that predictor is 0.2 or more.
```

which.influence(newmod)
\$Intercept
[1] "1" "4" "7" "20" "50" "55" "60"
\$x9
[1] "1" "15" "38" "39" "50" "51" "52" "53" "58"
\$x6
[1] "2" "4" "7" "16" "20" "36" "50" "55" "60"
\$x14
[1] "6" "7" "27" "42" "50" "56" "58" "60"
\$x1
[1] "1" "7" "10" "27" "52" "60"
\$x13
[1] "7" "8" "60"

```

The implication here, for instance, is that if we drop row 15 from our data frame, and refit the model, this will have a meaningful impact on the estimate of \(x 9\) but not on the other coefficients. But if we drop, say, row 60 , we will affect the estimates of the intercept, x6, x14, x 1 , and x 13 .

\subsection*{14.6.1 Using the residuals command for dfbetas}

To see the dfbeta values, standardized according to the approach I used above, you can use the following code (I'll use head to just show the first few rows of results) to get a matrix of the results.
```

head(residuals(newmod, type = "dfbetas"))

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Intercept & x9 & x9' & x9'' & x9''' \\
\hline 1 & -0.2142788779 & 0.2464314961 & -0.1638633763 & 0.1420748132 & -0.0837601846 \\
\hline 2 & -0.1609522082 & -0.1651907163 & 0.0813708161 & -0.0571478560 & -0.0104199085 \\
\hline 3 & 0.0002978421 & 0.0003616715 & -0.0003743893 & 0.0003648207 & -0.0003104531 \\
\hline 4 & -0.6689504955 & 0.1060165855 & -0.0582613403 & 0.0567350766 & -0.0514665792 \\
\hline 5 & -0.0185374830 & 0.0941987899 & -0.0712140473 & 0.0651961744 & -0.0473578767 \\
\hline 6 & -0.0733189060 & 0.0441321361 & -0.0775996337 & 0.0686460863 & -0.0310662575 \\
\hline & x6 & x6' & x14 & x14~2 & x1 \\
\hline 1 & 0.0885057227 & -0.1236601786 & 0.1976364429 & -0.1948087617 & 0.4602900927 \\
\hline 2 & 0.1761716451 & -0.2487893025 & 0.1331560976 & -0.1425694930 & 0.0532802632 \\
\hline 3 & -0.0001793501 & 0.0001379045 & -0.0002413065 & 0.0001584916 & -0.0008536018 \\
\hline 4 & 0.6480133104 & -0.4398587906 & 0.1281557908 & -0.0762194326 & -0.1230959028 \\
\hline 5 & -0.0027596047 & -0.0242159160 & -0.0125205909 & 0.0030015343 & 0.0456581256 \\
\hline 6 & 0.0598043946 & -0.1228968480 & 0.2222504825 & -0.1842672286 & 0.0425024727 \\
\hline \multicolumn{6}{|c|}{x13} \\
\hline \multicolumn{6}{|l|}{1 1.476010e-01} \\
\hline \multicolumn{6}{|l|}{\(21.561944 \mathrm{e}-01\)} \\
\hline \multicolumn{6}{|l|}{\(3-8.851148 \mathrm{e}-05\)} \\
\hline \multicolumn{6}{|l|}{\(4-9.553782 \mathrm{e}-02\)} \\
\hline \multicolumn{6}{|l|}{\(54.318623 \mathrm{e}-02\)} \\
\hline \multicolumn{6}{|l|}{6 5.491929e-02} \\
\hline
\end{tabular}

\subsection*{14.6.2 Using the residuals command for other summaries}

The residuals command will also let you get ordinary residuals, leverage values and dffits values, which are the normalized differences in predicted values when observations are omitted. See ?residuals.ols for more details.
```

temp <- data.frame(area = 1:60)
temp$residual <- residuals(newmod, type = "ordinary")
temp$leverage <- residuals(newmod, type = "hat")
temp\$dffits <- residuals(newmod, type = "dffits")
temp <- as_tibble(temp)

```
```

ggplot(temp, aes(x = area, y = dffits)) +
geom_point() +
geom_line()

```


It appears that point 60 has the largest (positive) dffits value. Recall that point 60 seemed influential on several predictors and the intercept term. Point 7 has the smallest (or largest negative) dffits, and also appears to have been influential on several predictors and the intercept.
```

which.max(temp\$dffits)

```
[1] 60
```

which.min(temp\$dffits)

```
[1] 7

\subsection*{14.7 Model Validation and Correcting for Optimism}

In 431, we learned about splitting our regression models into training samples and test samples, performing variable selection work on the training sample to identify two or three candidate models (perhaps via a stepwise approach), and then comparing the predictions made by those models in a test sample.

At the final project presentations, I mentioned (to many folks) that there was a way to automate this process a bit in 432 , that would provide some ways to get the machine to split the data for you multiple times, and then average over the results, using a bootstrap approach. This is it.

The validate function allows us to perform cross-validation of our models for some summary statistics (and then correct those statistics for optimism in describing likely predictive accuracy) in an easy way.
validate develops:
- Resampling validation with or without backward elimination of variables
- Estimates of the optimism in measures of predictive accuracy
- Estimates of the intercept and slope of a calibration model
\[
(\text { observed } y)=\text { Intercept }+ \text { Slope }(\text { predicted } y)
\]
with the following code...
\begin{tabular}{|c|c|c|c|c|c|}
\hline & index.orig & training & test & optimism & index.corrected \\
\hline R-square & 0.6989 & 0.7589 & 0.6176 & 0.1413 & 0.557640 \\
\hline MSE & 1145.7800 & 899.5893 & 1454.9828 & -555.3935 & 1701.173540 \\
\hline g & 58.9614 & 60.5120 & 56.0360 & 4.4759 & 54.485540 \\
\hline Intercept & 0.0000 & 0.0000 & 72.3650 & -72.3650 & 72.365040 \\
\hline Slope & 1.0000 & 1.0000 & 0.9217 & 0.0783 & 0.921740 \\
\hline
\end{tabular}

So, for R-square we see that our original estimate was 0.6989
- Our estimated R -square across \(\mathrm{n}=40\) training samples was 0.7589 , but in the resulting tests, the average R -square was only 0.6176
- This suggests an optimism of 0.7589-0.6176 \(=0.1413\).
- We then apply that optimism to obtain a new estimate of \(R^{2}\) corrected for overfitting, at 0.5576 , which is probably a better estimate of what our results might look like in new data that were similar to (but not the same as) the data we used in building newmod than our initial estimate of 0.6989

We also obtain optimism-corrected estimates of the mean squared error (square of the residual standard deviation), the g index, and the intercept and slope of the calibration model. The "corrected" slope is a shrinkage factor that takes overfitting into account.

\subsection*{14.8 Building a Nomogram for Our Model}

Another nice feature of an ols model object is that we can picture the model with a nomogram easily. Here is model newmod.
```

plot(nomogram(newmod))

```


For this model, we can use this plot to predict y as follows:
1. find our values of \(x 9\) on the appropriate line
2. draw a vertical line up to the points line to count the points associated with our subject
3. repeat the process to obtain the points associated with \(\mathrm{x} 6, \mathrm{x} 14, \mathrm{x} 1\), and x 13 . Sum the points.
4. draw a vertical line down from that number in the Total Points line to estimate y (the Linear Predictor) \(=\) Age-Adjusted Mortality Rate

The impact of the non-linearity is seen in the x 6 results, for example, which turn around from \(9-10\) to 11-12. We also see non-linearity's effects in the scales of the non-linear terms in terms of points awarded.

An area with a combination of predictor values leading to a total of 100 points, for instance, would lead to a prediction of a Mortality Rate near 905 . An area with a total of 140 points would have a predicted Mortality Rate of 955 , roughly.

\section*{15 A Model for Prostate Cancer}

\subsection*{15.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(broom)
library(rms)
library(tidyverse)
theme_set(theme_bw())

```

\subsection*{15.1.1 Data Load}
```

prost <- read_csv("data/prost.csv", show_col_types = FALSE)

```

\subsection*{15.2 Data Load and Background}

The data in prost.csv is derived from @Stamey1989 who examined the relationship between the level of prostate-specific antigen and a number of clinical measures in 97 men who were about to receive a radical prostatectomy. The prost data, as I'll name it in R, contains 97 rows and 11 columns.
```

prost

A tibble: 97 x 10

 subject lpsa lcavol lweight age bph svi lcp gleason pgg45
 <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <chr> <dbl>
 1 -0.431-0.580 2.77 50 Low 0 -1.39 6 0
 2 -0.163-0.994 3.32 58 Low 0 -1.39 6 0
 3-0.163-0.511 2.69 74 Low 0-1.39 7 20
 4-0.163-1.20 3.28 58 Low
 0-1.39 6
 0
    ```
\begin{tabular}{cccccllll}
5 & 5 & 0.372 & 0.751 & 3.43 & 62 Low & 0 & -1.39 & 6 \\
6 & 6 & 0.765 & -1.05 & 3.23 & 50 Low & 0 & -1.39 & 6 \\
7 & 7 & 0.765 & 0.737 & 3.47 & 64 Medium & 0 & -1.39 & 6 \\
8 & 8 & 0.854 & 0.693 & 3.54 & 58 High & 0 & -1.396 & 0 \\
9 & 9 & 1.05 & -0.777 & 3.54 & 47 Low & 0 & -1.396 & 0 \\
10 & 10 & 1.05 & 0.223 & 3.24 & 63 Low & \(0-1.396\) & 0 \\
\(\#\) i 87 more rows & & & & & 0
\end{tabular}

Note that a related prost data frame is also available as part of several \(R\) packages, including the faraway package, but there is an error in the lweight data for subject 32 in those presentations. The value of lweight for subject 32 should not be 6.1 , corresponding to a prostate that is 449 grams in size, but instead the lweight value should be 3.804438 , corresponding to a 44.9 gram prostate \({ }^{1}\).

I've also changed the gleason and bph variables from their presentation in other settings, to let me teach some additional details.

\subsection*{15.3 Code Book}
\begin{tabular}{rl}
\hline Variable & Description \\
\hline subject & subject number \((1\) to 97\()\) \\
lpsa & \(\log (\) prostate specific antigen in \(\mathrm{ng} / \mathrm{ml})\), our outcome \\
lcavol & \(\log \left(\right.\) cancer volume in \(\left.\mathrm{cm}^{3}\right)\) \\
lweight & \(\log (\) prostate weight, in g\()\) \\
age & age \\
bph & benign prostatic hyperplasia amount (Low, Medium, or High) \\
svi & seminal vesicle invasion \((1=\) yes, \(0=\) no \()\) \\
lcp & \(\log (\) capsular penetration, in cm \()\) \\
gleason & combined Gleason score \((6,7\), or \(>7\) here) \\
pgg45 & percentage Gleason scores 4 or 5 \\
\hline
\end{tabular}

Notes:
- in general, higher levels of PSA are stronger indicators of prostate cancer. An old standard (established almost exclusively with testing in white males, and definitely flawed) suggested that values below 4 were normal, and above 4 needed further testing. A PSA of 4 corresponds to an lpsa of 1.39 .
- all logarithms are natural (base \(e\) ) logarithms, obtained in R with the function \(\log ()\)
- all variables other than subject and lpsa are candidate predictors

\footnotetext{
\({ }^{1}\) https://statweb.stanford.edu/~tibs/ElemStatLearn/ attributes the correction to Professor Stephen W. Link.
}
- the gleason variable captures the highest combined Gleason score[ \({ }^{\wedge}\) Scores range (in these data) from 6 (a well-differentiated, or low-grade cancer) to 9 (a high-grade cancer), although the maximum possible score is 10.6 is the lowest score used for cancerous prostates. As this combination value increases, the rate at which the cancer grows and spreads should increase. This score refers to the combined Gleason grade, which is based on the sum of two areas (each scored 1-5) that make up most of the cancer.] in a biopsy, and higher scores indicate more aggressive cancer cells. It's stored here as 6,7 , or \(>7\).
- the pgg45 variable captures the percentage of individual Gleason scores[‘The \(1-5\) scale for individual biopsies are defined so that 1 indicates something that looks like normal prostate tissue, and 5 indicates that the cells and their growth patterns look very abnormal. In this study, the percentage of 4 s and 5 s shown in the data appears to be based on 5-20 individual scores in most subjects.] that are 4 or 5 , on a 1-5 scale, where higher scores indicate more abnormal cells.

\subsection*{15.4 Additions for Later Use}

The code below adds to the prost tibble:
- a factor version of the svi variable, called svi_f, with levels No and Yes,
- a factor version of gleason called gleason_f, with the levels ordered \(>7,7\), and finally 6 ,
- a factor version of bph called bph_f, with levels ordered Low, Medium, High,
- a centered version of lcavol called lcavol_c,
- exponentiated cavol and psa results derived from the natural logarithms lcavol and lpsa.
```

prost <- prost |>
mutate(svi_f = fct_recode(factor(svi), "No" = "0", "Yes" = "1"),
gleason_f = fct_relevel(gleason, c("> 7", "7", "6")),
bph_f = fct_relevel(bph, c("Low", "Medium", "High")),
lcavol_c = lcavol - mean(lcavol),
cavol = exp(lcavol),
psa = exp(lpsa))
glimpse(prost)

```

Rows: 97
Columns: 16
\$ subject <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1~
\$ lpsa <dbl>-0.4307829, -0.1625189, -0.1625189, -0.1625189, 0.3715636, 0~
\$ lcavol <dbl> -0.5798185, -0.9942523, -0.5108256, -1.2039728, 0.7514161, -~


\subsection*{15.5 Fitting and Evaluating a Two-Predictor Model}

To begin, let's use two predictors (lcavol and svi) and their interaction in a linear regression model that predicts lpsa. I'll call this model prost_A

Earlier, we centered the lcavol values to facilitate interpretation of the terms. I'll use that centered version (called lcavol_c) of the quantitative predictor, and the \(1 / 0\) version of the svi variable['We could certainly use the factor version of svi here, but it won't change the model in any meaningful way. There's no distinction in model fitting via lm between a \(0 / 1\) numeric variable and a No/Yes factor variable. The factor version of this information will be useful elsewhere, for instance in plotting the model.].
```

prost_A <- lm(lpsa ~ lcavol_c * svi, data = prost)
summary(prost_A)

```

Call:
lm(formula = lpsa ~ lcavol_c * svi, data \(=\) prost)

Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-1.6305 & -0.5007 & 0.1266 & 0.4886 & 1.6847
\end{tabular}

Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & 2.33134 & 0.09128 & 25.540 & \(<2 \mathrm{e}-16\) *** \\
lcavol_c & 0.58640 & 0.08207 & 7.145 & \(1.98 \mathrm{e}-10\) ***
\end{tabular}
```

svi 0.60132 0.35833 1.678 0.0967.
lcavol_c:svi 0.06479 0.26614 0.243 0.8082

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7595 on 93 degrees of freedom
Multiple R-squared: 0.5806, Adjusted R-squared: 0.5671
F-statistic: 42.92 on 3 and 93 DF, p-value: < 2.2e-16

```

\subsection*{15.5.1 Using tidy}

It can be very useful to build a data frame of the model's results. We can use the tidy function in the broom package to do so.
```

tidy(prost_A)

A tibble: 4 x 5

 term estimate std.error statistic p.value
 <chr> <dbl> <dbl> <dbl> <dbl>
 1 (Intercept) 2.33 0.0913 25.5 8.25e-44
2 lcavol_c 0.586 0.0821 7.15 1.98e-10
3 svi 0.601 0.358 1.68 9.67e- 2
4 lcavol_c:svi 0.0648 0.266 0.243 8.08e- 1

```

This makes it much easier to pull out individual elements of the model fit.
For example, to specify the coefficient for svi, rounded to three decimal places, I could use
tidy(prost_A) |> filter(term == "svi") |> select(estimate) |> round(3)
- The result is 0.601.
- If you look at the Markdown file, you'll see that the number shown in the bullet point above this one was generated using inline R code, and the function specified above.

\subsection*{15.5.2 Interpretation}
1. The intercept, 2.33 , for the model is the predicted value of 1 psa when 1 cavol is at its average and there is no seminal vesicle invasion (e.g. svi \(=0\) ).
2. The coefficient for lcavol_c, 0.59 , is the predicted change in 1 psa associated with a one unit increase in lcavol (or lcavol_c) when there is no seminal vesicle invasion.
3. The coefficient for svi, 0.6 , is the predicted change in lpsa associated with having no svi to having an svi while the lcavol remains at its average.
4. The coefficient for lcavol_c:svi, the product term, which is 0.06 , is the difference in the slope of lcavol_c for a subject with svi as compared to one with no svi.

\subsection*{15.6 Exploring Model prost_A}

The glance function from the broom package builds a nice one-row summary for the model.
```

glance(prost_A)

A tibble: 1 x 12

 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 10.581 0.567 0.759 42.9 1.68e-17 3 -109. 228. 241.

i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

```

This summary includes, in order,
- the model \(R^{2}\), adjusted \(R^{2}\) and \(\hat{\sigma}\), the residual standard deviation,
- the ANOVA F statistic and associated \(p\) value,
- the number of degrees of freedom used by the model, and its log-likelihood ratio
- the model's AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion)
- the model's deviance statistic and residual degrees of freedom

\subsection*{15.6.1 summary for Model prost_A}

If necessary, we can also run summary on this prost_A object to pick up some additional summaries. Since the svi variable is binary, the interaction term is, too, so the \(t\) test here and the \(F\) test in the ANOVA yield the same result.
```

summary(prost_A)

```

Call:
lm(formula \(=\) lpsa \(\sim\) lcavol_c * svi, data \(=\) prost)

Residuals:
```

| Min | 1Q | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -1.6305 | -0.5007 | 0.1266 | 0.4886 | 1.6847 |

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.33134 0.09128 25.540 < 2e-16 ***
lcavol_c 0.58640 0.08207 7.145 1.98e-10 ***
svi 0.60132 0.35833 1.678 0.0967 .
lcavol_c:svi 0.06479 0.26614 0.243 0.8082
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7595 on 93 degrees of freedom
Multiple R-squared: 0.5806, Adjusted R-squared: 0.5671
F-statistic: 42.92 on 3 and 93 DF, p-value: < 2.2e-16

```

If you've forgotten the details of the pieces of this summary, review the Part C Notes from 431.

\subsection*{15.6.2 Adjusted \(R^{2}\)}
\(R^{2}\) is greedy.
- \(R^{2}\) will always suggest that we make our models as big as possible, often including variables of dubious predictive value.
- As a result, there are various methods for penalizing \(R^{2}\) so that we wind up with smaller models.
- The adjusted \(R^{2}\) is often a useful way to compare multiple models for the same response.
\(-R_{a d j}^{2}=1-\frac{\left(1-R^{2}\right)(n-1)}{n-k}\), where \(n=\) the number of observations and \(k\) is the number of coefficients estimated by the regression (including the intercept and any slopes).
- So, in this case, \(R_{a d j}^{2}=1-\frac{(1-0.5806)(97-1)}{97-4}=0.5671\)
- The adjusted \(R^{2}\) value is not, technically, a proportion of anything, but it is comparable across models for the same outcome.
- The adjusted \(R^{2}\) will always be less than the (unadjusted) \(R^{2}\).

\subsection*{15.6.3 Coefficient Confidence Intervals}

Here are the \(90 \%\) confidence intervals for the coefficients in Model A. Adjust the level to get different intervals.
```

 confint(prost_A, level = 0.90)
 5% 95 %
 (Intercept) 2.17968697 2.4830012
lcavol_c 0.45004577 0.7227462
svi 0.00599401 1.1966454
lcavol_c:svi -0.37737623 0.5069622

```

What can we conclude from this about the utility of the interaction term?

\subsection*{15.6.4 ANOVA for Model prost_A}

The interaction term appears unnecessary. We might wind up fitting the model without it. A complete ANOVA test is available, including a \(p\) value, if you want it.
```

anova(prost_A)
Analysis of Variance Table
Response: lpsa
Df Sum Sq Mean Sq F value Pr (>F)
lcavol_c 1 69.003 69.003 119.6289 < 2.2e-16 ***
svi 1 5.237 5.237 9.0801 0.003329 **
lcavol_c:svi 1 0.034 0.034 0.0593 0.808191
Residuals 93 53.643 0.577
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

Note that the anova approach for a lm object is sequential. The first row shows the impact of lcavol_c as compared to a model with no predictors (just an intercept). The second row shows the impact of adding svi to a model that already contains lcavol_c. The third row shows the impact of adding the interaction (product) term to the model with the two main effects. So the order in which the variables are added to the regression model matters for this ANOVA. The F tests here describe the incremental impact of each covariate in turn.

\subsection*{15.6.5 Residuals, Fitted Values and Standard Errors with augment}

The augment function in the broom package builds a data frame including the data used in the model, along with predictions (fitted values), residuals and other useful information.
```

prost_A_aug <- augment(prost_A)
summary(prost_A_aug)

```
\begin{tabular}{|c|c|c|c|}
\hline lpsa & lcavol_c & svi & .fitted \\
\hline Min. \(:-0.4308\) & Min. : -2.69708 & Min. 0.0000 & Min. 00.7498 \\
\hline 1st Qu.: 1.7317 & 1st Qu.:-0.83719 & 1st Qu.:0.0000 & 1st Qu.:1.8404 \\
\hline Median : 2.5915 & Median : 0.09691 & Median :0.0000 & Median :2.3950 \\
\hline Mean : 2.4784 & Mean : 0.00000 & Mean :0.2165 & Mean :2.4784 \\
\hline 3rd Qu.: 3.0564 & 3rd Qu.: 0.77703 & 3rd Qu.:0.0000 & 3rd Qu.:3.0709 \\
\hline \begin{tabular}{l}
Max. : 5.5829 \\
.resid
\end{tabular} & \[
\begin{gathered}
\text { Max. } \quad: 2.47099 \\
\text {.hat }
\end{gathered}
\] & \begin{tabular}{l}
Max. : 1.0000 \\
.sigma
\end{tabular} & \begin{tabular}{l}
Max. : 4.5417 \\
. cooksd
\end{tabular} \\
\hline Min. :-1.6305 & Min. 00.01316 & Min. 0.7423 & Min. 0.0000069 \\
\hline 1st Qu.:-0.5007 & 1st Qu.:0.01562 & 1st Qu.:0.7569 & 1st Qu.:0.0007837 \\
\hline Median : 0.1266 & Median :0.02498 & Median :0.7617 & Median :0.0034699 \\
\hline Mean : 0.0000 & Mean :0.04124 & Mean :0.7595 & Mean :0.0111314 \\
\hline 3rd Qu.: 0.4886 & 3rd Qu.:0.04939 & 3rd Qu.:0.7631 & 3rd Qu.:0.0103533 \\
\hline \begin{tabular}{l}
Max. : 1.6847 \\
.std.resid
\end{tabular} & Max. 0.24627 & Max. 0.7636 & Max. :0.1341093 \\
\hline Min. : -2.194508 & & & \\
\hline 1st Qu.:-0.687945 & & & \\
\hline Median : 0.168917 & & & \\
\hline Mean : 0.001249 & & & \\
\hline 3rd Qu.: 0.653612 & & & \\
\hline Max. : 2.261830 & & & \\
\hline
\end{tabular}

Elements shown here include:
- .fitted Fitted values of model (or predicted values)
- .se.fit Standard errors of fitted values
- .resid Residuals (observed - fitted values)
- .hat Diagonal of the hat matrix (these indicate leverage - points with high leverage indicate unusual combinations of predictors - values more than 2-3 times the mean leverage are worth some study - leverage is always between 0 and 1 , and measures the amount by which the predicted value would change if the observation's y value was increased by one unit - a point with leverage 1 would cause the line to follow that point perfectly)
- .sigma Estimate of residual standard deviation when corresponding observation is dropped from model
- .cooksd Cook's distance, which helps identify influential points (values of Cook's d > 0.5 may be influential, values \(>1.0\) almost certainly are - an influential point changes the fit substantially when it is removed from the data)
- .std.resid Standardized residuals (values above 2 in absolute value are worth some study - treat these as normal deviates [Z scores], essentially)

See ?augment. Im in R for more details.

\subsection*{15.6.6 Making Predictions with prost_A}

Suppose we want to predict the lpsa for a patient with cancer volume equal to this group's mean, for both a patient with and without seminal vesicle invasion, and in each case, we want to use a \(90 \%\) prediction interval?
```

newdata <- data.frame(lcavol_c = c(0,0), svi = c(0,1))
predict(prost_A, newdata, interval = "prediction", level = 0.90)

```
\begin{tabular}{rrrr} 
& fit & lwr & upr \\
1 & 2.331344 & 1.060462 & 3.602226 \\
2 & 2.932664 & 1.545742 & 4.319586
\end{tabular}

Since the predicted value in fit refers to the natural logarithm of PSA, to make the predictions in terms of PSA, we would need to exponentiate. The code below will accomplish that task.
```

pred <- predict(prost_A, newdata, interval = "prediction", level = 0.90)
exp(pred)
fit lwr upr
1 10.29177 2.887706 36.67978
2 18.77758 4.691450 75.15750

```

\subsection*{15.7 Plotting Model prost_A}

\subsection*{15.7.0.1 Plot logs conventionally}

Here, we'll use ggplot2 to plot the logarithms of the variables as they came to us, on a conventional coordinate scale. Note that the lines are nearly parallel. What does this suggest about our Model A?
```

ggplot(prost, aes(x = lcavol, y = lpsa, group = svi_f, color = svi_f)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, se = FALSE) +
scale_color_discrete(name = "Seminal Vesicle Invasion?") +
theme_bw() +
labs(x = "Log (cancer volume, cc)",

```
```

y = "Log (Prostate Specific Antigen, ng/ml)",
title = "Two Predictor Model prost_A, including Interaction")

```

Two Predictor Model prost_A, including Interaction


Seminal Vesicle Invasion?
- No
- Yes

\subsection*{15.7.0.2 Plot on log-log scale}

Another approach (which might be easier in some settings) would be to plot the raw values of Cancer Volume and PSA, but use logarithmic axes, again using the natural (base e) logarithm, as follows. If we use the default choice with 'trans = "log", we'll find a need to select some useful break points for the grid, as I've done in what follows.
```

ggplot(prost, aes(x = cavol, y = psa, group = svi_f, color = svi_f)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, se = FALSE) +
scale_color_discrete(name = "Seminal Vesicle Invasion?") +
scale_x_continuous(trans = "log",
breaks = c(0.5, 1, 2, 5, 10, 25, 50)) +
scale_y_continuous(trans = "log",
breaks = c(1, 2, 4, 10, 25, 50, 100, 200)) +
theme_bw() +
labs(x = "Cancer volume, in cubic centimeters",
y = "Prostate Specific Antigen, in ng/ml",

```
```

title = "Two Predictor Model prost_A, including Interaction")

```


I've used the break point of 4 on the Y axis because of the old rule suggesting further testing for asymptomatic men with PSA of 4 or higher, but the other break points are arbitrary they seemed to work for me, and used round numbers.

\subsection*{15.7.1 Residual Plots of prost_A}
```

plot(prost_A, which = 1)

```


Fitted values
Im(|psa ~ Icavol_c * svi)
```

plot(prost_A, which = 5)

```


In our next Chapter, we'll see how well this model can be validated.

\section*{16 Validating our Prostate Cancer Model}

\subsection*{16.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(broom)
library(rsample)
library(yardstick)
library(caret)
library(tidyverse)
theme_set(theme_bw())

```

\subsection*{16.1.1 Data Load}
```

prost <- read_csv("data/prost.csv", show_col_types = FALSE)

```

We'll repeat the data cleaning and model-fitting from our previous chapter.

\subsection*{16.2 Data Cleaning}
```

prost <- prost |>
mutate(svi_f = fct_recode(factor(svi), "No" = "0", "Yes" = "1"),
gleason_f = fct_relevel(gleason, c("> 7", "7", "6")),
bph_f = fct_relevel(bph, c("Low", "Medium", "High")),
lcavol_c = lcavol - mean(lcavol),
cavol = exp(lcavol),
psa = exp(lpsa))

```

\subsection*{16.3 Fitting the prostA model}
```

prost_A <- lm(lpsa ~ lcavol_c * svi, data = prost)

```

\subsection*{16.4 Split Validation of Model prost_A}

Suppose we want to evaluate whether our model prost_A predicts effectively in new data.
We'll first demonstrate a validation split approach (used, for instance, in 431) which splits our sample into a separate training (perhaps \(70 \%\) of the data) and test (perhaps \(30 \%\) of the data) samples, and then:
- fit the model in the training sample,
- use the resulting model to make predictions for lpsa in the test sample, and
- evaluate the quality of those predictions, perhaps by comparing the results to what we'd get using a different model.

Our goal will be to cross-validate model prost_A, which, you'll recall, uses lcavol_c, svi and their interaction, to predict lpsa in the prost data.

We'll start by identifying a random sample of \(70 \%\) of our prost data in a training sample (which we'll call prost_train, and leave the rest as our test sample, called prost_test. To do this, we'll use functions from the rsample package.
```

set.seed(432432)
prost_split <- initial_split(prost, prop = 0.7)
prost_train <- training(prost_split)
prost_test <- testing(prost_split)

```
- Don't forget to pre-specify the random seed, for replicability, as I've done here.

Let's verify that we now have the samples we expect...
```

dim(prost_train)

```
[1] 6716
```

dim(prost_test)

```

OK. Next, we'll run the prost_A model in the training sample.
```

prost_A_train <- lm(lpsa ~ lcavol_c * svi, data = prost_train)
prost_A_train

```

Call:
lm(formula \(=\) lpsa ~ lcavol_c * svi, data \(=\) prost_train)
Coefficients:
(Intercept) lcavol_c svi lcavol_c:svi
\begin{tabular}{llll}
2.2900 & 0.6922 & 1.1317 & -0.4269
\end{tabular}

Then we'll use the coefficients from this model to obtain predicted lpsa values in the test sample.
```

prost_A_test_aug <- augment(prost_A, newdata = prost_test)

```

Now, we can use the functions from the yardstick package to obtain several key summaries of fit quality for our model. These summary statistics are:
- the RMSE or root mean squared error, which measures the average difference (i.e. prediction error) between the observed known outcome values and the values predicted by the model by first squaring all of the errors, averaging them, and then taking the square root of the result. The lower the RMSE, the better the model.
- the Rsquared or \(R^{2}\), which is just the square of the Pearson correlation coefficient relating the predicted and observed values, so we'd like this to be as large as possible, and
- the MAE or mean absolute error, which is a bit less sensitive to outliers than the RMSE, because it measures the average prediction error by taking the absolute value of each error, and then grabbing the average of those values. The lower the MAE, the better the model.

These statistics are more helpful, generally, for comparing multiple models to each other, than for making final decisions on their own. The yardstick package provides individual functions to summarize performance, as follows.
```

rmse(data = prost_A_test_aug, truth = lpsa, estimate = .fitted)

```
```


A tibble: 1 x 3

 .metric .estimator .estimate
 <chr> <chr> <dbl>
 1 \mp@code { r m s e ~ s t a n d a r d ~ 0 . 8 1 3 }
rsq(data = prost_A_test_aug, truth = lpsa, estimate = .fitted)

A tibble: 1 x 3

 .metric .estimator .estimate
 <chr> <chr> <dbl>
 1 rsq standard 0.515
mae(data = prost_A_test_aug, truth = lpsa, estimate = .fitted)

A tibble: 1 x 3

 .metric .estimator .estimate
 <chr> <chr> <dbl>
 1 mae standard 0.672

```

\subsection*{16.5 V-fold Cross-Validation Approach for model prostA}

V-fold cross-validation (also known as k-fold cross-validation) randomly splits the data into V groups of roughly equal size (called "folds"). A resample of the analysis data consists of \(\mathrm{V}-1\) of the folds while the assessment set contains the final fold. In basic V-fold cross-validation (i.e. no repeats), the number of resamples is equal to V.
- https://rsample.tidymodels.org/reference/vfold_cc.html

The idea of, for instance, 5 -fold cross-validation in this case is to create five different subgroups (or folds) of the data, and then select 4 of the folds to be used as a model training sample, leaving the remaining fold as the model testing sample. We then repeat this over each of the five possible selections of testing sample, and summarize the results. This is very straightforward using the caret package, so we'll demonstrate that approach here.

First, we use the trainControl() function from caret to set up five-fold cross-validation.
```

set.seed(432432)
ctrl <- trainControl(method = "cv", number = 5)

```

Next, we train our model on these five folds:
```

pros_model <- train(lpsa ~ lcavol_c * svi, data = prost,
method = "lm", trControl = ctrl)

```

Now, we can view a summary of the k-fold cross-validation
```

pros_model

```
Linear Regression
97 samples
    2 predictor
No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 79, 78, 77, 77, 77
Resampling results:
    RMSE Rsquared MAE
    \(0.77776550 .5946201 \quad 0.6411997\)
Tuning parameter 'intercept' was held constant at a value of TRUE
- No pre-processing means we didn't scale the data before fitting models.
- We used 5-fold cross-validation
- The sample size for these training sets was between 77 and 79 for each pass.
- The validated root mean squared error (averaged across the five resamplings) was 0.7778
- The cross-validated R-squared is 0.595
- The cross-validated mean absolute error is 0.641

To examine the final fitted model, we have:
pros_model\$finalModel

Call:
\(\operatorname{lm}\) (formula \(=\). outcome \(\sim\)., data \(=\) dat)

Coefficients:
\begin{tabular}{rrrr} 
(Intercept) & lcavol_c & svi & \({ }^{\text {lcavol_c:svi` }}\) \\
2.33134 & 0.58640 & 0.60132 & 0.06479
\end{tabular}

This model can be presented using all of our usual tools from the broom package.
tidy(pros_model\$finalModel)
\# A tibble: 4 x 5
\begin{tabular}{|c|c|c|c|c|}
\hline <chr> & \begin{tabular}{l}
imate \\
<dbl>
\end{tabular} & \[
\begin{aligned}
& \text { td.error } \\
& \text { <dbl> }
\end{aligned}
\] & \begin{tabular}{l}
istic \\
<dbl>
\end{tabular} & \[
\begin{array}{r}
\text { p.value } \\
\text { <dbl> }
\end{array}
\] \\
\hline (Intercept) & 2.33 & 0.0913 & 25.5 & 8.25e-44 \\
\hline lcavol_c & 0.586 & 0.0821 & 7.15 & \(1.98 \mathrm{e}-10\) \\
\hline svi & 0.601 & 0.358 & 1.68 & \(9.67 \mathrm{e}-\) \\
\hline `lcavol_c:svi` & 0.0648 & 0.266 & 0.243 & 8.08e- \\
\hline
\end{tabular}
glance(pros_model\$finalModel)
\# A tibble: \(1 \times 12\)
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
\(10.581 \quad 0.5670 .759 \quad 42.91 .68 \mathrm{e}-17 \quad 3-109.228 .241\).
\# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

We can also review the model predictions made within each fold:
pros_model\$resample

RMSE Rsquared MAE Resample
10.74474130 .70307170 .6124787 Fold1
20.82084610 .30716580 .6699472 Fold2
30.65107210 .79447210 .5589196 Fold3
40.85142460 .47314540 .6885641 Fold4
50.82074370 .69524520 .6760887 Fold5

\section*{17 Multiple Imputation and Linear Regression}

\subsection*{17.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(janitor)
library(broom)
library(car)
library(knitr)
library(mosaic)
library(mice)
library(rms)
library(naniar)
library(tidyverse)
theme_set(theme_bw())

```

\subsection*{17.2 Data Load}

In this chapter, we'll return to the smart_ohio file based on data from BRFSS 2017 that we built and cleaned back in Chapter 6.
```

smart_ohio <- readRDS("data/smart_ohio.Rds")

```

\subsection*{17.3 Developing a smart_16 data set}

We're going to look at a selection of variables from this tibble, among subjects who have been told they have diabetes, and who also provided a response to our physhealth (Number of Days Physical Health Not Good) variable, which asks "Now thinking about your physical health, which includes physical illness and injury, for how many days during the past 30 days was your physical health not good?" We'll build two models. In this chapter, we'll look at a linear
model for physhealth and in the next chapter, we'll look at a logistic regression describing whether or not the subject's physhealth response was at least 1 .
```

smart_16 <- smart_ohio |>
filter(dm_status == "Diabetes") |>
filter(complete.cases(physhealth)) |>
mutate(bad_phys = ifelse(physhealth > 0, 1, 0),
comor = hx_mi + hx_chd + hx_stroke + hx_asthma +
hx_skinc + hx_otherc + hx_copd + hx_arthr) |>
select(SEQNO, mmsa, physhealth, bad_phys, age_imp, smoke100,
comor, hx_depress, bmi, activity)

```

The variables included in this smart_16 tibble are:
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline \begin{tabular}{l}
SEQNO \\
mmsa
\end{tabular} & respondent identification number (all begin with 2016) \\
\hline physhealth & Now thinking about your physical health, which includes physical illness and injury, for how many days during the past 30 days was your physical health not good? \\
\hline bad_phys & Is physhealth 1 or more? \\
\hline age_imp & Age in years (imputed from age categories) \\
\hline smoke100 & Have you smoked at least 100 cigarettes in your life? ( \(1=\) yes, \(0=\) no \()\) \\
\hline hx_depress & Has a doctor, nurse, or other health professional ever told you that you have a depressive disorder, including depression, major depression, dysthymia, or minor depression? \\
\hline bmi & Body mass index, in \(\mathrm{kg} / \mathrm{m}^{2}\) \\
\hline activity & Physical activity (Highly Active, Active, Insufficiently Active, Inactive) \\
\hline comor & Sum of 8 potential groups of comorbidities (see below) \\
\hline
\end{tabular}

The comor variable is the sum of the following 8 variables, each of which is measured on a 1 \(=\) Yes, \(0=\) No scale, and begin with "Has a doctor, nurse, or other health professional ever told you that you had ..."
- hx_mi: a heart attack, also called a myocardial infarction?
- hx_chd: angina or coronary heart disease?
- hx_stroke: a stroke?
- hx_asthma: asthma?
- hx_skinc: skin cancer?
- hx_otherc: any other types of cancer?
- hx_copd: Chronic Obstructive Pulmonary Disease or COPD, emphysema or chronic bronchitis?
- hx_arthr: some form of arthritis, rheumatoid arthritis, gout, lupus, or fibromyalgia?
```

smart_16 |> tabyl(comor)

```
\begin{tabular}{rrrr} 
comor & \(n\) & percent & valid_percent \\
0 & 224 & 0.211920530 & 0.221782178 \\
1 & 315 & 0.298013245 & 0.311881188 \\
2 & 228 & 0.215704825 & 0.225742574 \\
3 & 130 & 0.122989593 & 0.128712871 \\
4 & 72 & 0.068117313 & 0.071287129 \\
5 & 29 & 0.027436140 & 0.028712871 \\
6 & 9 & 0.008514664 & 0.008910891 \\
7 & 3 & 0.002838221 & 0.002970297 \\
NA & 47 & 0.044465468 & NA
\end{tabular}

\subsection*{17.3.1 Any missing values?}

We have 1057 observations (rows) in the smart_16 data set, of whom 860 have complete data on all variables.
```

dim(smart_16)

```
[1] 105710
```

n_case_complete(smart_16)

```
[1] 860

Which variables are missing?
```

 miss_var_summary(smart_16)

A tibble: 10 x 3

 variable n_miss pct_miss
 <chr> <int> <num>
 1 activity 85 8.04
2 bmi 84 7.95
3 comor 47 4.45
4 smoke100 24 2.27

```
\begin{tabular}{lrl}
5 age_imp & 12 & 1.14 \\
6 hx_depress & 3 & 0.284 \\
7 SEQNO & 0 & 0 \\
8 mmsa & 0 & 0 \\
9 physhealth & 0 & 0 \\
10 bad_phys & 0 & 0
\end{tabular}

Note that our outcomes (physhealth and the derived bad_phys) have no missing values here, by design. We will be performing multiple imputation to account appropriately for missingness in the predictors with missing values.

\subsection*{17.4 Obtaining a Simple Imputation with mice}

The mice package provides several approaches we can use for imputation in building models of all kinds. Here, we'll use it just to obtain a single set of imputed results that we can apply to "complete" our data for the purposes of thinking about (a) transforming our outcome and (b) considering the addition of non-linear predictor terms.
```


requires library(mice)

set.seed(432)

create small data set including only variables to

be used in building the imputation model

sm16 <- smart_16 |>
select(physhealth, activity, age_imp, bmi, comor,
hx_depress, smoke100)
smart_16_mice1 <- mice(sm16, m = 1)
iter imp variable
1 1 activity age_imp bmi comor hx_depress smoke100
2 1 activity age_imp bmi comor hx_depress smoke100
3 1 activity age_imp bmi comor hx_depress smoke100
4 1 activity age_imp bmi comor hx_depress smoke100
5 1 activity age_imp bmi comor hx_depress smoke100

```
```

smart_16_imp1 <- mice::complete(smart_16_mice1)
n_case_miss(smart_16_imp1)

```
[1] 0

And now we'll use this completed smart_16_imp1 data set (the product of just a single imputation) to help us address the next two issues.

\subsection*{17.5 Linear Regression: Considering a Transformation of the Outcome}

A plausible strategy here would be to try to identify an outcome transformation only after some accounting for missing predictor values, perhaps through a simple imputation approach. However, to keep things simple here, I'll just use the complete cases in this section.

Recall that our outcome here, physhealth can take the value 0 , and is thus not strictly positive.
```

favstats(~ physhealth, data = smart_16_imp1)
min Q1 median Q3 max mean sd n missing
0 0 2 20 30 9.227058 11.92676 1057 0

```

So, if we want to investigate a potential transformation with a Box-Cox plot, we'll have to add a small value to each physhealth value. We'll add 1, so that the range of potential values is now from 1-31.
```

smart_16_imp1 <- smart_16_imp1 |>
mutate(phplus1 = physhealth + 1)
test_model <- lm(phplus1 ~ age_imp + comor + smoke100 +
hx_depress + bmi + activity, data = smart_16_imp1)
boxCox(test_model)

```

\section*{Profile Log-likelihood}


It looks like the logarithm is a reasonable transformation in this setting. So we'll create a new outcome, that is the natural logarithm of (physhealth +1 ), which we'll call phys_tr to remind us that a transformation is involved that we'll eventually need to back out of to make predictions. We'll build this new variable in both our original smart_16 data set and in the simply imputed data set we're using for just these early stages.
```

smart_16_imp1 <- smart_16_imp1 |>
mutate(phys_tr = log(physhealth + 1))
smart_16 <- smart_16 |>
mutate(phys_tr = log(physhealth + 1))

```

So we have phys_tr \(=\log (\) physhealth +1\()\)
- where we are referring above to the natural (base \(e\) logarithm).

We can also specify our back-transformation to the original physhealth values from our new phys_tr as physhealth \(=\exp (\) phys_tr \()-1\).

\subsection*{17.6 Linear Regression: Considering Non-Linearity in the Predictors}

Consider the following Spearman \(\rho^{2}\) plot.
```

plot(spearman2(phys_tr ~ age_imp + comor + smoke100 +
hx_depress + bmi + activity, data = smart_16_imp1))

```


After our single imputation, we have the same \(N\) value in all rows of this plot, which is what we want to see. It appears that in considering potential non-linear terms, comor and hx_depress and perhaps activity are worthy of increased attention. I'll make a couple of arbitrary choices, to add a raw cubic polynomial to represent the comor information, and we'll add an interaction term between hx_depress and activity.

\section*{17.7 "Main Effects" Linear Regression with lm on the Complete Cases}

Recall that we have 860 complete cases in our smart_16 data, out of a total of 1057 observations in total. A model using only the complete cases should thus drop the remaining 197 subjects. Let's see if a main effects only model for our newly transformed phys_tr outcome does in fact do this.
```

m_1cc <-
lm(phys_tr ~ age_imp + comor + smoke100 +

```
```

 hx_depress + bmi + activity, data = smart_16)
    ```
    summary (m_1cc)
Call:
lm(formula \(=\) phys_tr \(\sim\) age_imp + comor + smoke100 + hx_depress +
    bmi + activity, data = smart_16)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-3.0801 & -1.0389 & -0.2918 & 1.1029 & 2.8478
\end{tabular}
Coefficients:
\begin{tabular}{lrrrrrl} 
& Estimate Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & 0.581959 & 0.370847 & 1.569 & 0.11696 \\
age_imp & -0.007043 & 0.003813 & -1.847 & 0.06511
\end{tabular} .

Residual standard error: 1.303 on 851 degrees of freedom
    (197 observations deleted due to missingness)
Multiple R-squared: 0.1806, Adjusted R-squared: 0.1729
F-statistic: 23.45 on 8 and 851 DF, p-value: < \(2.2 \mathrm{e}-16\)

Note that the appropriate number of observations are listed as "deleted due to missingness."

\subsection*{17.7.1 Quality of Fit Statistics}
```

glance(m_1cc) |>
select(r.squared, adj.r.squared, sigma, AIC, BIC) |>
kable(digits = c(3, 3, 2, 1, 1))

```
\begin{tabular}{rrrrr}
\hline r.squared & adj.r.squared & sigma & AIC & BIC \\
\hline 0.181 & 0.173 & 1.3 & 2906.3 & 2953.8 \\
\hline
\end{tabular}

\subsection*{17.7.2 Interpreting Effect Sizes}
```

tidy(m_1cc, conf.int = TRUE) |>
select(term, estimate, std.error, conf.low, conf.high) |>
kable(digits = 3)

```
\begin{tabular}{lrrrr}
\hline term & estimate & std.error & conf.low & conf.high \\
\hline (Intercept) & 0.582 & 0.371 & -0.146 & 1.310 \\
age_imp & -0.007 & 0.004 & -0.015 & 0.000 \\
comor & 0.302 & 0.033 & 0.237 & 0.367 \\
smoke100 & 0.099 & 0.090 & -0.078 & 0.276 \\
hx_depress & 0.472 & 0.104 & 0.267 & 0.677 \\
bmi & 0.016 & 0.006 & 0.004 & 0.029 \\
activityActive & -0.230 & 0.155 & -0.534 & 0.074 \\
activityInsufficiently_Active & -0.117 & 0.139 & -0.391 & 0.157 \\
activityInactive & 0.256 & 0.115 & 0.030 & 0.482 \\
\hline
\end{tabular}

We'll interpret three of the predictors here to demonstrate ideas: comor, hx_depress and activity.
- If we have two subjects with the same values of age_imp, smoke100, hx_depress, bmi, and activity, but Harry has a comor score that is one point higher than Sally's, then the model predicts that Harry's transformed outcome (specifically the natural logarithm of (his physhealth days +1 )) will be 0.302 higher than Sally's, with a \(95 \%\) confidence interval around that estimate ranging from ( \(0.237,0.367\) ).
- If we have two subjects with the same values of age_imp, comor, smoke100, bmi, and activity, but Harry has a history of depression (hx_depress \(=1\) ) while Sally does not have such a history (so Sally's hx_depress \(=0\) ), then the model predicts that Harry's transformed outcome (specifically the natural logarithm of (his physhealth days +1 )) will be 0.472 higher than Sally's, with a \(95 \%\) confidence interval around that estimate ranging from ( \(0.267,0.677\) ).
- The activity variable has four categories as indicated in the table below. The model uses the "Highly_Active" category as the reference group.
```

smart_16_imp1 |> tabyl(activity)

```
```

 activity n percent
 Highly_Active 252 0.2384106
 Active 135 0.1277200
 Insufficiently_Active 193 0.1825922
Inactive 477 0.4512772

```
- From the tidied set of coefficients, we can describe the activity effects as follows.
- If Sally is "Highly Active" and Harry is "Active" but they otherwise have the same values of all predictors, then our prediction is that Harry's transformed outcome (specifically the natural logarithm of (his physhealth days +1 )) will be 0.230 lower than Sally's, with a \(95 \%\) confidence interval around that estimate ranging from ( 0.534 lower than Sally's to 0.074 higher than Sally's).
- If instead Harry is "Insufficiently Active" but nothing else changes, then our prediction is that Harry's transformed outcome will be 0.117 lower than Sally's, with a \(95 \%\) confidence interval around that estimate ranging from ( 0.391 lower to 0.157 higher than Sally's.)
- If instead Harry is "Inactive" but nothing else changes, then our prediction is that Harry's transformed outcome will be 0.256 higher than Sally's, with a \(95 \%\) confidence interval around that estimate ranging from ( 0.030 to 0.482 higher than Sally's.)

\subsection*{17.7.3 Making Predictions with the Model}

Let's describe two subjects, and use this model (and the ones that follow) to predict their physhealth values.
- Sheena is age 50 , has 2 comorbidities, has smoked 100 cigarettes in her life, has no history of depression, a BMI of 25 , and is Highly Active.
- Jacob is age 65, has 4 comorbidities, has never smoked, has a history of depression, a BMI of 32 and is Inactive.

We'll first build predictions for Sheena and Jacob (with \(95 \%\) prediction intervals) for phys_tr.
```

new2 <- tibble(
name = c("Sheena", "Jacob"),
age_imp = c(50, 65),
comor = c(2, 4),
smoke100 = c(1, 0),
hx_depress = c(0, 1),
bmi = c(25, 32),
activity = c("Highly_Active", "Inactive")

```
```

)
 preds_m_1cc <- predict(m_1cc, newdata = new2,
 interval = "prediction")
 preds_m_1cc
 fit lwr upr
 1 1.341778 -1.22937 3.912925
2 2.583336 0.01399 5.152681

```

The model makes predictions for our transformed outcome, phys_tr. Now, we need to backtransform the predictions and the confidence intervals to build predictions for physhealth.
```

preds_m_1cc <- preds_m_1cc |>
tbl_df() |>
mutate(names = c("Sheena", "Jacob"),
pred_physhealth = exp(fit) - 1,
conf_low = exp(lwr) - 1,
conf_high = exp(upr) - 1) |>
select(names, pred_physhealth, conf_low, conf_high,
everything())

```
Warning: 'tbl_df()' was deprecated in dplyr 1.0.0.
i Please use 'tibble::as_tibble()' instead.
    preds_m_1cc |> kable(digits = 3)
\begin{tabular}{lrrrrrr}
\hline names & pred_physhealth & conf__low & conf__high & fit & lwr & upr \\
\hline Sheena & 2.826 & -0.708 & 49.045 & 1.342 & -1.229 & 3.913 \\
Jacob & 12.241 & 0.014 & 171.894 & 2.583 & 0.014 & 5.153 \\
\hline
\end{tabular}

\section*{17.8 "Augmented" Linear Regression with lm on the Complete Cases}

Now, we'll add the non-linear terms we discussed earlier. We'll add a (raw) cubic polynomial to represent the comor information, and we'll add an interaction term between hx_depress and activity.
```

m_2cc <-
lm(phys_tr ~ age_imp + pol(comor, 3) + smoke100 +
bmi + hx_depress*activity, data = smart_16)
summary(m_2cc)

```

Call:
```

lm(formula = phys_tr ~ age_imp + pol(comor, 3) + smoke100 + bmi +

```
    hx_depress \(*\) activity, data \(=\) smart_16)
Residuals:
    Min 1Q Median 3Q Max
\(-2.907-1.063-0.267 \quad 1.143 \quad 2.924\)
```

Coefficients:

```
\begin{tabular}{lrrrr} 
& Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 0.514823 & 0.376203 & 1.368 & 0.17153 \\
age_imp & -0.008100 & 0.003865 & -2.096 & 0.03640 \\
pol(comor, 3) comor & 0.634274 & 0.160630 & 3.949 & \(8.51 e-05\) \\
pol(comor, 3) comor^2 & -0.130626 & 0.073525 & -1.777 & 0.07599 \\
pol(comor, 3) comor^3 & 0.012508 & 0.008977 & 1.393 & 0.16386 \\
smoke100 & 0.089345 & 0.090336 & 0.989 & 0.32294 \\
bmi & 0.015203 & 0.006315 & 2.408 & 0.01627 \\
hx_depress & 0.647054 & 0.229696 & 2.817 & 0.00496 \\
activityActive & -0.202196 & 0.172300 & -1.174 & 0.24092 \\
activityInsufficiently_Active & -0.005815 & 0.166221 & -0.035 & 0.97210 \\
activityInactive & 0.290380 & 0.132198 & 2.197 & 0.02832 \\
hx_depress:activityActive & -0.124836 & 0.395415 & -0.316 & 0.75230 \\
hx_depress:activityInsufficiently_Active & -0.376355 & 0.310160 & -1.213 & 0.22531 \\
hx_depress:activityInactive & -0.172952 & 0.267427 & -0.647 & 0.51798
\end{tabular}
```

(Intercept)
age_imp *
pol(comor, 3)comor ***
pol(comor, 3)comor^2
pol(comor, 3)comor^3
smoke100
bmi *
hx_depress **
activityActive
activityInsufficiently_Active

```
```

activityInactive
*
hx_depress:activityActive
hx_depress:activityInsufficiently_Active
hx_depress:activityInactive
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.301 on 846 degrees of freedom
(197 observations deleted due to missingness)
Multiple R-squared: 0.187, Adjusted R-squared: 0.1745
F-statistic: 14.97 on 13 and 846 DF, p-value: < 2.2e-16

```

Note again that the appropriate number of observations are listed as "deleted due to missingness."

\subsection*{17.8.1 Quality of Fit Statistics}
```

glance(m_2cc) |>
select(r.squared, adj.r.squared, sigma, AIC, BIC) |>
kable(digits $=c(3,3,2,1,1))$

r.squared	adj.r.squared	sigma	AIC	BIC
0.187	0.175	1.3	2909.5	2980.9

```

\subsection*{17.8.2 ANOVA assessing the impact of the non-linear terms}
```

anova(m_1cc, m_2cc)
Analysis of Variance Table
Model 1: phys_tr ~ age_imp + comor + smoke100 + hx_depress + bmi + activity
Model 2: phys_tr ~ age_imp + pol(comor, 3) + smoke100 + bmi + hx_depress *
activity
Res.Df RSS Df Sum of Sq F Pr (>F)
1 851 1444.0
2 846 1432.8 5 11.265 1.3303 0.249

```

The difference between the models doesn't meet the standard for statistical detectabilty at our usual \(\alpha\) levels.

\subsection*{17.8.3 Interpreting Effect Sizes}
```

tidy(m_2cc, conf.int = TRUE) |>
select(term, estimate, std.error, conf.low, conf.high) |>
kable(digits = 3)

```
\begin{tabular}{lrrrr}
\hline term & estimate & std.error & conf.low & conf.high \\
\hline (Intercept) & 0.515 & 0.376 & -0.224 & 1.253 \\
age_imp & -0.008 & 0.004 & -0.016 & -0.001 \\
pol(comor, 3)comor & 0.634 & 0.161 & 0.319 & 0.950 \\
pol(comor, 3)comor^2 & -0.131 & 0.074 & -0.275 & 0.014 \\
pol(comor, 3)comor^3 & 0.013 & 0.009 & -0.005 & 0.030 \\
smoke100 & 0.089 & 0.090 & -0.088 & 0.267 \\
bmi & 0.015 & 0.006 & 0.003 & 0.028 \\
hx_depress & 0.647 & 0.230 & 0.196 & 1.098 \\
activityActive & -0.202 & 0.172 & -0.540 & 0.136 \\
activityInsufficiently_Active & -0.006 & 0.166 & -0.332 & 0.320 \\
activityInactive & 0.290 & 0.132 & 0.031 & 0.550 \\
hx_depress:activityActive & -0.125 & 0.395 & -0.901 & 0.651 \\
hx_depress:activityInsufficiently_Active & -0.376 & 0.310 & -0.985 & 0.232 \\
hx_depress:activityInactive & -0.173 & 0.267 & -0.698 & 0.352 \\
\hline
\end{tabular}

Let's focus first on interpreting the interaction terms between hx_depress and activity.
Assume first that we have a set of subjects with the same values of age_imp, smoke100, bmi, and comor.
- Arnold has hx_depress = 1 and is Inactive
- Betty has hx_depress = 1 and is Insufficiently Active
- Carlos has hx_depress = 1 and is Active
- Debbie has hx_depress = 1 and is Highly Active
- Eamon has hx_depress \(=0\) and is Inactive
- Florence has hx_depress \(=0\) and is Insufficiently Active
- Garry has hx_depress \(=0\) and is Active
- Harry has hx_depress \(=0\) and is Highly Active

So the model, essentially can be used to compare each of the first seven people on that list to Harry (who has the reference levels of both hx_depress and activity.) Let's compare Arnold to Harry.

For instance, as compared to Harry, Arnold is expected to have a transformed outcome (specifically the natural logarithm of (his physhealth days +1 )) that is:
- 0.647 higher because Arnold's hx_depress \(=1\), and
- 0.29 higher still because Arnold's activity is "Inactive", and
- 0.173 lower because of the combination (see the ' hx _depress:activityInactive" row)

So, in total, we expect Arnold's transformed outcome to be \(0.647+0.29+(-0.173)\), or 0.764 higher than Harry's.

If we want to compare Arnold to, for instance, Betty, we first calculate Betty's difference from Harry, and then compare the two differences.

As compared to Harry, Betty is expected to have a transformed outcome (specifically the natural logarithm of (her physhealth days +1 )) that is:
- 0.647 higher because Betty's hx_depress \(=1\), and
- 0.006 lower still because Betty's activity is "Insufficiently Active", and
- 0.376 lower because of the combination (see the 'hx_depress:activityInsufficiently_Active" row)

So, in total, we expect Betty's transformed outcome to be \(0.647+(-0.006)+(-0.376)\), or 0.265 higher than Harry's.

And thus we can compare Betty and Arnold directly.
- Arnold is predicted to have an outcome that is 0.764 higher than Harry's.
- Betty is predicted to have an outcome that is 0.265 higher than Harry's.
- And so Arnold's predicted outcome (phys_tr) is 0.499 larger than Betty's.

Now, suppose we want to look at our cubic polynomial in comor.
- Suppose Harry and Sally have the same values for all other predictors in the model, but Harry has 1 comorbidity where Sally has none. Then the three terms in the model related to comor will be 1 for Harry and 0 for Sally, and the interpretation becomes pretty straightforward.
- But suppose instead that nothing has changed except Harry has 2 comorbidities and Sally has just 1. The size of the impact of this Harry - Sally difference is far larger in this situation, because the comor variable enters the model in a non-linear way. This is an area where fitting the model using ols can be helpful because of the ability to generate plots (of effects, nomograms, etc.) that can show this non-linearity in a clear way.

Suppose for instance, that Harry and Sally share the following values for the other predictors: each is age 40, has never smoked, has no history of depression, a BMI of 30 and is Highly Active.
- Now, if Harry has 1 comorbidity and Sally has none, the predicted phys_tr values for Harry and Sally are as indicated below.
```

hands1 <- tibble(
name = c("Harry", "Sally"),
age_imp = c(40, 40),
comor = c(1, 0),
smoke100 = c(0, 0),
hx_depress = c(0, 0),
bmi = c(30, 30),
activity = c("Highly_Active", "Highly_Active")
)
predict(m_2cc, newdata = hands1)

```
    \(1 \quad 2\)
1.16308400 .6469282

But if Harry has 2 comorbidities and Sally 1, the predictions are:
```

hands2 <- tibble(
name = c("Harry", "Sally"),
age_imp = c(40, 40),
comor = c(2, 1), \# only thing that changes
smoke100 = c(0, 0),
hx_depress = c(0, 0),
bmi = c(30, 30),
activity = c("Highly_Active", "Highly_Active")
)
predict(m_2cc, newdata = hands2)
1 2
1.493035 1.163084

```

Note that the difference in predictions between Harry and Sally is much smaller now than it was previously.

\subsection*{17.8.4 Making Predictions with the Model}

As before, we'll use the new model to predict physhealth values for Sheena and Jacob.
- Sheena is age 50 , has 2 comorbidities, has smoked 100 cigarettes in her life, has no history of depression, a BMI of 25 , and is Highly Active.
- Jacob is age 65 , has 4 comorbidities, has never smoked, has a history of depression, a BMI of 32 and is Inactive.

We'll first build predictions for Sheena and Jacob (with \(95 \%\) prediction intervals) for phys_tr.
```

new2 <- tibble(
name = c("Sheena", "Jacob"),
age_imp = c(50, 65),
comor = c(2, 4),
smoke100 = c(1, 0),
hx_depress = c(0, 1),
bmi = c(25, 32),
activity = c("Highly_Active", "Inactive")
)
preds_m_2cc <- predict(m_2cc, newdata = new2,
interval = "prediction")
preds_m_2cc
fit lwr upr
1 1.425362 -1.14707613 3.997801
2 2.486907-0.08635658 5.060171

```

Now, we need to back-transform the predictions and the confidence intervals that describe phys_tr to build predictions for physhealth.
```

preds_m_2cc <- preds_m_2cc |>
tbl_df() |>
mutate(names = c("Sheena", "Jacob"),
pred_physhealth = exp(fit) - 1,
conf_low = exp(lwr) - 1,
conf_high = exp(upr) - 1) |>
select(names, pred_physhealth, conf_low, conf_high,
everything())
Warning: 'tbl_df()' was deprecated in dplyr 1.0.0.
i Please use `tibble::as_tibble()` instead.

```
```

preds_m_2cc |> kable(digits = 3)

```
\begin{tabular}{lrrrrrr}
\hline names & pred_physhealth & conf_low & conf_high & fit & lwr & upr \\
\hline Sheena & 3.159 & -0.682 & 53.478 & 1.425 & -1.147 & 3.998 \\
Jacob & 11.024 & -0.083 & 156.617 & 2.487 & -0.086 & 5.060 \\
\hline
\end{tabular}

\subsection*{17.9 Using mice to perform Multiple Imputation}

Let's focus on the main effects model, and look at the impact of performing multiple imputation to account for the missing data. Recall that in our smart_16 data, the most "missingness" is shown in the activity variable, which is still missing less than \(10 \%\) of the time. So we'll try a set of 10 imputations, using the default settings in the mice package.
```


requires library(mice)

set.seed(432)

create small data set including only variables to

be used in building the imputation model

sm16 <- smart_16 |>
select(physhealth, phys_tr, activity, age_imp, bmi, comor,
hx_depress, smoke100)
smart_16_mice10 <- mice(sm16, m = 10)

```

\begin{tabular}{lllllll}
2 & 2 & activity & age_imp & bmi & comor & hx_depress \\
2 & 3 & activity & age_imp & bmi & comor & hx_depress \\
smoke100 \\
2 & 4 & activity & age_imp & bmi & comor & hx_depress \\
2 & 5 & activity & age_imp & bmi & comor & hx_depress \\
smoke100 \\
2 & 6 & activity & age_imp & bmi & comor & hx_depress \\
2 & 7 & activity & age_imp & bmi & comor & hx_depress \\
smoke100 \\
2 & 8 & activity & age_imp & bmi & comor & hx_depress \\
smoke100 \\
2 & 9 & activity & age_imp & bmi & comor & hx_depress \\
2 & 10 & activity & age_imp & bmi & comor & hx_depress
\end{tabular} smoke100

\footnotetext{
summary (smart_16_mice10)
}


\subsection*{17.10 Running the Linear Regression in 1m with Multiple Imputation}

Next, we'll run the linear model (main effects) on each of the 10 imputed data sets.
```

 m10_mods <-
 with(smart_16_mice10, lm(phys_tr ~ age_imp + comor +
 smoke100 + hx_depress +
 bmi + activity))
 summary(m10_mods)
    ```
\# A tibble: 90 x 6
    term estimate std.error statistic p.value nobs
    <chr> <dbl> <dbl> <dbl> <dbl> <int>
1 (Intercept) \(\begin{array}{llllll} & 0.317 & 0.326 & 0.971 & 3.32 \mathrm{e}-1 & 1057\end{array}\)
2 age_imp \(\quad-0.00489 \quad 0.00334 \quad-1.471 .43 \mathrm{e}-11057\)
\(\begin{array}{llllll}3 & \text { comor } & 0.313 & 0.0295 & 10.6 & 4.72 \mathrm{e}-25\end{array} 1057\)
4 smoke100 \(\quad 0.135 \quad 0.0799 \quad 1.69 \quad 9.22 \mathrm{e}-21057\)
\begin{tabular}{llllll}
5 & hx_depress & 0.500 & 0.0929 & 5.38 & \(9.14 e-8\) \\
\hline
\end{tabular}
6 bmi \(\quad 0.0187 \quad 0.00564 \quad 3.31 \quad 9.64 \mathrm{e}-4 \quad 1057\)
7 activityActive \(\quad-0.202 \quad 0.138 \quad-1.46 \quad 1.44 \mathrm{e}-11057\)
8 activityInsufficiently_Active -0.0695 \(0.124 \quad-0.5615 .75 e^{-1} 1057\)
\(\begin{array}{lllllll}9 & \text { activityInactive } & 0.262 & 0.103 & 2.54 & 1.11 \mathrm{e}-2 & 1057\end{array}\)
10 (Intercept)
0.363
0.332
\(1.10 \quad 2.74 \mathrm{e}-1\)
1057
\# i 80 more rows

Then, we'll pool results across the 10 imputations
```

m10_pool <- pool(m10_mods)
summary(m10_pool, conf.int = TRUE) |>
select(-statistic, -df) |>
kable(digits = 3)

```
\begin{tabular}{lrrrrr}
\hline term & estimate & std.error & p.value & \(2.5 \%\) & \(97.5 \%\) \\
\hline (Intercept) & 0.444 & 0.342 & 0.194 & -0.227 & 1.114 \\
age_imp & -0.005 & 0.003 & 0.128 & -0.012 & 0.002 \\
comor & 0.309 & 0.031 & 0.000 & 0.249 & 0.369 \\
smoke100 & 0.114 & 0.083 & 0.171 & -0.049 & 0.278 \\
hx_depress & 0.512 & 0.094 & 0.000 & 0.327 & 0.696 \\
bmi & 0.016 & 0.006 & 0.009 & 0.004 & 0.027 \\
activityActive & -0.204 & 0.140 & 0.146 & -0.479 & 0.071 \\
activityInsufficiently_Active & -0.044 & 0.129 & 0.735 & -0.298 & 0.210 \\
activityInactive & 0.260 & 0.106 & 0.014 & 0.052 & 0.469 \\
\hline
\end{tabular}

And we can compare these results to the complete case analysis we completed earlier.
```

tidy(m_1cc, conf.int = TRUE) |>
select(term, estimate, std.error, p.value, conf.low, conf.high) |>
kable(digits = 3)

```
\begin{tabular}{lrrrrr}
\hline term & estimate & std.error & p.value & conf.low & conf.high \\
\hline (Intercept) & 0.582 & 0.371 & 0.117 & -0.146 & 1.310 \\
age_imp & -0.007 & 0.004 & 0.065 & -0.015 & 0.000 \\
comor & 0.302 & 0.033 & 0.000 & 0.237 & 0.367 \\
smoke100 & 0.099 & 0.090 & 0.273 & -0.078 & 0.276 \\
hx_depress & 0.472 & 0.104 & 0.000 & 0.267 & 0.677 \\
bmi & 0.016 & 0.006 & 0.009 & 0.004 & 0.029 \\
activityActive & -0.230 & 0.155 & 0.138 & -0.534 & 0.074 \\
activityInsufficiently_Active & -0.117 & 0.139 & 0.402 & -0.391 & 0.157 \\
activityInactive & 0.256 & 0.115 & 0.027 & 0.030 & 0.482 \\
\hline
\end{tabular}

Note that there are some sizeable differences here, although nothing enormous.

If we want the pooled \(R^{2}\) or pooled adjusted \(R^{2}\) after imputation, \(R\) will provide it (and a \(95 \%\) confidence interval around the estimate) with ...
```

pool.r.squared(m10_mods)
est lo 95 hi 95 fmi
R^2 0.1912561 0.1482819 0.2369623 0.08061427
pool.r.squared(m10_mods, adjusted = TRUE)
est lo 95 hi 95 fmi
adj R^2 0.1850807 0.1425132 0.2305277 0.08312639

```

We can see the fraction of missing information about each coefficient due to non-response (fmi) and other details with the following code...
```

m10_pool
Class: mipo m = 10

```
\begin{tabular}{lrrrrr} 
& term & m & estimate & ubar & b \\
1 & (Intercept) & 10 & 0.44377168 & \(1.078194 \mathrm{e}-01\) & \(8.002900 \mathrm{e}-03\) \\
2 & age_imp & 10 & -0.00522810 & \(1.123668 \mathrm{e}-05\) & \(4.824290 \mathrm{e}-07\) \\
3 & comor & 10 & 0.30871888 & \(8.801039 \mathrm{e}-04\) & \(5.466082 \mathrm{e}-05\) \\
4 & smoke100 & 10 & 0.11415718 & \(6.474388 \mathrm{e}-03\) & \(4.130673 \mathrm{e}-04\) \\
5 & hx_depress & 10 & 0.51155722 & \(8.669413 \mathrm{e}-03\) & \(1.582684 \mathrm{e}-04\) \\
6 & bmi & 10 & 0.01576150 & \(3.182381 \mathrm{e}-05\) & \(3.425191 \mathrm{e}-06\) \\
7 & activityActive & 10 & -0.20412627 & \(1.914250 \mathrm{e}-02\) & \(4.851040 \mathrm{e}-04\) \\
8 & activityInsufficiently_Active & 10 & -0.04383739 & \(1.565925 \mathrm{e}-02\) & \(9.855183 \mathrm{e}-04\) \\
9 & activityInactive & 10 & 0.26046070 & \(1.069627 \mathrm{e}-02\) & \(5.023887 \mathrm{e}-04\)
\end{tabular}
\begin{tabular}{lrrrrrrr}
1 & \(1.166226 \mathrm{e}-01\) & 1048 & 599.8172 & 0.08164758 & 0.07548446 & 0.07855177 \\
2 & \(1.176735 \mathrm{e}-05\) & 1048 & 814.9042 & 0.04722675 & 0.04509697 & 0.04743197 \\
3 & \(9.402308 \mathrm{e}-04\) & 1048 & 677.6361 & 0.06831796 & 0.06394909 & 0.06669961 \\
4 & \(6.928762 \mathrm{e}-03\) & 1048 & 666.2487 & 0.07018023 & 0.06557795 & 0.06837041 \\
5 & \(8.843508 \mathrm{e}-03\) & 1048 & 982.0512 & 0.02008154 & 0.01968621 & 0.02167660 \\
6 & \(3.559152 \mathrm{e}-05\) & 1048 & 432.0874 & 0.11839279 & 0.10585976 & 0.10996992 \\
7 & \(1.967611 \mathrm{e}-02\) & 1048 & 939.5064 & 0.02787591 & 0.02711992 & 0.02918437 \\
8 & \(1.674332 \mathrm{e}-02\) & 1048 & 672.0473 & 0.06922874 & 0.06474643 & 0.06751736 \\
9 & \(1.124890 \mathrm{e}-02\) & 1048 & 785.1905 & 0.05166545 & 0.04912727 & 0.05154007
\end{tabular}

\subsection*{17.11 Fit the Multiple Imputation Model with aregImpute}

Here, we'll use aregImpute to deal with missing values through multiple imputation, and use the ols function in the rms package to fit the model.

The first step is to fit the multiple imputation model. We'll use n .impute \(=10\) imputations, with \(B=10\) bootstrap samples for the preditive mean matching, and fit both linear models and models with restricted cubic splines with 3 knots ( \(\mathrm{nk}=\mathrm{c}(0,3)\) ) allowing the target variable to have a non-linear transformation when nk is 3 , via tlinear \(=\) FALSE.
```

set.seed(43201602)
dd <- datadist(smart_16)
options(datadist = "dd")
fit16_imp <-
aregImpute(~ phys_tr + age_imp + comor + smoke100 +
hx_depress + bmi + activity,
nk = c(0, 3), tlinear = FALSE,
data = smart_16, B = 10, n.impute = 10)
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Iteration 7
Iteration 8
Iteration 9
Iteration 10
Iteration 11
Iteration 12
Iteration 13

```

Here are the results of that imputation model.
```

fit16_imp

```

Multiple Imputation using Bootstrap and PMM
aregImpute (formula \(=\sim\) phys_tr + age_imp + comor + smoke100 +
    hx_depress + bmi + activity, data = smart_16, n.impute = 10,
    \(\mathrm{nk}=\mathrm{c}(0,3)\), tlinear \(=\) FALSE, \(\mathrm{B}=10)\)
```

n:1057 p: 7 Imputations: 10 nk: 0

```

Number of NAs:
\begin{tabular}{rrrrrrr} 
phys_tr & age_imp & comor & smoke100 hx_depress & bmi & activity \\
0 & 12 & 47 & 24 & 3 & 84 & 85
\end{tabular}
type d.f.
\begin{tabular}{lrr} 
& type d.f. \\
phys_tr & s & 1 \\
age_imp & s & 1 \\
comor & s & 1 \\
smoke100 & \(l\) & 1 \\
hx_depress & 1 & 1 \\
bmi & s & 1 \\
activity & c & 3
\end{tabular}

R-squares for Predicting Non-Missing Values for Each Variable Using Last Imputations of Predictors
\begin{tabular}{rrrrrr} 
age_imp & comor & smoke100 hx_depress & bmi & activity \\
0.224 & 0.206 & 0.059 & 0.167 & 0.169 & 0.057
\end{tabular}

Resampling results for determining the complexity of imputation models

Variable being imputed: age_imp
\begin{tabular}{lllrr} 
& & \(n k=0\) & \(n k=3\) \\
Bootstrap bias-corrected \(R^{\wedge} 2\) & & 0.186 & 0.215 \\
10-fold cross-validated \(R^{\wedge} 2\) & & 0.211 & 0.215 \\
Bootstrap bias-corrected mean & |error| & 9.108 & 10.894 \\
10-fold cross-validated mean & |error| & 65.169 & 10.919 \\
Bootstrap bias-corrected median & |error| & 7.290 & 8.784 \\
10-fold cross-validated median & |error| & 66.006 & 8.613
\end{tabular}

Variable being imputed: comor

Bootstrap bias-corrected R^2 0.1830 .182
10-fold cross-validated R^2 0.1840 .193
Bootstrap bias-corrected mean |error| 0.9871 .184
10-fold cross-validated mean |error| 1.7591 .171
Bootstrap bias-corrected median |error| 0.8280 .910
10-fold cross-validated median lerror| 1.5740 .892

Variable being imputed: smoke100
\begin{tabular}{llrr} 
& & \(n k=0\) & \(n k=3\) \\
Bootstrap bias-corrected R^2 & & 0.0224 & 0.0187 \\
10-fold cross-validated \(R^{\wedge} 2\) & & 0.0358 & 0.0217 \\
Bootstrap bias-corrected mean & |error| & 0.4853 & 0.4866 \\
10-fold cross-validated mean & |error| & 0.9462 & 0.9561 \\
Bootstrap bias-corrected median & |error| & 0.4788 & 0.4772 \\
10-fold cross-validated median & |error| & 0.8479 & 0.8706
\end{tabular}

Variable being imputed: hx_depress
nk=0 nk=3
Bootstrap bias-corrected R^2 0.157 0.138
10-fold cross-validated R^2 0.147 0.148
Bootstrap bias-corrected mean |error| 0.3550 .360
10-fold cross-validated mean |error| 0.8010 .783
Bootstrap bias-corrected median |error| 0.3330 .337
10-fold cross-validated median |error| 0.7110 .673

Variable being imputed: bmi
nk=0 nk=3
Bootstrap bias-corrected \(\mathrm{R}^{\sim} 2 \quad 0.1250 .122\)
10-fold cross-validated \(\mathrm{R}^{\wedge} 20.1340 .133\)
Bootstrap bias-corrected mean |error| 5.2216 .822
10-fold cross-validated mean |error| 32.4586 .884
Bootstrap bias-corrected median |error| 4.1785 .782
10-fold cross-validated median |error| 31.3305 .932

Variable being imputed: activity
\begin{tabular}{lllrr} 
& & \(n k=0\) & \(n k=3\) \\
Bootstrap bias-corrected \(R^{\wedge} 2\) & & 0.0312 & 0.0275 \\
10-fold cross-validated \(R^{\wedge} 2\) & & 0.0450 & 0.0402 \\
Bootstrap bias-corrected mean & |error| & 1.8774 & 1.8884 \\
10-fold cross-validated mean & |error| & 1.1121 & 1.1043 \\
Bootstrap bias-corrected median & |error| & 2.0000 & 2.0000 \\
10-fold cross-validated median & |error| & 1.0000 & 1.0000
\end{tabular}
```

par(mfrow = c(3,2))
plot(fit16_imp)

```






```

par(mfrow = c(1,1))

```

The plot helps us see where the imputations are happening.

\subsection*{17.12 Fit Linear Regression using ols and fit.mult.impute}
```

m16_imp <-
fit.mult.impute(phys_tr ~ age_imp + comor + smoke100 +
hx_depress + bmi + activity,
fitter = ols, xtrans = fit16_imp,
data = smart_16, fitargs=list(x=TRUE,y=TRUE))

```

Wald Statistic Information

Variance Inflation Factors Due to Imputation:
\begin{tabular}{rr} 
Intercept & age_imp \\
1.03 & 1.01 \\
comor & smoke100 \\
1.03 & 1.06 \\
hx_depress & bmi \\
1.02 & 1.06 \\
activity=Active activity=Insufficiently_Active \\
1.19 & 1.14 \\
activity=Inactive & \\
1.23 &
\end{tabular}

Fraction of Missing Information:
\begin{tabular}{rr} 
Intercept & age_imp \\
0.03 & 0.01 \\
comor & smoke100 \\
0.03 & 0.06 \\
hx_depress & bmi \\
0.02 & 0.06 \\
activity=Active activity=Insufficiently_Active \\
0.16 & 0.13
\end{tabular}
```

d.f. for t-distribution for Tests of Single Coefficients:

```
\begin{tabular}{rr} 
Intercept & age_imp \\
8176.67 & 45410.80 \\
comor & smoke100 \\
13030.27 & 2670.64 \\
hx_depress & bmi \\
28199.30 & 2935.89 \\
activity=Active activity=Insufficiently_Active \\
354.62 & 571.56 \\
activity=Inactive & \\
258.42 &
\end{tabular}

The following fit components were averaged over the 10 model fits:
fitted.values stats linear.predictors

\subsection*{17.12.1 Summaries and Coefficients}

Here are the results:
m16_imp

Linear Regression Model
```

fit.mult.impute(formula = phys_tr ~ age_imp + comor + smoke100 +
hx_depress + bmi + activity, fitter = ols, xtrans = fit16_imp,
data = smart_16, fitargs = list(x = TRUE, y = TRUE))

```
\begin{tabular}{lrrrlr} 
& \multicolumn{2}{c}{ Model Likelihood } & \multicolumn{2}{r}{ Discrimination } \\
& & \multicolumn{2}{c}{ Ratio Test } & & Indexes \\
Obs & 1057 & LR chi2 & 219.94 & R2 & 0.188 \\
sigma1.2881 & d.f. & 8 & R2 adj & 0.182 \\
d.f. & 1048 & Pr \((>\) chi2 \()\) & 0.0000 & g & 0.687
\end{tabular}

Residuals
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-3.0621 & -1.0327 & -0.2878 & 1.1104 & 2.8018
\end{tabular}
\begin{tabular}{lrlrl} 
& \multicolumn{1}{l}{ Coef } & S.E. & \multicolumn{1}{l}{ t } & Pr \((>|t|)\) \\
Intercept & 0.4052 & 0.3352 & 1.21 & 0.2271 \\
age_imp & -0.0049 & 0.0034 & -1.46 & 0.1437 \\
comor & 0.3078 & 0.0302 & 10.20 & \(<0.0001\) \\
smoke100 & 0.1259 & 0.0830 & 1.52 & 0.1296 \\
hx_depress & 0.5120 & 0.0940 & 5.45 & \(<0.0001\) \\
bmi & 0.0164 & 0.0058 & 2.83 & 0.0048 \\
activity=Active & -0.1773 & 0.1513 & -1.17 & 0.2416 \\
activity=Insufficiently_Active & -0.0396 & 0.1342 & -0.30 & 0.7680 \\
activity=Inactive & 0.2401 & 0.1144 & 2.10 & 0.0360
\end{tabular}

\subsection*{17.12.2 Effect Sizes}

We can plot and summarize the effect sizes using the usual ols tools:
```

summary(m16_imp)
Effects Response : phys_tr
Factor Low High Diff. Effect S.E.
age_imp
comor
smoke100
hx_depress
bmi
activity - Highly_Active:Inactive 4.00 1.00 NA -0.240070 0.114350
activity - Active:Inactive 4.00 2.00 NA -0.417320 0.137640
activity - Insufficiently_Active:Inactive 4.00 3.00 NA -0.279650 0.115000
Lower 0.95 Upper 0.95
-0.185330 0.027008
0.248590 0.366990
-0.036973 0.288760
0.327520 0.696450
0.046932 0.260120
-0.464450 -0.015686
-0.687400 -0.147250
-0.505310 -0.054002
plot(summary(m16_imp))

```


\subsection*{17.12.3 Making Predictions with this Model}

Once again, let's make predictions for our two subjects, and use this model (and the ones that follow) to predict their physhealth values.
- Sheena is age 50 , has 2 comorbidities, has smoked 100 cigarettes in her life, has no history of depression, a BMI of 25 , and is Highly Active.
- Jacob is age 65, has 4 comorbidities, has never smoked, has a history of depression, a BMI of 32 and is Inactive.
```

new2 <- tibble(
name = c("Sheena", "Jacob"),
age_imp = c(50, 65),
comor = c(2, 4),
smoke100 = c(1, 0),
hx_depress = c(0, 1),
bmi = c(25, 32),
activity = c("Highly_Active", "Inactive")
)
preds_m_16imp <- predict(m16_imp,
newdata = data.frame(new2))

```
```

preds_m_16imp

```
    \(1 \quad 2\)
1.3093062 .591649
preds_m_16imp <- preds_m_16imp |>
    tbl_df() |>
    mutate(names \(=c(" S h e e n a ", ~ " J a c o b ")\),
        pred_physhealth \(=\exp (v a l u e)-1) \mid>\)
    select(names, pred_physhealth)
Warning: ‘tbl_df()' was deprecated in dplyr 1.0.0.
i Please use ‘tibble::as_tibble()’ instead.
    preds_m_16imp |> kable(digits = 3)
\begin{tabular}{lr}
\hline names & pred_physhealth \\
\hline Sheena & 2.704 \\
Jacob & 12.352 \\
\hline
\end{tabular}

\subsection*{17.12.4 Nomogram}

We can also develop a nomogram, if we like. As a special touch, we'll add a prediction at the bottom which back-transforms out of the predicted phys_tr back to the physhealth days.
```

plot(nomogram(m16_imp,
fun = list(function(x) exp(x) - 1),
funlabel = "Predicted physhealth days",
fun.at = seq(0, 30, 3)))

```
Points

\begin{tabular}{|c|c|}
\hline age_imp & I \\
\hline & 10050 \\
\hline
\end{tabular}
comor

bmi

Insufficiently_Active
activity
Active
\(\begin{array}{lllllllll}\text { Total Points } & 0 & 20 & 40 & 60 & 80 & 100 & 140 & 180\end{array}\)


We can see the big role of comor and hx _depress in this model.

\subsection*{17.12.5 Validating Summary Statistics}

We can cross-validate summary measures, like \(R^{2}\)...
\begin{tabular}{lrrrrr}
\multicolumn{8}{l}{ validate(m16_imp) } \\
& & & & & \\
& index.orig & training & test & optimism & index.corrected
\end{tabular} n

\section*{18 Building Table 1}

\subsection*{18.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(tableone)
library(knitr)
library(tidyverse)
theme_set(theme_bw())

```

Many scientific articles involve direct comparison of results from various exposures, perhaps treatments. In 431, we studied numerous methods, including various sorts of hypothesis tests, confidence intervals, and descriptive summaries, which can help us to understand and compare outcomes in such a setting. One common approach is to present what's often called Table 1. Table 1 provides a summary of the characteristics of a sample, or of groups of samples, which is most commonly used to help understand the nature of the data being compared.

\subsection*{18.2 Data Load}
```

fakestroke <- read_csv("data/fakestroke.csv", show_col_types = FALSE)
bloodbrain <- read_csv("data/bloodbrain.csv", show_col_types = FALSE)

```

\subsection*{18.3 Two examples from the New England Journal of Medicine}

\subsection*{18.3.1 A simple Table 1}

Table 1 is especially common in the context of clinical research. Consider the excerpt below, from a January 2015 article in the New England Journal of Medicine [@Tolaney2015].
\begin{tabular}{|lc|}
\hline Table 1. Baseline Characteristics of the Patients.* \\
\hline Characteristic & Patients ( \(\mathrm{N}=406\) ) \\
& no. (\%) \\
Age group & \\
\(<50 \mathrm{yr}\) & \(132(32.5)\) \\
\(50-59 \mathrm{yr}\) & \(137(33.7)\) \\
\(60-69 \mathrm{yr}\) & \(96(23.6)\) \\
\(\geq 70 \mathrm{yr}\) & \(41(10.1)\) \\
Sex & \\
Female & \(405(99.8)\) \\
Male & \(1(0.2)\) \\
Race \(\dagger\) & \\
White & \(351(86.5)\) \\
Black & \(28(6.9)\) \\
Asian & \(11(2.7)\) \\
Other & \(16(3.9)\) \\
\hline
\end{tabular}

This (partial) table reports baseline characteristics on age group, sex and race, describing 406 patients with HER2-positive \({ }^{1}\) invasive breast cancer that began the protocol therapy. Age, sex and race (along with severity of illness) are the most commonly identified characteristics in a Table 1.

In addition to the measures shown in this excerpt, the full Table also includes detailed information on the primary tumor for each patient, including its size, nodal status and histologic grade. Footnotes tell us that the percentages shown are subject to rounding, and may not total 100, and that the race information was self-reported.

\subsection*{18.3.2 A group comparison}

A more typical Table 1 involves a group comparison, for example in this excerpt from @Roy2008. This Table 1 describes a multi-center randomized clinical trial comparing two different approaches to caring for patients with heart failure and atrial fibrillation \({ }^{2}\).

\footnotetext{
\({ }^{1}\) HER2 \(=\) human epidermal growth factor receptor type 2. Over-expression of this occurs in \(15-20 \%\) of invasive breast cancers, and has been associated with poor outcomes.
\({ }^{2}\) The complete Table 1 appears on pages 2668-2669 of @Roy2008, but I have only reproduced the first page and the footnote in this excerpt.
}
\begin{tabular}{|c|c|c|}
\hline Variable & Rhythm-Control Group
\[
(\mathrm{N}=682)
\] & Rate-Control Group
\[
(\mathrm{N}=694)
\] \\
\hline Male sex (\%) & 78 & 85 \\
\hline Age (yr) & \(66 \pm 11\) & \(67 \pm 11\) \\
\hline Body-mass index \(\dagger\) & \(27.8 \pm 5.4\) & \(28.0 \pm 5.1\) \\
\hline Nonwhite race (\%) \(\dagger\) & 16 & 13 \\
\hline \multicolumn{3}{|l|}{NYHA class III or IV (\%)} \\
\hline At baseline & 32 & 31 \\
\hline During previous 6 mo & 76 & 76 \\
\hline \multicolumn{3}{|l|}{Predominant cardiac diagnosis (\%)§} \\
\hline Coronary artery disease & 48 & 48 \\
\hline Valvular heart disease & 5 & 5 \\
\hline Nonischemic cardiomyopathy & 36 & 39 \\
\hline Congenital heart disease & 1 & 1 \\
\hline Hypertensive heart disease & 10 & 7 \\
\hline
\end{tabular}

The article provides percentages, means and standard deviations across groups, but note that it does not provide p values for the comparison of baseline characteristics. This is a common feature of NEJM reports on randomized clinical trials, where we anticipate that the two groups will be well matched at baseline. Note that the patients in this study were randomly assigned to either the rhythm-control group or to the rate-control group, using blocked randomization stratified by study center.

\subsection*{18.4 The MR CLEAN trial}
@Berkhemer2015 reported on the MR CLEAN trial, involving 500 patients with acute ischemic stroke caused by a proximal intracranial arterial occlusion. The trial was conducted at 16 medical centers in the Netherlands, where 233 were randomly assigned to the intervention (intraarterial treatment plus usual care) and 267 to control (usual care alone.) The primary outcome was the modified Rankin scale score at 90 days; this categorical scale measures functional outcome, with scores ranging from 0 (no symptoms) to 6 (death). The fundamental conclusion of @Berkhemer2015 was that in patients with acute ischemic stroke caused by a proximal intracranial occlusion of the anterior circulation, intraarterial treatment administered within 6 hours after stroke onset was effective and safe.

Here's the Table 1 from @Berkhemer2015.
\begin{tabular}{|c|c|c|}
\hline Characteristic & Intervention
\[
\text { ( } \mathrm{N}=233 \text { ) }
\] & \[
\begin{aligned}
& \text { Control } \\
& (\mathrm{N}=267)
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{Age - yr} \\
\hline Median & 65.8 & 65.7 \\
\hline Interquartile range & 54.5-76.0 & 55.5-76.4 \\
\hline Male sex - no. (\%) & 135 (57.9) & 157 (58.8) \\
\hline \multicolumn{3}{|l|}{NIHSS score \(\dagger\)} \\
\hline Median (interquartile range) & 17 (14-21) & 18 (14-22) \\
\hline Range & 3-30 & 4-38 \\
\hline Location of stroke in left hemisphere - no. (\%) & 116 (49.8) & 153 (57.3) \\
\hline History of ischemic stroke - no. (\%) & 29 (12.4) & 25 (9.4) \\
\hline Atrial fibrillation - no. (\%) & 66 (28.3) & 69 (25.8) \\
\hline Diabetes mellitus - no. (\%) & 34 (14.6) & 34 (12.7) \\
\hline \multicolumn{3}{|l|}{Prestroke modified Rankin scale score - no. (\%) \(\ddagger\)} \\
\hline 0 & 190 (81.5) & 214 (80.1) \\
\hline 1 & 21 (9.0) & 29 (10.9) \\
\hline 2 & 12 (5.2) & 13 (4.9) \\
\hline >2 & 10 (4.3) & 11 (4.1) \\
\hline Systolic blood pressure - mm HgI & \(146 \pm 26.0\) & \(145 \pm 24.4\) \\
\hline Treatment with IV alteplase - no. (\%) & 203 (87.1) & 242 (90.6) \\
\hline \multicolumn{3}{|l|}{Time from stroke onset to start of IV alteplase - min} \\
\hline Median & 85 & 87 \\
\hline Interquartile range & 67-110 & 65-116 \\
\hline ASPECTS - median (interquartile range) \(\uparrow\) & 9 (7-10) & 9 (8-10) \\
\hline \multicolumn{3}{|l|}{Intracranial arterial occlusion - no./total no. (\%)||} \\
\hline Intracranial ICA & 1/233 (0.4) & 3/266 (1.1) \\
\hline ICA with involvement of the M1 middle cerebral artery segment & 59/233 (25.3) & 75/266 (28.2) \\
\hline M1 middle cerebral artery segment & 154/233 (66.1) & 165/266 (62.0) \\
\hline M2 middle cerebral artery segment & 18/233 (7.7) & 21/266 (7.9) \\
\hline Al or A 2 anterior cerebral artery segment & 1/233 (0.4) & 2/266 (0.8) \\
\hline Extracranial ICA occlusion - no./total no. (\%)|** & 75/233 (32.2) & 70/266 (26.3) \\
\hline \multicolumn{3}{|l|}{Time from stroke onset to randomization - minit \(\dagger\)} \\
\hline Median & 204 & 196 \\
\hline Interquartile range & 152-251 & 149-266 \\
\hline \multicolumn{3}{|l|}{Time from stroke onset to groin puncture - min} \\
\hline Median & 260 & NA \\
\hline Interquartile range & 210-313 & \\
\hline
\end{tabular}

The Table was accompanied by the following notes.
* The intervention group was assigned to intraarterial treatment plus usual care, and the control group was assigned to usual care alone. Plus-minus values are means \(\pm\) SD. ICA denotes internal carotid artery, IV intravenous, and NA not applicable.
\(\dagger\) Scores on the National Institutes of Health Stroke Scale (NIHSS) range from 0 to 42, with higher scores indicating more severe neurologic deficits. The NIHSS is a 15-item scale, and values for 30 of the 7500 items were missing ( \(0.4 \%\) ). The highest number of missing items for a single patient was 6 .
\(\ddagger\) Scores on the modified Rankin scale of functional disability range from 0 (no symptoms) to 6 (death). A score of 2 or less indicates functional independence.
I Data on systolic blood pressure at baseline were missing for one patient assigned to the control group.
f The Alberta Stroke Program Early Computed Tomography Score (ASPECTS) is a measure of the extent of stroke. Scores ranges from 0 to 10, with higher scores indicating fewer early ischemic changes. Scores were not available for four patients assigned to the control group: noncontrast computed tomography was not performed in one patient, and three patients had strokes in the territory of the anterior cerebral artery.
\(\|\) Vessel imaging was not performed in one patient in the control group, so the level of occlusion was not known.
** Extracranial ICA occlusions were reported by local investigators.
\(\dagger \dagger\) Data were missing for two patients in the intervention group.

\subsection*{18.5 Simulated fakestroke data}

Consider the simulated data, available on our Data and Code website in the fakestroke.csv file, which I built to let us mirror the Table 1 for MR CLEAN [@Berkhemer2015]. The fakestroke.csv file contains the following 18 variables for 500 patients.
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline studyid & Study ID \# (z001 through z500) \\
\hline trt & Treatment group (Intervention or Control) \\
\hline age & Age in years \\
\hline sex & Male or Female \\
\hline nihss & NIH Stroke Scale Score (can range from 0-42; higher scores indicate more severe neurological deficits) \\
\hline location & Stroke Location - Left or Right Hemisphere \\
\hline hx.isch & History of Ischemic Stroke (Yes/No) \\
\hline afib & Atrial Fibrillation ( \(1=\mathrm{Yes}, 0=\mathrm{No}\) ) \\
\hline dm & Diabetes Mellitus ( \(1=\) Yes, \(0=\) No) \\
\hline mrankin & Pre-stroke modified Rankin scale score ( \(0,1,2\) or \(>2\) ) indicating functional disability - complete range is 0 (no symptoms) to 6 (death) \\
\hline sbp & Systolic blood pressure, in mm Hg \\
\hline iv.altep & Treatment with IV alteplase (Yes/No) \\
\hline time.iv & Time from stroke onset to start of IV alteplase (minutes) if iv.altep=Yes \\
\hline aspects & Alberta Stroke Program Early Computed Tomography score, which measures extent of stroke from 0-10; higher scores indicate fewer early ischemic changes \\
\hline
\end{tabular}
\begin{tabular}{rl}
\hline Variable & Description \\
\hline ia.occlus & Intracranial arterial occlusion, based on vessel imaging - five categories \({ }^{3}\) \\
extra.ica & Extracranial ICA occlusion \((1=\) Yes, \(0=\) No) \\
time.rand & Time from stroke onset to study randomization, in minutes \\
time.punc & Time from stroke onset to groin puncture, in minutes (only if \\
& Intervention) \\
\hline
\end{tabular}

Here's a quick look at the simulated data in fakestroke.


\subsection*{18.6 Building Table 1 for fakestroke: Attempt 1}

Our goal, then, is to take the data in fakestroke.csv and use it to generate a Table 1 for the study that compares the 233 patients in the Intervention group to the 267 patients in the Control group, on all of the other variables (except study ID \#) available. I'll use the tableone package of functions available in R to help me complete this task. We'll make a first attempt, using the CreateTableOne function in the tableone package. To use the function, we'll need to specify:

\footnotetext{
\({ }^{3}\) The five categories are Intracranial ICA, ICA with involvement of the M1 middle cerebral artery segment, M1 middle cerebral artery segment, M2 middle cerebral artery segment, A1 or A2 anterior cerebral artery segment
}
- the vars or variables we want to place in the rows of our Table 1 (which will include just about everything in the fakestroke data except the studyid code and the trt variable for which we have other plans, and the time.punc which applies only to subjects in the Intervention group.)
- A useful trick here is to use the dput function, specifically something like dput(names(fakestroke)) can be used to generate a list of all of the variables included in the fakestroke tibble, and then this can be copied and pasted into the vars specification, saving some typing.
- the strata which indicates the levels want to use in the columns of our Table 1 (for us, that's trt)
```

fs.vars <- c("age", "sex", "nihss", "location",
"hx.isch", "afib", "dm", "mrankin", "sbp",
"iv.altep", "time.iv", "aspects",
"ia.occlus", "extra.ica", "time.rand")
fs.trt <- c("trt")
att1 <- CreateTableOne(data = fakestroke,
vars = fs.vars,
strata = fs.trt)
print(att1)

```

```

aspects (mean (SD)) 8.65 (1.47) 8.35 (1.64) 0.033
ia.occlus (%) 0.795
A1 or A2 2 (0.8) 1 (0.4)
ICA with M1 75 (28.2) 59 (25.3)
Intracranial ICA 3(1.1) 1 (0.4)
M1 165 (62.0) 154 (66.1)
M2 21(7.9) 18 (7.7)
extra.ica (mean (SD)) 0.26 (0.44) 0.32 (0.47) 0.150
time.rand (mean (SD)) 213.88 (70.29) 202.51 (57.33) 0.051

```

\subsection*{18.6.1 Some of this is very useful, and other parts need to be fixed.}
1. The \(1 / 0\) variables (afib, dm, extra.ica) might be better if they were treated as the factors they are, and reported as the Yes/No variables are reported, with counts and percentages rather than with means and standard deviations.
2. In some cases, we may prefer to re-order the levels of the categorical (factor) variables, particularly the mrankin variable, but also the ia.occlus variable. It would also be more typical to put the Intervention group to the left and the Control group to the right, so we may need to adjust our trt variable's levels accordingly.
3. For each of the quantitative variables (age, nihss, sbp, time.iv, aspects, extra.ica, time.rand and time.punc) we should make a decision whether a summary with mean and standard deviation is appropriate, or whether we should instead summarize with, say, the median and quartiles. A mean and standard deviation really only yields an appropriate summary when the data are least approximately Normally distributed. This will make the \(p\) values a bit more reasonable, too. The test column in the first attempt will soon have something useful to tell us.
4. If we'd left in the time.punc variable, we'd get some warnings, having to do with the fact that time. punc is only relevant to patients in the Intervention group.

\subsection*{18.6.2 fakestroke Cleaning Up Categorical Variables}

Let's specify each of the categorical variables as categorical explicitly. This helps the CreateTableOne function treat them appropriately, and display them with counts and percentages. This includes all of the \(1 / 0\), Yes/No and multi-categorical variables.
```

fs.factorvars <- c("sex", "location", "hx.isch", "afib", "dm",
"mrankin", "iv.altep", "ia.occlus", "extra.ica")

```

Then we simply add a factorVars = fs.factorvars call to the CreateTableOne function.
We also want to re-order some of those categorical variables, so that the levels are more useful to us. Specifically, we want to:
- place Intervention before Control in the trt variable,
- reorder the mrankin scale as \(0,1,2,>2\), and
- rearrange the ia.occlus variable to the order \({ }^{4}\) presented in @Berkhemer2015.

To accomplish this, we'll use the fct_relevel function from the forcats package (loaded with the rest of the core tidyverse packages) to reorder our levels manually.
```

fakestroke <- fakestroke %>%
mutate(trt = fct_relevel(trt, "Intervention", "Control"),
mrankin = fct_relevel(mrankin, "0", "1", "2", "> 2"),
ia.occlus = fct_relevel(ia.occlus, "Intracranial ICA",
"ICA with M1", "M1", "M2",
"A1 or A2")
)

```

\section*{18.7 fakestroke Table 1: Attempt 2}
```

att2 <- CreateTableOne(data = fakestroke,
vars = fs.vars,
factorVars = fs.factorvars,
strata = fs.trt)
print(att2)

```


\footnotetext{
\({ }^{4}\) We might also have considered reordering the ia.occlus factor by its frequency, using the fct_infreq function
}
```

sbp (mean (SD)) 146.03 (26.00) 145.00 (24.40) 0.647
iv.altep = Yes (%) 203 (87.1) 242 (90.6) 0.267
time.iv (mean (SD)) 98.22 (45.48) 87.96 (26.01) 0.003
aspects (mean (SD)) 8.35 (1.64) 8.65 (1.47) 0.033
ia.occlus (%) 0.795
Intracranial ICA 1 (0.4) 3 (1.1)
ICA with M1 59 (25.3) 75 (28.2)
M1 154 (66.1) 165 (62.0)
M2 18(7.7) 21 (7.9)
A1 or A2 1 (0.4) 2 (0.8)
extra.ica = 1 (%) 75 (32.2) 70 (26.3) 0.179
time.rand (mean (SD)) 202.51 (57.33) 213.88 (70.29) 0.051

```

The categorical data presentation looks much improved.

\subsection*{18.7.1 What summaries should we show?}

Now, we'll move on to the issue of making a decision about what type of summary to show for the quantitative variables. Since the fakestroke data are just simulated and only match the summary statistics of the original results, not the details, we'll adopt the decisions made by @Berkhemer2015, which were to use medians and interquartile ranges to summarize the distributions of all of the continuous variables except systolic blood pressure.
- Specifying certain quantitative variables as non-normal causes R to show them with medians and the 25 th and 75 th percentiles, rather than means and standard deviations, and also causes those variables to be tested using non-parametric tests, like the Wilcoxon signed rank test, rather than the t test. The test column indicates this with the word nonnorm.
- In real data situations, what should we do? The answer is to look at the data. I would not make the decision as to which approach to take without first plotting (perhaps in a histogram or a Normal Q-Q plot) the observed distributions in each of the two samples, so that I could make a sound decision about whether Normality was a reasonable assumption. If the means and medians are meaningfully different from each other, this is especially important.
- To be honest, though, if the variable in question is a relatively unimportant covariate and the \(p\) values for the two approaches are nearly the same, I'd say that further investigation is rarely important,
- Specifying exact tests for certain categorical variables (we'll try this for the location and mrankin variables) can be done, and these changes will be noted in the test column, as well.
- In real data situations, I would rarely be concerned about this issue, and often choose Pearson (approximate) options across the board. This is reasonable so long as the number of subjects falling in each category is reasonably large, say above 10. If not, then an exact test may be a tiny improvement.
- Paraphrasing @Rosenbaum2017, having an exact rather than an approximate test result is about as valuable as having a nice crease in your trousers.

To finish our Table 1, then, we need to specify which variables should be treated as nonNormal in the print statement - notice that we don't need to redo the CreateTableOne for this change.
```

print(att2,
nonnormal = c("age", "nihss", "time.iv", "aspects", "time.rand"),
exact = c("location", "mrankin"))

| Stratified by trt | | | |
| :---: | :---: | :---: | :---: |
| n | 233 | 267 | |
| age (median [IQR]) | 65.80 [54.50, 76.00] | 65.70 | [55.75, 76.20] |
| sex = Male (\%) | 135 (57.9) | 157 | (58.8) |
| nihss (median [IQR]) | 17.00 [14.00, 21.00] | 18.00 | [14.00, 22.00] |
| location = Right (\%) | 117 (50.2) | 114 | (42.7) |
| hx.isch = Yes (\%) | 29 (12.4) | | (9.4) |
| $\mathrm{afib}=1$ (\%) | 66 (28.3) | | (25.8) |
| $\mathrm{dm}=1$ (\%) | 29 (12.4) | | (12.7) |
| mrankin (\%) | | | |
| 0 | 190 (81.5) | 214 | (80.1) |
| 1 | 21 (9.0) | | (10.9) |
| 2 | 12 (5.2) | | (4.9) |
| >2 | 10 (4.3) | | (4.1) |
| sbp (mean (SD)) | 146.03 (26.00) | 145.00 | (24.40) |
| iv.altep = Yes (\%) | 203 (87.1) | 242 | (90.6) |
| time.iv (median [IQR]) | 85.00 [67.00, 110.00] | 87.00 | [65.00, 116.00] |
| aspects (median [IQR]) | 9.00 [7.00, 10.00] | 9.00 | [8.00, 10.00] |
| ia.occlus (\%) | | | |
| Intracranial ICA | 1 (0.4) | | (1.1) |
| ICA with M1 | 59 (25.3) | | (28.2) |
| M1 | 154 (66.1) | 165 | (62.0) |
| M2 | 18 (7.7) | 21 | (7.9) |
| A1 or A2 | 1 (0.4) | | (0.8) |
| extra.ica $=1$ (\%) | 75 (32.2) | | (26.3) |
| time.rand (median [IQR]) | 204.00 [152.00, 249.50] | 196.00 | [149.00, 266.00] |

```
```

Stratified by trt
p test
n
age (median [IQR]) 0.579 nonnorm
sex = Male (%) 0.917
nihss (median [IQR]) 0.453 nonnorm
location = Right (%) 0.106 exact
hx.isch = Yes (%) 0.335
afib = 1 (%) 0.601
dm = 1 (%) 1.000
mrankin (%) 0.917 exact
O
1
2
> 2
sbp (mean (SD)) 0.647
iv.altep = Yes (%) 0.267
time.iv (median [IQR]) 0.596 nonnorm
aspects (median [IQR]) 0.075 nonnorm
ia.occlus (%) 0.795
Intracranial ICA
ICA with M1
M1
M2
A1 or A2
extra.ica = 1 (%) 0.179
time.rand (median [IQR]) 0.251 nonnorm

```

\subsection*{18.8 Obtaining a more detailed Summary}

If this was a real data set, we'd want to get a more detailed description of the data to make decisions about things like potentially collapsing categories of a variable, or whether or not a normal distribution was useful for a particular continuous variable, etc. You can do this with the summary command applied to a created Table 1, which shows, among other things, the effect of changing from normal to non-normal \(p\) values for continuous variables, and from approximate to "exact" \(p\) values for categorical factors.

Again, as noted above, in a real data situation, we'd want to plot the quantitative variables (within each group) to make a smart decision about whether a t test or Wilcoxon approach is more appropriate.

Note in the summary below that we have some missing values here. Often, we'll present this information within the Table 1, as well.
```

summary(att2)

```
\#\#\# Summary of continuous variables \#\#\#
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & ss & p.miss & mean sd & median & p25 & p75 & min & max & skew & kurt \\
\hline age & 233 & 0 & 0.0 & 6418 & 66 & 54 & 76 & 23 & 96 & -0.34 & -0.52 \\
\hline nihss & 233 & 0 & 0.0 & 185 & 17 & 14 & 21 & 10 & 28 & 0.48 & -0.74 \\
\hline sbp & 233 & 0 & 0.0 & 14626 & 146 & 129 & 164 & 78 & 214 & -0.07 & -0.22 \\
\hline time.iv & 233 & 30 & 12.9 & 9845 & 85 & 67 & 110 & 42 & 218 & 1.03 & 0.08 \\
\hline aspects & 233 & 0 & 0.0 & 82 & 9 & 7 & 10 & 5 & 10 & -0.56 & -0.98 \\
\hline time.rand & 233 & 2 & 0.9 & 20357 & 204 & 152 & 250 & 100 & 300 & 0.01 & -1.16 \\
\hline \multicolumn{12}{|l|}{trt: Control} \\
\hline & \multicolumn{2}{|r|}{} & p.miss & mean sd & median & p25 & p75 & min & max & skew & w kurt \\
\hline age & 267 & 0 & 0.0 & 6516 & 66 & 56 & 76 & 24 & 94 & -0.296 & -0.28 \\
\hline nihss & 267 & 0 & 0.0 & 184 & 18 & 14 & 22 & 11 & 25 & 0.017 & -1.24 \\
\hline sbp & 267 & 1 & 0.4 & 14524 & 145 & 128 & 161 & 82 & 231 & 0.156 & 60.08 \\
\hline time.iv & 267 & 25 & 9.4 & 8826 & 87 & 65 & 116 & 44 & 130 & 0.001 & -1.32 \\
\hline aspects & 267 & 4 & 1.5 & \(9 \quad 1\) & 9 & 8 & 10 & 5 & 10 & -1.071 & \(1 \quad 0.36\) \\
\hline time.rand & 267 & 0 & 0.0 & 21470 & 196 & 149 & 266 & 120 & 360 & 0.508 & -0.93 \\
\hline
\end{tabular}
```

p-values
pNormal pNonNormal
age 0.342813660 0.57856976
nihss 0.787487252 0.45311695
sbp 0.647157646 0.51346132
time.iv 0.003073372 0.59641104
aspects 0.032662901 0.07464683
time.rand 0.050803672 0.25134327
Standardize mean differences
1 vs 2
age 0.08478764
nihss 0.02405390
sbp 0.04100833
time.iv 0.27691223
aspects 0.19210662

```
time.rand 0.17720957

\section*{\#\#\# Summary of categorical variables \#\#\#}
trt: Intervention
\begin{tabular}{lrrrrrr} 
var & n miss & p.miss & level & freq & percent & cum.percent \\
sex 233 & 0 & 0.0 & Female & 98 & 42.1 & 42.1 \\
& & & & Male & 135 & 57.9
\end{tabular}
\begin{tabular}{lllllrr} 
location 233 & 0 & 0.0 & Left & 116 & 49.8 & 49.8 \\
& & & Right & 117 & 50.2 & 100.0
\end{tabular}
\begin{tabular}{lllrrr} 
hx.isch 233 & 0 & 0.0 & No & 204 & 87.6 \\
& & Yes & 29 & 12.4 & 100.0
\end{tabular}
\begin{tabular}{rrrrrr} 
afib 233 & 0 & 0.0 & 0 & 167 & 71.7 \\
1 & 66 & 28.3 & 100.0
\end{tabular}
\(\begin{array}{lllllll}d m & 233 & 0 & 0.0 & 0 & 204 & 87.6\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline mrankin 233 & 0 & 0.0 & 0 & 190 & 81.5 & 81.5 \\
\hline & & & 1 & 21 & 9.0 & 90.6 \\
\hline & & & 2 & 12 & 5.2 & 95.7 \\
\hline & & & > 2 & 10 & 4.3 & 100.0 \\
\hline iv.altep 233 & 0 & 0.0 & No & 30 & 12.9 & 12.9 \\
\hline & & & Yes & 203 & 87.1 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr} 
ia.occlus 233 0 & 0.0 Intracranial ICA & 1 & 0.4 & 0.4 \\
& ICA with M1 & 59 & 25.3 & 25.8 \\
& M1 & 154 & 66.1 & 91.8 \\
& M2 & 18 & 7.7 & 99.6 \\
& A1 or A2 & 1 & 0.4 & 100.0
\end{tabular}
\begin{tabular}{lllrrr} 
extra.ica 233 & 0 & 0.0 & 0 & 158 & 67.8 \\
& & 1 & 75 & 32.2 & 100.0
\end{tabular}
trt: Control
var \(n\) miss p.miss level freq percent cum.percent
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{sex 267} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{0.0} & Female & 110 & 41.2 & 41.2 \\
\hline & & & Male & 157 & 58.8 & 100.0 \\
\hline \multirow[t]{2}{*}{location 267} & \multirow[t]{2}{*}{0} & 0.0 & Left & 153 & 57.3 & 57.3 \\
\hline & & & Right & 114 & 42.7 & 100.0 \\
\hline \multirow[t]{2}{*}{hx.isch 267} & \multirow[t]{2}{*}{0} & 0.0 & No & 242 & 90.6 & 90.6 \\
\hline & & & Yes & 25 & 9.4 & 100.0 \\
\hline \multirow[t]{2}{*}{afib 267} & \multirow[t]{2}{*}{0} & 0.0 & 0 & 198 & 74.2 & 74.2 \\
\hline & & & 1 & 69 & 25.8 & 100.0 \\
\hline \multirow[t]{2}{*}{dm 267} & \multirow[t]{2}{*}{0} & 0.0 & 0 & 233 & 87.3 & 87.3 \\
\hline & & & 1 & 34 & 12.7 & 100.0 \\
\hline \multirow[t]{4}{*}{mrankin 267} & \multirow[t]{4}{*}{0} & 0.0 & 0 & 214 & 80.1 & 80.1 \\
\hline & & & 1 & 29 & 10.9 & 91.0 \\
\hline & & & 2 & 13 & 4.9 & 95.9 \\
\hline & & & > 2 & 11 & 4.1 & 100.0 \\
\hline \multirow[t]{2}{*}{iv.altep 267} & \multirow[t]{2}{*}{0} & 0.0 & No & 25 & 9.4 & 9.4 \\
\hline & & & Yes & 242 & 90.6 & 100.0 \\
\hline \multirow[t]{5}{*}{ia.occlus 267} & \multirow[t]{5}{*}{1} & 0.4 & Intracranial ICA & 3 & 1.1 & 1.1 \\
\hline & & & ICA with M1 & 75 & 28.2 & 29.3 \\
\hline & & & M1 & 165 & 62.0 & 91.4 \\
\hline & & & M2 & 21 & 7.9 & 99.2 \\
\hline & & & A1 or A2 & 2 & 0.8 & 100.0 \\
\hline \multirow[t]{2}{*}{extra.ica 267} & \multirow[t]{2}{*}{1} & 0.4 & 0 & 196 & 73.7 & 73.7 \\
\hline & & & 1 & 70 & 26.3 & 100.0 \\
\hline
\end{tabular}
```

p-values
pApprox pExact
sex 0.9171387 0.8561188
location 0.1113553 0.1056020
hx.isch 0.3352617 0.3124683
afib 0.6009691 0.5460206
dm 1.0000000 1.0000000
mrankin 0.9224798 0.9173657
iv.altep 0.2674968 0.2518374
ia.occlus 0.7945580 0.8189090

```
```

extra.ica 0.1793385 0.1667574
Standardize mean differences
1 vs 2
sex 0.017479025
location 0.151168444
hx.isch 0.099032275
afib 0.055906317
dm 0.008673478
mrankin 0.062543164
iv.altep 0.111897009
ia.occlus 0.117394890
extra.ica 0.129370206

```

In this case, I have simulated the data to mirror the results in the published Table 1 for this study. In no way have I captured the full range of the real data, or any of the relationships in that data, so it's more important here to see what's available in the analysis, rather than to interpret it closely in the clinical context.

\subsection*{18.9 Exporting the Completed Table 1 from R to Excel or Word}

Once you've built the table and are generally satisfied with it, you'll probably want to be able to drop it into Excel or Word for final cleanup.

\subsection*{18.9.1 Approach A: Save and open in Excel}

One option is to save the Table 1 to a . csv file within our data subfolder (note that the data folder must already exist), which you can then open directly in Excel. This is the approach I generally use. Note the addition of some quote, noSpaces and printToggle selections here.
```

fs.table1save <- print(att2,
nonnormal = c("age", "nihss", "time.iv", "aspects", "time.rand"),
exact = c("location", "mrankin"),
quote = FALSE, noSpaces = TRUE, printToggle = FALSE)
write.csv(fs.table1save, file = "data/fs-table1.csv")

```

When I then open the fs-table1.csv file in Excel, it looks like this:
\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 & A & B & C & D & E \\
\hline 1 & & Intervention & Control & \(p\) & test \\
\hline 2 & n & 233 & 267 & & \\
\hline 3 & age (median [IQR]) & 65.80 [54.50, 76.00] & 65.70 [55.75, 76.20] & 0.579 & nonnorm \\
\hline 4 & sex = Male (\%) & 135 (57.9) & 157 (58.8) & 0.917 & \\
\hline 5 & nihss (median [IQR]) & 17.00 [14.00, 21.00] & 18.00 [14.00, 22.00] & 0.453 & nonnorm \\
\hline 6 & location \(=\) Right (\%) & 117 (50.2) & 114 (42.7) & 0.111 & \\
\hline 7 & hx.isch = Yes (\%) & 29 (12.4) & 25 (9.4) & 0.335 & \\
\hline 8 & afib \(=1\) (\%) & 66 (28.3) & 69 (25.8) & 0.601 & \\
\hline 9 & \(\mathrm{dm}=1\) (\%) & 29 (12.4) & 34 (12.7) & 1 & \\
\hline 10 & mrankin (\%) & & & 0.922 & \\
\hline 11 & 0 & 190 (81.5) & 214 (80.1) & & \\
\hline 12 & & 21 (9.0) & 29 (10.9) & & \\
\hline 13 & 2 & 12 (5.2) & 13 (4.9) & & \\
\hline 14 & \(>2\) & 10 (4.3) & 11 (4.1) & & \\
\hline 15 & sbp (mean (sd)) & 146.03 (26.00) & 145.00 (24.40) & 0.647 & \\
\hline 16 & iv.altep = Yes (\%) & 203 (87.1) & 242 (90.6) & 0.267 & \\
\hline 17 & time.iv (median [IQR]) & 85.00 [67.00, 110.00] & 87.00 [65.00, 116.00] & 0.596 & nonnorm \\
\hline 18 & aspects (median [IQR]) & 9.00 [7.00, 10.00] & 9.00 [8.00, 10.00] & 0.075 & nonnorm \\
\hline 19 & ia.occlus (\%) & & & 0.795 & \\
\hline 20 & Intracranial ICA & 1 (0.4) & 3 (1.1) & & \\
\hline 21 & ICA with M1 & 59 (25.3) & 75 (28.2) & & \\
\hline 22 & M1 & 154 (66.1) & 165 (62.0) & & \\
\hline 23 & M2 & 18 (7.7) & 21 (7.9) & & \\
\hline 24 & A1 or A2 & 1 (0.4) & 2 (0.8) & & \\
\hline 25 & extra.ica \(=1(\%)\) & 75 (32.2) & 70 (26.3) & 0.179 & \\
\hline 26 & time.rand (median [IQR]) & 204.00 [152.00, 249.50] & 196.00 [149.00, 266.00] & 0.251 & nonnorm \\
\hline 27 & time.punc (median [IQR]) & 260.00 [212.00, 313.00] & NA [NA, NA] & NA & nonnorm \\
\hline 28 & & & & & \\
\hline
\end{tabular}

And from here, I can either drop it directly into Word, or present it as is, or start tweaking it to meet formatting needs.

\subsection*{18.9.2 Approach B: Produce the Table so you can cut and paste it}
```

print(att2,
nonnormal = c("age", "nihss", "time.iv", "aspects", "time.rand"),
exact = c("location", "mrankin"),
quote = TRUE, noSpaces = TRUE)

```

This will look like a mess by itself, but if you:
1. copy and paste that mess into Excel
2. select Text to Columns from the Data menu
3. select Delimited, then Space and select Treat consecutive delimiters as one
you should get something usable again.
Or, in Word,
1. insert the text
2. select the text with your mouse
3. select Insert ... Table ... Convert Text to Table
4. place a quotation mark in the "Other" area under Separate text at ...

After dropping blank columns, the result looks pretty good.

\subsection*{18.10 A Controlled Biological Experiment - The Blood-Brain Barrier}

My source for the data and the following explanatory paragraph is page 307 from @RamseySchafer2002. The original data come from @Barnett1995.

The human brain (and that of rats, coincidentally) is protected from the bacteria and toxins that course through the bloodstream by something called the bloodbrain barrier. After a method of disrupting the barrier was developed, researchers tested this new mechanism, as follows. A series of 34 rats were inoculated with human lung cancer cells to induce brain tumors. After 9-11 days they were infused with either the barrier disruption (BD) solution or, as a control, a normal saline (NS) solution. Fifteen minutes later, the rats received a standard dose of a particular therapeutic antibody ( \(\mathrm{L} 6-\mathrm{F}\left(\mathrm{ab}^{\prime}\right) 2\). The key measure of the effectiveness of transmission across the brain-blood barrier is the ratio of the antibody concentration in the brain tumor to the antibody concentration in normal tissue outside the brain. The rats were then sacrificed, and the amounts of antibody in the brain tumor and in normal tissue from the liver were measured. The study's primary objective is to determine whether the antibody concentration in the tumor increased when the blood-barrier disruption infusion was given, and if so, by how much?

\subsection*{18.11 The bloodbrain.csv file}

Consider the data, available on our Data and Code website in the bloodbrain.csv file, which includes the following variables:
\begin{tabular}{rl}
\hline Variable & Description \\
case & identification number for the rat (1-34) \\
brain & an outcome: Brain tumor antibody count (per gram) \\
liver & an outcome: Liver antibody count (per gram) \\
tlratio & an outcome: tumor / liver concentration ratio \\
solution & the treatment: BD (barrier disruption) or NS (normal saline) \\
sactime & a design variable: Sacrifice time (hours; either 0.5, 3, 24 or 72) \\
postin & covariate: Days post-inoculation of lung cancer cells (9, 10 or 11) \\
sex & covariate: M or F \\
wt.init & covariate: Initial weight (grams) \\
wt.loss & covariate: Weight loss (grams) \\
wt.tumor & covariate: Tumor weight \(\left(10^{-4}\right.\) grams) \\
\hline
\end{tabular}

And here's what the data look like in R .
```

 bloodbrain

A tibble: 34 x 11

 case brain liver tlratio solution sactime postin sex wt.init wt.loss
 <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <chr> <dbl> <dbl>
 1 1 41081 1456164 0.0282 BD
 2 2 44286 1602171 0.0276 BD
3 3 102926 1601936 0.0642 BD 0.5 10 F 0
4 4 25927 1776411 0.0146 BD
5 5 42643 1351184 0.0316 BD
6 6 31342 1790863 0.0175 NS
7 7 22815 1633386 0.0140 NS
8 8 16629 1618757 0.0103 NS
9 9 22315 1567602 0.0142 NS 2 0.5 10 F 216 2.8
10 10 77961 1060057 0.0735 BD

i 24 more rows

i 1 more variable: wt.tumor <dbl>

```

\subsection*{18.12 A Table 1 for bloodbrain}
@Barnett1995 did not provide a Table 1 for these data, so let's build one to compare the two solutions (BD vs. NS) on the covariates and outcomes, plus the natural logarithm of the tumor/liver concentration ratio (tlratio). We'll opt to treat the sacrifice time (sactime) and the days post-inoculation of lung cancer cells (postin) as categorical rather than quantitative variables.
```

 bloodbrain <- bloodbrain %>%
 mutate(logTL = log(tlratio))
 dput(names(bloodbrain))
 c("case", "brain", "liver", "tlratio", "solution", "sactime",
"postin", "sex", "wt.init", "wt.loss", "wt.tumor", "logTL")

```

OK - there's the list of variables we'll need. I'll put the outcomes at the bottom of the table.
```

bb.vars <- c("sactime", "postin", "sex", "wt.init", "wt.loss",
"wt.tumor", "brain", "liver", "tlratio", "logTL")
bb.factors <- c("sactime", "sex", "postin")
bb.att1 <- CreateTableOne(data = bloodbrain,
vars = bb.vars,
factorVars = bb.factors,
strata = c("solution"))

```
summary (bb.att1)
\#\#\# Summary of continuous variables \#\#\#
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & s & p.miss & mean & sd & median & p25 & p75 & min & max & skew \\
\hline wt.init & 17 & 0 & 0 & 243 & \(3 \mathrm{e}+01\) & \(2 \mathrm{e}+02\) & \(2 \mathrm{e}+02\) & \(3 \mathrm{e}+02\) & \(2 \mathrm{e}+02\) & \(3 \mathrm{e}+02\) & -0.39 \\
\hline wt.loss & 17 & 0 & 0 & 3 & \(5 \mathrm{e}+00\) & \(4 \mathrm{e}+00\) & \(1 \mathrm{e}+00\) & 6e+00 & -5e+00 & \(1 \mathrm{e}+01\) & -0.10 \\
\hline wt.tumor & 17 & 0 & 0 & 157 & \(8 \mathrm{e}+01\) & \(2 \mathrm{e}+02\) & \(1 \mathrm{e}+02\) & \(2 \mathrm{e}+02\) & \(2 \mathrm{e}+01\) & \(4 \mathrm{e}+02\) & 0.53 \\
\hline brain & 17 & 0 & 0 & 56043 & \(3 \mathrm{e}+04\) & \(5 \mathrm{e}+04\) & \(4 \mathrm{e}+04\) & \(8 \mathrm{e}+04\) & \(6 \mathrm{e}+03\) & \(1 \mathrm{e}+05\) & 0.29 \\
\hline liver & 17 & 0 & 0 & 672577 & \(7 \mathrm{e}+05\) & \(6 \mathrm{e}+05\) & \(2 \mathrm{e}+04\) & \(1 \mathrm{e}+06\) & \(2 \mathrm{e}+03\) & \(2 \mathrm{e}+06\) & 0.35 \\
\hline tlratio & 17 & 0 & 0 & 2 & \(3 \mathrm{e}+00\) & \(1 \mathrm{e}-01\) & \(6 \mathrm{e}-02\) & \(3 \mathrm{e}+00\) & 1e-02 & \(9 \mathrm{e}+00\) & 1.58 \\
\hline logTL & 17 & 0 & 0 & -1 & \(2 \mathrm{e}+00\) & \(-2 \mathrm{e}+00\) & \(-3 \mathrm{e}+00\) & \(1 \mathrm{e}+00\) & \(-4 \mathrm{e}+00\) & \(2 \mathrm{e}+00\) & 0.08 \\
\hline & kur & & & & & & & & & & \\
\hline wt.init & 0. & & & & & & & & & & \\
\hline wt.loss & 0. & & & & & & & & & & \\
\hline wt.tumor & 1. & & & & & & & & & & \\
\hline brain & -0. & & & & & & & & & & \\
\hline liver & -1. & & & & & & & & & & \\
\hline tlratio & 1. & & & & & & & & & & \\
\hline
\end{tabular}
```

logTL -1.7
solution: NS
n miss p.miss mean sd median p25 p75 min max skew
wt.init 17 0 0 240 3e+01 2e+02 2e+02 3e+02 2e+02 3e+02 0.33
wt.loss 17 0 0 4 4e+00 3e+00 2e+00 7e+00 -4e+00 1e+01 -0.09
wt.tumor 17 0 0 209 1e+02 2e+02 2e+02 3e+02 3e+01 5e+02 0.63
brain 17 0 0 23887 1e+04 2e+04 1e+04 3e+04 1e+03 5e+04 0.30
liver 17 0 0 664975 7e+05 7e+05 2e+04 1e+06 9e+02 2e+06 0.40
tlratio 17 0 0 1 2 < +00 5e-02 3e-02 9e-01 1e-02 7e+00 2.27
logTL 17 0 0 -2 2e+00 -3e+00 -3e+00 -7e-02 -5e+00 2e+00 0.27
kurt
wt.init -0.48
wt.loss 0.08
wt.tumor 0.77
brain -0.35
liver -1.56
tlratio 4.84
logTL -1.61
p-values
pNormal pNonNormal
wt.init 0.807308940 0.641940278
wt.loss 0.683756156 0.876749808
wt.tumor 0.151510151 0.190482094
brain 0.001027678 0.002579901
liver 0.974853609 0.904045603
tlratio 0.320501715 0.221425879
logTL 0.351633525 0.221425879
Standardize mean differences
1 vs 2
wt.init 0.08435244
wt.loss 0.14099823
wt.tumor 0.50397184
brain 1.23884159
liver 0.01089667
tlratio 0.34611465
logTL 0.32420504

```
```


Summary of categorical variables

```
```

solution: BD
var n miss p.miss level freq percent cum.percent
sactime 17 0 0.0
3 4 23.5 52.9
24 4 23.5 76.5
72 4 23.5 100.0
postin 17 0 0.0 9 17 1 5 5.9 5.9
10}14\mp@code{14 82.4 88.2
11 2 11.8 100.0
sex 17 0 0.0 F F 13 76.5 76.5
23.5 100.0
solution: NS
var n miss p.miss level freq percent cum.percent
sactime 17 0 0.0 0.5 4 23.5 23.5

| 3 | 5 | 29.4 | 52.9 |
| ---: | ---: | ---: | ---: |
| 24 | 4 | 23.5 | 76.5 |
| 72 | 4 | 23.5 | 100.0 |

 postin 17 0 0.0 9 0 2 11.8 11.8
 10}13\quad76.5 88.
 11 2 11.8 100.0
 sex 17 0 0.0 F F 13 76.5 lllll
 M 4 23.5 100.0
    ```
```

p-values
pApprox pExact
sactime 0.9739246 1
postin 0.8309504 1
sex 1.0000000 1

```
Standardize mean differences
            1 vs 2
sactime 0.1622214
postin 0.2098877
sex 0.0000000

Note that, in this particular case, the decisions we make about normality vs. non-normality (for quantitative variables) and the decisions we make about approximate vs. exact testing (for categorical variables) won't actually change the implications of the \(p\) values. Each approach gives similar results for each variable. Of course, that's not always true.

\subsection*{18.12.1 Generate final Table 1 for bloodbrain}

I'll choose to treat tlratio and its logarithm as non-Normal, but otherwise, use t tests, but admittedly, that's an arbitrary decision, really.
```

print(bb.att1, nonnormal = c("tlratio", "logTL"))
Stratified by solution
BD NS
n 17 17
sactime (%)
0.5 5 (29.4) 4 (23.5)
3 4 (23.5) 5 (29.4)
24
72 4 (23.5) 4 (23.5)
postin (%)
9 1 (5.9) 2 (11.8)
10
1 1
sex = M (%) 4 (23.5) 4 (23.5)
wt.init (mean (SD)) 242.82 (27.23) 240.47 (28.54)
wt.loss (mean (SD)) 3.34 (4.68) 3.94 (3.88)
wt.tumor (mean (SD))
157.29 (84.00) 208.53 (116.68)
brain (mean (SD)) 56043.41 (33675.40) 23887.18 (14610.53)
liver (mean (SD)) 672577.35 (694479.58) 664975.47 (700773.13)
tlratio (median [IQR]) 0.12 [0.06, 2.84] 0.05 [0.03, 0.94]
logTL (median [IQR]) -2.10 [-2.74, 1.04] -2.95 [-3.41, -0.07]
Stratified by solution
p test
n
sactime (%) 0.974
0.5
3
24
72
postin (%) 0.831

```
```

 9
 10
 1 1
 sex = M (%) 1.000
wt.init (mean (SD)) 0.807
wt.loss (mean (SD)) 0.684
wt.tumor (mean (SD)) 0.152
brain (mean (SD)) 0.001
liver (mean (SD)) 0.975
tlratio (median [IQR]) 0.221 nonnorm
logTL (median [IQR]) 0.221 nonnorm

```

Or, we can get an Excel-readable version placed in a data subfolder, using
```

bb.t1 <- print(bb.att1, nonnormal = c("tlratio", "logTL"), quote = FALSE,
noSpaces = TRUE, printToggle = FALSE)
write.csv(bb.t1, file = "data/bb-table1.csv")

```
which, when dropped into Excel, will look like this:
\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 & A & B & C & D & E \\
\hline 1 & & BD & NS & \(p\) & test \\
\hline 2 & n & 17 & 17 & & \\
\hline 3 & sex \(=\mathrm{M}(\%)\) & 4 (23.5) & 4 (23.5) & 1 & \\
\hline 4 & sactime (\%) & & & 0.974 & \\
\hline 5 & 0.5 & 5 (29.4) & 4 (23.5) & & \\
\hline 6 & 3 & 4 (23.5) & 5 (29.4) & & \\
\hline 7 & 24 & 4 (23.5) & 4 (23.5) & & \\
\hline 8 & 72 & 4 (23.5) & 4 (23.5) & & \\
\hline 9 & postin (\%) & & & 0.831 & \\
\hline 10 & 9 & 1 (5.9) & 2 (11.8) & & \\
\hline 11 & 10 & 14 (82.4) & 13 (76.5) & & \\
\hline 12 & 11 & 2 (11.8) & 2 (11.8) & & \\
\hline 13 & wt.init (mean (sd)) & 242.82 (27.23) & 240.47 (28.54) & 0.807 & \\
\hline 14 & wt.loss (mean (sd)) & 3.34 (4.68) & 3.94 (3.88) & 0.684 & \\
\hline 15 & wt.tumor (mean (sd)) & 157.29 (84.00) & 208.53 (116.68) & 0.152 & \\
\hline 16 & brain (mean (sd)) & 56043.41 (33675.40) & 23887.18 (14610.53) & 0.001 & \\
\hline 17 & liver (mean (sd)) & 672577.35 (694479.58) & 664975.47 (700773.13) & 0.975 & \\
\hline 18 & tlratio (median [IQR]) & 0.12 [0.06, 2.84] & 0.05 [0.03, 0.94] & 0.221 & nonnorm \\
\hline 19 & \(\operatorname{logTL}\) (median [IQR]) & \(-2.10[-2.74,1.04]\) & -2.95 [-3.41, -0.07] & 0.221 & nonnorm \\
\hline 20 & & & & & \\
\hline
\end{tabular}

One thing I would definitely clean up here, in practice, is to change the presentation of the \(p\) value for sex from 1 to \(>0.99\), or just omit it altogether. I'd also drop the computer-ese where possible, add units for the measures, round a lot, identify the outcomes carefully, and use notes to indicate deviations from the main approach.

\subsection*{18.12.2 A More Finished Version (after Cleanup in Word)}

\section*{Table 1. Comparing Rats Receiving BD to those Receiving NS on Available Covariates and Design Variables, and Key Outcomes}
\begin{tabular}{|c|c|c|c|}
\hline & Barrier Disruption (BD: treatment) & Normal Saline (NS: control) & p \\
\hline \# of Rats & 17 & 17 & \\
\hline Sex = Male & 4 (23.5) & 4 (23.5) & - \\
\hline Sacrifice Time (hours) & & & 0.97 \\
\hline 0.5 & 5 (29.4) & 4 (23.5) & \\
\hline 3 & 4 (23.5) & 5 (29.4) & \\
\hline 24 & 4 (23.5) & 4 (23.5) & \\
\hline 72 & 4 (23.5) & 4 (23.5) & \\
\hline Days post-inoculation of lung cancer cells & & & 0.83 \\
\hline 9 & 1 (5.9) & 2 (11.8) & \\
\hline 10 & 14 (82.4) & 13 (76.5) & \\
\hline 11 & 2 (11.8) & 2 (11.8) & \\
\hline Initial Weight (g) & 243 (27) & 240 (29) & 0.81 \\
\hline Weight Loss (g) & 3.3 (4.7) & 3.9 (3.9) & 0.68 \\
\hline Tumor Weight ( \(10^{-4} \mathrm{~g}\) ) & 157.3 (84.0) & 208.5 (116.7) & 0.15 \\
\hline \multicolumn{4}{|l|}{Key Outcomes: mean (sd) unless otherwise indicated} \\
\hline Brain Tumor Antibody Count (per g) & \(56,043(33,675)\) & 23,887 (14,611) & 0.001 \\
\hline Liver Antibody Count (per g) & 672,577 (694,480) & 664,975 (700,773) & 0.98 \\
\hline Tumor/Liver Ratio (median [Q25, Q75]) & \[
\begin{gathered}
0.12 \\
{[0.06,2.84]}
\end{gathered}
\] & \[
\begin{gathered}
0.05 \\
{[0.03,0.94]}
\end{gathered}
\] & 0.22 \\
\hline Natural Log of Tumor/Liver Ratio (median [Q25, Q75]) & \[
\begin{gathered}
-2.10 \\
{[-2.74,1.04]}
\end{gathered}
\] & \[
\begin{gathered}
-2.95 \\
{[-3.41,-0.07]}
\end{gathered}
\] & 0.22 \\
\hline
\end{tabular}

Table 1 Notes:
- Categorical variables are summarized with counts, percentages and \(p\) values based on approximate chi-square tests.
- Continuous variables, unless otherwise indicated, are summarized with means, standard deviations and \(p\) values based on \(t\) tests.
- The Tumor / Liver ratio and its natural logarithm are summarized with the median and quartiles and a \(p\) value from a non-parametric (Wilcoxon signed rank) test.

\section*{19 Logistic Regression: The Foundations}

Sources for this material include @Harrell2001, @HarrellRMSnotes, @RamseySchafer2002 (chapters 20-21), @Vittinghoff2012 (chapter 5) and @Faraway2006 (chapter 2).

\subsection*{19.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(broom)
library(tidyverse)
theme_set(theme_bw())

```

\subsection*{19.2 A First Attempt: A Linear Probability Model}

Suppose we want to predict a binary outcome which takes on the value 1 or 0 , based on a single quantitative predictor. Let y be a \(1 / 0\) outcome, and x be a quantitative predictor in the following simulation.
```

set.seed(432)
sim12 <- tibble(x = rnorm(100, 10, 3),
err = rnorm(100, 0, 2),
y = ifelse(x + err > 10, 1, 0))
sim12 <- select(sim12, x, y)
ggplot(sim12, aes(x = x, y = y)) + geom_point()

```


Now, we want to use our variable \(x\) here to predict our variable \(y\) (which takes on the values 0 and 1).

One approach to doing this would be a linear probability model, as follows:
```

mod12a <- lm(y ~ x, data = sim12)
summary(mod12a)

```

Call:
\(\operatorname{lm}(\) formula \(=y \sim x\), data \(=\) sim12 \()\)

Residuals:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Min & 1Q & Median & 3Q & & Max \\
\hline -0.74104-0 & 23411 & -0.02894 & 0.23117 & 0.8 & 3153 \\
\hline \multicolumn{6}{|l|}{Coefficients:} \\
\hline & \multicolumn{5}{|l|}{Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)} \\
\hline (Intercept) & -0.727 & & 2272 -5 & 929 & \(4.57 \mathrm{e}-08\) \\
\hline x & 0.126 & & 21910 & 349 & < 2e-16 \\
\hline
\end{tabular}

Signif. codes: \(0{ }^{\prime} * * * ' 0.001{ }^{\prime} * * ' 0.01 '^{\prime \prime} 0.05 '^{\prime} 0.1\) ' ' 1

Residual standard error: 0.3491 on 98 degrees of freedom
Multiple R-squared: 0.5222, Adjusted R-squared: 0.5173
F-statistic: 107.1 on 1 and 98 DF, p-value: < \(2.2 \mathrm{e}-16\)

Here's a picture of this model. What's wrong here?
```

ggplot(sim12, aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "lm", formula $=\mathrm{y} \sim \mathrm{x}$, se = TRUE) +
labs(title = "Linear Probability Model")

```

Linear Probability Model


If y can only take the values 0 and 1 (or, more precisely, if we're trying to predict the value \(\pi\) \(=\operatorname{Pr}(\mathrm{y}=1))\) then what do we do with the predictions that are outside the range of \((0,1)\) ?

\subsection*{19.3 Logistic Regression}

Logistic regression is the most common model used when the outcome is binary. Our response variable is assumed to take on two values, zero or one, and we then describe the probability of
a "one" response, given a linear function of explanatory predictors. We use logistic regression rather than linear regression for predicting binary outcomes. Linear regression approaches to the problem of predicting probabilities are problematic for several reasons - not least of which being that they predict probabilities greater than one and less than zero. There are several available alternatives, including probit regression and binomial regression, for the problem of predicting a binary outcome.

Logistic regression is part of a class called generalized linear models which extend the linear regression model in a variety of ways. There are also several extensions to the logistic regression model, including multinomial logistic regression (which is used for nominal categorical outcomes with more than two levels) and ordered logistic regression (used for ordered multi-categorical outcomes.) The methods involved in binary logistic regression may also be extended to the case where the outcomes are proportions based on counts, often through grouped binary responses (the proportion of cells with chromosomal aberrations, or the proportion of subjects who develop a particular condition.)

Although the models are different in some crucial ways, the practical use of logistic regression tracks well with much of what we've learned about linear regression.

\subsection*{19.4 The Logistic Regression Model}

A generalized linear model (or GLM) is a probability model in which the mean of an outcome is related to predictors through a regression equation. A link function \(g\) is used to relate the mean, \(\mu\), to a linear regression of the predictors \(X_{1}, X_{2}, \ldots, X_{k}\).
\[
g(\mu)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{k} X_{k}
\]

In the case of a logistic regression model,
- the mean \(\mu\) of our \(0 / 1\) outcome is represented by \(\pi\) which describes the probability of a " 1 " outcome.
- the linking function we use in logistic regression makes use of the logit function, which is built on the natural logarithm.

\subsection*{19.5 The Link Function}

Logistic regression is a non-linear regression approach, since the equation for the mean of the \(0 / 1 \mathrm{Y}\) values conditioned on the values of our predictors \(X_{1}, X_{2}, \ldots, X_{k}\) turns out to be nonlinear in the \(\beta\) coefficients. Its nonlinearity, however, is solely found in its link function, hence the term generalized linear model.

The particular link function we use in logistic regression is called the logit link.
\[
\operatorname{logit}(\pi)=\log \left(\frac{\pi}{1-\pi}\right)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{k} X_{k}
\]

The inverse of the logit function is called the logistic function. If \(\operatorname{logit}(\pi)=\eta\), then \(\pi=\) \(\frac{\exp (\eta)}{1+\exp (\eta)}\)
The plot below displays the logistic function \(y=\frac{e^{x}}{1+e^{x}}\)
```

set.seed(43201)
temp <- tibble(
x = runif(200, min = -6, max = 6),
y = exp(x) / (1 + exp(x)))
ggplot(temp, aes(x = x, y = y)) +
geom_line(linewidth = 2, col = "blue")

```


As you can see in the figure above, the logistic function \(\frac{e^{x}}{1+e^{x}}\) takes any value \(x\) in the real numbers and returns a value between 0 and 1 .

\subsection*{19.6 The logit or log odds}

We usually focus on the logit in statistical work, which is the inverse of the logistic function.
- If we have a probability \(\pi<0.5\), then \(\operatorname{logit}(\pi)<0\).
- If our probability \(\pi>0.5\), then \(\operatorname{logit}(\pi)>0\).
- Finally, if \(\pi=0.5\), then \(\operatorname{logit}(\pi)=0\).

\subsection*{19.7 Interpreting the Coefficients of a Logistic Regression Model}

The critical thing to remember in interpreting a logistic regression model is that the logit is the log odds function. Exponentiating the logit yields the odds.

So, suppose we have a yes/no outcome variable, where yes \(=1\), and no \(=0\), and \(\pi=\operatorname{Pr}\) ( \(\mathrm{y}=\) 1). Our model holds that:
\[
\operatorname{logit}(\pi)=\log \left(\frac{\pi}{1-\pi}\right)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{k} X_{k}
\]

The odds of a yes response (the odds that \(\mathrm{Y}=1\) ) at the level \(X_{1}, X_{2}, \ldots, X_{k}\) are:
\[
\operatorname{Odds}(Y=1)=\exp \left(\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{k} X_{k}\right)
\]

The probability of a yes response \((\operatorname{Pr}(\mathrm{y}=1)\), or \(\pi)\) is just
\[
\pi=\operatorname{Pr}(Y=1)=\frac{\operatorname{Odds}(Y=1)}{1+\operatorname{Odds}(Y=1)}=\frac{\exp \left(\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{k} X_{k}\right)}{1+\exp \left(\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{k} X_{k}\right)}
\]

\subsection*{19.8 The Logistic Regression has non-constant variance}

In ordinary least squares regression, the variance \(\operatorname{Var}\left(Y \mid X_{1}, X_{2}, \ldots, X_{k}\right)=\sigma^{2}\) is a constant that does not depend on the predictor values. This is not the case in logistic regression. The mean and variance specifications of the logistic regression model are quite different.
\(\operatorname{logit}(\pi)=\log \left(\frac{\pi}{1-\pi}\right)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{k} X_{k} \mu\left[Y \mid X_{1}, \ldots, X_{k}\right]=\pi, \operatorname{Var}\left[Y \mid X_{1}, \ldots, X_{k}\right]=\pi(1-\pi)\)
The variance is now a function of the mean, and contains no additional parameter for us to estimate.

\subsection*{19.9 Fitting a Logistic Regression Model to our Simulated Data}

Recall the sim12 data we built earlier.
```

ggplot(sim12, aes($\mathrm{x}=\mathrm{x}, \mathrm{y}=\mathrm{y})$) + geom_point()

```


Here is the fitted logistic regression model.
```

model12b <- glm(y ~ x, data = sim12, family = binomial)
model12b
Call: glm(formula = y ~ x, family = binomial, data = sim12)
Coefficients:
(Intercept)
Degrees of Freedom: 99 Total (i.e. Null); 98 Residual
Null Deviance: 138.6

```

The logistic regression equation is:
\[
\operatorname{logit}(\operatorname{Pr}(y=1))=\log \left(\frac{\operatorname{Pr}(y=1)}{1-\operatorname{Pr}(y=1)}\right)=-9.1955+0.9566 x
\]

We can exponentiate the results of this model to get to an equation about odds, and eventually, a prediction about probabilities. Suppose, for instance, that we are interested in the prediction when \(\mathrm{x}=12\).
\[
\operatorname{logit}(\operatorname{Pr}(y=1) \mid X=12)=\log \left(\frac{\operatorname{Pr}(y=1)}{1-\operatorname{Pr}(y=1)}\right)=-9.1955+0.9566 * 12=2.2837
\]

And we can also get this from the predict function applied to our model, although the predict approach retains a few more decimal places internally:
```

predict(model12b, newdata = data.frame(x = 12))

```

1
2.284069
\[
\begin{aligned}
& \operatorname{Odds}(Y=1 \mid X=12)=\exp (-9.20+0.96 * 12)=\exp (2.2837)=9.812921 \\
& \exp (\text { predict }(\text { model12b }, \text { newdata }=\text { data.frame }(\mathrm{x}=12)))
\end{aligned}
\]

1
9.81654

The estimated probability of a yes response \((\operatorname{Pr}(\mathrm{y}=1)\), or \(\pi)\) if \(\mathrm{x}=12\) is just
\[
\pi=\operatorname{Pr}(Y=1 \mid X=12)=\frac{\operatorname{Odds}(Y=1 \mid X=12)}{1+\operatorname{Odds}(Y=1 \mid X=12)}=\frac{\exp (-9.20+0.96 x)}{1+\exp (-9.20+0.96 x)}=\frac{9.812921}{1+9.812921}=0.908
\]

Does this work out?
```

exp(predict(model12b, newdata = data.frame(x = 12))) /

```
    (1 + exp(predict(model12b, newdata = data.frame \((x=12))\) )

1
0.907549
which is also directly available by running predict with type = "response".
```

predict(model12b, newdata = data.frame(x = 12), type = "response")

```

1
0.907549

\subsection*{19.10 Plotting the Logistic Regression Model}

We can use the augment function from the broom package to get our fitted probabilities included in the data.
```

m12b_aug <- augment(model12b, sim12, type.predict = "response")
ggplot(m12b_aug, aes(x = x, y = y)) +
geom_point() +
geom_line(aes(x = x, y = .fitted), col = "blue") +
labs(title = "Fitted Logistic Regression Model for sim12")

```

Fitted Logistic Regression Model for sim12


I'll add a little jitter on the vertical scale to the points, so we can avoid overlap, and also make the points a little bigger.
```

ggplot(m12b_aug, aes(x = x, y = y)) +
geom_jitter(height = 0.05, size = 2, pch = 21,
fill = "cornflowerblue") +
geom_line(aes(x = x, y = .fitted), col = "blue") +
labs(title = "Fitted Logistic Regression for sim12") +
theme_bw()

```

Fitted Logistic Regression for sim12


All right, it's time to move on to fitting models. We'll do that next.

\section*{20 Logistic Regression with glm}

\subsection*{20.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(caret)
library(ROCR)
library(pROC)
library(broom)
library(mosaic)
library(naniar)
library(tidyverse)
theme_set(theme_bw())

```

\subsection*{20.1.1 Data Load}
```

resect <- read_csv("data/resect.csv", show_col_types = FALSE)

```

\subsection*{20.2 The resect data}

My source for these data was @Riffenburgh2006. The data describe 134 patients who had undergone resection of the tracheal carina (most often this is done to address tumors in the trachea), and the resect.csv data file contains the following variables:
- \(\mathrm{id}=\mathrm{a}\) patient ID \#,
- age \(=\) the patient's age at surgery,
- prior \(=\) prior tracheal surgery \((1=\) yes, \(0=\) no \()\),
- resection \(=\) extent of the resection (in cm ),
- intubated \(=\) whether intubation was required at the end of surgery \((1=\) yes, \(0=\) no \()\), and
- died \(=\) the patient's death status \((1=\) dead, \(0=\) alive \()\).
```

 miss_var_summary(resect)
    ```
\begin{tabular}{lrr} 
\# A tibble: 6 x 3 & \\
variable & n_miss pct_miss \\
<chr> & <int> & <num> \\
1 subj_id & 0 & 0 \\
2 age & 0 & 0 \\
3 prior & 0 & 0 \\
4 resection & 0 & 0 \\
5 intubated & 0 & 0 \\
6 died & 0 & 0
\end{tabular}
    resect |> count(died, prior)
\# A tibble: 4 x 3
    died prior n
    <dbl> <dbl> <int>
10089
20010
\(\begin{array}{llll}3 & 1 & 0 & 11\end{array}\)
\(\begin{array}{llll}4 & 1 & 1 & 6\end{array}\)
resect |> inspect()
quantitative variables:
            name class min Q1 median Q3 max mean \(n\)
        subj_id numeric \(\quad 134.25 \quad 67.5100 .7513467 .500000038 .8265373134\)
            age numeric \(836.00 \quad 51.0 \quad 61.00 \quad 8047.843283615 .7775202134\)
        \(\begin{array}{lllllllll}\text { prior numeric } & 0 & 0.00 & 0.0 & 0.75 & 1 & 0.2537313 & 0.4367785 & 134\end{array}\)
\(\begin{array}{llllllllll}\text { resection numeric } & 1 & 2.00 & 2.5 & 4.00 & 6 & 2.9634328 & 1.2402123 & 134\end{array}\)
\(\begin{array}{lllllllll}5 & \text { intubated numeric } & 0 & 0.00 & 0.0 & 0.00 & 1 & 0.1417910 & 0.3501447 \\ 134\end{array}\)
\(6 \quad\) died numeric \(0 \quad 0.00 \quad 0.0 \quad 0.00 \quad 1 \quad 0.1268657 \quad 0.3340713134\)
    missing
10
20
30
40
\(5 \quad 0\)
60

We have no missing data, and 17 of the 134 patients died. Our goal will be to understand the characteristics of the patients, and how they relate to the binary outcome of interest, death.

\subsection*{20.3 Running A Simple Logistic Regression Model}

In the most common scenario, a logistic regression model is used to predict a binary outcome (which can take on the values 0 or 1.) We will eventually fit a logistic regression model in two ways.
1. Through the glm function in the base package of \(R\) (similar to \(\operatorname{lm}\) for linear regression)
2. Through the lrm function available in the rms package (similar to ols for linear regression)

We'll focus on the glm approach first, and save the lrm ideas for later in this Chapter.

\subsection*{20.3.1 Logistic Regression Can Be Harder than Linear Regression}
- Logistic regression models are fitted using the method of maximum likelihood in glm, which requires multiple iterations until convergence is reached.
- Logistic regression models are harder to interpret (for most people) than linear regressions.
- Logistic regression models don't have the same set of assumptions as linear models.
- Logistic regression outcomes (yes/no) carry much less information than quantitative outcomes. As a result, fitting a reasonable logistic regression requires more data than a linear model of similar size.
- The rule I learned in graduate school was that a logistic regression requires 100 observations to fit an intercept plus another 15 observations for each candidate predictor. That's not terrible, but it's a very large sample size.
- Frank Harrell recommends that 96 observations + a function of the number of candidate predictors (which depends on the amount of variation in the predictors, but 15 x the number of such predictors isn't too bad if the signal to noise ratio is pretty good) are required just to get reasonable confidence intervals around your predictions.
* In a twitter note, Frank suggests that \(96+8\) times the number of candidate parameters might be reasonable so long as the smallest cell of interest (combination of an outcome and a split of the covariates) is 96 or more observations.
- @Peduzzi1996 suggest that if we let \(\pi\) be the smaller of the proportions of "yes" or "no" cases in the population of interest, and \(k\) be the number of inputs under consideration, then \(N=10 k / \pi\) is the minimum number of cases to include, except that if \(\mathrm{N}<100\) by this standard, you should increase it to 100, according to @Long1997.
* That suggests that if you have an outcome that happens \(10 \%\) of the time, and you are running a model with 3 predictors, then you could get away with \((10 \times 3) /(0.10)=300\) observations, but if your outcome happened \(40 \%\) of the time, you could get away with only \((10 \times 3) /(0.40)=75\) observations, which you'd round up to 100 .

\subsection*{20.4 Logistic Regression using glm}

We'll begin by attempting to predict death based on the extent of the resection.
```

res_modA <- glm(died ~ resection, data=resect,
family="binomial"(link="logit"))
res_modA
Call: glm(formula = died ~ resection, family = binomial(link = "logit"),
data = resect)
Coefficients:
(Intercept) resection
-4.4337 0.7417
Degrees of Freedom: 133 Total (i.e. Null); 132 Residual
Null Deviance: 101.9
Residual Deviance: 89.49 AIC: 93.49

```

Note that the logit link is the default approach with the binomial family, so we could also have used:
```

res_modA <- glm(died ~ resection, data = resect,
family = "binomial")

```
which yields the same model.

\subsection*{20.4.1 Interpreting the Coefficients of a Logistic Regression Model}

Our model is:
\[
\begin{aligned}
& \operatorname{logit}(\operatorname{died}=1)=\log \left(\frac{\operatorname{Pr}(\text { died }=1)}{1-\operatorname{Pr}(\text { died }=1)}\right) \\
& =\beta_{0}+\beta_{1} x=-4.4337+0.7417 \times \text { resection }
\end{aligned}
\]

The predicted \(\log\) odds of death for a subject with a resection of 4 cm is:
\[
\log \left(\frac{\operatorname{Pr}(\text { died }=1)}{1-\operatorname{Pr}(\text { died }=1)}\right)=-4.4337+0.7417 \times 4=-1.467
\]

The predicted odds of death for a subject with a resection of 4 cm is thus:
\[
\frac{\operatorname{Pr}(\text { died }=1)}{1-\operatorname{Pr}(\text { died }=1)}=e^{-4.4337+0.7417 \times 4}=e^{-1.467}=0.2306
\]

Since the odds are less than 1 , we should find that the probability of death is less than \(1 / 2\). With a little algebra, we see that the predicted probability of death for a subject with a resection of 4 cm is:
\[
\operatorname{Pr}(\text { died }=1)=\frac{e^{-4.4337+0.7417 \times 4}}{1+e^{-4.4337+0.7417 \times 4}}=\frac{e^{-1.467}}{1+e^{-1.467}}=\frac{0.2306}{1.2306}=0.187
\]

In general, we can frame the model in terms of a statement about probabilities, like this:
\[
\operatorname{Pr}(\text { died }=1)=\frac{e^{\beta_{0}+\beta_{1} x}}{1+e^{\beta_{0}+\beta_{1} x}}=\frac{e^{-4.4337+0.7417 \times \text { resection }}}{1+e^{-4.4337+0.7417 \times \text { resection }}}
\]
and so by substituting in values for resection, we can estimate the model's fitted probabilities of death.

\subsection*{20.4.2 Using predict to describe the model's fits}

To obtain these fitted odds and probabilities in R, we can use the predict function.
- The default predictions are on the scale of the log odds. These predictions are also available through the type = "link" command within the predict function for a generalized linear model like logistic regression.
- Here are the predicted log odds of death for a subject (Sally) with a 4 cm resection and a subject (Harry) who had a 5 cm resection.
```

 predict(res_modA, newdata = tibble(resection = c(4,5)))
    ```
    \(1 \quad 2\)
\(-1.4669912-0.7253027\)
- We can also obtain predictions for each subject on the original response (here, probability) scale, backing out of the logit link.
```

predict(res_modA, newdata = tibble(resection = c(4, 5)),

```
        type = "response")
    \(1 \quad 2\)
0.18740040 .3262264

So the predicted probability of death is 0.187 for Sally, the subject with a 4 cm resection, and 0.326 for Harry, the subject with a 5 cm resection.

\subsection*{20.4.3 Odds Ratio interpretation of Coefficients}

Often, we will exponentiate the estimated slope coefficients of a logistic regression model to help us understand the impact of changing a predictor on the odds of our outcome.
```

exp(coef(res_modA))

```
(Intercept) resection
0.011869952 .09947754

To interpret this finding, suppose we have two subjects, Harry and Sally. Harry had a resection that was 1 cm larger than Sally. This estimated coefficient suggests that the estimated odds for death associated with Harry is 2.099 times larger than the odds for death associated with Sally. In general, the odds ratio comparing two subjects who differ by 1 cm on the resection length is 2.099 .

To illustrate, again let's assume that Harry's resection was 5 cm , and Sally's was 4 cm . Then we have:
\[
\log \left(\frac{\operatorname{Pr}(\text { Harrydied })}{1-\operatorname{Pr}(\text { Harrydied })}\right)=-4.4337+0.7417 \times 5=-0.7253
\]
\[
\log \left(\frac{\operatorname{Pr}(\text { Sallydied })}{1-\operatorname{Pr}(\text { Sallydied })}\right)=-4.4337+0.7417 \times 4=-1.4667
\]
which implies that our estimated odds of death for Harry and Sally are:
\[
\begin{aligned}
\text { Odds }(\text { Harrydied }) & =\frac{\operatorname{Pr}(\text { Harrydied })}{1-\operatorname{Pr}(\text { Harrydied })}=e^{-4.4337+0.7417 \times 5}=e^{-0.7253}=0.4842 \\
\text { Odds }(\text { Sallydied }) & =\frac{\operatorname{Pr}(\text { Sallydied })}{1-\operatorname{Pr}(\text { Sallydied })}=e^{-4.4337+0.7417 \times 4}=e^{-1.4667}=0.2307
\end{aligned}
\]
and so the odds ratio is:
\[
O R=\frac{\text { Odds }(\text { Harrydied })}{\text { Odds }(\text { Sallydied })}=\frac{0.4842}{0.2307}=2.099
\]
- If the odds ratio was 1 , that would mean that Harry and Sally had the same estimated odds of death, and thus the same estimated probability of death, despite having different sizes of resections.
- Since the odds ratio is greater than 1 , it means that Harry has a higher estimated odds of death than Sally, and thus that Harry has a higher estimated probability of death than Sally.
- If the odds ratio was less than 1 , it would mean that Harry had a lower estimated odds of death than Sally, and thus that Harry had a lower estimated probability of death than Sally.

Remember that the odds ratio is a fraction describing two positive numbers (odds can only be non-negative) so that the smallest possible odds ratio is 0 .

\subsection*{20.4.4 Interpreting the rest of the model output from glm}
```

 res_modA
 Call: glm(formula = died ~ resection, family = "binomial", data = resect)
Coefficients:
(Intercept) resection
-4.4337 0.7417

```
```

Degrees of Freedom: 133 Total (i.e. Null); 132 Residual
Null Deviance: 101.9
Residual Deviance: 89.49 AIC: 93.49

```

In addition to specifying the logistic regression coefficients, we are also presented with information on degrees of freedom, deviance (null and residual) and AIC.
- The degrees of freedom indicate the sample size.
- Recall that we had \(n=134\) subjects in the data. The "Null" model includes only an intercept term (which uses 1 df ) and we thus have \(n-1\) (here 133) degrees of freedom available for estimation.
- In our res_modA model, a logistic regression is fit including a single slope (resection) and an intercept term. Each uses up one degree of freedom to build an estimate, so we have \(n-2=134-2=132\) residual df remaining.
- The AIC or Akaike Information Criterion (lower values are better) is also provided. This is helpful if we're comparing multiple models for the same outcome.

\subsection*{20.4.5 Deviance and Comparing Our Model to the Null Model}
- The deviance (a measure of the model's lack of fit) is available for both the null model (the model with only an intercept) and for our model (res_modA) predicting our outcome, mortality.
- The deviance test, though available in R (see below) isn't really a test of whether the model works well. Instead, it assumes the model is true, and then tests to see if the coefficients are different from zero. So it isn't of much practical use.
- To compare the deviance statistics, we can subtract the residual deviance from the null deviance to describe the impact of our model on fit.
- Null Deviance - Residual Deviance can be compared to a \(\chi^{2}\) distribution with Null DF - Residual DF degrees of freedom to obtain a global test of the in-sample predictive power of our model.
- We can see this comparison more directly by running anova on our model:
```

anova(res_modA, test = "LRT")
Analysis of Deviance Table
Model: binomial, link: logit
Response: died

```
```

Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 133 101.943
resection 1 12.45 132 89.493 0.0004179 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

The test \(=\) "LRT" section completes a deviance test and provides a \(p\) value, which just estimates the probability that a chi-square distribution with a single degree of freedom would exhibit an improvement in deviance as large as 12.45 .

The \(p\) value for the deviance test here is about 0.0004 . But, again, this isn't a test of whether the model is any good - it assumes the model is true, and then tests some consequences.
- Specifically, it tests whether (if the model is TRUE) some of the model's coefficients are non-zero.
- That's not so practically useful, so I discourage you from performing global tests of a logistic regression model with a deviance test.

\subsection*{20.4.6 Using glance with a logistic regression model}

We can use the glance function from the broom package to obtain the null and residual deviance and degrees of freedom. Note that the deviance for our model is related to the log likelihood by \(-2 *\) logLik.
```

glance(res_modA)

A tibble: 1 x 8

 null.deviance df.null logLik AIC BIC deviance df.residual nobs
 <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
 102. 133 -44.7 93.5 99.3 89.5 132 134
    ```

The glance result also provides the AIC, and the BIC (Bayes Information Criterion), each of which is helpful in understanding comparisons between multiple models for the same outcome (with smaller values of either criterion indicating better models.) The AIC is based on the deviance, but penalizes you for making the model more complicated. The BIC does the same sort of thing but with a different penalty.

Again we see that we have a null deviance of 101.94 on 133 degrees of freedom. Including the resection information in the model decreased the deviance to 89.49 points on 132 degrees of
freedom, so that's a decrease of 12.45 points while using one degree of freedom, which looks like a meaningful reduction in deviance.

\subsection*{20.5 Interpreting the Model Summary}

Let's get a more detailed summary of our res_modA model, including \(95 \%\) confidence intervals for the coefficients:
```

summary(res_modA)

```

Call:
glm(formula \(=\) died \(\sim\) resection, family = "binomial", data \(=\) resect)

Coefficients:
Estimate Std. Error \(z\) value \(\operatorname{Pr}(>|z|)\)
(Intercept) \(-4.4337 \quad 0.8799-5.0394 .67 e-07 * * *\)
resection \(0.7417 \quad 0.2230 \quad 3.3270 .000879\) ***
---
Signif. codes: \(0{ }^{\prime} * * * ' 0.001{ }^{\prime * * '} 0.01{ }^{\prime *} 0.05 '^{\prime} 0.1\) ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 101.943 on 133 degrees of freedom
Residual deviance: 89.493 on 132 degrees of freedom
AIC: 93.493

Number of Fisher Scoring iterations: 5
```

 confint(res_modA, level = 0.95)
    ```

Waiting for profiling to be done...
```

 2.5% 97.5 %
 (Intercept) -6.344472 -2.855856
resection 0.322898 1.208311

```

Some elements of this summary are very familiar from our work with linear models.
- We still have a five-number summary of residuals, although these are called deviance residuals.
- We have a table of coefficients with standard errors, and hypothesis tests, although these are Wald z -tests, rather than the t tests we saw in linear modeling.
- We have a summary of global fit in the comparison of null deviance and residual deviance, but without a formal p value. And we have the AIC, as discussed above.
- We also have some new items related to a dispersion parameter and to the number of Fisher Scoring Iterations.

Let's walk through each of these elements.

\subsection*{20.5.1 Wald \(Z\) tests for Coefficients in a Logistic Regression}

The coefficients output provides the estimated coefficients, and their standard errors, plus a Wald Z statistic, which is just the estimated coefficient divided by its standard error. This is compared to a standard Normal distribution to obtain the two-tailed \(p\) values summarized in the \(\operatorname{Pr}(>|z|)\) column.
- The interesting result is resection, which has a Wald \(\mathrm{Z}=3.327\), yielding a \(p\) value of 0.00088 .
- The \(p\) value assesses whether the estimated coefficient of resection, 0.7417 , is different from 0 . If the coefficient (on the logit scale) for resection was truly 0 , this would mean that:
- the log odds of death did not change based on the resection size,
- the odds of death were unchanged based on the resection size (the odds ratio would be 1), and
- the probability of death was unchanged based on the resection size.

In our case, we have a change in the log odds of died associated with changes in resection, according to this \(p\) value. We conclude that resection size is associated with a positive impact on death rates (death rates are generally higher for people with larger resections.)

\subsection*{20.5.2 Confidence Intervals for the Coefficients}

As in linear regression, we can obtain \(95 \%\) confidence intervals (to get other levels, change the level parameter in confint) for the intercept and slope coefficients.

Here, we see, for example, that the coefficient of resection has a point estimate of 0.7417 , and a confidence interval of \((0.3229,1.208)\). Since this is on the logit scale, it's not that interpretable, but we will often exponentiate the model and its confidence interval to obtain a more interpretable result on the odds ratio scale.
```

 tidy(res_modA, exponentiate = TRUE, conf.int = TRUE) |>
 select(term, estimate, conf.low, conf.high)
    ```
\begin{tabular}{llrrr} 
\# A tibble: 2 & x 4 & & \\
\\
term & estimate & conf.low & conf.high \\
\(\quad\) <chr> & <dbl> & <dbl> & <dbl> \\
1 & (Intercept) & 0.0119 & 0.00176 & 0.0575 \\
2 & resection & 2.10 & 1.38 & 3.35
\end{tabular}

From this output, we can estimate the odds ratio for death associated with a 1 cm increase in resection size is 2.099 , with a \(95 \%\) CI of \((1.38,3.35)\). - If the odds ratio was 1 , it would indicate that the odds of death did not change based on the change in resection size. - Here, it's clear that the estimated odds of death will be larger (odds \(>1\) ) for subjects with larger resection sizes. Larger odds of death also indicate larger probabilities of death. This confidence interval indicates that with \(95 \%\) confidence, we conclude that increases in resection size are associated with increases in the odds of death. - If the odds ratio was less than 1 (remember that it cannot be less than 0 ) that would mean that subjects with larger resection sizes were associated with smaller estimated odds of death.

\subsection*{20.5.3 Deviance Residuals}

In logistic regression, it's certainly a good idea to check to see how well the model fits the data. However, there are a few different types of residuals. The residuals presented here by default are called deviance residuals. Other types of residuals are available for generalized linear models, such as Pearson residuals, working residuals, and response residuals. Logistic regression model diagnostics often make use of multiple types of residuals.

The deviance residuals for each individual subject sum up to the deviance statistic for the model, and describe the contribution of each point to the model likelihood function.

The deviance residual, \(d_{i}\), for the \(\mathrm{i}^{\text {th }}\) observation in a model predicting \(y_{i}\) (a binary variable), with the estimate being \(\hat{\pi}_{i}\) is:
\[
d_{i}=s_{i} \sqrt{-2\left[y_{i} \log \hat{\pi}_{i}+\left(1-y_{i}\right) \log \left(1-\hat{\pi}_{i}\right)\right]},
\]
where \(s_{i}\) is 1 if \(y_{i}=1\) and \(s_{i}=-1\) if \(y_{i}=0\).
Again, the sum of the deviance residuals is the deviance.

\subsection*{20.5.4 Dispersion Parameter}

The dispersion parameter is taken to be 1 for glm fit using either the binomial or Poisson families. For other sorts of generalized linear models, the dispersion parameter will be of some importance in estimating standard errors sensibly.

\subsection*{20.5.5 Fisher Scoring iterations}

The solution of a logistic regression model involves maximizing a likelihood function. Fisher's scoring algorithm in our res_modA needed five iterations to perform the logistic regression fit. All that this tells you is that the model converged, and didn't require a lot of time to do so.

\subsection*{20.6 Plotting a Simple Logistic Regression Model}

Let's plot the logistic regression model res_modA for died using the extent of the resection in terms of probabilities. We can use either of two different approaches:
- we can plot the fitted values from our specific model against the original data, using the augment function from the broom package, or
- we can create a smooth function called binomial_smooth that plots a simple logistic model in an analogous way to geom_smooth (method = "lm") for a simple linear regression.

\subsection*{20.6.1 Using augment to capture the fitted probabilities}
```

res_A_aug <- augment(res_modA, resect,
type.predict = "response")
head(res_A_aug)

A tibble: 6 x 12

 subj_id age prior resection intubated died .fitted .resid .hat .sigma
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 1 1 34 1 0
2 2 57 0 % 5 lllllllllllll
3 3 60 1 1 4 4 1 1 llllllllll
4 4 62 1 1 4 4.2
5 5 5 28 0
6 6 52 0 0 0 3 0

i 2 more variables: .cooksd <dbl>, .std.resid <dbl>

```

This approach augments the resect data set with fitted, residual and other summaries of each observation's impact on the fit, using the "response" type of prediction, which yields the fitted probabilities in the .fitted column.

\subsection*{20.6.2 Plotting a Logistic Regression Model's Fitted Values}
```

ggplot(res_A_aug, aes(x = resection, y = died)) +
geom_jitter(height = 0.05) +
geom_line(aes(x = resection, y = .fitted),
col = "blue") +
labs(title = "Logistic Regression from Model res_modA")

```

Logistic Regression from Model res_modA


\subsection*{20.6.3 Plotting a Simple Logistic Model using binomial_smooth}
```

binomial_smooth <- function(...) {
geom_smooth(method = "glm", formula = y ~ x,
method.args = list(family = "binomial"), ...)
}

```
```

ggplot(resect, aes(x = resection, $y=$ died)) +
geom_jitter (height $=0.05$) +
binomial_smooth() + \#\# ...smooth(se=FALSE) to leave out interval
labs(title = "Logistic Regression from Model A")

```

Logistic Regression from Model A


As expected, we see an increase in the model probability of death as the extent of the resection grows larger.

\subsection*{20.7 How well does Model A classify subjects?}

A natural question to ask is how well does our model classify patients in terms of likelihood of death.

We could specify a particular rule, for example: if the predicted probability of death is 0.5 or greater, then predict "Died".
```

res_A_aug$rule.5 <- ifelse(res_A_aug$.fitted >= 0.5,
"Predict Died", "Predict Alive")

```
table(res_A_aug\$rule.5, res_A_aug\$died)
```

 0}
 Predict Alive 114 16
Predict Died 3 1

```

And perhaps build the linked table of row probabilities which tells us, for example, that \(87.69 \%\) of the patients predicted by the model to be alive actually did survive.
```

round(100*prop.table(
table(res_A_aug$rule.5, res_A_aug$died), 1), 2)

```
```

 0 1
 Predict Alive 87.69 12.31
Predict Died 75.00 25.00

```

Or the table of column probabilities which tell us, for example, that \(97.44 \%\) of those who actually survived were predicted by the model to be alive.
```

round(100*prop.table(
table(res_A_aug$rule.5, res_A_aug$died), 2), 2)

```
```

 0 1
 Predict Alive 97.44 94.12
Predict Died 2.56 5.88

```

We'll discuss various measures of concordance derived from this sort of classification later.

\subsection*{20.8 The Confusion Matrix}

Let's build this misclassification table in standard epidemiological format.
```

res_A_aug <- res_A_aug |>
mutate(death_predicted = factor(.fitted >= 0.5),
death_actual = factor(died == "1"),
death_predicted = fct_relevel(death_predicted, "TRUE"),
death_actual = fct_relevel(death_actual, "TRUE"))

```
```

confuseA_small <- table(res_A_aug$death_predicted, res_A_aug$death_actual)
confuseA_small

```
    TRUE FALSE
TRUE 1 3
FALSE 16114

In total, we have 134 observations.
- 115 correct predictions, or \(85.8 \%\) accuracy
- 17 subjects who died, or \(12.6 \%\) prevalence of death
- 4 subjects who were predicted to die, or \(3.0 \%\) detection prevalence.

The sensitivity (also called recall) here is \(1 /(1+16)=5.9 \%\).
- \(5.9 \%\) of the subjects who actually died were predicted to die by the model.

The specificity here is \(114 /(114+3)=97.4 \%\).
- \(97.4 \%\) of the subjects who actually survived were predicted to survive by the model.

The positive predictive value (PPV: also called precision) is \(1 /(1+3)=25 \%\)
- Our predictions of death were correct \(25 \%\) of the time.

The negative predictive value (NPV) is \(114 /(114+16)=87.7 \%\)
- Our predictions of survival were correct \(87.7 \%\) of the time.

\subsection*{20.9 Using the confusionMatrix tool from the caret package}

This provides a more detailed summary of the classification results from our logistic regression model.
```

confusionMatrix(
data = factor(res_A_aug$.fitted >= 0.5),
 reference = factor(res_A_aug$died == 1),
positive = "TRUE"
)

```
```

Confusion Matrix and Statistics
Reference
Prediction FALSE TRUE
FALSE 114 16
TRUE 3 1
Accuracy : 0.8582
95% CI : (0.7875, 0.9124)
No Information Rate : 0.8731
P-Value [Acc > NIR] : 0.747802
Kappa : 0.0493
Mcnemar's Test P-Value : 0.005905
Sensitivity : 0.058824
Specificity : 0.974359
Pos Pred Value : 0.250000
Neg Pred Value : 0.876923
Prevalence : 0.126866
Detection Rate : 0.007463
Detection Prevalence : 0.029851
Balanced Accuracy : 0.516591
'Positive' Class : TRUE

```
- The No Information Rate or NIR is just the percentage of correct predictions we'd get if we just predicted the more common classification (not dead) for every subject.
- Kappa is a correlation statistic ranging from -1 to +1 . It measures the inter-rater reliability of our predictions and the true classifications, in this context. Complete agreement would be +1 , and complete disagreement would be -1 .

\subsection*{20.10 Receiver Operating Characteristic Curve Analysis}

One way to assess the predictive accuracy within the model development sample in a logistic regression is to consider an analyses based on the receiver operating characteristic (ROC) curve. ROC curves are commonly used in assessing diagnoses in medical settings, and in signal detection applications.

The accuracy of a "test" can be evaluated by considering two types of errors: false positives and false negatives.

In our res_modA model, we use resection size to predict whether the patient died. Suppose we established a value \(R\), so that if the resection size was larger than \(R \mathrm{~cm}\), we would predict that the patient died, and otherwise we would predict that the patient did not die.

A good outcome of our model's "test", then, would be when the resection size is larger than \(R\) for a patient who actually died. Another good outcome would be when the resection size is smaller than R for a patient who survived.

But we can make errors, too.
- A false positive error in this setting would occur when the resection size is larger than R (so we predict the patient dies) but in fact the patient does not die.
- A false negative error in this case would occur when the resection size is smaller than R (so we predict the patient survives) but in fact the patient dies.

Formally, the true positive fraction (TPF) for a specific resection cutoff \(R\), is the probability of a positive test (a prediction that the patient will die) among the people who have the outcome died \(=1\) (those who actually die).
\[
T P F(R)=\operatorname{Pr}(\text { resection }>R \mid \text { subjectdied })
\]

Similarly, the false positive fraction (FPF) for a specific cutoff \(R\) is the probability of a positive test (prediction that the patient will die) among the people with died \(=0\) (those who don't actually die)
\[
F P F(R)=\operatorname{Pr}(\text { resection }>R \mid \text { subjectdidnotdie })
\]

The True Positive Rate is referred to as the sensitivity of a diagnostic test, and the True Negative rate ( 1 - the False Positive rate) is referred to as the specificity of a diagnostic test.

Since the cutoff \(R\) is not fixed in advanced, we can plot the value of TPF (on the y axis) against FPF (on the x axis) for all possible values of \(R\), and this is what the ROC curve is. Others refer to the Sensitivity on the Y axis, and 1-Specificity on the X axis, and this is the same idea.

Before we get too far into the weeds, let me show you some simple situations so you can understand what you might learn from the ROC curve. The web page http://blog.yhat.com/posts/roc-curves.html provides source materials.

\subsection*{20.10.1 Interpreting the Area under the ROC curve}

The AUC or Area under the ROC curve is the amount of space underneath the ROC curve. Often referred to as the c statistic, the AUC represents the quality of your TPR and FPR overall in a single number. The C statistic ranges from 0 to 1 , with \(\mathrm{C}=0.5\) for a prediction that is no better than random guessing, and \(\mathrm{C}=1\) for a perfect prediction model.

Next, I'll build a simulation to demonstrate several possible ROC curves in the sections that follow.
```

set.seed(432999)
sim.temp <- tibble(x = rnorm(n = 200),
prob = exp(x)/(1 + exp(x)),
y = as.numeric(1 * runif(200) < prob))
sim.temp <- sim.temp |>
mutate(p_guess = 1,
p_perfect = y,
p_bad = exp(-2*x) / (1 + exp (-2*x)),
p_ok = prob + (1-y)*runif(1, 0, 0.05),
p_good = prob + y*runif(1, 0, 0.27))

```

\subsection*{20.10.1.1 What if we are guessing?}

If we're guessing completely at random, then the model should correctly classify a subject (as died or not died) about \(50 \%\) of the time, so the TPR and FPR will be equal. This yields a diagonal line in the ROC curve, and an area under the curve (C statistic) of 0.5.

There are several ways to do this on the web, but I'll show this one, which has some bizarre code, but that's a function of using a package called ROCR to do the work. It comes from this link
```

pred_guess <- prediction(sim.temp$p_guess, sim.temp$y)
perf_guess <- performance(pred_guess, measure = "tpr", x.measure = "fpr")
auc_guess <- performance(pred_guess, measure="auc")
auc_guess <- round(auc_guess@y.values[[1]],3)
roc_guess <- data.frame(fpr=unlist(perf_guess@x.values),
tpr=unlist(perf_guess@y.values),
model="GLM")
ggplot(roc_guess, aes(x=fpr, ymin=0, ymax=tpr)) +

```
```

geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
labs(title = paste0("Guessing: ROC Curve w/ AUC=", auc_guess)) +
theme_bw()

```

Guessing: ROC Curve w/ AUC=0.5


\subsection*{20.10.1.2 What if we classify things perfectly?}

If we're classifying subjects perfectly, then we have a TPR of 1 and an FPR of 0 . That yields an ROC curve that looks like the upper and left edges of a box. If our model correctly classifies a subject (as died or not died) \(100 \%\) of the time, the area under the curve (c statistic) will be 1.0. We'll add in the diagonal line here (in a dashed black line) to show how this model compares to random guessing.
```

pred_perf <- prediction(sim.temp$p_perfect, sim.temp$y)
perf_perf <- performance(pred_perf, measure = "tpr", x.measure = "fpr")
auc_perf <- performance(pred_perf, measure="auc")
auc_perf <- round(auc_perf@y.values[[1]],3)
roc_perf <- data.frame(fpr=unlist(perf_perf@x.values),
tpr=unlist(perf_perf@y.values),
model="GLM")

```
```

ggplot(roc_perf, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = paste0("Perfect Prediction: ROC Curve w/ AUC=", auc_perf)) +
theme_bw()

```

Perfect Prediction: ROC Curve w/ AUC=1


\subsection*{20.10.1.3 What does "worse than guessing" look like?}

A bad classifier will appear below and to the right of the diagonal line we'd see if we were completely guessing. Such a model will have a c statistic below 0.5 , and will be valueless.
```

pred_bad <- prediction(sim.temp$p_bad, sim.temp$y)
perf_bad <- performance(pred_bad, measure = "tpr", x.measure = "fpr")
auc_bad <- performance(pred_bad, measure="auc")
auc_bad <- round(auc_bad@y.values[[1]],3)
roc_bad <- data.frame(fpr=unlist(perf_bad@x.values),
tpr=unlist(perf_bad@y.values),
model="GLM")

```
```

ggplot(roc_bad, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = paste0("A Bad Model: ROC Curve w/ AUC=", auc_bad)) +
theme_bw()

```


\subsection*{20.10.1.4 What does "better than guessing" look like?}

An "OK" classifier will appear above and to the left of the diagonal line we'd see if we were completely guessing. Such a model will have a c statistic above 0.5 , and might have some value. The plot below shows a very fairly poor model, but at least it's better than guessing.
```

pred_ok <- prediction(sim.temp$p_ok, sim.temp$y)
perf_ok <- performance(pred_ok, measure = "tpr", x.measure = "fpr")
auc_ok <- performance(pred_ok, measure="auc")
auc_ok <- round(auc_ok@y.values[[1]],3)
roc_ok <- data.frame(fpr=unlist(perf_ok@x.values),
tpr=unlist(perf_ok@y.values),

```
```

 model="GLM")
 ggplot(roc_ok, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = paste0("A Mediocre Model: ROC Curve w/ AUC=", auc_ok)) +
theme_bw()

```

A Mediocre Model: ROC Curve w/ AUC=0.702


Sometimes people grasp for a rough guide as to the accuracy of a model's predictions based on the area under the ROC curve. A common thought is to assess the C statistic much like you would a class grade.
\begin{tabular}{rl}
\hline C statistic & Interpretation \\
\hline 0.90 to 1.00 & model does an excellent job at discriminating "yes" from "no" (A) \\
0.80 to 0.90 & model does a good job (B) \\
0.70 to 0.80 & model does a fair job (C) \\
0.60 to 0.70 & model does a poor job (D) \\
0.50 to 0.60 & model fails (F) \\
below 0.50 & model is worse than random guessing \\
\hline
\end{tabular}

\subsection*{20.10.1.5 What does "pretty good" look like?}

A strong and good classifier will appear above and to the left of the diagonal line we'd see if we were completely guessing, often with a nice curve that is continually increasing and appears to be pulled up towards the top left. Such a model will have a c statistic well above 0.5 , but not as large as 1 . The plot below shows a stronger model, which appears substantially better than guessing.
```

pred_good <- prediction(sim.temp$p_good, sim.temp$y)
perf_good <- performance(pred_good, measure = "tpr", x.measure = "fpr")
auc_good <- performance(pred_good, measure="auc")
auc_good <- round(auc_good@y.values[[1]],3)
roc_good <- data.frame(fpr=unlist(perf_good@x.values),
tpr=unlist(perf_good@y.values),
model="GLM")
ggplot(roc_good, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = paste0("A Pretty Good Model: ROC Curve w/ AUC=", auc_good)) +
theme_bw()

```

A Pretty Good Model: ROC Curve w/ AUC=0.899


\subsection*{20.11 The ROC Plot for res_modA}

Let me show you the ROC curve for our res_modA model.
```


requires ROCR package

prob <- predict(res_modA, resect, type="response")
pred <- prediction(prob, resect\$died)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
auc <- performance(pred, measure="auc")
auc <- round(auc@y.values[[1]],3)
roc.data <- data.frame(fpr=unlist(perf@x.values),
tpr=unlist(perf@y.values),
model="GLM")
ggplot(roc.data, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = paste0("ROC Curve w/ AUC=", auc)) +
theme_bw()

```

ROC Curve w/ AUC=0.771


Based on the C statistic \((\mathrm{AUC}=0.771)\) this would rank somewhere near the high end of a "fair" predictive model by this standard, not quite to the level of a "good" model.

\subsection*{20.11.1 Another way to plot the ROC Curve}

If we've loaded the pROC package, we can also use the following (admittedly simpler) approach to plot the ROC curve, without ggplot2, and to obtain the C statistic, and a \(95 \%\) confidence interval around that C statistic.
```


requires pROC package

roc.modA <-
roc(resect\$died ~ predict(res_modA, type="response"),
ci = TRUE)

```
```

Setting levels: control = 0, case = 1

```
Setting direction: controls < cases
    roc.modA

Call:
roc.formula(formula \(=\) resect\$died \(\sim\) predict(res_modA, type = "response"), ci = TRUE)

Data: predict (res_modA, type = "response") in 117 controls (resect\$died 0) < 17 cases (resec Area under the curve: 0.7707
95\% CI: 0.67-0.8715 (DeLong)
plot(roc.modA)


\subsection*{20.12 Assessing Residual Plots from Model A}

Residuals are certainly less informative for logistic regression than they are for linear regression: not only do yes/no outcomes inherently contain less information than continuous ones, but the fact that the adjusted response depends on the fit hampers our ability to use residuals as external checks on the model.

This is mitigated to some extent, however, by the fact that we are also making fewer distributional assumptions in logistic regression, so there is no need to inspect residuals for, say, skewness or heteroskedasticity.
- Patrick Breheny, University of Kentucky, Slides on GLM Residuals and Diagnostics (no longer online, alas.)

The usual residual plots are available in R for a logistic regression model, but most of them are irrelevant in the logistic regression setting. The residuals shouldn't follow a standard Normal distribution, and they will not show constant variance over the range of the predictor variables, so plots looking into those issues aren't helpful.

The only plot from the standard set that we'll look at in many settings is plot 5 , which helps us assess influence (via Cook's distance contours), and a measure related to leverage (how unusual an observation is in terms of the predictors) and standardized Pearson residuals.
```

plot(res_modA, which = 5)

```


In this case, I don't see any highly influential points, as no points fall outside of the Cook's distance ( 0.5 or 1 ) contours.

\subsection*{20.13 Model B: A "Kitchen Sink" Logistic Regression Model}
```

 res_modB <- glm(died ~ resection + age + prior + intubated,
 data = resect, family = binomial)
 res_modB
 Call: glm(formula = died ~ resection + age + prior + intubated, family = binomial,
data = resect)
Coefficients:

| (Intercept) | resection | age | prior | intubated |
| ---: | ---: | ---: | ---: | ---: |
| -5.152886 | 0.612211 | 0.001173 | 0.814691 | 2.810797 |

Degrees of Freedom: 133 Total (i.e. Null); 129 Residual
Null Deviance: 101.9
Residual Deviance: 67.36 AIC: 77.36

```

\subsection*{20.13.1 Comparing Model A to Model B}
```

anova(res_modA, res_modB)

```
Analysis of Deviance Table
Model 1: died ~ resection
Model 2: died ~ resection + age + prior + intubated
    Resid. Df Resid. Dev Df Deviance
\(1 \quad 132 \quad 89.493\)
\(\begin{array}{lllll}2 & 129 & 67.359 & 3 & 22.134\end{array}\)

The addition of age, prior and intubated reduces the lack of fit by 22.134 points, at a cost of 3 degrees of freedom.
```

 glance(res_modA)
    ```
\# A tibble: 1 x 8
    null.deviance df.null logLik AIC BIC deviance df.residual nobs
```

 <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
 102. 133 -44.7 93.5 99.3 89.5 132 134
 glance(res_modB)

A tibble: 1 x 8

 null.deviance df.null logLik AIC BIC deviance df.residual nobs
 <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
 102. 133 -33.7 77.4 91.8 10, 67.4 129 134
```

By either AIC or BIC, the larger model (res_modB) looks more effective.

\subsection*{20.13.2 Interpreting Model B}
```

summary(res_modB)

```

Call:
glm(formula \(=\) died \(\sim\) resection + age + prior + intubated, family = binomial, data \(=\) resect)

Coefficients:
Estimate Std. Error \(z\) value \(\operatorname{Pr}(>|z|)\)
(Intercept) -5.152886 1.469453 -3.507 0.000454 ***
resection \(0.612211 \quad 0.282807 \quad 2.1650 .030406 *\)
\(\begin{array}{lllll}\text { age } & 0.001173 & 0.020646 & 0.057 & 0.954700\end{array}\)
\(\begin{array}{llllll}\text { prior } & 0.814691 & 0.704785 & 1.156 & 0.247705\end{array}\)
intubated \(2.810797 \quad 0.6583954 .2691 .96 \mathrm{e}-05\) ***
---
Signif. codes: \(0{ }^{\prime * * * '} 0.001{ }^{\prime * * '} 0.01 '^{\prime \prime} 0.05 '^{\prime} 0.1 '^{\prime} 1\)
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 101.943 on 133 degrees of freedom
Residual deviance: 67.359 on 129 degrees of freedom AIC: 77.359

Number of Fisher Scoring iterations: 6

It appears that the intubated predictor adds some value to the model, by the Wald test.
Let's focus on the impact of these variables through odds ratios.
```

tidy (res_modB, exponentiate = TRUE, conf.int = TRUE) |>
select(term, estimate, conf.low, conf.high)

```
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { term } \\
& \text { <chr> }
\end{aligned}
\] & estimate <dbl> & \[
\begin{array}{r}
\text { conf.low } \\
\text { <dbl> }
\end{array}
\] & \[
\begin{array}{r}
\text { conf.high } \\
\text { <dbl> }
\end{array}
\] \\
\hline 1 (Intercept) & 0.00578 & 0.000241 & 0.0837 \\
\hline 2 resection & 1.84 & 1.08 & 3.35 \\
\hline 3 age & 1.00 & 0.962 & 1.04 \\
\hline 4 prior & 2.26 & 0.549 & 9.17 \\
\hline 5 intubated & 16.6 & 4.75 & 64.6 \\
\hline
\end{tabular}

At a \(5 \%\) significance level, we might conclude that:
- larger sized resections are associated with a meaningful rise (est OR: 1.84, 95\% CI \(1.08,3.35)\) in the odds of death, holding all other predictors constant,
- the need for intubation at the end of surgery is associated with a substantial rise (est OR: \(16.6,95 \%\) CI \(4.7,64.7\) ) in the odds of death, holding all other predictors constant, but that
- older age as well as having a prior tracheal surgery appears to be associated with an increase in death risk, but not with a small \(p\) value.

\subsection*{20.14 Plotting Model B}

Let's think about plotting the fitted values from our model, in terms of probabilities.

\subsection*{20.14.1 Using augment to capture the fitted probabilities}
```

res_B_aug <- augment(res_modB, resect,
type.predict = "response")
head(res_B_aug)

A tibble: 6 x 12

 subj_id age prior resection intubated died .fitted .resid .hat .sigma
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
    ```
\begin{tabular}{lcccccccccc}
1 & 1 & 34 & 1 & 2.5 & 0 & 0 & 0.0591 & -0.349 & 0.0267 & 0.725 \\
2 & 2 & 57 & 0 & 5 & 0 & 0 & 0.117 & -0.498 & 0.0380 & 0.724 \\
3 & 3 & 60 & 1 & 4 & 1 & 1 & 0.729 & 0.794 & 0.114 & 0.722 \\
4 & 4 & 62 & 1 & 4.2 & 0 & 0 & 0.155 & -0.581 & 0.0704 & 0.723 \\
5 & 5 & 28 & 0 & 6 & 1 & 1 & 0.796 & 0.675 & 0.131 & 0.723 \\
6 & 6 & 52 & 0 & 3 & 0 & 0 & 0.0371 & -0.275 & 0.0105 & 0.725 \\
\(\#\) & i 2 more variables: .cooksd <dbl>, .std.resid \(\langle\) <dbl> & & &
\end{tabular}

\subsection*{20.14.2 Plotting Model B Fits by Observed Mortality}
```

ggplot(res_B_aug, aes(x = factor(died), y = .fitted, col = factor(died))) +
geom_boxplot() +
geom_jitter(width = 0.1) +
guides(col = "none")

```


Certainly it appears as though most of our predicted probabilities (of death) for the subjects who actually survived are quite small, but not all of them. We also have at least 6 big "misses" among the 17 subjects who actually died.

\subsection*{20.14.3 Confusion Matrix for Model B}
```

 confusionMatrix(
 data = factor(res_B_aug$.fitted >= 0.5),
 reference = factor(res_B_aug$died == 1),
 positive = "TRUE"
)
 Confusion Matrix and Statistics
Reference
Prediction FALSE TRUE
FALSE 1136
TRUE 411
Accuracy : 0.9254
95\% CI : (0.867, 0.9636)
No Information Rate : 0.8731
P-Value [Acc > NIR] : 0.03897
Kappa : 0.6453
Mcnemar's Test P-Value : 0.75183
Sensitivity : 0.64706
Specificity : 0.96581
Pos Pred Value : 0.73333
Neg Pred Value : 0.94958
Prevalence : 0.12687
Detection Rate : 0.08209
Detection Prevalence : 0.11194
Balanced Accuracy : 0.80644
'Positive' Class : TRUE

```

\subsection*{20.14.4 The ROC curve for Model B}
```


requires ROCR package

prob <- predict(res_modB, resect, type="response")
pred <- prediction(prob, resect\$died)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
auc <- performance(pred, measure="auc")
auc <- round(auc@y.values[[1]],3)
roc.data <- data.frame(fpr=unlist(perf@x.values),
tpr=unlist(perf@y.values),
model="GLM")
ggplot(roc.data, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = pasteO("Model B: ROC Curve w/ AUC=", auc)) +
theme_bw()

```

Model B: ROC Curve w/ AUC=0.86


The area under the curve (C-statistic) is 0.86 , which certainly looks like a more discriminating fit than model A with resection alone.

\subsection*{20.14.5 Residuals, Leverage and Influence}
```

plot(res_modB, which = 5)

```


Again, we see no signs of deeply influential points in this model.
We'll continue working with these resect data as we fit logistic regression models with the help of the rms package in our next Chapter.

\section*{21 Logistic Regression with lrm}

\subsection*{21.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(ROCR)
library(pROC)
library(naniar)
library(rms)
library(tidyverse)
theme_set(theme_bw())

```

\subsection*{21.1.1 Data Load}
```

resect <- read_csv("data/resect.csv", show_col_types = FALSE)

```

\subsection*{21.2 Logistic Regression using lrm}

To obtain the Nagelkerke \(R^{2}\) and the C statistic, as well as some other summaries, I'll now demonstrate the use of 1 rm from the rms package to fit a logistic regression model.

We'll return to the original model, predicting death using resection size alone.
```

dd <- datadist(resect)
options(datadist="dd")
res_modC <- lrm(died ~ resection, data=resect, x=TRUE, y=TRUE)
res_modC

```
```

Logistic Regression Model
lrm(formula = died ~ resection, data = resect, x = TRUE, y = TRUE)

| | | Model LikelihoodRatio Test | | Discrimination Indexes | Rank Discrim. Indexes | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Obs | 134 | LR chi2 | 12.45 | R2 0.167 | C | 0.771 |
| 0 | 117 | d.f. | 1 | R2 $(1,134) 0.082$ | Dxy | 0.541 |
| 1 | 17 | $\operatorname{Pr}(>$ chi2) | 0.0004 | R2 $(1,44.5) 0.227$ | gamma | 0.582 |
| max | -06 | | | Brier 0.103 | tau-a | 0.121 |

 Coef S.E. Wald Z Pr}(>|Z|
 Intercept -4.4337 0.8799 -5.04 <0.0001
resection 0.7417 0.2230}30.330.000

```

This output specifies the following:
- \(\mathrm{Obs}=\) The number of observations used to fit the model, with \(0=\) the number of zeros and \(1=\) the number of ones in our outcome, died. Also specified is the maximum absolute value of the derivative at the point where the maximum likelihood function was estimated. I wouldn't worry about that practically, as all you will care about is whether the iterative function-fitting process converged, and \(R\) will warn you in other ways if it doesn't.
- A likelihood ratio test (drop in deviance test) subtracting the residual deviance from the null deviance obtain the Likelihood Ratio \(\chi^{2}\) statistic, subtracting residual df from null df to obtain degrees of freedom, and comparing the resulting test statistic to a \(\chi^{2}\) distribution with the appropriate degrees of freedom to determine a \(p\) value.
- A series of discrimination indexes, including the Nagelkerke \(R^{2}\), symbolized R2, and several others we'll discuss shortly.
- A series of rank discrimination indexes, including the C statistic (area under the ROC curve) and Somers' D (Dxy), and several others.
- A table of coefficients, standard errors, Wald Z statistics and \(p\) values based on those Wald statistics.

The C statistic is estimated to be 0.771 , with an associated (Nagelkerke) \(R^{2}=0.167\), both indicating at best mediocre performance for this model, as it turns out.

\subsection*{21.2.1 Interpreting Nagelkerke \(R^{2}\)}

There are many ways to calculate \(R^{2}\) for logistic regression.
- At the URL linked here there is a nice summary of the key issue, which is that there are at least three different ways to think about \(R^{2}\) in linear regression that are equivalent in that context, but when you move to a categorical outcome, which interpretation you use leads you down a different path for extension to the new type of outcome. In linear regression...
- You might think of \(R^{2}\) as a measure of the proportion of variability explained.
- You might think of \(R^{2}\) as measuring the improvement from a null model to a fitted model.
- You might think of \(R^{2}\) as the square of the correlation coefficient.
- Paul Allison, for instance, describes several at this link in a post entitled "What's the Best R-Squared for Logistic Regression?"
- Jonathan Bartlett looks at McFadden's pseudo \(R^{2}\) in some detail (including some R code) at this link, in a post entitled " R squared in logistic regression"

The Nagelkerke approach that is presented as R2 in the lrm output is as good as most of the available approaches, and has the positive feature that it does reach 1 if the fitted model shows as much improvement as possible over the null model (which predicts the mean response for all subjects, and has \(R^{2}=0\) ). The greater the improvement, the higher the Nagelkerke \(R^{2}\).

For model A, our Nagelkerke \(R^{2}=0.167\), which is pretty poor. It doesn't technically mean that \(16.7 \%\) of any sort of variation has been explained, though.

\subsection*{21.2.2 Interpreting the \(C\) statistic and Plotting the ROC Curve}

The C statistic is a measure of the area under the receiver operating characteristic curve. This link has some nice material that provides some insight into the C statistic and ROC curve.
- Recall that \(C\) ranges from 0 to \(1.0=B A D, 1=\) GOOD.
- values of C less than 0.5 indicate that your prediction model is not even as good as simple random guessing of "yes" or "no" for your response.
\(-\mathrm{C}=0.5\) for random guessing
- \(\mathrm{C}=1\) indicates a perfect classification scheme - one that correctly guesses "yes" for all "yes" patients, and for none of the "no" patients.
- The closer C is to 1 , the happier we'll be, most of the time.
- Often we'll call models with \(0.5<\mathrm{C}<0.8\) poor or weak in terms of predictive ability by this measure
\(-0.8 \leq \mathrm{C}<0.9\) are moderately strong in terms of predictive power (indicate good discrimination)
- \(\mathrm{C} \geq 0.9\) usually indicates a very strong model in this regard (indicate excellent discrimination)

We've seen the ROC curve for this model before, when we looked at model res_modA fitted using glm in the previous chapter. But, just for completeness, I'll include it.

Note. I change the initial predict call from type = "response" for a glm fit to type = "fitted" in a lrm fit. Otherwise, this is the same approach.
```


requires ROCR package

prob <- predict(res_modC, resect, type="fitted")
pred <- prediction(prob, resect\$died)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
auc <- performance(pred, measure="auc")
auc <- round(auc@y.values[[1]],3)
roc.data <- data.frame(fpr=unlist(perf@x.values),
tpr=unlist(perf@y.values),
model="GLM")
ggplot(roc.data, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = paste0("Model C: ROC Curve w/ AUC=", auc)) +
theme_bw()

```

Model C: ROC Curve w/ AUC=0.771


\subsection*{21.2.3 The C statistic and Somers' D}
- The C statistic is directly related to Somers' D statistic, abbreviated \(D_{x y}\), by the equation \(\mathrm{C}=0.5+(\mathrm{D} / 2)\).
- Somers' D and the ROC area only measure how well predicted values from the model can rank-order the responses. For example, predicted probabilities of 0.01 and 0.99 for a pair of subjects are no better than probabilities of 0.2 and 0.8 using rank measures, if the first subject had a lower response value than the second.
- Thus, the C statistic (or \(D_{x y}\) ) may not be very sensitive ways to choose between models, even though they provide reasonable summaries of the models individually.
- This is especially true when the models are strong. The Nagelkerke \(R^{2}\) may be more sensitive.
- But as it turns out, we sometimes have to look at the ROC shapes, as the summary statistic alone isn't enough.

In our case, Somers D \((\mathrm{Dxy})=.541\), so the C statistic is 0.771 .

\subsection*{21.2.4 Validating the Logistic Regression Model Summary Statistics}

Like other regression-fitting tools in rms, the lrm function has a special validate tool to help perform resampling validation of a model, with or without backwards step-wise variable selection. Here, we'll validate our model's summary statistics using 100 bootstrap replications.
```

set.seed(432001)
validate(res_modC, B = 100)

```
\begin{tabular}{lrrrrrr} 
& index.orig & training & test & optimism & index.corrected & n \\
Dxy & 0.5415 & 0.5422 & 0.5415 & 0.0007 & 0.5408 & 100 \\
R2 & 0.1666 & 0.1748 & 0.1666 & 0.0083 & 0.1583 & 100 \\
Intercept & 0.0000 & 0.0000 & 0.1631 & -0.1631 & 0.1631 & 100 \\
Slope & 1.0000 & 1.0000 & 1.0463 & -0.0463 & 1.0463 & 100 \\
Emax & 0.0000 & 0.0000 & 0.0428 & 0.0428 & 0.0428 & 100 \\
D & 0.0854 & 0.0909 & 0.0854 & 0.0055 & 0.0800 & 100 \\
U & -0.0149 & -0.0149 & 0.0017 & -0.0167 & 0.0017 & 100 \\
Q & 0.1004 & 0.1058 & 0.0837 & 0.0221 & 0.0783 & 100 \\
B & 0.1025 & 0.0986 & 0.1051 & -0.0065 & 0.1090 & 100 \\
G & 1.0369 & 1.0677 & 1.0369 & 0.0308 & 1.0061 & 100 \\
gp & 0.1101 & 0.1080 & 0.1101 & -0.0021 & 0.1122100
\end{tabular}

Recall that our area under the curve \((\mathrm{C}\) statistic \()=0.5+\) ( \(\mathrm{Dxy} / 2\) ), so that we can also use the first row of statistics to validate the C statistic. Accounting for optimism in this manner, our validation-corrected estimates are \(\mathrm{Dxy}=0.5408\), so \(\mathrm{C}=0.7704\), and, from the second row of statistics, we can read off the validated Nagelkerke \(R^{2}\), which is 0.1583 .

\subsection*{21.2.5 Plotting the Summary of the lrm approach}

The summary function applied to an 1 rm fit shows the effect size comparing the 25 th percentile to the 75 th percentile of resection.
```

plot(summary(res_modC))

```

\section*{Odds Ratio}


```

summary(res_modC)

```
\begin{tabular}{lllllllll} 
& Effects & \multicolumn{4}{c}{ Response : died } \\
& & & & & & & & \\
Factor & Low High Diff. & Effect & S.E. & Lower & 0.95 & Upper 0.95 \\
resection & 2 & 4 & 2 & 1.4834 & 0.44591 & 0.6094 & 2.3574 \\
Odds Ratio & 2 & 4 & 2 & 4.4078 & NA & 1.8393 & 10.5630
\end{tabular}

So, a move from a resection of 2 cm to a resection of 4 cm is associated with an estimated effect on the log odds of death of 1.48 (with standard error 0.45), or with an estimated effect on the odds ratio for death of 4.41 , with \(95 \% \mathrm{CI}(1.84,10.56)\).

\subsection*{21.2.6 Plot In-Sample Predictions for Model C}

Here we plot the effect of resection (and \(95 \%\) confidence intervals) across the range of observed values of resection on the log odds of death. Note the linear effect of resection size on the log odds scale.
```

ggplot(Predict(res_modC))

```


By applying the plogis function within the Predict command, we can plot the effect of resection on the estimated probability of death. Note the non-linear effect on this probability in this logistic regression model.
```

ggplot(Predict(res_modC, fun = plogis)) +
labs(y = "Predicted probability from Model C",
title = "Model C with the resect data")

```


The Predict function itself provides the raw material being captured in this plot.
```

head(Predict(res_modC, fun = plogis))

```
resection yhat lower upper .predictor.
resection. 1.0000000 .024314760 .0066365020 .08505223 resection
resection.2 1.020101 0.024670960 .0067893130 .08559056 resection
resection.3 1.040201 0.025032240 .0069455490 .08613277 resection
resection. 41.0603020 .025398670 .0071052830 .08667889 resection
resection. 51.0804020 .025770330 .0072685890 .08722896 resection
resection. 61.1005030 .026147280 .0074355420 .08778304 resection

Response variable (y):

Limits are 0.95 confidence limits

\subsection*{21.2.7 ANOVA from the lrm approach}
```

anova(res_modC)

```

Wald Statistics Response: died
\begin{tabular}{llll} 
Factor & Chi-Square & d.f. & P \\
resection & 11.07 & 1 & \(9 e-04\) \\
TOTAL & 11.07 & 1 & \(9 e-04\)
\end{tabular}

The ANOVA approach applied to a lrm fit provides a Wald test for the model as a whole. Here, the use of resection is a significant improvement over a null (intercept-only) model. The \(p\) value is \(9 \times 10^{-4}\).

\subsection*{21.2.8 Are any points particularly influential?}

I'll use a cutoff for dfbeta here of 0.3 , instead of the default 0.2 , because I want to focus on truly influential points. Note that we have to use the data frame version of resect as show.influence isn't tibble-friendly.
```

 inf.C <- which.influence(res_modC, cutoff=0.3)
    ```
inf.C
\$Intercept
[1] 84128
\$resection
[1] 84
    show.influence(object \(=\) inf.C, dframe \(=\) data.frame(resect))
    Count resection
\(842 * 2.0\)
12812.5

It appears that observation 84 may have a meaningful effect on both the intercept and the coefficient for resection.

\subsection*{21.2.9 A Nomogram for Model C}

We use the plogis function within a nomogram call to get \(R\) to produce fitted probabilities (of our outcome, died) in this case.
```

plot(nomogram(res_modC, fun=plogis,
fun.at=c(0.05, seq(0.1, 0.9, by = 0.1), 0.95),
funlabel="Pr(died)"))

```


\section*{Total Points}


\section*{Pr(died)}


Since there's no non-linearity in the right hand side of our simple logistic regression model, the nomogram is straightforward. We calculate the points based on the resection by traveling up, and then travel down in a straight vertical line from total points through the linear (log odds) predictor straight to a fitted probability. Note that fitted probabilities above 0.5 are not
possible within the range of observed resection values in this case.

\subsection*{21.3 Model D: An Augmented Kitchen Sink Model}

Can we predict survival from the patient's age, whether the patient had prior tracheal surgery or not, the extent of the resection, and whether intubation was required at the end of surgery?

\subsection*{21.3.1 Spearman \(\rho^{2}\) Plot}

Let's start by considering the limited use of non-linear terms for predictors that look important in a Spearman \(\rho^{2}\) plot.
```

plot(spearman2(died ~ age + prior + resection + intubated, data=resect))

```


The most important variable appears to be whether intubation was required, so I'll include intubated's interaction with the linear effect of the next most (apparently) important variable, resection, and also a cubic spline for resection, with three knots. Since prior and age look less important, I'll simply add them as linear terms.

\subsection*{21.3.2 Fitting Model D using lrm}

Note the use of \%ia\% here. This insures that only the linear part of the resection term will be used in the interaction with intubated.
```

dd <- datadist(resect)
options(datadist="dd")
res_modD <- lrm(died ~ age + prior + rcs(resection, 3) +
intubated + intubated %ia% resection,
data=resect, x=TRUE, y=TRUE)

```

\subsection*{21.3.3 Assessing Model D using lrm's tools}
```

res_modD
Logistic Regression Model
lrm(formula = died ~ age + prior + rcs(resection, 3) + intubated +
intubated %ia% resection, data = resect, x = TRUE, y = TRUE)

```


Coef S.E. Wald \(Z \operatorname{Pr}(>|Z|)\)
Intercept \(\quad-11.36364 .9099-2.31 \quad 0.0206\)
age \(0.00000 .0210 \quad 0.00 \quad 0.9988\)
\(\begin{array}{lllll}\text { prior } & 0.6269 & 0.7367 & 0.85 & 0.3947\end{array}\)
\(\begin{array}{lllll}\text { resection } & 3.3799 & 1.9700 & 1.72 & 0.0862\end{array}\)
resection' \(-4.21042 .7035-1.56 \quad 0.1194\)
\(\begin{array}{llllll}\text { intubated } & 0.4576 & 2.7848 & 0.16 & 0.8695\end{array}\)
intubated * resection \(0.6188 \quad 0.7306 \quad 0.85 \quad 0.3970\)
- The model likelihood ratio test suggests that at least some of these predictors are helpful.
- The Nagelkerke \(R^{2}\) of 0.46 , and the C statistic of 0.88 indicate a meaningful improvement in discrimination over our model with resection alone.
- The Wald Z tests see some potential need to prune the model, as none of the elements reaches statistical significance without the others. The product term between intubated and resection, in particular, doesn't appear to have helped much, once we already had the main effects.

\subsection*{21.3.4 ANOVA and Wald Tests for Model D}
```

anova(res_modD)
Wald Statistics Response: died
Factor Chi-Square d.f. P
age 0.00 0.0.908
prior 0.72 1 0.3947
resection (Factor+Higher Order Factors) 4.95 3 0.1753
All Interactions 0.72 1 0.3970
Nonlinear 2.43 1 0.1194
intubated (Factor+Higher Order Factors) 16.45 2 0.0003
All Interactions 0.72 1 0.3970
intubated * resection (Factor+Higher Order Factors) 0.72 1 0.3970
TOTAL NONLINEAR + INTERACTION 2 2.56 2 0.2783
TOTAL 23.90 6 0.0005

```

Neither the interaction term nor the non-linearity from the cubic spline appears to be statistically significant, based on the Wald tests via ANOVA. However it is clear that intubated has a significant impact as a main effect.

\subsection*{21.3.5 Effect Sizes in Model D}
```

plot(summary(res_modD))

```

\section*{Odds Ratio}


Adjusted to:resection=2.5 intubated=0
```

summary(res_modD)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Effects} & \multicolumn{3}{|c|}{Response : died} & \\
\hline Factor & Low & High & Diff. & Effect & S.E. & Lower 0.95 & Upper 0.95 \\
\hline age & 36 & 61 & 25 & -0.00080933 & 0.52409 & -1.02800 & 1.0264 \\
\hline Odds Ratio & 36 & 61 & 25 & 0.99919000 & NA & 0.35772 & 2.7910 \\
\hline prior & 0 & 1 & 1 & 0.62693000 & 0.73665 & -0.81688 & 2.0707 \\
\hline Odds Ratio & 0 & 1 & 1 & 1.87190000 & NA & 0.44181 & 7.9307 \\
\hline resection & 2 & 4 & 2 & 2.42930000 & 1.43510 & -0.38342 & 5.2419 \\
\hline Odds Ratio & 2 & 4 & 2 & 11.35000000 & NA & 0.68153 & 189.0400 \\
\hline intubated & 0 & 1 & 1 & 2.00470000 & 1.11220 & -0.17513 & 4.1845 \\
\hline Odds Ratio & 0 & 1 & 1 & 7.42380000 & NA & 0.83934 & 65.6610 \\
\hline
\end{tabular}

Adjusted to: resection=2.5 intubated=0

The effect sizes are perhaps best described in terms of odds ratios. The odds ratio for death isn't significantly different from 1 for any variable, but the impact of resection and intubated, though not strong enough to be significant, look more substantial (if poorly estimated) than the effects of age and prior.

\subsection*{21.3.6 Plot In-Sample Predictions for Model D}

Here are plots of the effects across the range of each predictor (holding the others constant) on the log odds scale. Note the non-linear effect of resection implied by the use of a spline there.
ggplot(Predict(res_modD))





We can also capture and plot these results on the probability scale, as follows \({ }^{1}\).
```

ggplot(Predict(res_modD, fun = plogis))

```

\footnotetext{
\({ }^{1}\) Although I've yet to figure out how to get the y axis relabeled properly without simply dumping the Predict results into a new tibble and starting over with creating the plots.
}


\subsection*{21.3.7 Plotting the ROC curve for Model D}

Again, remember to use type \(=\) "fitted" with a lrm fit.
```


requires ROCR package

prob <- predict(res_modD, resect, type="fitted")
pred <- prediction(prob, resect\$died)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
auc <- performance(pred, measure="auc")
auc <- round(auc@y.values[[1]],3)
roc.data <- data.frame(fpr=unlist(perf@x.values),
tpr=unlist(perf@y.values),
model="GLM")
ggplot(roc.data, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = paste0("ROC Curve w/ AUC=", auc)) +
theme_bw()

```

ROC Curve w/ AUC=0.883


The AUC fitted with ROCR (0.883) is slightly different than what lrm has told us (0.880), and this also happens if we use the pROC approach, demonstrated below.
```


requires pROC package

roc.modD <-
roc(resect\$died ~ predict(res_modD, type="fitted"),
ci = TRUE)

```
Setting levels: control \(=0\), case \(=1\)
Setting direction: controls < cases
```

roc.modD

```

Call:
roc.formula(formula \(=\) resect\$died \(\sim\) predict(res_modD, type \(=\) "fitted"), \(\quad\) ci \(=\) TRUE)

Data: predict(res_modD, type = "fitted") in 117 controls (resect\$died 0) < 17 cases (resect\$ Area under the curve: 0.8826
95\% CI: 0.7952-0.97 (DeLong)
```

plot(roc.modD)

```


\subsection*{21.3.8 Validation of Model \(D\) summaries}
```

set.seed(432002)
validate(res_modD, B = 100)

```

Divergence or singularity in 5 samples
\begin{tabular}{lrrrrr} 
& index.orig & training & test & optimism & index.corrected
\end{tabular} n
\begin{tabular}{llllll}
g & 2.3819 & 4.0387 & 2.4635 & 1.5751 & 0.806895 \\
gp & 0.1720 & 0.1910 & 0.1632 & 0.0278 & 0.144295
\end{tabular}

The C statistic indicates fairly strong discrimination, at \(\mathrm{C}=0.88\), although after validation, this looks much weaker (based on \(\mathrm{Dxy}=0.6925\), we would have \(\mathrm{C}=0.5+0.6925 / 2=0.85\) ) and the Nagelkerke \(R^{2}\) is also reasonably good, at 0.46 , although this, too, is overly optimistic, and we bias-correct through our validation study to 0.34 .

\subsection*{21.4 Model E: Fitting a Reduced Model in light of Model D}

Can you suggest a reduced model (using a subset of the independent variables in model D) that adequately predicts survival?

Based on the anova for model D and the Spearman rho-squared plot, it appears that a twopredictor model using intubation and resection may be sufficient. Neither of the other potential predictors shows a statistically detectable effect in its Wald test.
```

res_modE <- lrm(died ~ intubated + resection, data=resect,
x=TRUE, y=TRUE)
res_modE
Logistic Regression Model
lrm(formula = died ~ intubated + resection, data = resect, x = TRUE,
y = TRUE)

		Model Likelihood Ratio Test		Discrimination Indexes	Rank Discrim.	
Obs	134	LR chi2	33.27	R2 0.413	C	0.867
0	117	d.f	2	R2 $(2,134) 0.208$	Dxy	0.734
1	17	$\operatorname{Pr}(>$ chi2)	<0.0001	R2 (2, 44.5)0.505	gamma	0.757
max	-10			Brier 0.073	tau-a	0.164

 Coef S.E. Wald Z Pr}(>|Z|
 Intercept -4.6370 1.0430-4.45 <0.0001
intubated 2.8640 0.6479 4.42 <0.0001
resection 0.5475 0.2689 2.04 0.0418

```

The model equation is that the \(\log\) odds of death is \(-4.637+2.864\) intubated +0.548 resection.

This implies that:
- for intubated patients, the equation is \(-1.773+0.548\) resection, while
- for non-intubated patients, the equation is \(-4.637+0.548\) resection.

We can use the ilogit function within the faraway package to help plot this.

\subsection*{21.4.1 A Plot comparing the two intubation groups}
```

ggplot(resect, aes(x = resection, y = died,
col = factor(intubated))) +
scale_color_manual(values = c("blue", "red")) +
geom_jitter(size = 2, height = 0.1) +
geom_line(aes(x = resection,
y = faraway::ilogit(-4.637 + 0.548*resection)),
col = "blue") +
geom_line(aes(x = resection,
y = faraway::ilogit(-1.773 + 0.548*resection)),
col = "red") +
geom_text(x = 4, y = 0.2, label = "Not Intubated",
col="blue") +
geom_text(x = 2.5, y = 0.6, label = "Intubated Patients",
col="red") +
labs(x = "Extent of Resection (in cm.)",
y = "Death (1,0) and estimated probability of death",
title = "resect data, Model E")

```


The effect of intubation appears to be very large, compared to the resection size effect.

\subsection*{21.4.2 Nomogram for Model E}

A nomogram of the model would help, too.
```

plot(nomogram(res_modE, fun=plogis,
fun.at=c(0.05, seq(0.1, 0.9, by=0.1), 0.95),
funlabel="Pr(died)"))

```


Again, we see that the effect of intubation is enormous, compared to the effect of resection. Another way to see this is to plot the effect sizes directly.

\subsection*{21.4.3 Effect Sizes from Model E}
```

plot(summary(res_modE))

```

\section*{Odds Ratio}

```

summary(res_modE)
Effects Response : died
Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
intubated 0 1 1 2 0 % % 040 0.64790 1.59410 4.1338
Odds Ratio 0 1 1 17.5310 NA 4.92390 62.4160
resection 2 4 2 1.0949 0.53783 0.04082 2.1491
Odds Ratio 2 4 2 2.9890 NA 1.04170 8.5769

```

\subsection*{21.4.4 Plot In-Sample Predictions for Model E}

Here are plots of the effects across the range of each predictor (holding the other constant) on the \(\log\) odds scale.
```

ggplot(Predict(res_modE))

```


We can also capture and plot these results on the probability scale, as follows.
```

ggplot(Predict(res_modE, fun = plogis))

```


\subsection*{21.4.5 ANOVA for Model E}
```

anova(res_modE)

```
```

Wald Statistics Response: died

```
Factor Chi-Square d.f. P
intubated \(19.54 \quad 1 \quad\). 0001
resection \(4.14 \quad 1 \quad 0.0418\)
TOTAL \(25.47 \quad 2<.0001\)

\subsection*{21.4.6 Validation of Model E}
```

validate(res_modE, method="boot", B=40)

```
\begin{tabular}{lrrrrr} 
& index.orig & training & test & optimism & index.corrected
\end{tabular} n
\begin{tabular}{lrrrrrr} 
Slope & 1.0000 & 1.0000 & 1.0472 & -0.0472 & 1.047240 \\
Emax & 0.0000 & 0.0000 & 0.0369 & 0.0369 & 0.036940 \\
D & 0.2408 & 0.2183 & 0.2339 & -0.0157 & 0.256540 \\
U & -0.0149 & -0.0149 & -0.0001 & -0.0148 & -0.000140 \\
Q & 0.2558 & 0.2332 & 0.2340 & -0.0009 & 0.256640 \\
B & 0.0727 & 0.0727 & 0.0759 & -0.0032 & 0.075940 \\
g & 1.3970 & 1.3391 & 1.3577 & -0.0186 & 1.415640 \\
gp & 0.1597 & 0.1446 & 0.1563 & -0.0117 & 0.171440
\end{tabular}

Our bootstrap validated assessments of discrimination and goodness of fit look somewhat more reasonable now.

\subsection*{21.4.7 Do any points seem particularly influential?}

As a last step, I'll look at influence, and residuals, associated with model E.
```

 inf.E <- which.influence(res_modE, cutoff=0.3)
 inf.E
 \$Intercept
[1] }849
\$resection
[1] }849
show.influence(inf.E, dframe = data.frame(resect))
Count resection
84 2 *2
94 2 *6

```

\subsection*{21.4.8 Fitting Model E using glm to get plots about influence}
```

res_modEglm <- glm(died ~ intubated + resection,
data=resect, family="binomial")
par(mfrow=c (1,2))
plot(res_modEglm, which=c(4:5))

```


Using this glm residuals approach, we again see that points 84 and 94 have the largest influence on our model E.

\subsection*{21.5 Concordance: Comparing Model C, D and E's predictions}

To start, we'll gather the predictions made by each model ( \(\mathrm{C}, \mathrm{D}\) and E ) on the probability scale, in one place. Sadly, augment from broom doesn't work well with lrm fits, so we have to do this on our own.
```

 resect_preds <- resect |>
 mutate(C = predict(res_modC, type = "fitted"),
 D = predict(res_modD, type = "fitted"),
 E = predict(res_modE, type = "fitted"))
 head(resect_preds)

A tibble: 6 x 9

 subj_id age prior resection intubated died C D E
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1
1 34 1
2.5 0 0 0.0705 0.0632 0.0367

```
\begin{tabular}{llllllllll}
2 & 2 & 57 & 0 & 5 & 0 & 0 & 0.326 & 0.0620 & 0.130 \\
3 & 3 & 60 & 1 & 4 & 1 & 1 & 0.187 & 0.791 & 0.603 \\
4 & 4 & 62 & 1 & 4.2 & 0 & 0 & 0.211 & 0.158 & 0.0881 \\
5 & 5 & 28 & 0 & 6 & 1 & 1 & 0.504 & 0.711 & 0.819 \\
6 & 6 & 52 & 0 & 3 & 0 & 0 & 0.0990 & 0.0737 & 0.0477
\end{tabular}

And now, we'll use the pivot_longer () function from the tidyr package (part of the tidyverse) to arrange the models and predicted probabilities in a more useful manner for plotting.
```

res_p <- resect_preds |>
pivot_longer(cols = 7:9, names_to = "model", values_to = "prediction") |>
select(subj_id, died, model, prediction)
head(res_p)

A tibble: 6 x 4

subj_id died model prediction
<dbl> <dbl> <chr> <dbl>
1 0 C 0.0705
1 O D 0.0632
1 O E 0.0367
O C 0.326
2 D 0.0620
2 O E 0.130

```

Here's the resulting plot.
```

ggplot(res_p, aes(x = factor(died), y = prediction,
group = model, col = model)) +
geom_jitter(width = 0.25) +
geom_hline(yintercept = 0.5) +
facet_wrap(~ model) +
guides(color = "none") +
labs(title = "Comparing Predictions for our Three Models",
subtitle = "A graphical view of concordance",
x = "Actual mortality status (1 = died)",
y = "Predicted probability of death")

```

Comparing Predictions for our Three Models
A graphical view of concordance


We could specify a particular rule, for example: if the predicted probability of death is 0.5 or greater, then predict "Died".
```

 res_p$rule.5 <- ifelse(res_p$prediction >= 0.5,
 "Predict Died", "Predict Alive")
 ftable(table(res_p$model, res_p$rule.5, res_p\$died))
0}
C Predict Alive 114 16
Predict Died 3 1
D Predict Alive 113 7
Predict Died 4 10
E Predict Alive 114 8
Predict Died 3 9

```

And perhaps build the linked table of row probabilities...
```

round(100*prop.table(
ftable(table(res_p$model, res_p$rule.5, res_p\$died))

```
```

 ,1),2)
 C Predict Alive 87.69 12.31
Predict Died 75.00 25.00
D Predict Alive 94.17 5.83
Predict Died 28.57 71.43
E Predict Alive 93.44 6.56
Predict Died 25.00 75.00

```

For example, in model E, \(93.44 \%\) of those predicted to be alive actually survived, and \(75 \%\) of those predicted to die actually died.
- Model D does a little better in one direction ( \(94.17 \%\) of those predicted by Model D to be alive actually survived) but worse in the other ( \(71.43 \%\) of those predicted by Model D to die actually died.)
- Model C does worse than each of the others in both predicting those who survive and those who die.

Note that the approaches discussed here would be useful if we had a new sample to predict on, as well. We could then compare the errors for that new data made by this sort of classification scheme either graphically or in a table.

\subsection*{21.6 Conclusions}

It appears that intubated status and, to a lesser degree, the extent of the resection both play a meaningful role in predicting death associated with tracheal carina resection surgery. Patients who are intubated are associated with worse outcomes (greater risk of death) and more extensive resections are also associated with worse outcomes.

\section*{22 Estimating and Interpreting Effect Sizes}

\subsection*{22.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(broom)
library(knitr)
library(rms)
library(tidyverse)
theme_set(theme_bw())

```

\subsection*{22.1.1 Data Load}

Consider the smalldat.csv data available on our site, which is modeled on the public Framingham data set available from BIOLINCC \({ }^{1}\). From the BIOLINCC documentation:

The Framingham Heart Study is a long term prospective study of the etiology of cardiovascular disease among a population of free living subjects in the community of Framingham, Massachusetts. The Framingham Heart Study was a landmark study in epidemiology in that it was the first prospective study of cardiovascular disease and identified the concept of risk factors and their joint effects.
```

smalldat <- read_csv("data/smalldat.csv", show_col_types = FALSE)

```

\subsection*{22.2 Available Variables}

The smalldat data contains 150 observations on the following variables \({ }^{2}\) :

\footnotetext{
\({ }^{1}\) The Framingham data from this source are not appropriate for publication or project use because they have been anonymized by permuting the results of individual subjects.
\({ }^{2}\) The educ levels are: 1_Low, 2_Middle, 3_High and 4_VHigh, which stands for Very High
}
\begin{tabular}{ll}
\hline Variable & Description \\
subject & Subject identification code \\
smoker & \(1=\) current smoker, \(0=\) not current smoker \\
totchol & total cholesterol, in mg/dl \\
age & age in years \\
sex & subject's sex (M or F) \\
educ & subject's educational attainment (4 levels) \\
\hline
\end{tabular}
ggplot(smalldat, aes \((\mathrm{x}=\) totchol) \()+\) geom_histogram(bins = 15, col = "white", fill = "dodgerblue")


\subsection*{22.3 Effect Interpretation in A Linear Regression Model}
```

m1 <- lm(totchol ~ age + sex + factor(educ),
data = smalldat)
kable(tidy(m1, conf.int = TRUE), digits = 3)

```
\begin{tabular}{lrrrrrr}
\hline term & estimate & std.error & statistic & p.value & conf.low & conf.high \\
\hline (Intercept) & 171.197 & 20.201 & 8.475 & 0.000 & 131.268 & 211.126 \\
age & 1.202 & 0.367 & 3.270 & 0.001 & 0.475 & 1.928 \\
sexM & 3.612 & 6.441 & 0.561 & 0.576 & -9.119 & 16.343 \\
factor(educ)2_Middle & 11.044 & 7.702 & 1.434 & 0.154 & -4.180 & 26.268 \\
factor(educ)3_High & -2.459 & 9.390 & -0.262 & 0.794 & -21.019 & 16.101 \\
factor(educ)4_VHigh & 10.927 & 9.780 & 1.117 & 0.266 & -8.405 & 30.258 \\
\hline
\end{tabular}
1. What is the effect of age on totchol in Model m1?
```

temp.a <- tidy(m1, conf.int = TRUE) %>%
filter(term == "age")
kable(temp.a, digits = 3)

```
\begin{tabular}{lrrrrrr}
\hline term & estimate & std.error & statistic & p.value & conf.low & conf.high \\
\hline age & 1.202 & 0.367 & 3.27 & 0.001 & 0.475 & 1.928 \\
\hline
\end{tabular}

The coefficient of the age effect on totchol is 1.202. Suppose we have two subjects, Doris and Emily, who are the same sex and have the same level of education, but Doris is one year older than Emily. Our model predicts that Doris' total cholesterol will be \(1.202 \mathrm{mg} / \mathrm{dl}\) higher than Emily's.

The \(95 \%\) confidence interval for this estimated age coefficient is ( \(0.475,1.928\) ), so holding everything else constant, it seems that older age is associated with higher totchol in this model.
2. What is the effect of sex on totchol in Model m1?
```

temp.s <- tidy(m1, conf.int = TRUE) %>%
filter(term == "sexM")
kable(temp.s, digits = 3)

```
\begin{tabular}{lrrrrrr}
\hline term & estimate & std.error & statistic & p.value & conf.low & conf.high \\
\hline sexM & 3.612 & 6.441 & 0.561 & 0.576 & -9.119 & 16.343 \\
\hline
\end{tabular}

The model is parametrized to incorporate the sex information with an indicator (and factor) variable called sex \(M\) which is interpreted as taking the value 1 when sex \(=\mathrm{M}\), and 0 otherwise. The coefficient of the sexM effect on totchol is 3.612 . Suppose we have two subjects, David
and Emily, who are the same age, have the same level of education, but David is male and Emily is female. Our model predicts that David's total cholesterol will be \(3.612 \mathrm{mg} / \mathrm{dl}\) higher than Emily's.

The \(95 \%\) confidence interval for this estimated sexM coefficient is ( \(-9.119,16.343\) ), which suggests that the effect of sex on totchol could be quite small, and that the data are consistent with a wide range of estimates for the sexM effect, some of which are negative.
3. What is the effect of educ on totchol in Model m1?

The educ variable splits the subjects into four categories. In this model the " \(1 \_\)Low" category is used as the baseline, and we have estimates for " \(2 \_\)Middle" (as compared to " \(1 \_\)Low"), for "3_High" (as compared to "1_Low") and for "4_VHigh" (as compared to "1_Low".)
```

temp.ed <- tidy(m1, conf.int = TRUE) %>%
filter(term %in% c("factor(educ)2_Middle",
"factor(educ)3_High",
"factor(educ)4_VHigh"))

```
```

kable(temp.ed,

```
    digits = 3)
\begin{tabular}{lrrrrrr}
\hline term & estimate & std.error & statistic & p.value & conf.low & conf.high \\
\hline factor(educ)2_Middle & 11.044 & 7.702 & 1.434 & 0.154 & -4.180 & 26.268 \\
factor(educ)3_High & -2.459 & 9.390 & -0.262 & 0.794 & -21.019 & 16.101 \\
factor(educ)4_VHigh & 10.927 & 9.780 & 1.117 & 0.266 & -8.405 & 30.258 \\
\hline
\end{tabular}

The coefficient of the educ effect comparing the " \(2 \_\)Middle" group to the baseline " \(1 \_\)Low" group on totchol is 11.044 .

Note that none of the educ levels show especially large differences from the baseline group, and each of their \(95 \%\) confidence intervals contains zero.
- Suppose we have two subjects, Lola and Mina, who are the same age, and the same sex, but Lola is in the "1_Low" education group and Mina is in the "2_Middle" education group.
- Our model predicts that Mina's total cholesterol will be \(11.044 \mathrm{mg} / \mathrm{dl}\) higher than Lola's.

The coefficient of the educ effect comparing the "3_High" group to the baseline "1_Low" group on totchol is -2.459.
- Suppose we have two subjects, Lola and Heidi, who are the same age, and the same sex, but Lola is in the " \(1 \_\)Low" education group and Heidi is in the "3_High" education group.
- Our model predicts that Heidi's total cholesterol will be \(2.459 \mathrm{mg} / \mathrm{dl}\) lower than Lola's.

Finally, the coefficient of the educ effect comparing the "4_VHigh" group to the baseline " \(1 \_\)Low" group on totchol is 10.927 .
- Suppose we have two subjects, Lola and Vera, who are the same age, and the same sex, but Lola is in the " \(1 \_\)Low" education group and Vera is in the " \(4 \_\)VHigh" education group.
- Our model predicts that Vera's total cholesterol will be \(10.927 \mathrm{mg} / \mathrm{dl}\) higher than Lola's.

\subsection*{22.4 Making a prediction and building a prediction interval with an lm fit}

Suppose we want to use m 1 to make a prediction for Lola and Vera, who we'll now assume are each Female and 30 years of age, and we want to accompany this with a \(90 \%\) prediction interval for each subject. Here's one way to do that.
```

new1 <- tibble(
name = c("Lola", "Vera"),
age = c(30, 30),
sex = c("F", "F"),
educ = c("1_Low", "4_VHigh")
)
new1

A tibble: 2 x 4

 name age sex educ
 <chr> <dbl> <chr> <chr>
 1 Lola 30 F 1_Low
2 Vera 30 F 4_VHigh
res1 <- predict(m1, newdata = new1,
interval = "prediction", level = 0.9)
res1
fit lwr upr
1 207.2456 142.322 272.1691
2 218.1725 152.387 283.9580

```
```

 new1_aug <- bind_cols(new1, fit = res1[,"fit"],
 pi90.lo = res1[,"lwr"],
 pi90.hi = res1[,"upr"])
 new1_aug

A tibble: 2 x 7

 name age sex educ fit pi90.lo pi90.hi
 <chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl>
 1 Lola 30 F 1_Low 207. 142. 272.
2 Vera 30 F 4_VHigh 218. 152. 284.

```

\subsection*{22.5 What if we include a Spline or an Interaction?}

Suppose we fit a new model to predict totchol using a five-knot spline in age and the interaction of sex and educational attainment. How does that change our interpretation of the effect sizes?

None of these coefficients show particularly large effects, and zero is contained in each of the \(95 \%\) confidence intervals provided in the table summarizing model m 2 .
d <- datadist(smalldat); options(datadist = "d")
\(\mathrm{m} 2<-\mathrm{ols}(\) totchol \(\sim \operatorname{rcs}(\) age, 5) + sex*catg (educ), data \(=\) smalldat, \(\mathrm{x}=\) TRUE, \(\mathrm{y}=\mathrm{TRUE})\)
kable(summary(m2), digits = 2)
\begin{tabular}{lrrrrrrrr}
\hline & & & & & & Lower & Upper & \\
& Low & High & Diff. & Effect & S.E. & 0.95 & 0.95 & Type \\
\hline age & 42 & 57 & 15 & 9.99 & 9.40 & -8.59 & 28.57 & 1 \\
sex - M:F & 1 & 2 & NA & 9.11 & 9.87 & -10.41 & 28.64 & 1 \\
educ - & 1 & 2 & NA & 11.36 & 9.81 & -8.04 & 30.76 & 1 \\
2_Middle:1_Low & & & & & & & & \\
\begin{tabular}{l} 
educ -
\end{tabular} & 1 & 3 & NA & 7.80 & 12.41 & -16.73 & 32.34 & 1 \\
\begin{tabular}{l} 
3_High:1_Low \\
educ -
\end{tabular} & & & & & & & & \\
4_VHigh:1_Low & 1 & 4 & NA & 16.17 & 14.63 & -12.75 & 45.10 & 1 \\
\hline
\end{tabular}

The kable approach I used in these notes hides the adjusted values specified at the bottom of the summary table for this ols model, but they are Adjusted to: sex=F educ=1_Low.

Now, how do we interpret these model m 2 results?
```

plot(summary(m2))

```


\section*{Adjusted to:sex=F educ=1_Low}
- The age interpretation is that if we have two subjects, Al and Bob, who are the same sex and have the same education level, but Al is age 42 and Bob is age 57, then model m 2 projects that Bob's totchol will be \(9.993 \mathrm{mg} / \mathrm{dl}\) higher than will Al's.
- Because of the interaction between sex and educ in our model m2, we must select an educ level in order to cleanly interpret the effect of sex on totchol. The sex - M:F interpretation compares M (ale) to F (emale) sex while requiring \({ }^{3}\) that educ \(=1\) _Low. The result is that if we have two subjects, Carl and Diane, who are the same age and each is in the low education group, but Carl is Male and Diane is Female, then model m2 predicts that Carl's totchol will be \(9.115 \mathrm{mg} / \mathrm{dl}\) higher than will Diane's.
- Because of the interaction between sex and educ in our model m2, we must select a sex in order to cleanly interpret the effect of educ on totchol. The educ - 2_Middle:1_Low term, for instance, compares " 2 _Middle" education to " \(1 \_\)Low" education while requiring that sex is Female \({ }^{4}\). The result is that if we have two subjects, Lola and Mina, who

\footnotetext{
\({ }^{3}\) We know this because of the Adjusted to: sex \(=F\), educ=1_Low note at the bottom of the summary output for the ols model.
\({ }^{4}\) Again, we know this because of the Adjusted to: sex \(=F\), educ=1_Low note.
}
are the same age and each is Female, but Lola is in the "1_Low" education group and Mina is in the " 2 _Middle" education group, then model m2 predicts that Mina's totchol will be \(11.363 \mathrm{mg} / \mathrm{dl}\) higher than will Lola's.

Here is a nomogram of model m2.
```

plot(nomogram(m2))

```


\subsection*{22.6 Making a prediction and building a prediction interval with an ols fit}

Suppose we want to use m 2 to make a prediction for Lola and Vera, who we'll again assume are each Female and 30 years of age, and we want to accompany this with a \(90 \%\) prediction interval for each subject. Here's one way to do that.
```

res2_lola <- Predict(m2,
age = 30, sex = "F", educ = "1_Low",
conf.int = 0.90,
conf.type = "individual")
res2_lola

```
```

 age sex educ yhat lower upper
 1 30 F 1_Low 176.7746 96.77241 256.7768
Response variable (y): totchol
Limits are 0.9 confidence limits
res2_vera <- Predict(m2,
age = 30, sex = "F", educ = "4_VHigh",
conf.int = 0.90,
conf.type = "individual")
res2_vera
age sex educ yhat lower upper
1 30 F 4_VHigh 192.9483 112.3727 273.5238
Response variable (y): totchol
Limits are 0.9 confidence limits

```

\subsection*{22.7 Effect Estimates in A Logistic Regression fit with glm}

In a binary logistic model, where we predict the log odds of smoking (smoker \(=1\) ), we will exponentiate so as to interpret the odds ratio estimates associated with each coefficient.
```

m3 <- glm(smoker ~ age + sex + factor(educ),
data = smalldat, family = binomial)
kable(tidy(m3, exponentiate = TRUE, conf.int = TRUE),
digits = 3)

```
\begin{tabular}{lrrrrrr}
\hline term & estimate & std.error & statistic & p.value & conf.low & conf.high \\
\hline (Intercept) & 19.054 & 1.152 & 2.557 & 0.011 & 2.082 & 195.209 \\
age & 0.943 & 0.021 & -2.782 & 0.005 & 0.903 & 0.982 \\
sexM & 1.795 & 0.356 & 1.643 & 0.100 & 0.897 & 3.637 \\
factor(educ)2_Middle & 0.690 & 0.428 & -0.866 & 0.386 & 0.295 & 1.589 \\
factor(educ)3_High & 0.725 & 0.519 & -0.619 & 0.536 & 0.258 & 2.005 \\
factor(educ)4_VHigh & 0.339 & 0.571 & -1.895 & 0.058 & 0.105 & 1.008
\end{tabular}
\begin{tabular}{lllllll}
\hline term & estimate & std.error & statistic & p.value & conf.low & conf.high \\
\hline
\end{tabular}
1. What is the effect of age on the odds of being a smoker in Model m3?
```

temp.3a <- tidy(m3, exponentiate = TRUE, conf.int = TRUE) %>%
filter(term == "age")
kable(temp.3a, digits = 3)

```
\begin{tabular}{lrrrrrr}
\hline term & estimate & std.error & statistic & p.value & conf.low & conf.high \\
\hline age & 0.943 & 0.021 & -2.782 & 0.005 & 0.903 & 0.982 \\
\hline
\end{tabular}

The estimated odds ratio for the age effect on smoker is 0.943 . Suppose we have two subjects, Doris and Emily, who are the same sex and have the same level of education, but Doris is one year older than Emily. Our model predicts that Doris' odds of smoking will be 0.943 times as high as Emily's. Another way to write this would be that Doris' odds of smoking are estimated to be \(94.3 \%\) of Emily's. Yet another way would be to state that Doris' odds of smoking are estimated to be \(5.7 \%\) smaller than Emily's odds.

The \(95 \%\) confidence interval for this estimated odds ratio for the age effect on being a smoker is \((0.903,0.982)\). This confidence interval for the odds ratio does not include one, and again we see that holding everything else constant, older age is associated with detectably lower odds of being a smoker in this model.
2. What is the effect of sex on the odds of being a smoker in Model m3?
```

temp.3s <- tidy(m3, exponentiate = TRUE, conf.int = TRUE) %>%
filter(term == "sexM")
kable(temp.3s, digits = 3)

```
\begin{tabular}{lrrrrrr}
\hline term & estimate & std.error & statistic & p.value & conf.low & conf.high \\
\hline sexM & 1.795 & 0.356 & 1.643 & 0.1 & 0.897 & 3.637 \\
\hline
\end{tabular}

The model incorporates the sex information with an indicator (and factor) variable called sexM which is interpreted as taking the value 1 when sex \(=\mathrm{M}\), and 0 otherwise. The estimated odds ratio describing the sexM effect on being a smoker is 1.795 . Suppose we have two subjects, David and Emily, who are the same age, have the same level of education, but David is male and Emily is female. Our model predicts that David's odds of being a smoker are 1.795 times the odds that Emily is a smoker, or equivalently, that David's odds are \(179.5 \%\)
of Emily's odds. Another equivalent statement would be that David's odds are \(79.5 \%\) larger than Emily's odds.

The \(95 \%\) confidence interval for the odds ratio estimate of the effect of sexM on being a smoker is \((0.897,3.637)\). The effect of sex on the odds of being a smoker appears modest, and 1 is included in the confidence interval.
3. What is the effect of educ on the odds of being a smoker in Model m3?

Again, the educ variable splits the subjects into four categories. In this model the "1_Low" category is used as the baseline, and we have estimates for "2_Middle" (as compared to " 1 _Low"), for " \(3 \_\)High" (as compared to "1_Low") and for "4_VHigh" (as compared to "1_Low".)
```

temp.3ed <- tidy(m3, exponentiate = TRUE, conf.int = TRUE) %>%
filter(term %in% c("factor(educ)2_Middle",
"factor(educ)3_High",
"factor(educ)4_VHigh"))

```
```

kable(temp.3ed,

```
        digits = 3)
\begin{tabular}{lrrrrrr}
\hline term & estimate & std.error & statistic & p.value & conf.low & conf.high \\
\hline factor(educ)2_Middle & 0.690 & 0.428 & -0.866 & 0.386 & 0.295 & 1.589 \\
factor(educ)3_High & 0.725 & 0.519 & -0.619 & 0.536 & 0.258 & 2.005 \\
factor(educ)4_VHigh & 0.339 & 0.571 & -1.895 & 0.058 & 0.105 & 1.008 \\
\hline
\end{tabular}

The estimated odds ratio describing the effect of educ being " \(2 \_\)Middle" instead of the baseline " \(1 \_\)Low" on the odds of being a smoker is 0.69 , for people of the same age and sex.

No educ levels show meaningful differences from the baseline group, and their \(95 \%\) confidence intervals all include 1, although the comparison of \(4 \_\)VHigh to \(1 \_\)Low only barely includes 1.
- Suppose we have two subjects, Lola and Mina, who are the same age, and the same sex, but Lola is in the "1_Low" education group and Mina is in the " \(2 \_\)Middle" education group.
- Our model predicts that Mina's odds of being a smoker will be 0.69 times the odds of Lola being a smoker.

The estimated odds ratio comparing the educ \(=\) "3_High" group to the baseline \(e d u c=\) "1_Low" group on smoker is 0.725 .
- Suppose we have two subjects, Lola and Heidi, who are the same age, and the same sex, but Lola is in the "1_Low" education group and Heidi is in the "3_High" education group.
- Our model predicts that Heidi's odds of being a smoker will be 0.725 times the odds of Lola being a smoker.

Finally, The estimated odds ratio comparing the educ \(=\) " \(4 \_\)VHigh" group to the baseline educ \(=\) " \(1 \_\)Low" group on smoker is 0.339 .
- Suppose we have two subjects, Lola and Vera, who are the same age, and the same sex, but Lola is in the "1_Low" education group and Vera is in the "4_VHigh" education group.
- Our model predicts that Vera's odds of being a smoker will be 0.339 times the odds of Lola being a smoker.

\subsection*{22.8 Estimates in The Same Logistic Regression fit with lrm}

When we fit the same model as m3 using lrm, we get identical results as we get from the glm fit for the categorical predictors, but there's a change in how the odds ratio for the quantitative predictor (age) is presented.
```

d <- datadist(smalldat); options(datadist = "d")
m3.lrm <- lrm(smoker ~ age + sex + educ,
data = smalldat, x = TRUE, y = TRUE)
kable(summary(m3.lrm), digits = 3)

```
\begin{tabular}{lrrrrrrrr}
\hline & & & & & & Lower & Upper & \\
& Low & High & Diff. & Effect & S.E. & 0.95 & 0.95 & Type \\
\hline age & 42 & 57 & 15 & -0.885 & 0.318 & -1.508 & -0.261 & 1 \\
Odds Ratio & 42 & 57 & 15 & 0.413 & NA & 0.221 & 0.770 & 2 \\
sex - M:F & 1 & 2 & NA & 0.585 & 0.356 & -0.113 & 1.283 & 1 \\
Odds Ratio & 1 & 2 & NA & 1.795 & NA & 0.893 & 3.607 & 2 \\
educ - & 1 & 2 & NA & -0.370 & 0.428 & -1.209 & 0.468 & 1 \\
\begin{tabular}{l} 
2_Middle:1_Low
\end{tabular} & & & & & & & & \\
\begin{tabular}{l} 
Odds Ratio \\
educ -
\end{tabular} & 1 & 2 & NA & 0.690 & NA & 0.299 & 1.596 & 2 \\
\begin{tabular}{l} 
3_High:1_Low
\end{tabular} & 1 & 3 & NA & -0.321 & 0.519 & -1.338 & 0.696 & 1 \\
Odds Ratio & & & & & & & \\
& 1 & 3 & NA & 0.725 & NA & 0.262 & 2.005 & 2
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline & & & & & & Lower & Upper & \\
& Low & High & Diff. & Effect & S.E. & 0.95 & 0.95 & Type \\
\hline educ - & 1 & 4 & NA & -1.082 & 0.571 & -2.201 & 0.037 & 1 \\
4_VHigh:1_Low & & & & & & & & \\
Odds Ratio & 1 & 4 & NA & 0.339 & NA & 0.111 & 1.038 & 2 \\
\hline
\end{tabular}

Note that the odds ratio effect sizes and confidence intervals are identical to what we saw in the glm fit for the sex and educ variables here, but the age result is presented differently.
- The age interpretation is that if we have two subjects, Al and Bob, who are the same sex and have the same education level, but Al is age 42 and Bob is age 57 , then model m 3 projects that Bob's odds of being a smoker will be 0.413 times Al's odds of being a smoker. Bob's odds are \(41.3 \%\) as large as Al's, equivalently.
- After adjustment for sex and educ, increasing age appears to be associated with decreasing odds of smoking. Note, too, that the effect of age on the odds of being a smoker has a confidence interval for the odds ratio entirely below 1.
```

plot(summary(m3.lrm))

```

Odds Ratio


\subsection*{22.9 Estimates in A New Logistic Regression fit with lrm}

Now, suppose we fit a new model to predict the log odds of being a smoker using a five-knot spline in age and the interaction of sex and educational attainment. How does that change our interpretation of the effect sizes?
```

d <- datadist(smalldat); options(datadist = "d")
m4 <- lrm(smoker ~ rcs(age,5) + sex * catg(educ),
data = smalldat, x = TRUE, y = TRUE)
kable(summary(m4), digits = 3)

```
\begin{tabular}{lrrrrrrrr}
\hline & & & & & & Lower & Upper \\
& Low & High & Diff. & Effect & S.E. & 0.95 & 0.95 & Type \\
\hline age & 42 & 57 & 15 & -0.817 & 0.538 & -1.872 & 0.237 & 1 \\
Odds Ratio & 42 & 57 & 15 & 0.442 & NA & 0.154 & 1.268 & 2 \\
sex - M:F & 1 & 2 & NA & 1.487 & 0.583 & 0.345 & 2.629 & 1 \\
Odds Ratio & 1 & 2 & NA & 4.422 & NA & 1.412 & 13.853 & 2 \\
educ - & 1 & 2 & NA & 0.668 & 0.546 & -0.402 & 1.739 & 1 \\
2_Middle:1_Low & & & & & & & & \\
\begin{tabular}{l} 
Odds Ratio
\end{tabular} & 1 & 2 & NA & 1.951 & NA & 0.669 & 5.690 & 2 \\
educ -
\end{tabular}

Again, the kable approach I used in these notes hides the adjusted values specified at the bottom of the summary table for this lrm model (model m4), but they are Adjusted to: sex=F educ=1_Low.

Now, how do we interpret these model m4 results?
```

plot(summary(m4))

```

Odds Ratio


\section*{Adjusted to:sex=F educ=1_Low}
- The age interpretation is that if we have two subjects, Al and Bob, who are the same sex and have the same education level, but Al is age 42 and Bob is age 57, then model m 4 projects that Bob's odds of being a smoker will be 0.442 times Al's odds of being a smoker. Equivalently, Bob's odds are \(44.2 \%\) as large as Al's.
- Because of the interaction between sex and educ in our model m4, we must select an educ level in order to cleanly interpret the effect of sex on smoker. The sex - M:F interpretation compares \(\mathrm{M}(\) ale \()\) to F (emale) sex while requiring \({ }^{5}\) that educ \(=\) 1_Low. \(^{\text {L }}\) The result is that if we have two subjects, Carl and Diane, who are the same age and each is in the low education group, but Carl is Male and Diane is Female, then model m4 predicts that Carl's odds of being a smoker will be 4.422 times the odds for Diane.
- Because of the interaction between sex and educ in our model m4, we must select a sex in order to cleanly interpret the effect of educ on totchol. The educ - 2_Middle:1_Low term, for instance, compares " 2 _Middle" education to " 1 _Low" education while requiring that sex is Female \({ }^{6}\). The result is that if we have two subjects, Lola and Mina, who are the same age and each is Female, but Lola is in the "1_Low" education group and Mina is in the " \(2 \_\)Middle" education group, then model m4 predicts that Mina's odds of being a smoker will be 1.951 times Lola's odds, or, equivalently, that Mina will have \(95.1 \%\) higher odds than Lola.

It should be easy to see that one is contained in each of the \(95 \%\) confidence intervals summarizing model m 4 except for the one for the main effect of sex, but we might also consider the

\footnotetext{
\({ }^{5}\) We know this because of the Adjusted to: sex \(=F\), educ=1_Low note at the bottom of the summary output.
\({ }^{6}\) Adjusted to: sex \(=F\), educ=1_Low tells us this.
}
impact of the interaction term, as described by the anova result for model m 4 .
```

anova(m4)

```

Wald Statistics Response: smoker
\begin{tabular}{lccc} 
Factor & Chi-Square d.f. P \\
age & 8.34 & 4 & 0.0799 \\
Nonlinear & 1.78 & 3 & 0.6196 \\
sex (Factor+Higher Order Factors) & 12.64 & 4 & 0.0132 \\
All Interactions & 10.48 & 3 & 0.0149 \\
educ (Factor+Higher Order Factors) & 12.43 & 6 & 0.0531 \\
All Interactions & 10.48 & 3 & 0.0149 \\
sex * educ (Factor+Higher Order Factors) & 10.48 & 3 & 0.0149 \\
TOTAL NONLINEAR + INTERACTION & 12.60 & 6 & 0.0498 \\
TOTAL & 21.69 & 11 & 0.0269
\end{tabular}

Finally, here is a nomogram of model m 4 .
```

plot(nomogram(m4, fun = plogis))

```


\section*{23 Colorectal Cancer Screening and Some Special Cases}

In this Chapter, we discuss two issues not yet raised regarding regression on a binary outcome.
1. What do we do if our binary outcome is not available for each subject individually, but instead aggregated?
2. What is probit regression, and how can we use it as an alternative to logistic regression on a binary outcome?

\subsection*{23.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(janitor)
library(broom)
library(rms)
library(tidyverse)
theme_set(theme_bw())

```

\subsection*{23.2 Data Load}
```

colscr <- read_csv("data/screening.csv", show_col_types = FALSE)
colscr2 <- read_csv("data/screening2.csv", show_col_types = FALSE)

```

\subsection*{23.3 Logistic Regression for Aggregated Data}

\subsection*{23.3.1 Colorectal Cancer Screening Data}

The screening.csv data (imported into the R tibble colscr are simulated. They mirror a subset of the actual results from the Better Health Partnership's pilot study of colorectal cancer screening in primary care clinics in Northeast Ohio, but the numbers have been fuzzed slightly, and the clinics have been de-identified and moved around from system to system.

Available to us are the following variables:




\subsection*{23.3.2 Fitting a Logistic Regression Model to Proportion Data}

Here, we have a binary outcome (was the subject screened or not?) but we have aggregated results. We can use the counts of the numbers of subjects at each clinic (in subjects) and the proportion who were screened (in screen_rate) to fit a logistic regression model, as follows:
```

m_screen1 <- glm(screen_rate ~ meanage + female +
pct_lowins + system, family = binomial,
weights = subjects, data = colscr)
summary(m_screen1)

```

Call:
```

glm(formula = screen_rate ~ meanage + female + pct_lowins + system,
family = binomial, data = colscr, weights = subjects)

```

Coefficients:
\begin{tabular}{lrrrr} 
& Estimate & Std. Error z value \(\operatorname{Pr}(>|z|)\) \\
(Intercept) & -1.3270393 & 0.5530782 & -2.399 & \(0.0164 *\) \\
meanage & 0.0679866 & 0.0089754 & 7.575 & \(3.60 \mathrm{e}-14 * * *\) \\
female & -0.0193142 & 0.0015831 & -12.200 & \(<2 \mathrm{e}-16 * * *\) \\
pct_lowins & -0.0134547 & 0.0008585 & -15.672 & \(<2 \mathrm{e}-16 * * *\) \\
systemSys_2 & -0.1382189 & 0.0246591 & -5.605 & \(2.08 \mathrm{e}-08 * * *\) \\
systemSys_3 & -0.0400170 & 0.0254505 & -1.572 & 0.1159
\end{tabular}
\(\begin{array}{lllll}\text { systemSys_4 } & 0.0229273 & 0.0294207 & 0.779 & 0.4358\end{array}\)
---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2825.28 on 25 degrees of freedom
Residual deviance: 816.39 on 19 degrees of freedom AIC: 1037.9

Number of Fisher Scoring iterations: 4

\subsection*{23.3.3 Fitting a Logistic Regression Model to Counts of Successes and Failures}
```

m_screen2 <- glm(cbind(screened, notscreened) ~
meanage + female + pct_lowins + system,
family = binomial, data = colscr)
summary(m_screen2)

```

Call:
glm(formula \(=\) cbind (screened, notscreened) ~ meanage + female + pct_lowins + system, family = binomial, data = colscr)

Coefficients:
Estimate Std. Error z value \(\operatorname{Pr}(>|z|)\)
(Intercept) -1.3270392 \(0.5530782-2.399 \quad 0.0164 *\)
meanage \(0.06798660 .0089754 \quad 7.575\) 3.60e-14 ***
female \(-0.01931420 .0015831-12.200<2 e-16 * * *\)
pct_lowins -0.0134547 0.0008585-15.672 < 2e-16 ***
systemSys_2 -0.1382189 0.0246591 -5.605 2.08e-08 ***
systemSys_3 -0.0400170 \(0.0254505-1.572 \quad 0.1159\)
\(\begin{array}{lllll}\text { systemSys_4 } 0.0229273 & 0.0294207 & 0.779 & 0.4358\end{array}\)
---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2825.28 on 25 degrees of freedom Residual deviance: 816.39 on 19 degrees of freedom AIC: 1037.9
```

Number of Fisher Scoring iterations: 4

```

\subsection*{23.3.4 How does one address this problem in rms?}

We can use Glm. As an example to mirror m_screen1, we have the following...
```

d <- datadist(colscr)
options(datadist = "d")
mod_screen_1 <- Glm(screen_rate ~ meanage + female +
pct_lowins + system,
family = binomial, weights = subjects,
data = colscr, x = T, y = T)
mod_screen_1

```

\section*{General Linear Model}
Glm(formula = screen_rate \(\sim\) meanage + female + pct_lowins + system,
    family = binomial, data = colscr, weights = subjects, \(x=T\),
    \(\mathrm{y}=\mathrm{T}\) )


\subsection*{23.4 Probit Regression}

\subsection*{23.4.1 Colorectal Cancer Screening Data on Individuals}

The data in the colscr2 data frame describe (disguised) data on the status of 172 adults who were eligible for colon cancer screening, with the following information included:
\begin{tabular}{rl}
\hline Variable & Description \\
\hline subject & subject ID code \\
age & subject's age (years) \\
race & subject's race (White/Black/Other) \\
hispanic & subject of Hispanic ethnicity \((1=\) yes \(/ 0=\) no \()\) \\
insurance & Commercial, Medicaid, Medicare, Uninsured \\
bmi & body mass index at most recent visit \\
sbp & systolic blood pressure at most recent visit \\
up_to_date & meets colon cancer screening standards \\
\hline
\end{tabular}

The goal is to use the other variables (besides subject ID) to predict whether or not a subject is up to date.
```

colscr2 %>% describe()

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Variables 172 Observations} & \\
\hline \multicolumn{11}{|l|}{subject} \\
\hline n & \multicolumn{2}{|l|}{missing distinct} & Info & \multicolumn{2}{|l|}{Mean} & Gmd & \multicolumn{2}{|l|}{. 05} & \multicolumn{2}{|l|}{. 10} \\
\hline 172 & 0 & 172 & 1 & 186.5 & & \multirow[t]{2}{*}{57.67} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{109.6}} & \multicolumn{2}{|l|}{118.1} \\
\hline . 25 & . 50 & . 75 & . 90 & \multicolumn{2}{|l|}{. 95} & & & & & \\
\hline 143.8 & 186.5 & 229.2 & 254.9 & \multicolumn{3}{|l|}{263.4} & & & & \\
\hline \multicolumn{10}{|l|}{lowest : 101102103104 105, highest: 268269270271272} & \\
\hline \multicolumn{11}{|l|}{age} \\
\hline n & \multicolumn{2}{|l|}{missing distinct} & Info & \multicolumn{2}{|l|}{Mean} & Gmd & \multicolumn{2}{|l|}{. 05} & \multicolumn{2}{|l|}{. 10} \\
\hline 172 & 0 & 19 & 0.995 & \multicolumn{2}{|l|}{57.8} & \multirow[t]{2}{*}{5.536} & 51.00 & & \multirow[t]{2}{*}{52.00} & \\
\hline . 25 & . 50 & . 75 & . 90 & . 95 & & & & & & \\
\hline 54.00 & 57.00 & 61.25 & 65.00 & \multicolumn{2}{|l|}{67.00} & & & & & \\
\hline Value & 51 & 52 & 54 & 55 & 56 & 57 & 58 & 59 & 60 & 61 \\
\hline
\end{tabular}
\(\begin{array}{lllllllllllll}\text { Frequency } & 10 & 17 & 14 & 9 & 15 & 13 & 18 & 13 & 4 & 10 & 6\end{array}\)
Proportion 0.0580 .0990 .0810 .0520 .0870 .0760 .1050 .0760 .0230 .0580 .035
\begin{tabular}{lrrrrrrrr} 
Value & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 \\
Frequency & 11 & 4 & 5 & 7 & 6 & 3 & 4 & 3 \\
Proportion & 0.064 & 0.023 & 0.029 & 0.041 & 0.035 & 0.017 & 0.023 & 0.017
\end{tabular}

For the frequency table, variable is rounded to the nearest 0

insurance
\begin{tabular}{rrr}
n & missing distinct \\
172 & 0 & 4
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Value & Commercial & Medicaid & Medicare & Uninsured \\
\hline Frequency & 32 & 81 & 46 & 13 \\
\hline Proportion & 0.186 & 0.471 & 0.267 & 0.076 \\
\hline
\end{tabular}
bmi
\begin{tabular}{rrrrrrrr} 
n & missing distinct & Info & Mean & Gmd & .05 & .10 \\
172 & 0 & 165 & 1 & 31.24 & 8.982 & 20.32 & 21.88 \\
.25 & .50 & .75 & .90 & .95 & & & \\
25.48 & 30.05 & 36.03 & 43.06 & 45.68 & & &
\end{tabular}
lowest : 17.217 .5917 .8518 .0918 .44 , highest: 49.4150 .8353 .2854 .6655 .41
\begin{tabular}{rrrrrrrr} 
sbp & n & missing distinct & Info & Mean & Gmd & .05 & .10 \\
172 & 0 & 68 & 0.999 & 128.9 & 19.46 & 101.6 & 109.1 \\
.25 & .50 & .75 & .90 & .95 & & & \\
118.0 & 127.0 & 138.0 & 150.9 & 162.0 & & &
\end{tabular}


\subsection*{23.4.2 A logistic regression model}

Here is a logistic regression model.
```

m_scr2_logistic <- glm(up_to_date ~ age + race + hispanic +
insurance + bmi + sbp,
family = binomial, data = colscr2)
summary(m_scr2_logistic)

```

Call:
glm(formula \(=\) up_to_date \(\sim\) age + race + hispanic + insurance + bmi + sbp, family = binomial, data = colscr2)

Coefficients:

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 230.85 on 171 degrees of freedom Residual deviance: 210.55 on 162 degrees of freedom AIC: 230.55

Number of Fisher Scoring iterations: 4
```

 confint(m_scr2_logistic)
    ```

Waiting for profiling to be done...
\begin{tabular}{lrr} 
& \(2.5 \%\) & \(97.5 \%\) \\
(Intercept) & -2.64274441 & 8.157738367 \\
age & -0.05703934 & 0.099298904 \\
raceOther & -4.24604744 & -0.175953229 \\
raceWhite & -1.10800168 & 0.469396096 \\
hispanic & -1.53691431 & 1.688738936 \\
insuranceMedicaid & -2.03640881 & -0.079142467 \\
insuranceMedicare & -1.66246932 & 0.564088260 \\
insuranceUninsured & -1.40110091 & 1.759391281 \\
bmi & -0.02568426 & 0.058563761 \\
sbp & -0.04436143 & -0.005282686
\end{tabular}

In this model, there appears to be some link between sbp and screening, as well as, perhaps, some statistically significant differences between some race groups and some insurance groups. We won't look at this much further for now, though. Instead, we'll simply describe predictions for two subjects, Harry and Sally.

\subsection*{23.4.3 Predicting status for Harry and Sally}
- Harry is age 65, White, non-Hispanic, with Medicare insurance, a BMI of 28 and SBP of 135 .
- Sally is age 60, Black, Hispanic, with Medicaid insurance, a BMI of 22 and SBP of 148.
```

newdat_s2 <- tibble(subject = c("Harry", "Sally"),
age = c(65, 60),
race = c("White", "Black"),
hispanic = c(0, 1),
insurance = c("Medicare", "Medicaid"),
bmi = c(28, 22),
sbp = c(135, 148))

```
```

 predict(m_scr2_logistic, newdata = newdat_s2,
 type = "response")
 1 2
 0.5904364 0.4215335

```

The prediction for Harry is 0.59 , and for Sally, 0.42 , by this logistic regression model.

\subsection*{23.4.4 A probit regression model}

Now, consider a probit regression, fit by changing the default link for the binomial family as follows:
```

m_scr2_probit <- glm(up_to_date ~ age + race + hispanic +
insurance + bmi + sbp,
family = binomial(link = "probit"),
data = colscr2)
summary(m_scr2_probit)

```

Call:
glm(formula \(=\) up_to_date \(\sim\) age + race + hispanic + insurance + bmi + sbp, family = binomial(link = "probit"), data = colscr2)

Coefficients:
\begin{tabular}{lrrrr} 
& Estimate & Std. Error z value \(\operatorname{Pr}(>|z|)\) \\
(Intercept) & 1.584604 & 1.658489 & 0.955 & 0.3394 \\
age & 0.013461 & 0.024107 & 0.558 & 0.5766 \\
raceOther & -1.238445 & 0.587093 & -2.109 & \(0.0349 *\) \\
raceWhite & -0.199260 & 0.243505 & -0.818 & 0.4132 \\
hispanic & 0.029483 & 0.484819 & 0.061 & 0.9515 \\
insuranceMedicaid & -0.619277 & 0.293205 & -2.112 & \(0.0347 *\) \\
insuranceMedicare & -0.322881 & 0.333549 & -0.968 & 0.3330 \\
insuranceUninsured & 0.052776 & 0.463798 & 0.114 & 0.9094 \\
bmi & 0.009652 & 0.012887 & 0.749 & 0.4539 \\
sbp & -0.014696 & 0.005944 & -2.472 & \(0.0134 *\)
\end{tabular}

Signif. codes: \(0{ }^{\prime * * * '} 0.001{ }^{\prime * * '} 0.01^{\prime *} *^{\prime} 0.05 '^{\prime} 0.1\) ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 230.85 on 171 degrees of freedom
Residual deviance: 210.49 on 162 degrees of freedom
AIC: 230.49
Number of Fisher Scoring iterations: 4
confint(m_scr2_probit)
Waiting for profiling to be done...

| | 2.5% | 97.5% |
| :--- | ---: | ---: |
| (Intercept) | -1.70739455 | 4.894713408 |
| age | -0.03400934 | 0.061437784 |
| raceOther | -2.53819772 | -0.119812915 |
| raceWhite | -0.67910311 | 0.282566349 |
| hispanic | -0.92476109 | 1.011089937 |
| insuranceMedicaid | -1.21212866 | -0.049749873 |
| insuranceMedicare | -0.99315267 | 0.329851215 |
| insuranceUninsured | -0.83335121 | 0.966504724 |
| bmi | -0.01577917 | 0.035632196 |
| sbp | -0.02659318 | -0.003148488 |

```

\subsection*{23.4.5 Interpreting the Probit Model's Coefficients}

It is possible to use any number of link functions to ensure that predicted values in a generalized linear model fall between 0 and 1. The probit regression model, for instance, uses the inverse of the cumulative distribution function of the Normal model as its link function. Let's look more closely at the coefficients of the probit model we just fit.
```

m_scr2_probit\$coef

| (Intercept) | age | raceOther | raceWhite |
| ---: | ---: | ---: | ---: |
| 1.584603569 | 0.013461338 | -1.238445198 | -0.199260184 |
| hispanic | insuranceMedicaid | insuranceMedicare | insuranceUninsured |
| 0.029483051 | -0.619276718 | -0.322880519 | 0.052775722 |
| bmi | sbp | | |
| 0.009652339 | -0.014695526 | | |

```

The probit regression coefficients give the change in the z -score of the outcome of interest (here, up_to_date) for a one-unit change in the target predictor, holding all other predictors constant.
- So, for a one-year increase in age, holding all other predictors constant, the z-score for up_to_date increases by 0.013
- And for a Medicaid subject as compared to a Commercial subject of the same age, race, ethnicity, bmi and sbp, the z-score for the Medicaid subject is predicted to be -0.619 lower, according to this model.

\subsection*{23.4.6 What about Harry and Sally?}

Do the predictions for Harry and Sally change much with this probit model, as compared to the logistic regression?
```

predict(m_scr2_probit, newdata = newdat_s2, type = "response")

```

1
2
0.58855110 .4364027

\section*{24 Modeling a Count Outcome}

In this chapter, and the next two chapters, I use a count outcome (\# of poor physical health days out of the last 30) in OHIO SMART data created in Chapter 6 to demonstrate regression models for count outcomes.

Methods discussed in the chapter include:
- Ordinary Least Squares
- Poisson Regression
- Overdispersed Quasi-Poisson Regression

\subsection*{24.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(broom)
library(boot)
library(countreg)
library(topmodels)
library(GGally)
library(lmtest)
library(rms)
library(sandwich)
library(tidyverse)
theme_set(theme_bw())

```

\subsection*{24.2 Data Load}
```

smart_oh <- readRDS("data/smart_ohio.Rds")

```

\subsection*{24.3 Creating A Useful Analytic Subset, ohioA}

For this work, I'll include the subset of all observations in smart_oh with complete data on these 14 variables.
\begin{tabular}{rl} 
Variable & Description \\
SEQNO & Subject identification code \\
mmsa_name & Name of statistical area \\
genhealth & Five categories (E, VG, G, F, P) on general health \\
physhealth & Now thinking about your physical health, which includes physical illness \\
& \begin{tabular}{rl} 
and injury, for how many days during the past 30 days was your physical \\
health not good?
\end{tabular} \\
menthlth & Now thinking about your mental health, which includes stress, depression, \\
& \begin{tabular}{ll} 
and problems with emotions, for how many days during the past 30 days \\
was your mental health not good?
\end{tabular} \\
healthplan & 1 if the subject has any kind of health care coverage, 0 otherwise \\
costprob & 1 indicates Yes to "Was there a time in the past 12 months when you \\
& needed to see a doctor but could not because of cost?" \\
agegroup & 13 age groups from 18 through \(80+\) \\
female & 1 if subject is female
\end{tabular}
```

ohioA <- smart_oh |>
select(SEQNO, mmsa_name, genhealth, physhealth,
menthealth, healthplan, costprob,
agegroup, female, incomegroup, bmi, smoke100,
alcdays) |>
drop_na()

```

\subsection*{24.3.1 Is age group associated with physhealth?}
```

ggplot(ohioA, aes(x = agegroup, y = physhealth)) +
geom_violin(col = "blue")

```


It's hard to see much of anything here. The main conclusion seems to be that 0 is by far the most common response.

Here's a table by age group of:
- the number of respondents in that age group,
- the group's mean physhealth response (remember that these are the number of poor physical health days in the last 30),
- their median physhealth response (which turns out to be 0 in each group), and
- the percentage of group members who responded 0 .
```

ohioA |> group_by(agegroup) |>
summarize(n = n(), mean = round(mean(physhealth),2),
median = median(physhealth),
percent_0s = round(100*sum(physhealth == 0)/n,1))

```
```


A tibble: 13 x 5

 agegroup n mean median percent_0s
 <fct> <int> <dbl> <dbl> <dbl>
 1 18-24 297 2.31
 2 25-29 259 2.53 0. 0- 06
 3 30-34 296 2.14 0, 0
    ```
\begin{tabular}{rlllll}
4 & \(35-39\) & 366 & 3.67 & 0 & 63.9 \\
5 & \(40-44\) & 347 & 4.18 & 0 & 62.8 \\
6 & \(45-49\) & 409 & 4.46 & 0 & 63.3 \\
7 & \(50-54\) & 472 & 4.76 & 0 & 60.4 \\
8 & \(55-59\) & 608 & 6.71 & 0 & 57.1 \\
9 & \(60-64\) & 648 & 5.9 & 0 & 57.6 \\
10 & \(65-69\) & 604 & 6.09 & 0 & 56 \\
11 & \(70-74\) & 490 & 4.89 & 0 & 61.6 \\
12 & \(75-79\) & 338 & 6.38 & 0 & 54.1 \\
13 & \(80-96\) & 374 & 6.1 & 0 & 56.4
\end{tabular}

We can see a real change between the 45-49 age group and the \(50-54\) age group. The mean difference is clear from the table above, and the plot below (of the percentage with a zero response) in each age group identifies the same story.
```

ohioA |> group_by(agegroup) |>
summarize(n = n(),
percent_0s = round(100*sum(physhealth == 0)/n,1)) |>
ggplot(aes(y = agegroup, x = percent_0s)) +
geom_label(aes(label = percent_0s)) +
labs(x = "% with no Bad Physical Health Days in last 30",
y = "Age Group")

```


It looks like we have a fairly consistent result in the younger age range (18-49) or the older range \((50+)\). On the theory that most of the people reading this document are in that younger range, we'll focus on those respondents in what follows.

\subsection*{24.4 Exploratory Data Analysis (in the 18-49 group)}

We want to predict the 0-30 physhealth count variable for the 18-49 year old respondents.
To start, we'll use two predictors:
- the respondent's body mass index, and
- whether the respondent has smoked 100 cigarettes in their lifetime.

We anticipate that each of these variables will have positive associations with the physhealth score. That is, heavier people, and those who have used tobacco will be less healthy, and thus have higher numbers of poor physical health days.

\subsection*{24.4.1 Build a subset of those ages 18-49}

First, we'll identify the subset of respondents who are between 18 and 49 years of age.
```

ohioA_young.raw <- ohioA |>
filter(agegroup %in% c("18-24", "25-29", "30-34",
"35-39", "40-44", "45-49")) |>
droplevels()
ohioA_young.raw |>
select(physhealth, bmi, smoke100, agegroup) |>
summary()

```
\begin{tabular}{lrlllrr}
\multicolumn{2}{c}{ physhealth } & \multicolumn{2}{c}{ bmi } & \multicolumn{2}{c}{ smoke100 } & agegroup \\
Min. \(: 0.000\) & Min. \(: 14.00\) & Min. \(: 0.0000\) & \(18-24: 297\) \\
1st Qu. \(: ~ 0.000 ~\) & 1st Qu. \(: 23.74\) & 1st Qu. \(: 0.0000\) & \(25-29: 259\) \\
Median \(: 0.000\) & Median \(: 27.32\) & Median \(: 0.0000\) & \(30-34: 296\) \\
Mean \(: 3.337\) & Mean \(: 28.79\) & Mean \(: 0.4189\) & \(35-39: 366\) \\
3rd Qu. \(: 2.000\) & 3rd Qu. \(: 32.43\) & 3rd Qu. \(: 1.0000\) & \(40-44: 347\) \\
Max. \(: 30.000\) & Max. \(: 75.52\) & Max. \(: 1.0000\) & \(45-49: 409\)
\end{tabular}

\subsection*{24.4.2 Centering bmi}

I'm going to center the bmi variable to help me interpret the final models later.
```

ohioA_young <- ohioA_young.raw |>
mutate(bmi_c = bmi - mean(bmi))

```

Now, let's look more closely at the distribution of these variables, starting with our outcome.

\subsection*{24.4.3 Distribution of the Outcome}

What's the distribution of physhealth?
```

ggplot(ohioA_young.raw, aes(x = physhealth)) +
geom_histogram(binwidth = 1, fill = "red", col = "white")

```

ohioA_young.raw |>
    count(physhealth == 0, physhealth == 30)
\# A tibble: 3 x 3
```

 `physhealth == 0` `physhealth == 30` n
 <lgl> <lgl> <int>
 1 FALSE FALSE 612
2 FALSE TRUE 98
3 TRUE FALSE 1264

```

Most of our respondents said zero, the minimum allowable value, although there is also a much smaller bump at 30 , the maximum value we will allow.

Dealing with this distribution is going to be a bit of a challenge. We will develop a series of potential modeling approaches for this sort of data, but before we do that, let's look at the distribution of our other two variables, and the pairwise associations, in a scatterplot matrix.

\subsection*{24.4.4 Scatterplot Matrix}

Now, here's the scatterplot matrix for those 1974 subjects, using the centered bmi data captured in the bmi_c variable.
```

temp <- ohioA_young |> select(bmi_c, smoke100, physhealth)
ggpairs(temp)

```


So bmi_c and smoke100 each have modest positive correlations with physhealth and only a very small correlation with each other. Here are some summary statistics for this final data.

\subsection*{24.4.5 Summary of the final subset of data}

Remember that since the mean of bmi is 28.8 , the bmi_c values are just bmi - 28.8 for each subject.
```

ohioA_young |>
select(bmi, bmi_c, smoke100, physhealth) |>
summary()

```
\begin{tabular}{llllll}
\multicolumn{2}{c}{ bmi } & \multicolumn{2}{c}{ bmi_c } & \multicolumn{2}{c}{ smoke100 }
\end{tabular}

\subsection*{24.5 Modeling Strategies Explored Here}

We are going to predict physhealth using bmi_c and smoke100.
- Remember that physhealth is a count of the number of poor physical health days in the past 30 .
- As a result, physhealth is restricted to taking values between 0 and 30 .

We will demonstrate the use of each of the following regression models, some of which are better choices than others.
1. Ordinary Least Squares (OLS) predicting physhealth
2. OLS predicting the logarithm of (physhealth +1 )
3. Poisson regression, which is appropriate for predicting counts
4. Poisson regression, adjusted to account for overdispersion
and, in Chapter 25:
5. Negative binomial regression, also used for counts and which adjusts for overdispersion and, in Chapter 26:
6. Zero-inflated models, in both the Poisson and Negative Binomial varieties, which allow us to fit counts that have lots of zero values
7. A "hurdle" model, which allows us to separately fit a model to predict the incidence of " 0 " and then a separate model to predict the value of physhealth when we know it is not zero
8. Tobit regression, where a lower (and upper) bound may be set, but the underlying model describes a latent variable which can extend beyond these boundaries

\subsection*{24.5.1 What Will We Demonstrate?}

With each approach, we will fit the model and specify procedures for doing so in R . Then we will:
1. Specify the fitted model equation
2. Interpret the model's coefficient estimates and \(95 \%\) confidence intervals around those estimates.
3. Perform a test of whether each variable adds value to the model, when the other one is already included.
4. Store the fitted values and appropriate residuals for each model.
5. Summarize the model's apparent \(R^{2}\) value, the proportion of variation explained, and the model log likelihood.
6. Perform checks of model assumptions as appropriate.
7. Describe how predictions would be made for two new subjects.
- Harry has a BMI that is \(10 \mathrm{~kg} / \mathrm{m}^{2}\) higher than the average across all respondents and has smoked more than 100 cigarettes in his life.
- Sally has a BMI that is \(5 \mathrm{~kg} / \mathrm{m}^{2}\) less than the average across all respondents and has not smoked more than 100 cigarettes in her life.

In addition, for some of the new models, we provide a little of the mathematical background, and point to other resources you can use to learn more about the model.

\subsection*{24.5.2 Extra Data File for Harry and Sally}

To make our lives a little easier, I'll create a little tibble containing the necessary data for Harry and Sally.
```

hs_data <- tibble(subj = c("Harry", "Sally"),
bmi_c = c(10, -5), smoke100 = c(1, 0))
hs_data

```
```


A tibble: 2 x 3

 subj bmi_c smoke100
 <chr> <dbl> <dbl>
 1 Harry 10 1
2 Sally -5 0

```

\subsection*{24.6 The OLS Approach}
```

mod_ols1 <- lm(physhealth ~ bmi_c + smoke100,
data = ohioA_young)
summary(mod_ols1)

```
Call:
lm(formula \(=\) physhealth \(\sim\) bmi_c + smoke100, data \(=\) ohioA_young)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-11.1472 & -3.6639 & -2.2426 & -0.7807 & 28.8777
\end{tabular}
Coefficients:
            Estimate Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\)
\begin{tabular}{lrrrrr} 
(Intercept) & 2.57046 & 0.21648 & 11.874 & \(<2 \mathrm{e}-16 * * *\) \\
bmi_c & 0.14437 & 0.02305 & 6.263 & \(4.61 \mathrm{e}-10\) & \(* * *\) \\
smoke100 & 1.83061 & 0.33469 & 5.470 & \(5.09 \mathrm{e}-08\) & \(* * *\)
\end{tabular}
Signif. codes: \(0{ }^{\prime * * * '} 0.001{ }^{\prime * *} 0.01 '^{\prime} 0.05 '^{\prime} 0.1 '^{\prime} 1\)
Residual standard error: 7.328 on 1971 degrees of freedom
Multiple R-squared: 0.0356, Adjusted R-squared: 0.03462
F-statistic: 36.37 on 2 and 1971 DF, p-value: \(3.072 \mathrm{e}-16\)
    confint(mod_ols1)
    \(2.5 \% \quad 97.5 \%\)
(Intercept) 2.14591432 .995005
bmi_c 0.09916360 .189573
smoke100 1.17422132 .486995

\subsection*{24.6.1 Interpreting the Coefficients}
- The intercept, 2.57 , is the predicted physhealth (in days) for a subject with average BMI who has not smoked 100 cigarettes or more.
- The bmi_c coefficient, 0.144 , indicates that for each additional \(\mathrm{kg} / \mathrm{m}^{2}\) of BMI, while holding smoke100 constant, the predicted physhealth value increases by 0.144 day.
- The smoke100 coefficient, 1.83 , indicates that a subject who has smoked 100 cigarettes or more has a predicted physhealth value 1.83 days larger than another subject with the same bmi but who has not smoked 100 cigarettes.

\subsection*{24.6.2 Store fitted values and residuals}

We can use broom to do this. Here, for instance, is a table of the first six predictions and residuals.
```

sm_ols_1 <- augment(mod_ols1, ohioA_young)
sm_ols_1 |> select(physhealth, .fitted, .resid) |> head()

A tibble: 6 x 3

physhealth .fitted .resid
<dbl> <dbl> <dbl>
1 0
2 0
3 0
4 30 5.72 24.3
5 0 3.20
6 0

```

It turns out that 0 of the 1974 predictions that we make are below 0 , and the largest prediction made by this model is 11.15 days.

\subsection*{24.6.3 Specify the \(R^{2}\) and \(\log\) (likelihood) values}

The glance function in the broom package gives us the raw and adjusted \(R^{2}\) values, and the model \(\log\) (likelihood), among other summaries.
```

glance(mod_ols1) |> round(3)

```
```


A tibble: 1 x 12

 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 0.036 0.035 7.33 36.4 0 0 -6731. 13470. 13492.

i 3 more variables: deviance <dbl>, df.residual <dbl>, nobs <dbl>

```

Here, we have
\begin{tabular}{rrr}
\hline Model & \(R^{2}\) & \(\log\) (likelihood) \\
\hline OLS & 0.036 & -6730.98 \\
\hline
\end{tabular}

\subsection*{24.6.4 Check model assumptions}

Here is a plot of the residuals vs. the fitted values for this OLS model.
```

ggplot(sm_ols_1, aes(x = .fitted, y = .resid)) +
geom_point() +
labs(title = "Residuals vs. Fitted Values for OLS model")

```

Residuals vs. Fitted Values for OLS model


As usual, we can check OLS assumptions (linearity, homoscedasticity and normality) with R's complete set of residual plots.
```

par(mfrow = c(2,2))
plot(mod_ols1)

```


Fitted values


Fitted values


Theoretical Quantiles

```

par(mfrow = c(1,1))

```

We see the problem with our residuals. They don't follow a Normal distribution.

\subsection*{24.6.5 Predictions for Harry and Sally}
```

 predict(mod_ols1, newdata = hs_data,
 interval = "prediction")
 fit lwr upr
 1 5.844750 -8.541164 20.23067
2 1.848618 -12.529923 16.22716

```

The prediction for Harry is 5.8 days, and for Sally is 1.8 days. The prediction intervals for each include some values below 0 , even though 0 is the smallest possible value.

\subsection*{24.6.6 Notes}
- This model could have been estimated using the ols function in the rms package, as well.
```

dd <- datadist(ohioA_young)
options(datadist = "dd")
(mod_ols1a <- ols(physhealth ~ bmi_c + smoke100,
data = ohioA_young, x = TRUE, y = TRUE))

```
Linear Regression Model
ols(formula \(=\) physhealth \(\sim\) bmi_c + smoke100, data \(=\) ohioA_young,
    \(\mathrm{x}=\) TRUE, \(\mathrm{y}=\mathrm{TRUE}\) )
\begin{tabular}{lrlrlr} 
& \multicolumn{2}{c}{ Model Likelihood } & \multicolumn{2}{r}{ Discrimination } \\
& \multicolumn{2}{c}{ Ratio Test } & & Indexes \\
Obs & 1974 & LR chi2 & 71.55 & R2 & 0.036 \\
sigma7.3276 & d.f. & 2 & R2 adj & 0.035 \\
d.f. & 1971 & Pr \((>~ c h i 2) ~\) & 0.0000 & g & 1.570
\end{tabular}
Residuals
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-11.1472 & -3.6639 & -2.2426 & -0.7807 & 28.8777
\end{tabular}
```

 Coef S.E. t Pr (>|t|)
 Intercept 2.5705 0.2165 11.87<0.0001
bmi_c 0.1444 0.0230 6.26<0.0001
smoke100 1.8306 0.3347 5.47<0.0001

```

\subsection*{24.7 OLS model on log(physhealth +1 ) days}

We could try to solve the problem of fitting some predictions below 0 by log-transforming the data, so as to force values to be at least 0 . Since we have undefined values when we take the \(\log\) of 0 , we'll add one to each of the physhealth values before taking logs, and then transform back when we want to make predictions.
```

mod_ols_log1 <- lm(log(physhealth + 1) ~ bmi_c + smoke100,
data = ohioA_young)
summary(mod_ols_log1)

```

Call:
```

lm(formula = log(physhealth + 1) ~ bmi_c + smoke100, data = ohioA_young)

```
Residuals:
\begin{tabular}{lrrrrr} 
Min & 1Q Median & 3Q & Max \\
-1.7079 & -0.7058 & -0.5051 & 0.5053 & 3.0484
\end{tabular}
Signif. codes: \(0{ }^{\prime * * * ' ~} 0.001\) '**' \(0.01{ }^{\prime *} 0.05 '^{\prime} 0.1\) ' 1
Residual standard error: 1.049 on 1971 degrees of freedom
Multiple R-squared: 0.03003, Adjusted R-squared: 0.02905
F-statistic: 30.51 on 2 and 1971 DF, p-value: 8.897e-14
```

confint(mod_ols_log1)

```
```

 2.5 % 97.5 %
 (Intercept) 0.51668682 0.63823590
bmi_c 0.01265192 0.02559421
smoke100 0.14282518 0.33075147

```

\subsection*{24.7.1 Interpreting the Coefficients}
- The intercept, 0.58 , is the predicted logarithm of (physhealth +1 ) (in days) for a subject with average BMI who has not smoked 100 cigarettes or more.
- We can exponentiate to see that the prediction for (physhealth +1 ) here is \(\exp (0.58)=1.79\) so the predicted physhealth for a subject with average BMI who has not smoked 100 cigarettes is 0.79 days.
- The bmi_c coefficient, 0.019 , indicates that for each additional \(\mathrm{kg} / \mathrm{m}^{2}\) of BMI, while holding smoke100 constant, the predicted logarithm of (physhealth +1 ) increases by 0.019
- The smoke100 coefficient, 0.24 , indicates that a subject who has smoked 100 cigarettes or more has a predicted \(\log\) of (physhealth +1 ) value that is 0.24 larger than another subject with the same bmi but who has not smoked 100 cigarettes.

\subsection*{24.7.2 Store fitted values and residuals}

We can use broom to help us with this. Here, for instance, is a table of the first six predictions and residuals, on the scale of our transformed response, \(\log (\) physhealth +1\()\).
```

sm_ols_log1 <- augment(mod_ols_log1, ohioA_young)
sm_ols_log1 <- sm_ols_log1 |>
mutate(outcome = log(physhealth + 1))
sm_ols_log1 |>
select(physhealth, outcome, .fitted, .resid) |>
head()

```
```


A tibble: 6 x 4

```
# A tibble: 6 x 4
    physhealth outcome .fitted .resid
    physhealth outcome .fitted .resid
        <dbl> <dbl> <dbl> <dbl>
        <dbl> <dbl> <dbl> <dbl>
        0 0 0.520-0.520
        0 0 0.520-0.520
        0 0 0.535-0.535
        0 0 0.535-0.535
        0 0 0.647-0.647
```

 0 0 0.647-0.647
    ```
\begin{tabular}{rrllc}
4 & 30 & 3.43 & 0.995 & 2.44 \\
5 & 0 & 0 & 0.656 & -0.656 \\
6 & 0 & 0 & 0.739 & -0.739
\end{tabular}

Note that the outcome used in this model is \(\log (\) physhealth +1 ), so the .fitted and .resid values react to that outcome, and not to our original physhealth.

Another option would be to calculate the model-predicted physhealth, which I'll call \(p h\) for a moment, with the formula:
```

 ph= e.fitted}-
 sm_ols_log1 <- sm_ols_log1 |>
 mutate(pred.physhealth = exp(.fitted) - 1,
 res.physhealth = physhealth - pred.physhealth)
 sm_ols_log1 |>
select(physhealth, pred.physhealth, res.physhealth) |>
head()

A tibble: 6 x 3

 physhealth pred.physhealth res.physhealth
 <dbl> <dbl> <dbl>
 0 0.681 -0.681
 0 0.708 -0.708
 0 0.910 -0.910
 30 1.70 28.3
 0 0.926 -0.926
 0 1.09 -1.09
    ```

It turns out that 0 of the 1974 predictions that we make are below 0 , and the largest prediction made by this model is 4.52 days.

\subsection*{24.7.3 Specify the \(R^{2}\) and \(\log\) (likelihood) values}

The glance function in the broom package gives us the raw and adjusted \(R^{2}\) values, and the model \(\log\) (likelihood), among other summaries.
```

glance(mod_ols_log1) |> round(3)

```
```


A tibble: 1 x 12

 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 10.03 0.029 1.05 30.5 0 0 0 < < 2894. 5796. 5818.

i 3 more variables: deviance <dbl>, df.residual <dbl>, nobs <dbl>

```

Here, we have
\begin{tabular}{rrrr}
\hline Model & Scale & \(R^{2}\) & \(\log\) (likelihood) \\
\hline OLS on \(\log\) & \(\log\) (physhealth +1\()\) & 0.03 & -2893.83 \\
\hline
\end{tabular}

\subsection*{24.7.4 Getting \(R^{2}\) on the scale of physhealth}

We could find the correlation of our model-predicted physhealth values, after backtransformation, and our observed physhealth values, if we wanted to, and then square that to get a sort of \(R^{2}\) value. But this model is not linear in physhealth, of course, so it's not completely comparable to our prior OLS model.

\subsection*{24.7.5 Check model assumptions}

As usual, we can check OLS assumptions (linearity, homoscedasticity and normality) with R's complete set of residual plots. Of course, these residuals and fitted values are now on the \(\log (\) physhealth +1\()\) scale.
```

par(mfrow = c(2,2))
plot(mod_ols_log1)

```


Fitted values


Fitted values


Theoretical Quantiles

```

par(mfrow = c(1,1))

```

\subsection*{24.7.6 Predictions for Harry and Sally}
```

predict(mod_ols_log1, newdata = hs_data,
interval = "prediction", type = "response")
fit lwr upr
1 1.005480 -1.053893 3.064854
2 0.481846 -1.576472 2.540164

```

Again, these predictions are on the \(\log (\) physhealth +1\()\) scale, and so we have to exponentiate them, and then subtract 1 , to see them on the original physhealth scale.
```

 exp(predict(mod_ols_log1, newdata = hs_data,
 interval = "prediction", type = "response")) - 1
 fit lwr upr
 1 1.7332198 -0.6514221 20.43133
2 0.6190605-0.7932970 11.68175

```

The prediction for Harry is now 1.73 days, and for Sally is 0.62 days. The prediction intervals for each again include some values below 0 , which is the smallest possible value.

\subsection*{24.8 A Poisson Regression Model}

The physhealth data describe a count. Specifically a count of the number of days where the subject felt poorly in the last 30 . Why wouldn't we model this count with linear regression?
- A count can only be positive. Linear regression would estimate some subjects as having negative counts.
- A count is unlikely to follow a Normal distribution. In fact, it's far more likely that the \(\log\) of the counts will follow a Poisson distribution.

So, we'll try that. The Poisson distribution is used to model a count outcome - that is, an outcome with possible values ( \(0,1,2, \ldots\) ). The model takes a somewhat familiar form to the models we've used for linear and logistic regression \({ }^{1}\). If our outcome is \(y\) and our linear predictors \(X\), then the model is:

\footnotetext{
\({ }^{1}\) This discussion is motivated by Section 6.2 of Gelman and Hill.
}
\[
y_{i} \sim \operatorname{Poisson}\left(\lambda_{i}\right)
\]

The parameter \(\lambda\) must be positive, so it makes sense to fit a linear regression on the logarithm of this...
\[
\lambda_{i}=\exp \left(\beta_{0}+\beta_{1} X_{1}+\ldots \beta_{k} X_{k}\right)
\]

The coefficients \(\beta\) can be exponentiated and treated as multiplicative effects.
We'll run a generalized linear model with a log link function, ensuring that all of the predicted values will be positive, and using a Poisson error distribution. This is called Poisson regression.

Poisson regression may be appropriate when the dependent variable is a count of events. The events must be independent - the occurrence of one event must not make any other more or less likely. That's hard to justify in our case, but we can take a look.
```

mod_poiss1 <- glm(physhealth ~ bmi_c + smoke100,
family = poisson(),
data = ohioA_young)
summary(mod_poiss1)

```
Call:
glm(formula = physhealth ~ bmi_c + smoke100, family = poisson(),
    data \(=\) ohioA_young)
Coefficients:
    Estimate Std. Error \(z\) value \(\operatorname{Pr}(>|z|)\)
(Intercept) 0.906991 \(0.01869948 .51<2 e-16 * * *\)
bmi_c \(0.035051 \quad 0.001421 \quad 24.66 \quad<2 \mathrm{e}-16 * * *\)
smoke100 \(0.5325050 .02490321 .38 \quad<2 \mathrm{e}-16\) ***
---
Signif. codes: \(0{ }^{\prime * * * '} 0.001{ }^{\prime * * '} 0.01 '^{\prime \prime} 0.05 '^{\prime} 0.1 '^{\prime} 1\)
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 20222 on 1973 degrees of freedom
Residual deviance: 19151 on 1971 degrees of freedom
AIC: 21645
```

Number of Fisher Scoring iterations: 6
confint(mod_poiss1)
Waiting for profiling to be done...
2.5% 97.5 %
(Intercept) 0.87011622 0.94342323
bmi_c 0.03225125 0.03782255
smoke100 0.48373882 0.58136497

```

\subsection*{24.8.1 The Fitted Equation}

The model equation is
\(\log (\) physhealth \()=0.91+0.035 \mathrm{bmi} \mathrm{c}+0.53\) smoke 100

It looks like both bmi and smoke_100 have confidence intervals excluding 0 .

\subsection*{24.8.2 Interpreting the Coefficients}

Our new model for \(y_{i}=\) counts of poor physhealth days in the last 30 , follows the regression equation:
\[
y_{i} \sim \operatorname{Poisson}\left(\exp \left(0.91+0.035 b m i_{c}+0.53 \text { smoke } 100\right)\right)
\]
where smoke100 is 1 if the subject has smoked 100 cigarettes (lifetime) and 0 otherwise, and bmi_c is just the centered body-mass index value in \(\mathrm{kg} / \mathrm{m}^{2}\). We interpret the coefficients as follows:
- The constant term, 0.91 , gives us the intercept of the regression - the prediction if smoke100 \(=0\) and bmi_c \(=0\). In this case, because we've centered BMI, it implies that \(\exp (0.91)=2.48\) is the predicted days of poor physhealth for a non-smoker with average BMI.
- The coefficient of bmi_c, 0.035 , is the expected difference in count of poor physhealth days (on the \(\log\) scale) for each additional \(\mathrm{kg} / \mathrm{m}^{2}\) of body mass index. The expected multiplicative increase is \(e^{0.035}=1.036\), corresponding to a \(3.6 \%\) difference in the count.
- The coefficient of smoke100, 0.53 , tells us that the predictive difference between those who have and who have not smoked 100 cigarettes can be found by multiplying the physhealth count by \(\exp (0.53)=1.7\), yielding a \(70 \%\) increase of the physhealth count.

As with linear or logistic regression, each coefficient is interpreted as a comparison where one predictor changes by one unit, while the others remain constant.

\subsection*{24.8.3 Testing the Predictors}

We can use the Wald tests (z tests) provided with the Poisson regression output, or we can fit the model and then run an ANOVA to obtain a test based on the deviance (a simple transformation of the log likelihood ratio.)
- By the small \(p\) values in the Wald tests above, it seems that each predictor adds some predictive value to the model given the other predictor.
- The ANOVA approach for this model lets us check the impact of adding smoke100 to a model already containing bmi_c.
```

anova(mod_poiss1, test = "Chisq")
Analysis of Deviance Table
Model: poisson, link: log
Response: physhealth
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 1973 20222
bmi_c 1 609.46 1972 19612 < 2.2e-16 ***
smoke100 1 461.46 1971 19151< 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

To obtain a \(p\) value for smoke100's impact after bmi_c is accounted for, we compare the difference in deviance to a chi-square distribution with 1 degree of freedom. To check the effect of bmi_c, we could refit the model with bmi_c entering last, and again run an ANOVA.

We could also run a likelihood-ratio test for each predictor, by fitting the model with and without that predictor.
```

mod_poiss1_without_bmi <- glm(physhealth ~ smoke100,
family = poisson(),
data = ohioA_young)
anova(mod_poiss1, mod_poiss1_without_bmi, test = "Chisq")
Analysis of Deviance Table
Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 1971 19151
2 1972 19692-1 -540.98< 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

\subsection*{24.8.4 Correcting for Overdispersion with coeftest/coefci}

The main assumption we'll think about in a Poisson model is about overdispersion. We might deal with the overdispersion we see in this model by changing the nature of the tests we run within this model, using the coeftest or coefci approaches from the lmtest package, as I'll demonstrate next, or we might refit the model using a quasi-likelihood approach, as I'll show in the material to come.

Here, we'll use the coeftest and coefci approach from lmtest combined with robust sandwich estimation (via the sandwich package) to re-compute the Wald tests.
```

coeftest(mod_poiss1, vcov. = sandwich)
z test of coefficients:
Estimate Std. Error z value }\operatorname{Pr}(>|z|
(Intercept) 0.9069908 0.0717221 12.6459<2.2e-16 ***
bmi_c 0.0350508 0.0061178 5.7293 1.008e-08 ***
smoke100 0.5325053 0.1004300 5.3023 1.144e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coefci(mod_poiss1, vcov. = sandwich)

```
```

 2.5 % 97.5 %
 (Intercept) 0.76641801 1.04756366
bmi_c 0.02306016 0.04704145
smoke100 0.33566606 0.72934460

```

Both predictors still display small \(p\) values, but the standard errors are more appropriate. Later, we'll fit this approach by changing the estimation method to a quasi-likelihood approach.

\subsection*{24.8.5 Store fitted values and residuals}

What happens if we try using the broom package in this case? We can, if we like, get our residuals and predicted values right on the scale of our physhealth response.
```

sm_poiss1 <- augment(mod_poiss1, ohioA_young,
type.predict = "response")
sm_poiss1 |>
select(physhealth, .fitted) |>
head()

```
\# A tibble: 6 x 2
    physhealth .fitted
    <dbl> <dbl>
1
2
3
4
\(5 \quad 0 \quad 3.15\)
\(6 \quad 0 \quad 3.68\)

\subsection*{24.8.6 Rootogram: see the fit of a count regression model}

A rootogram is a very useful way to visualize the fit of a count regression model \({ }^{2}\). The rootogram function in the topmodels package makes this pretty straightforward. By default, this fits a hanging rootogram on the square root of the frequencies.
```

rootogram(mod_poiss1, max = 30)

```

\footnotetext{
\({ }^{2}\) See http://data.library.virginia.edu/getting-started-with-negative-binomial-regression-modeling/
}


The red curved line is the theoretical Poisson fit. "Hanging" from each point on the red line is a bar, the height of which represents the difference between expected and observed counts. A bar hanging below 0 indicates underfitting. A bar hanging above 0 indicates overfitting. The counts have been transformed with a square root transformation to prevent smaller counts from getting obscured and overwhelmed by larger counts. We see a great deal of underfitting for counts of 0 , and overfitting for most other counts, especially 1-6, with some underfitting again by physhealth above 14 days.

\subsection*{24.8.7 Specify the \(R^{2}\) and \(\log\) (likelihood) values}

We can calculate the \(R^{2}\) as the squared correlation of the fitted values and the observed values.
```


The correlation of observed and fitted values

(poiss_r <- with(sm_poiss1, cor(physhealth, .fitted)))

```
[1] 0.1846814
```


R-square

poiss_r^2

```

The glance function in the broom package gives us model \(\log\) (likelihood), among other summaries.
```

glance(mod_poiss1) |> round(3)

A tibble: 1 x 8

 null.deviance df.null logLik AIC BIC deviance df.residual nobs
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 20222. 1973-10820. 21645. 21662. 19151. 1971 1974

```

Here, we have
\begin{tabular}{rrrr}
\hline Model & Scale & \(R^{2}\) & \(\log\) (likelihood) \\
\hline Poisson & \(\log\) (physhealth) & 0.034 & -10189.33 \\
\hline
\end{tabular}

\subsection*{24.8.8 Check model assumptions}

The Poisson model is a classical generalized linear model, estimated using the method of maximum likelihood. While the default plot option for a glm still shows the plots we would use to assess the assumptions of an OLS model, we don't actually get much from that, since our Poisson model has different assumptions. It can be useful to look at a plot of residuals vs. fitted values on the original physhealth scale.
```

ggplot(sm_poiss1, aes(x = .fitted, y = .resid)) +
geom_point() +
labs(title = "Residuals vs. Fitted `physhealth`",
subtitle = "Original Poisson Regression model")

```

Residuals vs. Fitted `physhealth`
Original Poisson Regression model


\subsection*{24.8.9 Using glm.diag.plots from the boot package}

The glm.diag.plots function from the boot package makes a series of diagnostic plots for generalized linear models.
- (Top, Left) Jackknife deviance residuals against fitted values. This is essentially identical to what you obtain with plot(mod_poiss1, which = 1). A jackknife deviance residual is also called a likelihood residual. It is the change in deviance when this observation is omitted from the data.
- (Top, Right) Normal Q-Q plot of standardized deviance residuals. (Dotted line shows expectation if those standardized residuals followed a Normal distribution, and these residuals generally should.) The result is similar to what you obtain with plot(mod_poiss1, which = 2).
- (Bottom, Left) Cook statistic vs. standardized leverage
\(-\mathrm{n}=\#\) of observations, \(\mathrm{p}=\#\) of parameters estimated
- Horizontal dotted line is at \(\frac{8}{n-2 p}\). Points above the line have high influence on the model.
- Vertical line is at \(\frac{2 p}{n-2 p}\). Points to the right of the line have high leverage.
- (Bottom, Right) Index plot of Cook's statistic to help identify the observations with high influence. This is essentially the same plot as plot(mod_poiss1, which = 4)
```

glm.diag.plots(mod_poiss1)

```


When working with these plots, it is possible to use the iden command to perform some interactive identification of points in your R terminal. But that doesn't play out effectively in an HTML summary document like this, so we'll leave that out.

\subsection*{24.8.10 Predictions for Harry and Sally}

The predictions from a glm fit like this don't include prediction intervals. But we can get predictions on the scale of our original response variable, physhealth, like this.
```

predict(mod_poiss1, newdata = hs_data, se.fit = TRUE,
type = "response")
\$fit
1 2
5.989478 2.078688
\$se.fit
1 2
0.11544326 0.04314273
\$residual.scale
[1] 1

```

By using response as the type, these predictions fall on the original physhealth scale. The prediction for Harry is now 5.99 days, and for Sally is 2.08 days.

\subsection*{24.9 Overdispersion in a Poisson Model}

Poisson regressions do not supply an independent variance parameter \(\sigma\), and as a result can be overdispersed, and usually are. Under the Poisson distribution, the variance equals the mean - so the standard deviation equals the square root of the mean. The notion of overdispersion arises here. When fitting generalized linear models with Poisson error distributions, the residual deviance and its degrees of freedom should be approximately equal if the model fits well.

If the residual deviance is far greater than the degrees of freedom, then overdispersion may well be a problem. In this case, the residual deviance is about 8.5 times the size of the residual degrees of freedom, so that's a clear indication of overdispersion. We saw earlier that the Poisson regression model requires that the outcome (here the physhealth counts) be independent. A possible reason for the overdispersion we see here is that physhealth on different days likely do not occur independently of one another but likely "cluster" together.

\subsection*{24.9.1 Testing for Overdispersion?}

Gelman and Hill provide an overdispersion test in R for a Poisson model as follows...
```

 yhat <- predict(mod_poiss1, type = "response")
 n <- arm::display(mod_poiss1)$n
 glm(formula = physhealth ~ bmi_c + smoke100, family = poisson(),
data = ohioA_young)
coef.est coef.se
(Intercept) 0.91 0.02
bmi_c 0.04 0.00
smoke100 0.53 0.02

n = 1974, k = 3
residual deviance = 19150.9, null deviance = 20221.8 (difference = 1070.9)
k <- arm::display(mod_poiss1)$k
glm(formula = physhealth ~ bmi_c + smoke100, family = poisson(),
 data = ohioA_young)
 coef.est coef.se
(Intercept) 0.91 0.02
bmi_c 0.04 0.00
smoke100 0.53 0.02

 n = 1974, k = 3
 residual deviance = 19150.9, null deviance = 20221.8 (difference = 1070.9)
 z <- (ohioA_young$physhealth - yhat) / sqrt(yhat)
cat("overdispersion ratio is ", sum(z`2)/ (n - k), "\n")
overdispersion ratio is 15.58261
cat("p value of overdispersion test is ",
pchisq(sum(z^2), df = n-k, lower.tail = FALSE), "\n")
p value of overdispersion test is 0

```

The p value is very small, indicating that the probability is essentially zero that a random variable from a \(\chi^{2}\) distribution with \((\mathrm{n}-\mathrm{k})=1971\) degrees of freedom would be as large as what we observed in this case. So there is almost surely some overdispersion.

In summary, the physhealth counts are overdispersed by a factor of 15.581 , which is enormous (even a factor of 2 would be considered large.) The basic correction for overdisperson is to multiply all regression standard errors by \(\sqrt{15.581}=3.95\).

The quasipoisson model and the negative binomial model that we'll fit below are very similar. We write the overdispersed "quasiPoisson" model as:
\[
y_{i} \sim \text { overdispersed Poisson }\left(\mu_{i} \exp \left(X_{i} \beta\right), \omega\right)
\]
where \(\omega\) is the overdispersion parameter, 15.581, in our case. The Poisson model we saw previously is then just the overdispersed Poisson model with \(\omega=1\).

\subsection*{24.10 Fitting the Quasi-Poisson Model}

To deal with overdispersion, one useful approach is to apply a quasi-likelihood estimation procedure, as follows:
```

mod_poiss_od1 <- glm(physhealth ~ bmi_c + smoke100,
family = quasipoisson(),
data = ohioA_young)
summary(mod_poiss_od1)
Call:
glm(formula = physhealth ~ bmi_c + smoke100, family = quasipoisson(),
data = ohioA_young)
Coefficients:
Estimate Std. Error t value Pr (>|t|)
(Intercept) 0.906991 0.073818 12.287 < 2e-16 ***
bmi_c 0.035051 0.005611 6.247 5.11e-10 ***
smoke100 0.532505 0.098308 5.417 6.81e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 15.58436)

```
```

 Null deviance: 20222 on 1973 degrees of freedom
 Residual deviance: 19151 on 1971 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 6
confint(mod_poiss_od1)
Waiting for profiling to be done...
2.5 % 97.5 %
(Intercept) 0.75877174 1.04831740
bmi_c 0.02383574 0.04583252
smoke100 0.34039368 0.72606948

```

This "quasi-Poisson regression" model uses the same mean function as Poisson regression, but now estimated by quasi-maximum likelihood estimation or, equivalently, through the method of generalized estimating equations, where the inference is adjusted by an estimated dispersion parameter. Sometimes, though I won't demonstrate this here, people fit an "adjusted" Poisson regression model, where this estimation by quasi-ML is augmented to adjust the inference via sandwich estimates of the covariances \({ }^{3}\).

\subsection*{24.10.1 The Fitted Equation}

The model equation is still \(\log (\) physhealth \()=0.91+0.035\) bmi_c +0.53 smoke100. The estimated coefficients still have small \(p\) values, but the standard errors for each coefficient are considerably larger when we account for overdispersion.

The dispersion parameter for the quasi-Poisson family is now taken to be a bit less than the square root of the ratio of the residual deviance and its degrees of freedom. This is a much more believable model, as a result.

\subsection*{24.10.2 Interpreting the Coefficients}

No meaningful change from the Poisson model we saw previously.

\footnotetext{
\({ }^{3}\) See Zeileis A Kleiber C Jackman S Regression Models for Count Data in \(R\) Vignette at https://cran.rproject.org/web/packages/pscl/vignettes/countreg.pdf
}

\subsection*{24.10.3 Testing the Predictors}

Again, we can use the Wald tests (z tests) provided with the Poisson regression output, or we can fit the model and then run an ANOVA to obtain a test based on the deviance (a simple transformation of the log likelihood ratio.)
- By the Wald tests shown above, each predictor appears to add some predictive value to the model given the other predictor.
- The ANOVA approach for this model lets us check the impact of adding smoke100 to a model already containing bmi_c.
anova(mod_poiss_od1, test = "Chisq")

Analysis of Deviance Table

Model: quasipoisson, link: log

Response: physhealth
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev \(\operatorname{Pr}(>C h i)\)
NULL 197320222
bmi_c \(11609.46 \quad 1972 \quad 196124.011 \mathrm{e}-10\) ***
smoke100 \(1461.461971 \quad 19151\) 5.282e-08 ***
---
Signif. codes: \(0{ }^{\prime} * * * ' 0.001{ }^{\prime} * * ' 0.01{ }^{\prime *} 0.05 '^{\prime} 0.1 '^{\prime} 1\)

The result is unchanged. To obtain a \(p\) value for smoke100's impact after bmi_c is accounted for, we compare the difference in deviance to a chi-square distribution with 1 degree of freedom. The resulting \(p\) value is very small.

To check the effect of bmi_c, we could refit the model with and without bmi_c, and again run an ANOVA. I'll skip that here.

\subsection*{24.10.4 Store fitted values and residuals}

What happens if we try using the broom package in this case? We can, if we like, get our predicted values right on the scale of our physhealth response.
```

sm_poiss_od1 <- augment(mod_poiss_od1, ohioA_young,
type.predict = "response")
sm_poiss_od1 |>
select(physhealth, .fitted) |>
head()

A tibble: 6 x 2

physhealth .fitted
<dbl> <dbl>
1 0 2.23
2 0 2.29
3 0 3.10
4 30 5.32
5 0 3.15
6 0

```

It turns out that 0 of the 1974 predictions that we make are below 0 , and the largest prediction made by this model is 21.7 days.

The rootogram function we've shown doesn't support overdispersed Poisson models at the moment.

\subsection*{24.10.5 Specify the \(R^{2}\) and \(\log\) (likelihood) values}

We can calculate the \(R^{2}\) as the squared correlation of the fitted values and the observed values.
```


The correlation of observed and fitted values

(poiss_od_r <- with(sm_poiss_od1, cor(physhealth, .fitted)))

```
[1] 0.1846814
```


R-square

poiss_od_r^2

```
[1] 0.03410723
The glance function in the broom package gives us model \(\log\) (likelihood), among other summaries.
```

glance(mod_poiss_od1) |> round(3)

```
\# A tibble: 1 x 8
    null.deviance df.null logLik AIC BIC deviance df.residual nobs
1 20222. 1973 NA NA NA 19151. 19711974

Here, we have
\begin{tabular}{rrrr}
\hline Model & Scale & \(R^{2}\) & \(\log\) (likelihood) \\
\hline Poisson & \(\log\) (physhealth) & 0.034 & NA \\
\hline
\end{tabular}

\subsection*{24.10.6 Check model assumptions}

Having dealt with the overdispersion, this should be a cleaner model in some ways, but the diagnostics (other than the dispersion) will be the same. Here is a plot of residuals vs. fitted values on the original physhealth scale.
```

ggplot(sm_poiss_od1, aes(x = .fitted, y = .resid)) +
geom_point() +
labs(title = "Residuals vs. Fitted `physhealth`",
subtitle = "Overdispersed Poisson Regression model")

```

Residuals vs. Fitted `physhealth`
Overdispersed Poisson Regression model


I'll skip the glm.diag.plots results, since you've already seen them.

\subsection*{24.10.7 Predictions for Harry and Sally}

The predictions from this overdispersed Poisson regression will match those in the original Poisson regression, but the standard error will be larger.
```

predict(mod_poiss_od1, newdata = hs_data, se.fit = TRUE,
type = "response")
\$fit
1 2
5.989478 2.078688
\$se.fit
1 2
0.4557357 0.1703147
\$residual.scale
[1] 3.947703

```

By using response as the type, these predictions fall on the original physhealth scale. Again, the prediction for Harry is 5.99 days, and for Sally is 2.08 days.

\subsection*{24.11 Poisson and Quasi-Poisson models using Glm from the rms package}

The Glm function in the rms package can be used to fit both the original Poisson regression and the quasi-Poisson model accounting for overdispersion.

\subsection*{24.11.1 Refitting the original Poisson regression with Glm}
```

 d <- datadist(ohioA_young)
 options(datadist = "d")
 mod_poi_Glm_1 <- Glm(physhealth ~ bmi_c + smoke100,
family = poisson(),
data = ohioA_young,
x = T, y = T)
mod_poi_Glm_1
General Linear Model
Glm(formula = physhealth ~ bmi_c + smoke100, family = poisson(),
data = ohioA_young, x = T, y = T)
Model Likelihood
Ratio Test
Obs1974 LR chi2 1070.93
Residual d.f.1971 d.f. 2
g 0.418 Pr(> chi2) <0.0001
Coef S.E. Wald Z Pr (>|Z|)
Intercept 0.9070 0.0187 48.50 <0.0001
bmi_c 0.0351 0.0014 24.66 <0.0001
smoke100 0.5325 0.0249 21.38<0.0001

```

\subsection*{24.11.2 Refitting the overdispersed Poisson regression with Glm}
```

d <- datadist(ohioA_young)
options(datadist = "d")
mod_poi_od_Glm_1 <- Glm(physhealth ~ bmi_c + smoke100,
family = quasipoisson(),
data = ohioA_young,
x = T, y = T)
mod_poi_od_Glm_1
General Linear Model
Glm(formula = physhealth ~ bmi_c + smoke100, family = quasipoisson(),
data = ohioA_young, x = T, y = T)
Model Likelihood
Ratio Test
Obs1974 LR chi2 1070.93
Residual d.f.1971 d.f. 2
g 0.418 Pr(> chi2) <0.0001
Coef S.E. Wald Z Pr}(>|Z|
Intercept 0.9070 0.0738 12.29 <0.0001
bmi_c 0.0351 0.0056 6.25 <0.0001
smoke100 0.5325 0.0983 5.42 <0.0001

```

The big advantage here is that we have access to the usual ANOVA, summary, and nomogram features that rms brings to fitting models.

\subsection*{24.11.3 ANOVA on a Glm fit}
```

anova(mod_poi_od_Glm_1)

```
```

Wald Statistics Response: physhealth

```

Factor Chi-Square d.f. P
bmi_c \(39.03 \quad 1<.0001\)
\begin{tabular}{llll} 
smoke100 & 29.34 & 1 & \(<.0001\) \\
TOTAL & 74.39 & 2 & \(<.0001\)
\end{tabular}

This shows the individual Wald \(\chi^{2}\) tests without having to refit the model.

\subsection*{24.11.4 ggplots from Glm fit}
```

ggplot(Predict(mod_poi_od_Glm_1, fun = exp))

```


\subsection*{24.11.5 Summary of a Glm fit}
```

summary(mod_poi_od_Glm_1)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Effects} & \multicolumn{3}{|l|}{Response : physhealth} & \\
\hline Factor & Low & High & Diff & Effect & S.E. & Lower 0.95 & Upper 0.95 \\
\hline bmi_c & -5.0513 & 3.6362 & 8.6875 & 0.30450 & 0.048742 & 0.20891 & 0.4001 \\
\hline smoke100 & 0.0000 & 1.0000 & 1.0000 & 0.53251 & 0.098308 & 0.33971 & 0.7253 \\
\hline
\end{tabular}

\subsection*{24.11.6 Plot of the Summary}
```

plot(summary(mod_poi_od_Glm_1))

```
\begin{tabular}{llllllllllll}
0.20 & 0.30 & 0.40 & 0.50 & 0.60 & 0.70 & 0.80 \\
bmi_c \(-3.6362:-5.0513\) \\
& \(\mid\) \\
\hline
\end{tabular}
smoke100-1:0

\subsection*{24.11.7 Nomogram of a Glm fit}
```

plot(nomogram(mod_poi_od_Glm_1, fun = exp,
funlabel = "physhealth days"))

```


Note the use of fun=exp in both the ggplot of Predict and the nomogram. What's that doing?

In the next chapter, we'll expand beyond Poisson regression to consider a Negative Binomial model.

\section*{25 Negative Binomial Models for Count Data}

We will continue to use a count outcome (\# of poor physical health days out of the last 30) in OHIO SMART data created in Chapter 6 to demonstrate regression models for count outcomes, as we did in Chapter 24.

Methods discussed in the chapter include:
- Negative Binomial Regression

\subsection*{25.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(broom)
library(boot)
library(countreg)
library(topmodels)
library(MASS)
library(tidyverse)
theme_set(theme_bw())

```

\subsection*{25.2 Data Load and Subset Creation}
```

smart_oh <- readRDS("data/smart_ohio.Rds")

```

As in Chapter 24, we'll create a subset of these data for analysis.
```

ohioA <- smart_oh |>
select(SEQNO, mmsa_name, genhealth, physhealth,
menthealth, healthplan, costprob,
agegroup, female, incomegroup, bmi, smoke100,

```
```

 alcdays) |>
 drop_na()
 ohioA_young <- ohioA |>
filter(agegroup %in% c("18-24", "25-29", "30-34",
"35-39", "40-44", "45-49")) |>
droplevels() |>
mutate(bmi_c = bmi - mean(bmi))

```

\subsection*{25.3 Setup for this Chapter}

Again, we're going to predict physhealth using bmi_c and smoke100.
- Remember that physhealth is a count of the number of poor physical health days in the past 30 .
- As a result, physhealth is restricted to taking values between 0 and 30 .

In this chapter, we demonstrate Negative binomial regression, which (like Poisson regression discussed in Chapter 24) is also used for counts and adjusts for overdispersion.

\subsection*{25.3.1 What Will We Demonstrate?}

With this new approach, we will again fit the model and specify procedures for doing so in R. Then we will:
1. Specify the fitted model equation
2. Interpret the model's coefficient estimates and \(95 \%\) confidence intervals around those estimates.
3. Perform a test of whether each variable adds value to the model, when the other one is already included.
4. Store the fitted values and appropriate residuals for each model.
5. Summarize the model's apparent \(R^{2}\) value, the proportion of variation explained, and the model log likelihood.
6. Perform checks of model assumptions as appropriate.
7. Describe how predictions would be made for two new subjects.
- Harry has a BMI that is \(10 \mathrm{~kg} / \mathrm{m}^{2}\) higher than the average across all respondents and has smoked more than 100 cigarettes in his life.
- Sally has a BMI that is \(5 \mathrm{~kg} / \mathrm{m}^{2}\) less than the average across all respondents and has not smoked more than 100 cigarettes in her life.

In addition, for some of the new models, we provide a little of the mathematical background, and point to other resources you can use to learn more about the model.

\subsection*{25.3.2 Extra Data File for Harry and Sally}

To make our lives a little easier, I'll create a little tibble containing the necessary data for Harry and Sally.
```

hs_data <- tibble(subj = c("Harry", "Sally"),
bmi_c = c(10, -5),
smoke100 = c(1, 0))
hs_data

```
\# A tibble: 2 x 3
    subj bmi_c smoke100
    <chr> <dbl> <dbl>
1 Harry 101
2 Sally -5 0

\subsection*{25.3.3 Our Poisson Model (for comparison)}
```

mod_poiss1 <- glm(physhealth ~ bmi_c + smoke100,
family = poisson(),
data = ohioA_young)

```

\subsection*{25.4 Negative Binomial Model}

Another approach to dealing with overdispersion is to fit a negative binomial model \({ }^{1}\) to predict the \(\log\) (physhealth) counts. This involves the fitting of an additional parameter, \(\theta\). That's our dispersion parameter \({ }^{2}\)

Sometimes, people will fit a model where \(\theta\) is known, for instance a geometric model (where \(\theta=1\) ), and then this can be directly plugged into a glm() fit, but the more common scenario is that we are going to iteratively estimate the \(\beta\) coefficients and \(\theta\). To do this, I'll use the glm.nb function from the MASS package.

\footnotetext{
\({ }^{1}\) See https://cran.r-project.org/web/packages/pscl/vignettes/countreg.pdf for more details.
\({ }^{2}\) This \(\theta\) is the inverse of the dispersion parameter estimated for these models by most other software packages, like SAS, Stata and SPSS. See https://stats.idre.ucla.edu/r/dae/negative-binomial-regression/for more details.
}
```

mod_nb1 <- glm.nb(physhealth ~ bmi_c + smoke100, link = log,
data = ohioA_young)
summary(mod_nb1)

```
Call:
glm.nb(formula = physhealth ~ bmi_c + smoke100, data = ohioA_young,
    link \(=\log\), init.theta \(=0.1487673114\) )
Coefficients:
            Estimate Std. Error \(z\) value \(\operatorname{Pr}(>|z|)\)
(Intercept) \(0.874530 \quad 0.078994 \quad 11.071<2 \mathrm{e}-16 * * *\)
bmi_c \(0.035712 \quad 0.008317 \quad 4.2941 .76 \mathrm{e}-05\) ***
smoke100 \(0.5963960 .121166 \quad 4.9228 .56 \mathrm{e}-07\) ***
---
Signif. codes: \(0{ }^{\prime * * * '} 0.001{ }^{\prime * * '} 0.01 '^{\prime \prime} 0.05 '^{\prime} 0.1 '^{\prime} 1\)
(Dispersion parameter for Negative Binomial(0.1488) family taken to be 1)
    Null deviance: 1468.1 on 1973 degrees of freedom
Residual deviance: 1422.6 on 1971 degrees of freedom
AIC: 6976.6
Number of Fisher Scoring iterations: 1
Theta: 0.14877
    Std. Err.: 0.00705
    2 x log-likelihood: -6968.55300
    confint(mod_nb1)
Waiting for profiling to be done...
    \(2.5 \% \quad 97.5 \%\)
(Intercept) 0.723048171 .03304660
bmi_c 0.020726010 .05124925
smoke100 0.359775900 .83584673

\subsection*{25.4.1 The Fitted Equation}

The form of the model equation for a negative binomial regression is the same as that for Poisson regression.
```

$\log ($ physhealth $)=0.87+0.036$ bmi_c +0.60 smoke100

```

\subsection*{25.4.2 Comparison with the (raw) Poisson model}

To compare the negative binomial model to the Poisson model (without the overdispersion) we can use the logLik function to make a comparison. Note that the Poisson model is a subset of the negative binomial.
```

logLik(mod_nb1)

```
```

'log Lik.' -3484.277 (df=4)
logLik(mod_poiss1)
'log Lik.' -10819.6 (df=3)
2 * (logLik(mod_nb1) - logLik(mod_poiss1))
'log Lik.' 14670.65 (df=4)
pchisq(2 * (logLik(mod_nb1) - logLik(mod_poiss1)), df = 1, lower.tail = FALSE)
'log Lik.' 0 (df=4)

```

Here, the difference in the log likelihoods is large enough that the resulting \(p\) value is very small. This strongly suggests that the negative binomial model, which adds the dispersion parameter, is more appropriate than the raw Poisson model.

However, both the regression coefficients and the standard errors are rather similar to the quasi-Poisson and the sandwich-adjusted Poisson results above. Thus, in terms of predicted means, all three models give very similar results; the associated Wald tests also lead to the same conclusions.

\subsection*{25.4.3 Interpreting the Coefficients}

There's only a small change here from the Poisson models we saw previously.
- The constant term, 0.87 , gives us the intercept of the regression - the prediction if smoke100 \(=0\) and bmi_c \(=0\). In this case, because we've centered BMI, it implies that \(\exp (0.87)=2.39\) is the predicted days of poor physhealth for a non-smoker with average BMI.
- The coefficient of bmi_c, 0.036, is the expected difference in count of poor physhealth days (on the \(\log\) scale) for each additional \(\mathrm{kg} / \mathrm{m}^{2}\) of body mass index. The expected multiplicative increase is \(e^{0.036}=1.037\), corresponding to a \(3.7 \%\) difference in the count.
- The coefficient of smoke100, 0.60 , tells us that the predictive difference between those who have and who have not smoked 100 cigarettes can be found by multiplying the physhealth count by \(\exp (0.6)=1.82\), yielding essentially an \(82 \%\) increase of the physhealth count.

\subsection*{25.4.4 Interpretation of Coefficients in terms of IRRs}

We might be interested in looking at incident rate ratios rather than coefficients. The coefficients have an additive effect in the \(\log (y)\) scale, and the IRR have a multiplicative effect in the y scale. To do this, we can exponentiate our model coefficients. This also applies to the confidence intervals.
```

 exp(coef(mod_nb1))
 (Intercept) bmi_c smoke100
2.397748 1.036357 1.815563
exp(confint(mod_nb1))
Waiting for profiling to be done...
2.5 % 97.5 %
(Intercept) 2.060705 2.809613
bmi_c 1.020942 1.052585
smoke100 1.433008 2.306766

```

As an example, then, the incident rate for smoke100 \(=1\) is 1.82 times the incident rate of physhealth days for the reference group ( \(s m o k e 100=0\) ). The percent change in the incident rate of physhealth is a \(3.6 \%\) increase for every \(\mathrm{kg} / \mathrm{m}^{2}\) increase in centered bmi.

\subsection*{25.4.5 Testing the Predictors}

Again, we can use the Wald tests (z tests) provided with the negative binomial regression output.

As an alternative, we probably should not use the standard anova process, because the models there don't re-estimate \(\theta\) for each new model, as the warning message below indicates.
```

anova(mod_nb1)
Warning in anova.negbin(mod_nb1): tests made without re-estimating 'theta'
Analysis of Deviance Table
Model: Negative Binomial(0.1488), link: log
Response: physhealth
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 1973 1468.0
bmi_c 1 20.837 1972 1447.2 5.001e-06 ***
smoke100 1 24.584 1971 1422.6 7.115e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

So, instead, if we want, for instance to assess the significance of bmi_c, after smoke100 is already included in the model, we fit both models (with and without bmi_c) and then compare those models with a likelihood ratio test.
```

mod_nb1_without_bmi <- glm.nb(physhealth ~ smoke100,
link = log,
data = ohioA_young)
anova(mod_nb1, mod_nb1_without_bmi)

```

Likelihood ratio tests of Negative Binomial Models

Response: physhealth
Model theta Resid. df 2 x log-lik. Test df LR stat.
```

1 smoke100 0.1452219 1972 -6991.195
2 bmi_c + smoke100 0.1487673 1971 -6968.553 1 vs 2 1 22.6421
Pr(Chi)
1
2 1.951615e-06

```

And we could compare the negative binomial models with and without smoke100 in a similar way.
```

mod_nb1_without_smoke <- glm.nb(physhealth ~ bmi_c,
link = log,
data = ohioA_young)
anova(mod_nb1, mod_nb1_without_smoke)

```
Likelihood ratio tests of Negative Binomial Models
Response: physhealth
            Model theta Resid. df \(2 \times \log\)-lik. Test df LR stat.
1 bmi_c 0.14499661972 -6992.839
2 bmi_c + smoke100 0.1487673 \(1971 \quad-6968.5531\) vs 2124.28569
    Pr (Chi)
1
\(28.305388 \mathrm{e}-07\)

\subsection*{25.4.6 Store fitted values and residuals}

The broom package works in this case, too. We'll look here at predicted (fitted) values on the scale of our physhealth response.
```

sm_nb1 <- augment(mod_nb1, ohioA_young,
type.predict = "response")

```
Warning: The `augment()` method for objects of class `negbin` is not maintained by the broom

This warning is displayed once per session.
```

sm_nb1 |>
select(physhealth, .fitted) |>

```
```

 head()
    ```
```


A tibble: 6 x 2

 physhealth .fitted
 <dbl> <dbl>
 0 2.15
 0 2.22
 0 3.18
 30 5.23
 0 3.24
 0 3.78
    ```

\subsection*{25.4.7 Rootogram for Negative Binomial model}

Here's the rootogram for the negative binomial model.
```

rootogram(mod_nb1, max = 30)

```


Again, the red curved line is the theoretical (negative binomial) fit. "Hanging" from each point on the red line is a bar, the height of which represents the difference between expected
and observed counts. A bar hanging below 0 indicates underfitting. A bar hanging above 0 indicates overfitting. The counts have been transformed with a square root transformation to prevent smaller counts from getting obscured and overwhelmed by larger counts.
The match looks much better than the Poisson model, which is a sign that accounting for overdispersion is very important. Even this model badly underfits the number of 30 values, however.

\subsection*{25.4.8 Simulating what the Negative Binomial model predicts}

We can use the parameters of the negative binomial model to simulate data \({ }^{3}\) and compare the simulated results to our observed physhealth data.
```

par(mfrow=c (1,2))
ohioA_young$physhealth |>
 table() |> barplot(main = "Observed physhealth")
set.seed(432122)
rnbinom(n = nrow(ohioA_young),
 size = mod_nb1$theta,
mu = exp(coef(mod_nb1) [1])) |>
table() |> barplot(main = "Simulated physhealth")

```

Observed physhealth


Simulated physhealth


\footnotetext{
\({ }^{3}\) See http://data.library.virginia.edu/getting-started-with-negative-binomial-regression-modeling/
}

Again we see that the simulated data badly underfits the 30 values, and includes some predictions larger than 30 .

\subsection*{25.4.9 Specify the \(R^{2}\) and \(\log\) (likelihood) values}

We can calculate the \(R^{2}\) as the squared correlation of the fitted values and the observed values.
```


The correlation of observed and fitted values

(nb_r <- with(sm_nb1, cor(physhealth, .fitted)))

```
[1] 0.183675
```


R-square

nb_r^2

```
[1] 0.03373649

The glance function in the broom package gives us model \(\log\) (likelihood), among other summaries.
```

 glance(mod_nb1) |> round(3)

A tibble: 1 x 8

 null.deviance df.null logLik AIC BIC deviance df.residual nobs
 1 1468. 1973 -3484.277 6977. 6999. 1423. 1971 1974

```

Here, we have
\begin{tabular}{rrrr}
\hline Model & Scale & \(R^{2}\) & \(\log\) (likelihood) \\
\hline Negative Binomial & \(\log\) (physhealth) & .034 & -3484.27 \\
\hline
\end{tabular}

\subsection*{25.4.10 Check model assumptions}

Here is a plot of residuals vs. fitted values on the original physhealth scale.
```

ggplot(sm_nb1, aes(x = .fitted, y = .resid)) +
geom_point() +
labs(title = "Residuals vs. Fitted `physhealth`",
subtitle = "Negative Binomial Regression model")

```

Residuals vs. Fitted `physhealth`
Negative Binomial Regression model


Here are the glm diagnostic plots from the boot package.
```

glm.diag.plots(mod_nb1)

```


From the lower left plot, we see fewer points with large values of both Cook's distance and leverage, so that's a step in the right direction. The upper right plot still has some issues, but we're closer to a desirable result there, too.

\subsection*{25.4.11 Predictions for Harry and Sally}

The predictions from this negative binomial regression model will be only a little different than those from the Poisson models.
```

predict(mod_nb1, newdata = hs_data, se.fit = TRUE,
type = "response")
\$fit
1 2
6.221696 2.005657
\$se.fit
1 2
0.7537535 0.1773595
\$residual.scale
[1] 1

```

As we've seen in the past, when we use response as the type, the predictions fall on the original physhealth scale. The prediction for Harry is 6.2 days, and for Sally is 2.0 days.

\subsection*{25.5 The Problem: Too Few Zeros}

Remember that we observe more than 1000 zeros in our physhealth data.
```

 ohioA_young |> count(physhealth == 0)

A tibble: 2 x 2

 `physhealth == 0` n
 <lgl> <int>
 1 FALSE 710
2 ~ T R U E ~ 1 2 6 4

```

Let's go back to our Poisson model (without overdispersion) for a moment, and concentrate on the zero values.
```


predict expected mean physhealth for each subject

mu <- predict(mod_poiss1, type = "response")

sum the probabilities of a zero count for each mean

exp <- sum(dpois(x = 0, lambda = mu))

predicted number of zeros from Poisson model

```
```

round(exp)

```
[1] 124

As we've seen previously, we're severely underfitting zero counts. We can compare the observed number of zero physhealth results to the expected number of zero values from the likelihoodbased models.
```

round(c("Obs" = sum(ohioA_young$physhealth == 0),
 "Poisson" = sum(dpois(0, fitted(mod_poiss1))),
 "NB" = sum(dnbinom(0, mu = fitted(mod_nb1), size = mod_nb1$theta))),0)
Obs Poisson NB
1264 124 1250

```

There are at least two ways to tackle this problem.
- Fitting a model which deliberately inflates the number of zeros that are fitted
- Fitting a hurdle model

We'll look at those options, next.

\section*{26 Zero-Inflated Models for Count Data}

We will continue to use a count outcome (\# of poor physical health days out of the last 30) in OHIO SMART data created in Chapter 6 to demonstrate regression models for count outcomes, as we did in Chapter 24 and Chapter 25.

Methods discussed in the chapter include:
- Zero-inflated Poisson Regression
- Zero-inflated Negative Binomial Regression
- Two different types of "hurdle" model
- A Tobit (Censored) Regression Model

\subsection*{26.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(broom)
library(lmtest)
library(MASS)
library(pscl)
library(VGAM)
library(tidyverse)
theme_set(theme_bw())

```

\subsection*{26.2 Data Load and Subset Creation}
```

smart_oh <- readRDS("data/smart_ohio.Rds")

```

As in Chapter 24 and Chapter 25, we'll create a subset of these data for analysis.
```

ohioA <- smart_oh |>
select(SEQNO, mmsa_name, genhealth, physhealth,
menthealth, healthplan, costprob,
agegroup, female, incomegroup, bmi, smoke100,
alcdays) |>
drop_na()
ohioA_young <- ohioA |>
filter(agegroup %in% c("18-24", "25-29", "30-34",
"35-39", "40-44", "45-49")) |>
droplevels() |>
mutate(bmi_c = bmi - mean(bmi))

```

\subsection*{26.3 Setup for this Chapter}

Again, we're going to predict physhealth using bmi_c and smoke100.
- Remember that physhealth is a count of the number of poor physical health days in the past 30 .
- As a result, physhealth is restricted to taking values between 0 and 30 .

In this chapter, we demonstrate:
- Zero-inflated Poisson models
- Zero-inflated Negative Binomial models
- Hurdle models
- Tobit models

\subsection*{26.3.1 What Will We Demonstrate?}

With each new approach, we again will fit the model and specify procedures for doing so in R. Then we will:
1. Specify the fitted model equation
2. Interpret the model's coefficient estimates and \(95 \%\) confidence intervals around those estimates.
3. Perform a test of whether each variable adds value to the model, when the other one is already included.
4. Store the fitted values and appropriate residuals for each model.
5. Summarize the model's apparent \(R^{2}\) value, the proportion of variation explained, and the model log likelihood.
6. Perform checks of model assumptions as appropriate.
7. Describe how predictions would be made for two new subjects.
- Harry has a BMI that is \(10 \mathrm{~kg} / \mathrm{m}^{2}\) higher than the average across all respondents and has smoked more than 100 cigarettes in his life.
- Sally has a BMI that is \(5 \mathrm{~kg} / \mathrm{m}^{2}\) less than the average across all respondents and has not smoked more than 100 cigarettes in her life.

In addition, for some of the new models, we provide a little of the mathematical background, and point to other resources you can use to learn more about the model.

\subsection*{26.3.2 Extra Data File for Harry and Sally}

To make our lives a little easier, I'll create a little tibble containing the necessary data for Harry and Sally.
```

 hs_data <- tibble(subj = c("Harry", "Sally"),
 bmi_c = c(10, -5),
 smoke100 = c(1, 0))
 hs_data

A tibble: 2 x 3

 subj bmi_c smoke100
 <chr> <dbl> <dbl>
 1 Harry 10 1
2 Sally -5 0

```

\subsection*{26.3.3 Previous Models (for comparison)}
```

mod_poiss1 <- glm(physhealth ~ bmi_c + smoke100,
family = poisson(),
data = ohioA_young)
mod_nb1 <- glm.nb(physhealth ~ bmi_c + smoke100,
link = log,
data = ohioA_young)

```

\subsection*{26.4 The Zero-Inflated Poisson Regression Model}

There are at least two ways to tackle the problem of not predicting enough 0 values.
- Fitting a model which deliberately inflates the number of zeros that are fitted
- Fitting a hurdle model

The zero-inflated Poisson or (ZIP) model is used to describe count data with an excess of zero counts \({ }^{1}\). The model posits that there are two processes involved:
- a logit model is used to predict excess zeros
- while a Poisson model is used to predict the counts, generally

The pscl package is used here, which can conflict with the topmodels package we used to fit rootograms.

To run the zero-inflated Poisson model, we use the following:
```

mod_zip1 <- zeroinfl(physhealth ~ bmi_c + smoke100,
data = ohioA_young)
summary(mod_zip1)

```

Call:
zeroinfl(formula = physhealth ~ bmi_c + smoke100, data = ohioA_young)

Pearson residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-1.4387 & -0.6987 & -0.6138 & -0.1947 & 9.3029
\end{tabular}

Count model coefficients (poisson with log link):
Estimate Std. Error z value \(\operatorname{Pr}(>|z|)\)
\begin{tabular}{lllrr} 
(Intercept) & 1.997619 & 0.018797 & 106.3 & \(<2 \mathrm{e}-16 * * *\) \\
bmi_c & 0.018177 & 0.001398 & 13.0 & \(<2 \mathrm{e}-16 * * *\) \\
smoke100 & 0.393355 & 0.024889 & 15.8 & \(<2 \mathrm{e}-16 * * *\)
\end{tabular}

Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error \(z\) value \(\operatorname{Pr}(>|z|)\)
(Intercept) \(0.6823060 .06285210 .856<2 e-16 * * *\)
bmi_c -0.027725 \(0.006509-4.2602 .05 e-05 * * *\)
smoke100 -0.237181 0.095316 -2.488 0.0128 *

\footnotetext{
\({ }^{1}\) See https://stats.idre.ucla.edu/r/dae/zip/ for more on the zero-inflated poisson model.
}
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Number of iterations in BFGS optimization: 14
Log-likelihood: -5680 on 6 Df
confint(mod_zip1)
2.5% 97.5%
count_(Intercept) 1.96077775 2.03445952
count_bmi_c 0.01543587 0.02091727
count_smoke100 0.34457348 0.44213651
zero_(Intercept) 0.55911859 0.80549344
zero_bmi_c -0.04048184 -0.01496748
zero_smoke100 -0.42399711 -0.05036477

```

The output describes two separate regression models. Below the model call, we see information on a Poisson regression model. Then we see another block describing the inflation model.

Each predictor (bmi_c and smoke100) yields a small \(p\) value in each part of the model.

\subsection*{26.4.1 Comparison to a null model}

To show that this model fits better than the null model (the model with intercept only), we can compare them directly with a chi-squared test. Since we have two predictors in the full model, the degrees of freedom for this test is 2 .
```

mod_zipnull <- pscl::zeroinfl(physhealth ~ 1,
data = ohioA_young)
summary(mod_zipnull)

```
```

Call:
pscl::zeroinfl(formula = physhealth ~ 1, data = ohioA_young)
Pearson residuals:

Min	1Q	Median	3Q	Max
-0.6934	-0.6934	-0.6934	-0.2779	5.5399

```
```

Count model coefficients (poisson with log link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.22765 0.01233 180.7 <2e-16 ***
Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.5766 0.0469 12.29 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Number of iterations in BFGS optimization: 9
Log-likelihood: -5908 on 2 Df

```
```

 pchisq(2 * (logLik(mod_zip1) - logLik(mod_zipnull)), df = 2, lower.tail = FALSE)
    ```
    pchisq(2 * (logLik(mod_zip1) - logLik(mod_zipnull)), df = 2, lower.tail = FALSE)
'log Lik.' 8.596735e-100 (df=6)
```


26.4.2 Comparison to a Poisson Model with the Vuong test

```
vuong(mod_zip1, mod_poiss1)
```

Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed $N(0,1)$ under the
null that the models are indistinguishible)

Certainly, the ZIP model seems to improve the standard Poisson model, according to the Vuong test.

26.4.3 The Fitted Equation

The form of the model equation for a zero-inflated Poisson regression requires us to take two separate models into account. First we have a logistic regression model to predict the log odds of zero physhealth days. That takes care of the extra zeros. Then, to predict the number of physhealth days, we have a Poisson model, which may produce some additional zero count estimates.

26.4.4 Interpreting the Coefficients

We can exponentiate the logistic regression coefficients to obtain results in terms of odds ratios for that model, and that can be of some help in understanding the process behind excess zeros.

Also, exponentiating the coefficients of the count model help us describe those counts on the original scale of physhealth.

```
exp(coef(mod_zip1))
count_(Intercept) count_bmi_c count_smoke100 
    7.3714810 1.0183428
    zero_bmi_c zero_smoke100
        0.9726561 0.7888485
```

For example,

- in the model for physhealth $=0$, the odds of physhealth $=0$ are 79% as high for subjects with smoke100 $=1$ as for non-smokers with the same BMI.
- in the Poisson model for physhealth, the physhealth count is estimated to increase by 1.48 for smokers as compared to non-smokers with the same BMI.

26.4.5 Testing the Predictors

We can test the model with and without bmi_c, for example, by fitting the model both ways, and comparing the results with either a Wald or Likelihood Ratio test, each of which is available in the lmtest package.

```
mod_zip1_nobmi <- zeroinfl(physhealth ~ smoke100,
    data = ohioA_young)
lmtest::waldtest(mod_zip1, mod_zip1_nobmi)
Wald test
Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
    Res.Df Df Chisq Pr(>Chisq)
1 1968
2 1970 -2 187.2 < 2.2e-16 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    lmtest::lrtest(mod_zip1, mod_zip1_nobmi)
Likelihood ratio test
Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
    #Df LogLik Df Chisq Pr(>Chisq)
1 6 -5679.8
2 4 -5769.5 -2 179.35< 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


26.4.6 Store fitted values and residuals

The broom package does not work with the zeroinfl tool. So we need to build up the fitted values and residuals ourselves.

```
sm_zip1 <- ohioA_young |>
    mutate(fitted = fitted(mod_zip1, type = "response"),
            resid = resid(mod_zip1, type = "response"))
sm_zip1 |>
    dplyr::select(physhealth, fitted, resid) |>
    head()
# A tibble: 6 x 3
    physhealth fitted resid
        <dbl> <dbl> <dbl>
        0 2.21 -2.21
        0 2.28-2.28
        0 3.12 -3.12
        30 5.27 24.7
            0 3.17-3.17
            0 3.71 -3.71
```


26.4.7 Modeled Number of Zero Counts

The zero-inflated model is designed to perfectly match the number of observed zeros. We can compare the observed number of zero physhealth results to the expected number of zero values from the likelihood-based models.

```
round(c("Obs" = sum(ohioA_young$physhealth == 0),
    "Poisson" = sum(dpois(0, fitted(mod_poiss1))),
    "NB" = sum(dnbinom(0, mu = fitted(mod_nb1), size = mod_nb1$theta)),
    "ZIP" = sum(predict(mod_zip1, type = "prob")[,1])), 0)
```

| Obs | Poisson | NB | ZIP |
| ---: | ---: | ---: | ---: |
| 1264 | 124 | 1250 | 1264 |

26.4.8 Rootogram for ZIP model

Here's the rootogram for the zero-inflated Poisson model.

```
topmodels::rootogram(mod_zip1, max = 30)
```


The zero frequencies are perfectly matched here, but we can see that counts of 1 and 2 are now substantially underfit, and values between 6 and 13 are overfit.

26.4.9 Specify the R^{2} and log (likelihood) values

We can calculate a proxy for R^{2} as the squared correlation of the fitted values and the observed values.

```
# The correlation of observed and fitted values
(zip_r <- with(sm_zip1, cor(physhealth, fitted)))
```

[1] 0.1873284

```
# R-square
zip_r^2
```

[1] 0.03509194

```
logLik(mod_zip1)
```

'log Lik.' -5679.794 (df=6)

Here, we have

| Model | Scale | R^{2} | \log (likelihood) |
| ---: | ---: | ---: | ---: |
| Zero-Inflated Poisson | Complex: \log (physhealth) | .035 | -5679.83 |

26.4.10 Check model assumptions

Here is a plot of residuals vs. fitted values on the original physhealth scale.

```
ggplot(sm_zip1, aes(x = fitted, y = resid)) +
    geom_point() +
    labs(title = "Residuals vs. Fitted `physhealth`",
            subtitle = "Zero-Inflated Poisson Regression model")
```


26.4.11 Predictions for Harry and Sally

The predictions from this ZIP regression model are obtained as follows...

```
predict(mod_zip1, newdata = hs_data, type = "response")
```

```
    1 2
```

6.0022492 .056792

As we've seen in the past, when we use response as the type, the predictions fall on the original physhealth scale. The prediction for Harry is 6.0 days, and for Sally is 2.1 days.

26.5 The Zero-Inflated Negative Binomial Regression Model

As an alternative to the ZIP model, we might consider a zero-inflated negative binomial regression ${ }^{2}$. This will involve a logistic regression to predict the probability of a 0 , and then a negative binomial model to describe the counts of physhealth.
To run the zero-inflated negative binomial model, we use the following code:

[^18]```
mod_zinb1 <- pscl::zeroinfl(physhealth ~ bmi_c + smoke100,
 dist = "negbin", data = ohioA_young)
summary(mod_zinb1)
```

Call:
pscl::zeroinfl(formula = physhealth ~ bmi_c + smoke100, data = ohioA_young,
dist = "negbin")
Pearson residuals:

Min	$1 Q$	Median	3Q	Max
-0.5579	-0.4192	-0.3957	-0.1166	6.4355

Count model coefficients (negbin with log link):
Estimate Std. Error $z$ value $\operatorname{Pr}(>|z|)$
(Intercept) $1.5456390 .09978715 .489<2 e-16 * * *$
bmi_c $0.024617 \quad 0.006641 \quad 3.707 \quad 0.00021$ ***
smoke100 $0.517302 \quad 0.110770 \quad 4.670$ 3.01e-06 ***
Log(theta) -0.874127 $0.143900-6.0751 .24 \mathrm{e}-09$ ***
Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -0.071616 $0.164055-0.4370 .66245$
bmi_c -0.027609 $0.009314-2.964 \quad 0.00303$ **
$\begin{array}{lllll}\text { smoke100 } & -0.127260 & 0.137180 & -0.928 & 0.35357\end{array}$
---
Signif. codes: $0{ }^{\prime * * * '} 0.001{ }^{\prime * * '} 0.01 '^{\prime \prime} 0.05 '^{\prime} 0.1 '^{\prime} 1$
Theta $=0.4172$
Number of iterations in BFGS optimization: 16
Log-likelihood: -3469 on 7 Df
confint(mod_zinb1)
$2.5 \% \quad 97.5 \%$
count_(Intercept) 1.350059721 .741217558
count_bmi_c 0.011601720 .037633119
count_smoke100 0.300196160 .734408526
zero_(Intercept) -0.39315782 0.249925968

```
zero_bmi_c -0.04586350 -0.009355106
zero_smoke100 -0.39612706 0.141607082
```


### 26.5.1 Comparison to a null model

To show that this model fits better than the null model (the model with intercept only), we can compare them directly with a chi-squared test. Since we have two predictors in the full model, the degrees of freedom for this test is 2 .

```
mod_zinbnull <- pscl::zeroinfl(physhealth ~ 1, dist = "negbin",
 data = ohioA_young)
summary(mod_zinbnull)
```

Call:
pscl::zeroinfl(formula = physhealth ~ 1, data = ohioA_young, dist = "negbin")
Pearson residuals:

Min	1Q	Median	3Q	Max		
-0.4048-0.4	4048	-0.4048	-0.1622	3.2340		
	Estimate Std. Error $z$ value $\operatorname{Pr}(>\|z\|)$					
(Intercept)		7766	0.0964	18.429	< 2e-16	*
Log (theta)		0445	0.1612	-6.479	$9.25 \mathrm{e}-11$	1 **

Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
$\begin{array}{lllll}\text { (Intercept) } & -0.2605 & 0.1920 & -1.357 & 0.175\end{array}$
---

Theta $=0.3519$
Number of iterations in BFGS optimization: 13
Log-likelihood: -3498 on 3 Df

```
 pchisq(2 * (logLik(mod_nb1) - logLik(mod_zinbnull)), df = 2, lower.tail = FALSE)
'log Lik.' 8.538917e-07 (df=4)
```


### 26.5.2 Comparison to a Negative Binomial Model: Vuong test

```
 vuong(mod_zinb1, mod_nb1)
Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed N(0,1) under the
 null that the models are indistinguishible)
\begin{tabular}{|c|c|c|c|}
\hline & Vuong z-statistic & H_A & p-value \\
\hline Raw & 3.0756577 & model1 > model2 & 0.0010502 \\
\hline AIC-corrected & 2.4599576 & model1 > model2 & 0.0069477 \\
\hline BIC-corrected & 0.7397477 & model1 > model2 & 0.2297265 \\
\hline
\end{tabular}
```

The zero-inflated negative binomial model appears to be an improvement over the standard negative binomial model according to the the raw or AIC-corrected Vuong tests, but not according to the BIC-corrected test.

### 26.5.3 The Fitted Equation

Like the ZIP, the zero-inflated negative binomial regression also requires us to take two separate models into account. First we have a logistic regression model to predict the log odds of zero physhealth days. That takes care of the extra zeros. Then, to predict the number of physhealth days, we have a negative binomial regression, with a $\theta$ term, and this negative binomial regression model may also produce some additional zero count estimates.

### 26.5.4 Interpreting the Coefficients

As with the zip, we can exponentiate the logistic regression coefficients to obtain results in terms of odds ratios for that model, and that can be of some help in understanding the process behind excess zeros.

```
 exp(coef(mod_zinb1))
count_(Intercept) count_bmi_c count_smoke100 zero_(Intercept)
 r.6909665 % 1.0249229
 0.9727684 0.8805047
```

For example,

- in the model for physhealth $=0$, the odds of physhealth $=0$ are $88.1 \%$ as high for subjects with smoke100 $=1$ as for non-smokers with the same BMI.

Interpreting the negative binomial piece works the same way as it did in the negative binomial regression.

### 26.5.5 Testing the Predictors

We can test the model with and without bmi_c, for example, by fitting the model both ways, and comparing the results with either a Wald or Likelihood Ratio test, each of which is available in the lmtest package.

```
mod_zinb1_nobmi <- pscl::zeroinfl(physhealth ~ smoke100,
 dist = "negbin",
 data = ohioA_young)
lmtest::waldtest(mod_zinb1, mod_zinb1_nobmi)
```

```
Wald test
Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
 Res.Df Df Chisq Pr(>Chisq)
1 1967
2 1969 -2 29.593 3.75e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 lmtest::lrtest(mod_zinb1, mod_zinb1_nobmi)
Likelihood ratio test
Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
 #Df LogLik Df Chisq Pr(>Chisq)
1 7-3469.3
2 5 -3485.0 -2 31.418 1.506e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


### 26.5.6 Store fitted values and residuals

Again, we need to build up the fitted values and residuals without the broom package.

```
sm_zinb1 <- ohioA_young |>
 mutate(fitted = fitted(mod_zinb1, type = "response"),
 resid = resid(mod_zinb1, type = "response"))
sm_zip1 |>
 dplyr::select(physhealth, fitted, resid) |>
 head()
A tibble: 6 x 3
 physhealth fitted resid
 <dbl> <dbl> <dbl>
 0 2.21 -2.21
 0 2.28-2.28
 0 3.12 -3.12
 30 5.27 24.7
 0 3.17 -3.17
 0 3.71 -3.71
```


### 26.5.7 Modeled Number of Zero Counts

Once again, we can compare the observed number of zero physhealth results to the expected number of zero values from the likelihood-based models.

```
round(c("Obs" = sum(ohioA_young$physhealth == 0),
 "Poisson" = sum(dpois(0, fitted(mod_poiss1))),
 "NB" = sum(dnbinom(0, mu = fitted(mod_nb1), size = mod_nb1$theta)),
 "ZIP" = sum(predict(mod_zip1, type = "prob")[,1]),
 "ZINB" = sum(predict(mod_zinb1, type = "prob")[,1])),0)
```

Obs	Poisson	NB	ZIP	ZINB
1264	124	1250	1264	1264

So, the Poisson model is clearly inappropriate, but the zero-inflated (Poisson and NB) and the negative binomial model all give reasonable fits in this regard.

### 26.5.8 Rootogram for Zero-Inflated Negative Binomial model

Here's the rootogram for the zero-inflated negative binomial model.

```
topmodels::rootogram(mod_zinb1, max = 30)
```



As in the ZIP model, the zero frequencies are perfectly matched here, but we can see that counts of 1 and 2 are now closer to the data we observe than in the ZIP model. We are still substantially underfitting values of 30 .

### 26.5.9 Specify the $R^{2}$ and $\log$ (likelihood) values

We can calculate a proxy for $R^{2}$ as the squared correlation of the fitted values and the observed values.

```
The correlation of observed and fitted values
(zinb_r <- with(sm_zinb1, cor(physhealth, fitted)))
```

[1] 0.1858996

```
R-square
```

zinb_r~2
[1] 0.03455865

```
logLik(mod_zinb1)
```

'log Lik.' -3469.29 (df=7)

Here, we have

Model	Scale	$R^{2}$	$\log$ (likelihood)
Zero-Inflated Negative	Complex:	.035	-3469.27
Binomial	$\log$ (physhealth)		

### 26.5.10 Check model assumptions

Here is a plot of residuals vs. fitted values on the original physhealth scale.

```
ggplot(sm_zinb1, aes(x = fitted, y = resid)) +
 geom_point() +
 labs(title = "Residuals vs. Fitted `physhealth`",
 subtitle = "Zero-Inflated Negative Binomial Regression model")
```



### 26.5.11 Predictions for Harry and Sally

The predictions from this zero-inflated negative binomial regression model are obtained as follows...

```
predict(mod_zinb1, newdata = hs_data, type = "response")
```

    \(1 \quad 2\)
    6.2059852 .004987

As we've seen in the past, when we use response as the type, the predictions fall on the original physhealth scale. The prediction for Harry is 6.2 days, and for Sally is 2.0 days.

### 26.6 A "hurdle" model (with Poisson)

Much of the discussion here of hurdle models comes from Clay Ford at the University of Virginia ${ }^{3}$. Ford describes a hurdle model as follows:

[^19]The hurdle model is a two-part model that specifies one process for zero counts and another process for positive counts. The idea is that positive counts occur once a threshold is crossed, or put another way, a hurdle is cleared. If the hurdle is not cleared, then we have a count of 0 .

The first part of the model is typically a binary logit model. This models whether an observation takes a positive count or not. The second part of the model is usually a truncated Poisson or Negative Binomial model. Truncated means we're only fitting positive counts. If we were to fit a hurdle model to our [medicare] data, the interpretation would be that one process governs whether a patient visits a doctor or not, and another process governs how many visits are made.

To fit a hurdle model, we'll use the hurdle function in the pscl package.

```
mod_hur1 <- pscl::hurdle(physhealth ~ bmi_c + smoke100,
 dist = "poisson", zero.dist = "binomial",
 data = ohioA_young)
summary(mod_hur1)
```

```
Call:
pscl::hurdle(formula = physhealth ~ bmi_c + smoke100, data = ohioA_young,
 dist = "poisson", zero.dist = "binomial")
Pearson residuals:
\begin{tabular}{rrrrr}
Min & 1Q & Median & 3Q & Max \\
-1.4403 & -0.6987 & -0.6139 & -0.1946 & 9.2997
\end{tabular}
Count model coefficients (truncated poisson with log link):
 Estimate Std. Error z value Pr (> |z|)
(Intercept) 1.997612 0.018797 106.3 <2e-16 ***
bmi_c 0.018178 0.001398 13.0 <2e-16 ***
smoke100 0.393348 0.024889 15.8 <2e-16 ***
Zero hurdle model coefficients (binomial with logit link):
 Estimate Std. Error z value Pr}(>|z|
(Intercept) -0.683509 0.062827 -10.879 < 2e-16 ***
bmi_c 0.027777 0.006508 4.268 1.97e-05 ***
```

[^20]```
smoke100 0.238300 0.095301 2.500 0.0124*
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Number of iterations in BFGS optimization: 14
Log-likelihood: -5680 on 6 Df
    confint(mod_hur1)
    2.5% 97.5 %
count_(Intercept) 1.96077105 2.03445261
count_bmi_c 0.01543722 0.02091901
count_smoke100 0.34456599 0.44212932
zero_(Intercept) -0.80664805 -0.56037031
zero_bmi_c 0.01502124 0.04053230
zero_smoke100 0.05151314 0.42508607
```

We are using the default settings here, using the same predictors for both models:

- a Binomial model to predict the probability of physhealth $=0$ given our predictors, as specified by the zero.dist argument in the hurdle function, and
- a (truncated) Poisson model to predict the positive-count of physhealth given those same predictors, as specified by the dist argument in the hurdle function.

26.6.1 Comparison to a null model

To show that this model fits better than the null model (the model with intercept only), we can compare them directly with a chi-squared test. Since we have two predictors in the full model, the degrees of freedom for this test is 2 .

```
mod_hurnull <- pscl::hurdle(physhealth ~ 1, dist = "poisson",
    zero.dist = "binomial",
    data = ohioA_young)
summary(mod_hurnull)
```

Call:
pscl: :hurdle(formula = physhealth ~ 1, data = ohioA_young, dist = "poisson", zero.dist = "binomial")

```
Pearson residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-0.6934 & -0.6934 & -0.6934 & -0.2779 & 5.5399
\end{tabular}
Count model coefficients (truncated poisson with log link):
    Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.22765 0.01233 180.7 <2e-16 ***
Zero hurdle model coefficients (binomial with logit link):
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.5768 0.0469 -12.3 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Number of iterations in BFGS optimization: 8
Log-likelihood: -5908 on 2 Df
pchisq(2 * (logLik(mod_hur1) - logLik(mod_hurnull)), df = 2, lower.tail = FALSE)
'log Lik.' 8.577393e-100 (df=6)
```


26.6.2 Comparison to a Poisson Model: Vuong test

```
vuong(mod_hur1, mod_poiss1)
```

Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed $N(0,1)$ under the
null that the models are indistinguishible)

The hurdle model shows a detectable improvement over the standard Poisson model according to this test.

26.6.3 Comparison to a Zero-Inflated Poisson Model: Vuong test

Is the hurdle model comparable to the zero-inflated Poisson?

```
    vuong(mod_hur1, mod_zip1)
Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed N(0,1) under the
    null that the models are indistinguishible)
\begin{tabular}{lcc} 
& Vuong z-statistic & H_A p-value \\
Raw & 0.2269041 model1 \(>\) model2 0.41025 \\
AIC-corrected & 0.2269041 model1 > model2 0.41025 \\
BIC-corrected & 0.2269041 model1 > model2 0.41025
\end{tabular}
```

The hurdle model doesn't show a substantial improvement over the zero-inflated Poisson model according to this test.

26.6.4 The Fitted Equation

The form of the model equation for this hurdle also requires us to take two separate models into account. First we have a logistic regression model to predict the log odds of zero physhealth days. That takes care of the zeros. Then, to predict the number of physhealth days, we use a truncated Poisson model, which is truncated to produce only estimates greater than zero.

26.6.5 Interpreting the Coefficients

We can exponentiate the logistic regression coefficients to obtain results in terms of odds ratios for that model, and that can be of some help in understanding the process behind excess zeros.

Also, exponentiating the coefficients of the count model help us describe those counts on the original scale of physhealth.

```
exp(coef(mod_hur1))
count_(Intercept) count_bmi_c count_smoke100 zero_(Intercept)
    7.3714308 1.0183443
    zero_bmi_c zero_smoke100
        1.0281661 1.2690894
```

For example,

- in the model for physhealth $=0$, the odds of physhealth $=0$ are 127% as high for subjects with smoke100 $=1$ as for non-smokers with the same BMI.
- in the Poisson model for physhealth, the physhealth count is estimated to increase by 1.48 for smokers as compared to non-smokers with the same BMI.

26.6.6 Testing the Predictors

We can test the model with and without bmi_c, for example, by fitting the model both ways, and comparing the results with either a Wald or Likelihood Ratio test, each of which is available in the lmtest package.

```
mod_hur1_nobmi <- pscl::hurdle(physhealth ~ smoke100,
    dist = "poisson",
    zero.dist = "binomial",
    data = ohioA_young)
lmtest::waldtest(mod_hur1, mod_hur1_nobmi)
```

Wald test
Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
Res.Df Df Chisq Pr(>Chisq)
11968
$21970-2187.19<2.2 e-16 * * *$
Signif. codes: $0{ }^{\prime * * * '} 0.001{ }^{\prime * * '} 0.01^{\prime} *^{\prime} 0.05 '^{\prime} 0.1^{\prime} \quad 1$
lmtest::lrtest(mod_hur1, mod_hur1_nobmi)
Likelihood ratio test

```
Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
    #Df LogLik Df Chisq Pr(>Chisq)
1 6 -5679.8
2 4 -5769.5 -2 179.35< 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


26.6.7 Store fitted values and residuals

The broom package does not work with the hurdle class of models. Again we need to build up the fitted values and residuals ourselves.

```
sm_hur1 <- ohioA_young |>
    mutate(fitted = fitted(mod_hur1, type = "response"),
        resid = resid(mod_hur1, type = "response"))
sm_hur1 |>
    dplyr::select(physhealth, fitted, resid) |>
    head()
```

```
# A tibble: 6 x 3
```


A tibble: 6 x 3

physhealth fitted resid
physhealth fitted resid
<dbl> <dbl> <dbl>
<dbl> <dbl> <dbl>
0 2.21 -2.21
0 2.21 -2.21
0 2.28 -2.28
0 2.28 -2.28
0 3.12-3.12
0 3.12-3.12
30 5.27 24.7
30 5.27 24.7
0 3.17-3.17
0 3.17-3.17
0 3.71-3.71

```
            0 3.71-3.71
```


26.6.8 Modeled Number of Zero Counts

Once again, we can compare the observed number of zero physhealth results to the expected number of zero values from the likelihood-based models.

```
round(c("Obs" = sum(ohioA_young$physhealth == 0),
    "Poisson" = sum(dpois(0, fitted(mod_poiss1))),
    "NB" = sum(dnbinom(0, mu = fitted(mod_nb1), size = mod_nb1$theta)),
    "ZIP" = sum(predict(mod_zip1, type = "prob")[,1]),
    "ZINB" = sum(predict(mod_zinb1, type = "prob")[,1]),
    "Hurdle" = sum(predict(mod_hur1, type = "prob")[,1])),0)
\begin{tabular}{rrrrrr} 
Obs & Poisson & NB & ZIP & ZINB & Hurdle \\
1264 & 124 & 1250 & 1264 & 1264 & 1264
\end{tabular}
```

The hurdle model does about as well as the negative binomial and zero-inflated models. All but the Poisson give reasonable fits in this regard.

26.6.9 Rootogram for Hurdle Model

```
topmodels::rootogram(mod_hur1, max = 30)
```


The results are still not perfect, of course. In fitting the zeros exactly, we're underfitting counts of 1,2 , and 30 , and overfitting many of the counts between 6 and 20 . We still have a problem here with overdispersion. That's why we'll consider a hurdle model with a negative binomial regression for the counts in a moment.

26.6.10 Understanding the Modeled Counts in Detail

The expected mean count uses both parts of the hurdle model. Mathematically, we want...

$$
E[y \mid x]=\frac{1-f_{1}(0 \mid x)}{1-f_{2}(0 \mid x)} \mu_{2}(x)
$$

where

- our count of physhealth is y
- our predictors are represented by \mathbf{x}
- and the expected count is the product of a ratio and a mean.

The ratio is the probability of a non-zero in the first process divided the probability of a non-zero in the second untruncated process. The f symbols represent distributions. Recall these are logistic and Poisson, respectively, by default but can be others. The mean is for the untruncated version of the positive-count process.

If we want to see the expected hurdle counts, we can get them using some clever applications of the predict function.

The first six expected mean counts ($E[y \mid x]$ from the equation above) are:

```
head(predict(mod_hur1, type = "response"))
\(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}\)
2.2141792 .2814823 .1161245 .2678813 .1678903 .712120
```

The ratio of non-zero probabilities, $\frac{1-f_{1}(0 \mid x)}{\left.1-f_{2}(0) x\right)}$, from the mathematical expression above can be extracted by:

```
head(predict(mod_hur1, type = "zero"))
```

| 1 | 2 | 3 | 4 | 5 | 6 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0.3173312 | 0.3221978 | 0.3344433 | 0.4806542 | 0.3372292 | 0.3649208 |

The mean for the untruncated process, $\mu_{2}(x)$, can also be obtained by:

```
head(predict(mod_hur1, type = "count"))
```

| 1 | 2 | 3 | 4 | 5 | 6 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 6.977501 | 7.081000 | 9.317347 | 10.959814 | 9.393877 | 10.172401 |

and we can multiply these last two pieces together to verify that they match our expected hurdle counts.

```
head(predict(mod_hur1, type = "zero") * predict(mod_hur1, type = "count"),5)
```

$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
2.2141792 .2814823 .1161245 .2678813 .167890

26.6.11 Specify the R^{2} and \log (likelihood) values

We can calculate a proxy for R^{2} as the squared correlation of the fitted values and the observed values.

```
# The correlation of observed and fitted values
(hur1_r <- with(sm_hur1, cor(physhealth, fitted)))
```

[1] 0.1873104

```
# R-square
hur1_r^2
```

[1] 0.03508517

```
logLik(mod_hur1)
```

'log Lik.' -5679.792 (df=6)

Here, we have

| Model | Scale | R^{2} | \log (likelihood) |
| ---: | ---: | ---: | ---: |
| Hurdle Model (Poisson) | Complex: \log (physhealth) | .035 | -5679.83 |

26.6.12 Check model assumptions

Here is a plot of residuals vs. fitted values on the original physhealth scale.

```
ggplot(sm_hur1, aes(x = fitted, y = resid)) +
    geom_point() +
    labs(title = "Residuals vs. Fitted `physhealth`",
            subtitle = "Hurdle model with Poisson counts")
```


26.6.13 Predictions for Harry and Sally

The predictions from this zero-inflated negative binomial regression model are obtained as follows...

```
predict(mod_hur1, newdata = hs_data, type = "response")
```

```
    2
6.003689 2.057127
```

As we've seen in the past, when we use response as the type, the predictions fall on the original physhealth scale. The prediction for Harry is 6.0 days, and for Sally is 2.1 days.

26.7 A "hurdle" model (with negative binomial for overdispersion)

Let's account for overdispersion better with a negative binomial model for the counts in our hurdle model. We specify that the positive-count process be fit with this NB model using dist $=$ negbin.

```
mod_hur_nb1 <- pscl::hurdle(physhealth ~ bmi_c + smoke100,
    dist = "negbin", zero.dist = "binomial",
    data = ohioA_young)
summary(mod_hur_nb1)
```

Call:
pscl: :hurdle(formula = physhealth ~ bmi_c + smoke100, data = ohioA_young, dist = "negbin", zero.dist = "binomial")

Pearson residuals:

| Min | 1Q | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -0.5749 | -0.4178 | -0.3948 | -0.1165 | 6.4023 |

Count model coefficients (truncated negbin with log link):
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

| (Intercept) | 1.54170 | 0.10101 | 15.263 | $<2 \mathrm{e}-16 * * *$ | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| bmi_c | 0.02434 | 0.00677 | 3.595 | $0.000324 * * *$ | |
| smoke100 | 0.51792 | 0.11101 | 4.666 | $3.08 \mathrm{e}-06$ | $* * *$ |
| Log(theta) | -0.88245 | 0.14653 | -6.023 | $1.72 \mathrm{e}-09$ | $* * *$ |

Zero hurdle model coefficients (binomial with logit link):
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

| (Intercept) | -0.683509 | 0.062827 | 10.879 | $<2 \mathrm{e}-16$ |
| :---: | :---: | :---: | :---: | :---: |
| bmi_c | 0.027777 | 0.006508 | 4.268 | $1.97 \mathrm{e}-05$ |
| smoke100 | 0.238300 | 0.095301 | 2.500 | 0.0124 |

Signif. codes: $0{ }^{\prime * * * '} 0.001{ }^{\prime * *} 0.01 '^{\prime} 0.05 '^{\prime} 0.1$ ' ' 1
Theta: count $=0.4138$
Number of iterations in BFGS optimization: 17
Log-likelihood: -3469 on 7 Df

```
    confint(mod_hur_nb1)
```

$2.5 \% \quad 97.5 \%$
count_(Intercept) 1.34373051 1.73966938
count_bmi_c 0.011070020 .03760872
count_smoke100 $0.30035006 \quad 0.73549531$
zero_(Intercept) -0.80664805-0.56037031

```
zero_bmi_c 0.01502124 0.04053230
zero_smoke100 0.05151314 0.42508607
```


26.7.1 Comparison to a null model

To show that this model fits better than the null model (the model with intercept only), we can compare them directly with a chi-squared test. Since we have two predictors in the full model, the degrees of freedom for this test is 2 .

```
mod_hur_nb_null <- pscl::hurdle(physhealth ~ 1, dist = "negbin",
    zero.dist = "binomial",
    data = ohioA_young)
summary(mod_hur_nb_null)
```

Call:
pscl: :hurdle(formula = physhealth ~ 1, data = ohioA_young, dist = "negbin",
zero.dist = "binomial")
Pearson residuals:
Min 1Q Median 3Q Max
$-0.4048-0.4048-0.4048-0.1622 \quad 3.2340$
Count model coefficients (truncated negbin with log link):
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) $1.77653 \quad 0.09641 \quad 18.427<2 \mathrm{e}-16 * * *$
Log(theta) -1.04455 $0.16123-6.479$ 9.25e-11 ***
Zero hurdle model coefficients (binomial with logit link):
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -0.5768 $0.0469-12.3<2 \mathrm{e}-16 * * *$

Signif. codes: $0{ }^{\prime} * * * ' 0.001{ }^{\prime * *} 0.01{ }^{\prime *} 0.05 '^{\prime} 0.1$ ' 1
Theta: count $=0.3518$
Number of iterations in BFGS optimization: 12
Log-likelihood: -3498 on 3 Df
pchisq(2 * (logLik(mod_hur_nb1) - logLik(mod_hur_nb_null)), df = 2 , lower.tail = FALSE)
'log Lik.' 2.17419e-13 (df=7)

26.7.2 Comparison to a Negative Binomial Model: Vuong test

```
    vuong(mod_hur_nb1, mod_nb1)
Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed N(0,1) under the
    null that the models are indistinguishible)
\begin{tabular}{lrrr} 
\\
& Vuong & z-statistic & H_A
\end{tabular} p-value
```

The hurdle model improves the standard negative binomial model according to the raw and AIC-corrected versions of this test, but not the BIC-corrected version.

26.7.3 Comparison to a Zero-Inflated NB Model: Vuong test

Is the hurdle model comparable to the zero-inflated Poisson?

```
    vuong(mod_hur_nb1, mod_zinb1)
Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed N(0,1) under the
    null that the models are indistinguishible)
```


The hurdle model appears just barely improved over the zero-inflated Negative Binomial model.

26.7.4 Comparing the Hurdle Models with AIC and BIC

```
AIC(mod_hur1); BIC(mod_hur1)
```

[1] 11371.58
[1] 11405.11

AIC(mod_hur_nb1) ; BIC(mod_hur_nb1)
[1] 6952.186
[1] 6991.301

The negative binomial approach certainly looks better than the Poisson here.

26.7.5 The Fitted Equation

The form of the model equation for this hurdle also requires us to take two separate models into account. First we have a logistic regression model to predict the log odds of zero physhealth days. That takes care of the zeros. Then, to predict the number of physhealth days, we use a truncated negative binomial model, which is truncated to produce only estimates greater than zero, with θ estimated as $\exp (-1.123)$ or 0.325 .

26.7.6 Interpreting the Coefficients

We can exponentiate the logistic regression coefficients to obtain results in terms of odds ratios for that model, and that can be of some help in understanding the process behind excess zeros.

```
    exp(coef(mod_hur_nb1))
count_(Intercept) 
```

For example,

- in the model for physhealth $=0$, the odds of physhealth $=0$ are 127% as high for subjects with smoke100 $=1$ as for non-smokers with the same BMI.

26.7.7 Testing the Predictors

We can test the model with and without bmi_c, for example, by fitting the model both ways, and comparing the results with either a Wald or Likelihood Ratio test, each of which is available in the lmtest package.

```
mod_hurnb1_nobmi <- pscl::hurdle(physhealth ~ smoke100,
    dist = "negbin",
    zero.dist = "binomial",
    data = ohioA_young)
lmtest::waldtest(mod_hur_nb1, mod_hurnb1_nobmi)
```

```
Wald test
Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
    Res.Df Df Chisq Pr(>Chisq)
1 1967
2 1969 -2 31.141 1.729e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    lmtest::lrtest(mod_hur_nb1, mod_hurnb1_nobmi)
Likelihood ratio test
Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
    #Df LogLik Df Chisq Pr(>Chisq)
1 7-3469.1
2 5 -3485.0 -2 31.812 1.236e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


26.7.8 Store fitted values and residuals

Again we need to build up the fitted values and residuals, without broom to help.

```
sm_hur_nb1 <- ohioA_young |>
    mutate(fitted = fitted(mod_hur_nb1, type = "response"),
        resid = resid(mod_hur_nb1, type = "response"))
sm_hur_nb1 |>
    dplyr::select(physhealth, fitted, resid) |>
    head()
# A tibble: 6 x 3
physhealth fitted resid
    <dbl> <dbl> <dbl>
        0 2.16 -2.16
        0 2.23-2.23
        0 3.09 -3.09
        30 5.37 24.6
        0 3.15 -3.15
        0 3.72 -3.72
```


26.7.9 Rootogram for NB Hurdle Model

```
topmodels::rootogram(mod_hur_nb1, max = 30)
```


This improves the situation, but we're still underfitting the 30s.

26.7.10 Specify the R^{2} and \log (likelihood) values

We can calculate a proxy for R^{2} as the squared correlation of the fitted values and the observed values.

```
# The correlation of observed and fitted values
(hurnb1_r <- with(sm_hur_nb1, cor(physhealth, fitted)))
```

[1] 0.1856393

```
# R-square
hurnb1_r^2
```

[1] 0.03446194

```
logLik(mod_hur_nb1)
```

'log Lik.' -3469.093 (df=7)

Here, we have

| Model | Scale | R^{2} | \log (likelihood) |
| ---: | ---: | ---: | ---: |
| Hurdle Model (Neg. | Complex: | .035 | -3469.07 |
| Bin.) | \log (physhealth) | | |

26.7.11 Check model assumptions

Here is a plot of residuals vs. fitted values on the original physhealth scale.

```
ggplot(sm_hur_nb1, aes(x = fitted, y = resid)) +
    geom_point() +
    labs(title = "Residuals vs. Fitted `physhealth`",
            subtitle = "Hurdle model with Negative Binomial counts")
```

Residuals vs. Fitted `physhealth`
Hurdle model with Negative Binomial counts

26.7.12 Predictions for Harry and Sally

The predictions from this zero-inflated negative binomial regression model are obtained as follows...

```
predict(mod_hur_nb1, newdata = hs_data, type = "response")
```

 \(1 \quad 2\)
 6.2220412 .007094

The prediction for Harry is 6.22 days, and for Sally is 2.01 days.

26.7.13 Note: Fitting a Different Hurdle Model for Counts and $\operatorname{Pr}(z e r o)$

Suppose we wanted to use only bmi_c to predict the probability of a zero count, but use both predictors in the model for the positive counts. We use the I command.

```
mod_hur_new1 <-
    pscl::hurdle(physhealth ~ bmi_c + smoke100 | bmi_c,
        dist = "negbin", zero.dist = "binomial",
        data = ohioA_young)
summary(mod_hur_new1)
```

Call:
pscl::hurdle(formula = physhealth ~ bmi_c + smoke100 | bmi_c, data = ohioA_young,
dist = "negbin", zero.dist = "binomial")
Pearson residuals:

| Min | 1Q | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -0.5630 | -0.4179 | -0.3971 | -0.1150 | 6.1958 |

Count model coefficients (truncated negbin with log link):
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) $1.54170 \quad 0.10101 \quad 15.263<2 e-16$ ***
bmi_c $0.02434 \quad 0.00677 \quad 3.5950 .000324$ ***
smoke100 $0.51792 \quad 0.11101 \quad 4.666$ 3.08e-06 ***
\log (theta) -0.88245 $0.14653-6.0231 .72 \mathrm{e}-09$ ***
Zero hurdle model coefficients (binomial with logit link):

```
    Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.58186 0.04718 -12.332 < 2e-16 ***
bmi_c 0.02853 0.00649 4.396 1.1e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 ' ' 1
Theta: count = 0.4138
Number of iterations in BFGS optimization: 17
Log-likelihood: -3472 on 6 Df
```


26.7.14 Hanging Rootogram for this new Hurdle Model

```
topmodels::rootogram(mod_hur_new1, max = 30)
```


Not a meaningful improvement, certainly.

26.8 A Tobit (Censored) Regression Model

The idea of the tobit model (sometimes called a censored regression model) is to estimate associations for outcomes where we can see either left-censoring (censoring from below) or
right-censoring (censoring from above.)
Consider the variable physhealth, which is restricted to fall between 0 and 30 by the way the measure was constructed. But supposed we think about a broader and latent (unobserved) variable describing physical health. Among the people with physhealth $=0$, some would be incredible athletes and others would be in much poorer physical health but still healthy enough to truthfully answer 0 . On the other end, some of the people responding 30 are in substantially worse physical health than others with that same response.

- Censoring from below takes place when values at or below a threshold (in this case 0) take that value.
- Censoring from above takes place when values at or above a threshold (here, 30) take that value.

Several examples of tobit analysis are available at https://stats.idre.ucla.edu/r/dae/tobitmodels/, which is my primary source for the material here on those models.

The tobit model postulates that the value 0 in our model is just the lower limit of the underlying measure of poor physical health that we would actually observe in the population if we had a stronger measure. Similarly, we'll postulate that 30 is just the upper limit of "poor health" that we can see. The approach I'll take to run the tobit model comes from the vglm function in the VGAM package.

Here's the model, and its summary. Note that the default Lower value for a tobit model is 0 , so we didn't technically have to list that here.

```
mod_tob1 <- vglm(physhealth ~ bmi_c + smoke100,
    tobit(Lower = 0, Upper = 30),
    type.fitted = "censored",
    data = ohioA_young)
summary(mod_tob1)
```

Call:

```
vglm(formula = physhealth ~ bmi_c + smoke100, family = tobit(Lower = 0,
    Upper = 30), data = ohioA_young, type.fitted = "censored")
Coefficients:
    Estimate Std. Error z value Pr(>|z|)
(Intercept):1 -9.29104 0.75509 -12.305 < 2e-16 ***
(Intercept):2 2.87081 0.03028 94.818 < 2e-16 ***
bmi_c 0.37434 0.06537 5.727 1.02e-08 ***
smoke100 4.35390 0.97223 4.478 7.52e-06 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Names of linear predictors: mu, loglink(sd)
Log-likelihood: -3420.605 on 3944 degrees of freedom
Number of Fisher scoring iterations: 6
No Hauck-Donner effect found in any of the estimates
    confint(mod_tob1)
    2.5% 97.5%
(Intercept):1 -10.7709932 -7.8110877
(Intercept):2 2.8114721 2.9301560
bmi_c 0.2462244 0.5024551
smoke100 2.4483714 6.2594277
```


26.8.1 The Fitted Equation

Because we've used the censoring approach, our model will limit its predictions to the range of $[0,30]$, where any predictions outside that range are censored. Values below 0 are fitted as 0 , and values above 30 are fitted as 30 .

The model equation is

```
physhealth = -9.29 + 0.37 bmi_c + 4.35 smoke100
```


26.8.2 Interpreting the Coefficients

Tobit model regression coefficients are interpreted as we would a set of OLS coefficients, except that the linear effect is on the uncensored latent variable, rather than on the observed outcome.

In our case,

- a one-unit increase in bmi_c is associated with a 0.37 day increase in the predicted value of physhealth, holding smoke100 constant
- a move from smoke100 $=0$ to 1 is associated with a 4.35 day increase in the predicted value of physhealth, holding bmi_c constant
- the coefficient labeled (Intercept): 1 is the intercept for the model and is the predicted value of physhealth when smoke100 $=0$ and bmi_c $=0$. Note that this value is -9.29 , which is outside the range of physhealth values we observed.
- the coefficient labeled (Intercept) :2 is a statistic we can use after we exponentiate it, as follows:
- here (Intercept) $: 2=2.87$, and $\exp (2.87)=17.6370182$, which is analogous to the square root of the residual variance in OLS regression, which is summarized for our OLS model as Residual standard error: 17.64.

26.8.3 Testing the Predictors

We can test the model with and without bmi_c, for example, by fitting the model both ways, and comparing the results with either a Wald or Likelihood Ratio test, each of which is available in the lmtest package.

```
mod_tob_nobmi <- vglm(physhealth ~ smoke100,
    tobit(Lower = 0, Upper = 30),
    type.fitted = "censored",
    data = ohioA_young)
lmtest::waldtest(mod_tob1, mod_tob_nobmi)
```

```
Wald test
Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
    Res.Df Df Chisq Pr(>Chisq)
1 3944
2 3945 -1 32.796 1.023e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The likelihood ratio test we have used in some other settings isn't available here.

26.8.4 Store fitted values and residuals

The residuals and fitted values from the tobit model can be stored and then summarized in several ways:

```
sm_tob1 <- ohioA_young |>
    mutate(fitted = fitted(mod_tob1,
                                    type.fitted = "censored"),
            resid = physhealth - fitted)
sm_tob1 |>
    dplyr::select(physhealth, fitted, resid) |>
    head()
# A tibble: 6 x 3
physhealth fitted[,1] resid[,1]
    <dbl> <dbl> <dbl>
1 0 0
2 0 0
3 0 0
4 30 0
5 0
6 0
```


26.8.5 Building Something Like a Rootogram

Building a rootogram is tricky for a tobit model, to say the least, but we can approximate a piece of the issue by plotting the rounded fitted values against the observed physhealth data.

```
ggplot(sm_tob1, aes(x = physhealth, y = round(fitted))) +
    geom_jitter(width = 0.2) +
    geom_abline(intercept = 0, slope = 1, col = "red")
```


Note that the model never predicts a subject to have an underlying physhealth worse than about 13 (remember that larger numbers indicate worse health here.)

26.8.6 Tables of the Observed and Fitted physhealth from Tobit

```
addmargins(table(round(sm_tob1$physhealth)))
```

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 10 | 12 | 13 | 14 | 15 | 16 | 17 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1264 | 112 | 139 | 78 | 29 | 50 | 5 | 40 | 9 | 41 | 4 | 1 | 24 | 38 | 2 | 1 |
| 18 | 20 | 21 | 25 | 26 | 28 | 29 | 30 | Sum | | | | | | | |
| 1 | 23 | 3 | 8 | 2 | 1 | 1 | 98 | 1974 | | | | | | | |

```
addmargins(table(round(sm_tob1$fitted)))
```

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 13 | Sum |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1924 | 20 | 7 | 10 | 4 | 6 | 1 | 1 | 1 | 1974 |

26.8.7 Specify the R^{2} and \log (likelihood) values

We can calculate a proxy for R^{2} as the squared correlation of the fitted values and the observed values.

```
# The correlation of observed and fitted values
(tob1_r <- with(sm_tob1, cor(physhealth, fitted)))
    [,1]
[1,] 0.09329619
# R-square
tob1_r^2
    [,1]
[1,] 0.008704178
logLik(mod_tob1)
[1] -3420.605
```

Here, we have

| Model | Scale | R^{2} | \log (likelihood) |
| ---: | ---: | ---: | ---: |
| Tobit | physhealth | .008 | -3420.58 |

26.8.8 Check model assumptions

Here is a plot of residuals vs. fitted values.

```
ggplot(sm_tob1, aes(x = fitted, y = resid)) +
    geom_point() +
    labs(title = "Residuals vs. Fitted Values for Tobit 1")
```

Residuals vs. Fitted Values for Tobit 1

Here is a normal Q-Q plot of the Tobit Model 1 residuals.

```
qqnorm(sm_tob1$resid)
```

Normal Q-Q Plot

26.8.9 Predictions for Harry and Sally

The predictions from this tobit model are obtained as follows...

```
predict(mod_tob1, newdata = hs_data, type = "response")
```

$$
[, 1]
$$

1 -1. 193743
$2-11.162739$

The prediction for both Harry and Sally under the tobit model would be truncated to 0 days.

27 Modeling an Ordinal Categorical Outcome

27.1 R Setup Used Here

```
knitr::opts_chunk$set(comment = NA)
library(broom)
library(gmodels)
library(MASS)
library(nnet)
library(rms)
library(tidyverse)
theme_set(theme_bw())
```


27.1.1 Data Load

```
smart_oh <- readRDS("data/smart_ohio.Rds")
```


27.2 A subset of the Ohio SMART data

Let's consider the following data, which uses part of the smart_oh data we built in Chapter 6. The outcome we'll study now is genhealth, which has five ordered categories. I'll include the subset of all observations in smart_oh with complete data on these 7 variables.

[^21]| Variable | Description |
| ---: | :--- |
| veg_day | mean number of vegetable servings consumed per day |
| costprob | 1 indicates Yes to "Was there a time in the past 12 months when you |
| needed to see a doctor but could not because of cost?", and 0 otherwise. | |
| incomegroup | 8 income groups from $<10,000$ to 75,000 or more |
| bmi | body-mass index |

To make my life easier later, I'm going to drop any subjects with missing data on these variables. I'm also going to drop the subjects who have no missing data, but have a listed bmi above 60 .

```
sm1 <- smart_oh |>
    select(SEQNO, genhealth, physhealth, costprob, veg_day,
            incomegroup, bmi) |>
    filter(bmi <= 60) |>
    drop_na()
```

In total, we have 5394 subjects in the sm1 sample.

27.2.1 Several Ways of Storing Multi-Categorical data

We will store the information in our outcome, genhealth in both a numeric form (gen_n) and an ordered factor (gen_h) with some abbreviated labels) because we'll have some use for each approach in this material.

```
sm1 <- sm1 |>
    mutate(genh = fct_recode(genhealth,
                                    "1-E" = "1_Excellent",
                    "2_VG" = "2_VeryGood",
                    "3_G" = "3_Good",
                    "4_F" = "4_Fair",
                    "5_P" = "5_Poor"),
            genh = factor(genh, ordered = TRUE),
            gen_n = as.numeric(genhealth))
sm1 |> count(genh, gen_n, genhealth)
# A tibble: 5 x 4
    genh gen_n genhealth n
    <ord> <dbl> <fct> <int>
1 1-E 1 1_Excellent }82
```

| 2 | 2_VG | 2 | 2_VeryGood |
| :--- | :--- | :--- | ---: |$\quad 1805$

27.3 Building Cross-Tabulations

Is income group associated with general health?

27.3.1 Using base table functions

```
addmargins(table(sm1$incomegroup, sm1$genh))
```

| | $1-E$ | $2_{-} V G$ | $3_{-} G$ | $4_{-} F$ | $5_{-} P$ | Sum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $0-9 \mathrm{~K}$ | 14 | 45 | 60 | 74 | 40 | 233 |
| $10-14 \mathrm{~K}$ | 12 | 41 | 66 | 93 | 46 | 258 |
| $15-19 \mathrm{~K}$ | 40 | 76 | 119 | 96 | 61 | 392 |
| $20-24 \mathrm{~K}$ | 51 | 129 | 175 | 100 | 50 | 505 |
| $25-34 \mathrm{~K}$ | 51 | 172 | 215 | 123 | 36 | 597 |
| $35-49 \mathrm{~K}$ | 97 | 270 | 303 | 118 | 24 | 812 |
| $50-74 \mathrm{~K}$ | 128 | 337 | 265 | 94 | 16 | 840 |
| $75 \mathrm{~K}+$ | 429 | 735 | 464 | 103 | 26 | 1757 |
| Sum | 822 | 1805 | 1667 | 801 | 299 | 5394 |

More people answer Very Good and Good than choose the other categories. It might be easier to look at percentages here.

27.3.1.1 Adding percentages within each row

Here are the percentages giving each genhealth response within each income group.

```
addmargins(
    round(100*prop.table(
        table(sm1$incomegroup, sm1$genh)
            ,1)
            ,1)
    )
```

```
    1-E 2_VG 3_G 4_F 5_P Sum
0-9K 6.0 19.3 25.8
10-14K 4.7 15.9 25.6
15-19K
20-24K 10.1 
25-34K 8.5 28.8 36.0
35-49K 11.9 33.3 37.3 14.5 3.0 100.0
50-74K 15.2 40.1 
75K+
Sum 91.0 224.1 247.7 164.3 72.9 800.0
```

So, for example, 11.3% of the genhealth responses in subjects with incomes between 25 and 34 thousand dollars were Excellent.

27.3.1.2 Adding percentages within each column

Here are the percentages in each incomegroup within each genhealth response.

```
addmargins(
    round(100*prop.table(
            table(sm1$incomegroup, sm1$genh)
            ,2)
            ,1)
    )
\begin{tabular}{lrrrrrr} 
& 1-E & 2_VG & 3_G & 4_F & 5_P & Sum \\
\(0-9 \mathrm{~K}\) & 1.7 & 2.5 & 3.6 & 9.2 & 13.4 & 30.4 \\
\(10-14 \mathrm{~K}\) & 1.5 & 2.3 & 4.0 & 11.6 & 15.4 & 34.8 \\
\(15-19 \mathrm{~K}\) & 4.9 & 4.2 & 7.1 & 12.0 & 20.4 & 48.6 \\
\(20-24 \mathrm{~K}\) & 6.2 & 7.1 & 10.5 & 12.5 & 16.7 & 53.0 \\
\(25-34 \mathrm{~K}\) & 6.2 & 9.5 & 12.9 & 15.4 & 12.0 & 56.0 \\
\(35-49 \mathrm{~K}\) & 11.8 & 15.0 & 18.2 & 14.7 & 8.0 & 67.7 \\
\(50-74 \mathrm{~K}\) & 15.6 & 18.7 & 15.9 & 11.7 & 5.4 & 67.3 \\
\(75 \mathrm{~K}+\) & 52.2 & 40.7 & 27.8 & 12.9 & 8.7 & 142.3 \\
Sum & 100.1 & 100.0 & 100.0 & 100.0 & 100.0 & 500.1
\end{tabular}
```

From this table, we see that 7.4% of the Excellent genhealth responses were given by people with incomes between 25 and 34 thousand dollars.

27.3.2 Using xtabs

The xtabs function provides a formula method for obtaining cross-tabulations.

```
xtabs(~ incomegroup + genh, data = sm1)
    genh
incomegroup 1-E 2_VG 3_G 4_F 5_P
    0-9K 
    10-14K
    15-19K 40 76 119 96 61
    20-24K 51 129 175 100 50
    25-34K 51 172 215 123 36
    35-49K 97 270 303 118 24
    50-74K 128 337 265 94 16
    75K+ 429 735 464 103 26
```


27.3.3 Storing a table in a tibble

We can store the elements of a cross-tabulation in a tibble, like this:

```
(sm1.tableA <- sm1 |> count(incomegroup, genh))
```

\# A tibble: 40 x 3
incomegroup genh n
<fct> <ord> <int>
1 0-9K 1-E 14
2 0-9K 2_VG 45
$30-9 \mathrm{~K} \quad$ 3_G 60
4 0-9K 4_F 74
5 0-9K 5_P 40
6 10-14K $1-E \quad 12$
7 10-14K 2_VG 41
8 10-14K 3_G 66
9 10-14K 4_F 93
10 10-14K 5_P 46
\# i 30 more rows

From such a tibble, we can visualize the data in many ways, but we can also return to xtabs and include the frequencies (n) in that setup.

```
xtabs(n ~ incomegroup + genh, data = sm1.tableA)
genh
incomegroup 1-E 2_VG 3_G 4_F 5_P
    0-9K 
    10-14K 12 41 66 93 46
    15-19K 40 76 119 96 61
    20-24K 51 129 175 100 50
    25-34K 51 172 215 123 36
    35-49K 97 270 303 118 24
    50-74K 128
    75K+ 429 735 464 103 26
```

And, we can get the χ^{2} test of independence, with:

```
summary(xtabs(n ~ incomegroup + genh, data = sm1.tableA))
```

Call: xtabs(formula $=\mathrm{n} \sim$ incomegroup + genh, data $=$ sm1.tableA)
Number of cases in table: 5394
Number of factors: 2
Test for independence of all factors:
Chisq $=894.2, \mathrm{df}=28, \mathrm{p}$-value $=3.216 \mathrm{e}-170$

27.3.4 Using CrossTable from the gmodels package

The CrossTable function from the gmodels package produces a cross-tabulation with various counts and proportions like people often generate with SPSS and SAS.

```
CrossTable(sm1$incomegroup, sm1$genh, chisq = T)
```

 Cell Contents


```
|---------------------------
```

Total Observations in Table: 5394

| sm1\$genh | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sm1\$incomegroup \| | 1-E | 2_VG \| | 3_G | 4_F | 5_P | Total |
| 0-9K \| | 14 \| | 45 \| | 60 । | 74 \| | 40 | 233 |
| | 13.027 \| | 13.941 \| | 2.002 \| | 44.865 | 56.796 | |
| | 0.060 \| | 0.193 \| | 0.258 I | 0.318 \| | 0.172 | 0.043 |
| | 0.017 \| | 0.025 । | 0.036 | 0.092 | 0.134 | |
| | 0.003 I | 0.008 I | 0.011 I | 0.014 | 0.007 | |
| 10-14K \| | 12 \| | 41 \| | 66 | 93 | 46 | 258 |
| | 18.980 \| | 23.806 \| | 2.366 I | 78.061 \| | 70.259 | |
| | 0.047 \| | 0.159 \| | 0.256 I | 0.360 | 0.178 | 0.048 |
| | 0.015 \| | 0.023 | 0.040 | 0.116 | 0.154 | |
| | 0.002 \| | 0.008 \| | 0.012 \| | 0.017 | 0.009 | |
| 15-19K | 40 \| | 76 | 119 | 96 \| | 61 | 392 |
| | 6.521 \| | 23.208 \| | 0.038 \| | 24.531 | 70.973 | |
| | 0.102 \| | 0.194 \| | 0.304 I | 0.245 | 0.156 | 0.073 |
| | 0.049 \| | 0.042 \| | 0.071 \| | 0.120 | 0.204 | |
| | 0.007 । | 0.014 \| | 0.022 I | 0.018 | 0.011 | |
| 20-24K | 51 \| | 129 \| | 175 \| | 100 | 50 | 505 |
| | 8.756 \| | 9.463 \| | 2.296 \| | 8.340 | 17.301 | |
| | 0.101 \| | 0.255 । | 0.347 \| | 0.198 | 0.099 | 0.094 |
| | 0.062 \| | 0.071 \| | 0.105 \| | 0.125 | 0.167 | |
| | 0.009 \| | 0.024 \| | 0.032 \| | 0.019 | 0.009 | |
| 25-34K | 51 | 172 \| | 215 \| | 123 | 36 | 597 |
| | 17.567 | 3.862 \| | 5.042 \| | 13.307 | 0.255 | |
| | 0.085 \| | 0.288 । | 0.360 \| | 0.206 | 0.060 | 0.111 |
| | 0.062 \| | 0.095 । | 0.129 \| | 0.154 | 0.120 | |
| | 0.009 \| | 0.032 \| | 0.040 I | 0.023 | 0.007 | I |
| 35-49K | 97 | 270 । | 303 \| | 118 \| | 24 | 812 \| |
| | 5.779 | 0.011 \| | 10.798 \| | 0.055 | 9.808 | |
| | 0.119 \| | 0.333 \| | 0.373 \| | 0.145 \| | 0.030 | 0.151 |
| | 0.118 \| | 0.150 \| | 0.182 \| | 0.147 \| | 0.080 | |

Statistics for All Table Factors

Pearson's Chi-squared test

Chi~2 $=894.1685$ d.f. $=28 \quad p=3.216132 \mathrm{e}-170$

27.4 Graphing Categorical Data

27.4.1 A Bar Chart for a Single Variable

```
ggplot(sm1, aes \((x=\) genhealth, fill \(=\) genhealth \())+\)
    geom_bar() +
    scale_fill_brewer(palette = "Set1") +
    guides(fill = "none")
```


or, you might prefer to plot percentages, perhaps like this:

```
ggplot(sm1, aes(x = genhealth, fill = genhealth)) +
    geom_bar(aes(y = (..count..)/sum(..count..))) +
    geom_text(aes(y = (..count..)/sum(..count..),
            label = scales::percent((..count..) /
                            sum(..count..))),
            stat = "count", vjust = 1,
            color = "white", size = 5) +
    scale_y_continuous(labels = scales::percent) +
    scale_fill_brewer(palette = "Dark2") +
    guides(fill = "none") +
    labs(y = "Percentage")
```

Warning: The dot-dot notation (`..count..') was deprecated in ggplot2 3.4.0. i Please use `after_stat (count)' instead.

Use bar charts, rather than pie charts.

27.4.2 A Counts Chart for a 2-Way Cross-Tabulation

```
ggplot(sm1, aes(x = genhealth, y = incomegroup)) +
    geom_count()
```


27.5 Building a Model for genh using veg_day

To begin, we'll predict each subject's genh response using just one predictor, veg_day.

27.5.1 A little EDA

Let's start with a quick table of summary statistics.

```
sm1 |> group_by(genh) |>
    summarize(n(), mean(veg_day), sd(veg_day), median(veg_day))
```


To actually see what's going on, we might build a comparison boxplot, or violin plot. The plot below shows both, together, with the violin plot helping to indicate the skewed nature of the veg_day data and the boxplot indicating quartiles and outlying values within each genhealth category.

```
ggplot(sm1, aes(x = genhealth, y = veg_day)) +
    geom_violin(aes(fill = genhealth), trim = TRUE) +
    geom_boxplot(width = 0.2) +
    guides(fill = "none", color = "none") +
    theme_bw()
```


27.5.2 Describing the Proportional-Odds Cumulative Logit Model

To fit the ordinal logistic regression model (specifically, a proportional-odds cumulative-logit model) in this situation, we'll use the polr function in the MASS package.

- Our outcome is genh, which has five ordered levels, with 1-E best and 5-P worst.
- Our model will include one quantitative predictor, veg_day.

The model will have four logit equations:

- one estimating the log odds that genh will be less than or equal to 1 (i.e. genhealth $=$ 1_Excellent,)
- one estimating the \log odds that genh ≤ 2 (i.e. genhealth $=1 _$Excellent or $2 _$VeryGood,)
- another estimating the log odds that genh ≤ 3 (i.e. genhealth $=1 _$Excellent, 2 _VeryGood or 3_Good,) and, finally,
- one estimating the log odds that genh ≤ 4 (i.e. genhealth $=1 _$Excellent, 2_VeryGood, 3_Good or 4_Fair)

That's all we need to estimate the five categories, since $\operatorname{Pr}($ genh $\leq 5)=1$, because (5 _Poor) is the maximum category for genhealth.

We'll have a total of five free parameters when we add in the slope for veg_day, and I'll label these parameters as $\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}$ and β_{1}. The ζ s are read as "zeta" values, and the people who built the polr function use that term.

The four logistic equations that will be fit differ only by their intercepts. They are:

$$
\operatorname{logit}[\operatorname{Pr}(g e n h \leq 1)]=\log \frac{\operatorname{Pr}(\operatorname{genh} \leq 1}{\operatorname{Pr}(\operatorname{genh}>1)}=\zeta_{1}-\beta_{1} \text { veg }_{d} a y
$$

which describes the log odds of a genh value of 1 (Excellent) as compared to a genh value greater than 1 (which includes Very Good, Good, Fair and Poor).

The second logit model is:

$$
\operatorname{logit}[\operatorname{Pr}(\text { genh } \leq 2)]=\log \frac{\operatorname{Pr}(\text { genh } \leq 2}{\operatorname{Pr}(\text { genh }>2)}=\zeta_{2}-\beta_{1} \text { veg }_{d} a y
$$

which describes the log odds of a genh value of 1 (Excellent) or 2 (Very Good) as compared to a genh value greater than 2 (which includes Good, Fair and Poor).

Next we have:

$$
\operatorname{logit}[\operatorname{Pr}(g e n h \leq 3)]=\log \frac{\operatorname{Pr}(\operatorname{genh} \leq 3}{\operatorname{Pr}(\operatorname{genh}>3)}=\zeta_{3}-\beta_{1} v e g_{d} a y
$$

which describes the log odds of a genh value of 1 (Excellent) or 2 (Very Good) or 3 (Good) as compared to a genh value greater than 3 (which includes Fair and Poor).

Finally, we have

$$
\operatorname{logit}[\operatorname{Pr}(\text { genh } \leq 4)]=\log \frac{\operatorname{Pr}(\text { genh } \leq 4}{\operatorname{Pr}(\operatorname{genh}>4)}=\zeta_{4}-\beta_{1} \operatorname{veg}_{d} a y
$$

which describes the log odds of a genh value of 4 or less, which includes Excellent, Very Good, Good and Fair as compared to a genh value greater than 4 (which is Poor).

Again, the intercept term is the only piece that varies across the four equations.
In this case, a positive coefficient β_{1} for veg_day means that increasing the value of veg_day would increase the genh category (describing a worse level of general health, since higher values of genh are associated with worse health.)

27.5.3 Fitting a Proportional Odds Logistic Regression with polr

Our model m1 will use proportional odds logistic regression (sometimes called an ordered logit model) to predict genh on the basis of veg_day. The polr function from the MASS package will be our main tool. Note that we include Hess = TRUE to retain what is called the Hessian matrix, which lets R calculate standard errors more effectively in summary and other follow-up descriptions of the model.

```
m1 <- polr(genh ~ veg_day,
    data = sm1, Hess = TRUE)
summary(m1)
Call:
polr(formula = genh ~ veg_day, data = sm1, Hess = TRUE)
Coefficients:
    Value Std. Error t value
veg_day -0.1847 0.02178 -8.48
Intercepts:
            Value Std. Error t value
1-E|2_VG -2.0866 0.0584 -35.7590
2_VG|3_G -0.4065 0.0498 -8.1621
3_G|4_F 1.0202 0.0521 19.5771
4_F|5_P 2.5002 0.0710 35.2163
Residual Deviance: 15669.85
AIC: 15679.85
    confint(m1)
Waiting for profiling to be done...
    2.5% 97.5 %
-0.2277073-0.1423088
```


27.6 Interpreting Model m1

27.6.1 Looking at Predictions

Consider two individuals:

- Harry, who eats an average of 2.0 servings of vegetables per day, so Harry's veg_day $=$ 2 , and
- Sally, who eats an average of 1.0 serving of vegetables per day, so Sally's veg_day $=1$.

We're going to start by using our model m1 to predict the genh for Harry and Sally, so we can see the effect (on the predicted genh probabilities) of a change of one unit in veg_day.

For example, what are the log odds that Harry, with veg_day $=2$, will describe his genh as Excellent (genh ≤ 1)?

$$
\begin{gathered}
\operatorname{logit}[\operatorname{Pr}(g e n h \leq 1)]=\zeta_{1}-\beta_{1} v e g _d a y \\
\operatorname{logit}[\operatorname{Pr}(\operatorname{genh} \leq 1)]=-2.0866-(-0.1847) \text { veg_day } \\
\operatorname{logit}[\operatorname{Pr}(\operatorname{genh} \leq 1)]=-2.0866-(-0.1847)(2)=-1.7172
\end{gathered}
$$

That's not much help. So we'll convert it to a probability by taking the inverse logit. The formula is

$$
\operatorname{Pr}(g e n h \leq 1)=\frac{\exp \left(\zeta_{1}+\beta_{1} \text { veg }_{d} a y\right)}{1+\exp \left(\zeta_{1}+\beta_{1} \text { veg }_{d} a y\right)}=\frac{\exp (-1.7172)}{1+\exp (-1.7172)}=\frac{0.180}{1.180}=0.15
$$

So the model estimates a 15% probability that Harry will describe his genh as Excellent.
OK. Now, what are the log odds that Harry, who eats 2 servings per day, will describe his genh as either Excellent or Very Good (genh ≤ 2)?

$$
\begin{gathered}
\operatorname{logit}[\operatorname{Pr}(\text { genh } \leq 2)]=\zeta_{2}-\beta_{1} v e g _d a y \\
\operatorname{logit}[\operatorname{Pr}(\operatorname{genh} \leq 2)]=-0.4065-(-0.1847) \text { veg_day } \\
\operatorname{logit}[\operatorname{Pr}(\text { genh } \leq 2)]=-0.4065-(-0.1847)(2)=-0.0371
\end{gathered}
$$

Again, we'll convert this to a probability by taking the inverse logit.

$$
\operatorname{Pr}(g e n h \leq 2)=\frac{\exp \left(\zeta_{2}+\beta_{1} v e g_{d} a y\right)}{1+\exp \left(\zeta_{2}+\beta_{1} v e g_{d} a y\right)}=\frac{\exp (-0.0371)}{1+\exp (-0.0371)}=\frac{0.964}{1.964}=0.49
$$

So, the model estimates a probability of .49 that Harry will describe his genh as either Excellent or Very Good, so by subtraction, that's a probability of .34 that Harry describes his genh as Very Good.

Happily, that's the last time we'll calculate this by hand.

27.6.2 Making Predictions for Harry (and Sally) with predict

Suppose Harry eats 2 servings of vegetables per day on average, and Sally eats 1 .

```
    temp.dat <- data.frame(name = c("Harry", "Sally"),
            veg_day = c(2,1))
predict(m1, temp.dat, type = "p")
    1-E 2_VG 3_G 4_F 5_P
1 0.1522351 0.3385119 0.3097906 0.1457864 0.05367596
2 0.1298931 0.3148971 0.3246105 0.1667285 0.06387071
```

The predicted probabilities of falling into each category of genh are:

| Subject | veg_day | $\operatorname{Pr}\left(1 _\right.$E $)$ | $\operatorname{Pr}\left(2 _\mathrm{VG}\right)$ | $\operatorname{Pr}\left(3 _\mathrm{G}\right)$ | $\operatorname{Pr}\left(4 _\right.$F $)$ | $\operatorname{Pr}\left(5 _\mathrm{P}\right)$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Harry | 2 | 15.2 | 33.9 | 31.0 | 14.6 | 5.4 |
| Sally | 1 | 13.0 | 31.4 | 32.5 | 16.7 | 6.4 |

- Harry has a higher predicted probability of lower (healthier) values of genh. Specifically, Harry has a higher predicted probability than Sally of falling into the Excellent and Very Good categories, and a lower probability than Sally of falling into the Good, Fair and Poor categories.
- This means that Harry, with a higher veg_day is predicted to have, on average, a lower (that is to say, healthier) value of genh.
- As we'll see, this association will be indicated by a negative coefficient of veg_day in the proportional odds logistic regression model.

27.6.3 Predicting the actual classification of genh

The default prediction approach actually returns the predicted genh classification for Harry and Sally, which is just the classification with the largest predicted probability. Here, for Harry that is Very Good, and for Sally, that's Good.

```
predict(m1, temp.dat)
```

[1] 2_VG 3_G
Levels: 1-E 2_VG 3_G 4_F 5_P

27.6.4 A Cross-Tabulation of Predictions?

```
addmargins(table(predict(m1), sm1$genh))
```

| | 1-E | 2_VG | 3_G | 4_F | 5_P | Sum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1-E | 6 | 3 | 3 | 3 | 0 | 15 |
| 2_VG | 647 | 1398 | 1198 | 525 | 192 | 3960 |
| 3_G | 169 | 404 | 466 | 273 | 107 | 1419 |
| 4_F | 0 | 0 | 0 | 0 | 0 | 0 |
| 5_P | 0 | 0 | 0 | 0 | 0 | 0 |
| Sum | 822 | 1805 | 1667 | 801 | 299 | 5394 |

The m1 model classifies all subjects in the sm1 sample as either Excellent, Very Good or Good, and most subjects as Very Good or Good.

27.6.5 The Fitted Model Equations

```
summary(m1)
Call:
polr(formula = genh ~ veg_day, data = sm1, Hess = TRUE)
Coefficients:
    Value Std. Error t value
veg_day -0.1847 0.02178 -8.48
```

```
Intercepts:
    Value Std. Error t value
1-E|2_VG -2.0866 0.0584 -35.7590
2_VG|3_G -0.4065 0.0498 -8.1621
3_G|4_F 1.0202 0.0521 19.5771
4_F|5_P 2.5002 0.0710 35.2163
Residual Deviance: 15669.85
AIC: 15679.85
```

The first part of the output provides coefficient estimates for the veg_day predictor, and these are followed by the estimates for the various model intercepts. Plugging in the estimates, we have:

$$
\begin{aligned}
& \operatorname{logit}[\operatorname{Pr}(\text { genh } \leq 1)]=-2.0866-(-0.1847) \text { veg }_{d} a y \\
& \operatorname{logit}[\operatorname{Pr}(\text { genh } \leq 2)]=-0.4065-(-0.1847) \text { veg }_{d} a y \\
& \operatorname{logit}[\operatorname{Pr}(\text { genh } \leq 3)]=1.0202-(-0.1847) \text { veg }_{d} a y \\
& \operatorname{logit}[\operatorname{Pr}(\text { genh } \leq 4)]=2.5002-(-0.1847) \text { veg }_{d} a y
\end{aligned}
$$

Note that we can obtain these pieces separately as follows:

```
    m1$zeta
    1-E|2_VG 2_VG|3_G 3_G|4_F 4_F|5_P
-2.0866313 -0.4064704 1.0202035 2.5001655
```

shows the boundary intercepts, and

```
    m1$coefficients
```

```
    veg_day
```

-0.1847272
shows the regression coefficient for veg_day.

27.6.6 Interpreting the veg_day coefficient

The first part of the output provides coefficient estimates for the veg_day predictor.

- The estimated slope for veg_day is -0.1847
- Remember Harry and Sally, who have the same values of bmi and costprob, but Harry eats one more serving than Sally does. We noted that Harry is predicted by the model to have a smaller (i.e. healthier) genh response than Sally.
- So a negative coefficient here means that higher values of veg_day are associated with more of the probability distribution falling in lower values of genh.
- We usually don't interpret this slope (on the log odds scale) directly, but rather exponentiate it.

27.6.7 Exponentiating the Slope Coefficient to facilitate Interpretation

We can compute the odds ratio associated with veg_day and its confidence interval as follows...

```
exp(coef(m1))
```

 veg_day
 0.8313311

```
exp(confint(m1))
```

Waiting for profiling to be done...
2.5 \% 97.5%
0.79635730 .8673534

- So, if Harry eats one more serving of vegetables than Sally, our model predicts that Harry will have 83.1% of the odds of Sally of having a larger genh score. That means that Harry is likelier to have a smaller genh score.
- Since genh gets larger as a person's general health gets worse (moves from Excellent towards Poor), this means that since Harry is predicted to have smaller odds of a larger genh score, he is also predicted to have smaller odds of worse general health.
- Our 95% confidence interval around that estimated odds ratio of 0.831 is (0.796, 0.867). Since that interval is entirely below 1 , the odds of having the larger (worse) genh for Harry are detectably lower than the odds for Sally.
- So, an increase in veg_day is associated with smaller (better) genh scores.

27.6.8 Comparison to a Null Model

We can fit a model with intercepts only to assess the predictive value of veg_day in our model m 1 , using the anova function.

```
m0 <- polr(genh ~ 1, data = sm1)
anova(m1, m0)
Likelihood ratio tests of ordinal regression models
Response: genh
    Model Resid. df Resid. Dev Test Df LR stat. Pr(Chi)
1 1 5390 15744.89
2 veg_day 5389 15669.85 1 vs 2 1 75.04297 0
```

We could also compare model m 1 to the null model m0 with AIC or BIC.

```
        AIC(m1, m0)
        df AIC
m1 5 15679.85
m0 4 15752.89
    BIC(m1,m0)
        df BIC
m1 5 15712.81
m0 4 15779.26
```

Model m1 looks like the better choice so far.

27.7 The Assumption of Proportional Odds

Let us calculate the odds for all levels of genh if a person eats two servings of vegetables. First, we'll get the probabilities, in another way, to demonstrate how to do so...

```
(prob.2 <- exp(m1$zeta - 2*m1$coefficients)/(1 + exp(m1$zeta - 2*m1$coefficients)))
```

```
    1-E|2_VG 2_VG|3_G 3_G|4_F 4_F|5_P
0.1522351 0.4907471 0.8005376 0.9463240
    (prob.1 <- exp(m1$zeta - 1*m1$coefficients)/(1 + exp(m1$zeta - 1*m1$coefficients)))
    1-E|2_VG 2_VG|3_G 3_G|4_F 4_F|5_P
0.1298931 0.4447902 0.7694008 0.9361293
```

Now, we'll calculate the odds, first for a subject eating two servings:

```
    (odds.2 = prob.2/(1-prob.2))
    1-E|2_VG 2_VG|3_G 3_G|4_F 4_F|5_P
0.1795724 0.9636607 4.0134766 17.6303153
```

And here are the odds, for a subject eating one serving per day:

```
    (odds.1 = prob.1/(1-prob.1))
1-E|2_VG 2_VG|3_G 3_G|4_F 4_F|5_P
0.1492841 0.8011211 3.3365277 14.6566285
```

Now, let's take the ratio of the odds for someone who eats two servings over the odds for someone who eats one.

```
odds.2/odds.1
```

1-E|2_VG 2_VG|3_G 3_G|4_F 4_F|5_P
1.202891 .202891 .202891 .20289

They are all the same. The odds ratios are equal, which means they are proportional. For any level of genh, the estimated odds that a person who eats 2 servings has better (lower) genh is about 1.2 times the odds for someone who eats one serving. Those who eat more vegetables have higher odds of better (lower) genh. Less than 1 means lower odds, and more than 1 means greater odds.

Now, let's take the log of the odds ratios:

```
    log(odds.2/odds.1)
```

1-E|2_VG 2_VG|3_G 3_G|4_F 4_F|5_P
0.18472720 .18472720 .18472720 .1847272

That should be familiar. It is the slope coefficient in the model summary, without the minus sign. R tacks on a minus sign so that higher levels of predictors correspond to the ordinal outcome falling in the higher end of its scale.

If we exponentiate the slope estimated by $\mathrm{R}(-0.1847)$, we get 0.83 . If we have two people, and A eats one more serving of vegetables on average than B , then the estimated odds of A having a higher 'genh' (i.e. worse general health) are 83% as high as B's.

27.7.1 Testing the Proportional Odds Assumption

One way to test the proportional odds assumption is to compare the fit of the proportional odds logistic regression to a model that does not make that assumption. A natural candidate is a multinomial logit model, which is typically used to model unordered multi-categorical outcomes, and fits a slope to each level of the genh outcome in this case, as opposed to the proportional odds logit, which fits only one slope across all levels.

Since the proportional odds logistic regression model is nested in the multinomial logit, we can perform a likelihood ratio test. To do this, we first fit the multinomial logit model, with the multinom function from the nnet package.

```
(m1_multi <- multinom(genh ~ veg_day, data = sm1))
```

```
# weights: 15 (8 variable)
initial value 8681.308100
iter 10 value 7890.985276
final value 7835.248471
converged
Call:
multinom(formula = genh ~ veg_day, data = sm1)
Coefficients:
        (Intercept) veg_day
2_VG 0.9791063-0.09296694
3_G 1.0911990 -0.19260067
```

```
4_F 0.5708594 -0.31080687
5_P -0.3583310 -0.34340619
```

Residual Deviance: 15670.5
AIC: 15686.5

The multinomial logit fits four intercepts and four slopes, for a total of 8 estimated parameters. The proportional odds logit, as we've seen, fits four intercepts and one slope, for a total of 5. The difference is 3 , and we use that number in the sequence below to build our test of the proportional odds assumption.

```
LL_1 <- logLik(m1)
LL_1m <- logLik(m1_multi)
(G <- -2 * (LL_1[1] - LL_1m[1]))
```

[1] -0.6488392

```
pchisq(G, 3, lower.tail = FALSE)
```

[1] 1

The p value is very large, so it indicates that the proportional odds model fits about as well as the more complex multinomial logit. A large p value here isn't always the best way to assess the proportional odds assumption, but it does provide some evidence of model adequacy.

27.8 Can model m1 be fit using rms tools?

Yes.

```
    d <- datadist(sm1)
    options(datadist = "d")
    m1_lrm <- lrm(genh ~ veg_day, data = sm1, x = T, y = T)
    m1_lrm
Logistic Regression Model
lrm(formula = genh ~ veg_day, data = sm1, x = T, y = T)
```

```
Frequencies of Responses
    1-E 2_VG 3_G 4_F 5_P
822 1805 1667 801 299
```



```
    Coef S.E. Wald Z Pr}(>|Z|
y>=2_VG 2.0866 0.0584 35.76 <0.0001
y>=3_G 0.4065 0.0498 8.16<0.0001
y>=4_F -1.0202 0.0521 -19.58<0.0001
y>=5_P -2.5002 0.0710 -35.22<0.0001
veg_day -0.1847 0.0218 -8.48<0.0001
```

The model has a small p value (remember the large sample size) but nonetheless appears very weak, with a Nagelkerke R^{2} of 0.015 , and a C statistic of 0.555 .

```
summary(m1_lrm)
    Effects Response : genh
Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
veg_day 1.21 2.36 1.15 -0.21243 0.025051 -0.26153 -0.16334
    Odds Ratio 1.21 2.36 1.15 0.80861 NA 0.76987 0.84931
```

A change from 1.21 to 2.36 servings in veg_day is associated with an odds ratio of 0.81 , with 95% confidence interval $(0.77,0.85)$. Since these values are all below 1, we have a clear indication of a statistically detectable effect of veg_day with higher veg_day associated with lower genh, which means, in this case, better health.

There is also a tool in rms called orm which may be used to fit a wide array of ordinal regression models. I suggest you read Frank Harrell's book on Regression Modeling Strategies if you want to learn more.

27.9 Building a Three-Predictor Model

Now, we'll model genh using veg_day, bmi and costprob.

27.9.1 Scatterplot Matrix

```
GGally::ggpairs(sm1 |>
    select(bmi, veg_day, costprob, genh))
```


We might choose to plot the costprob data as a binary factor, rather than the raw 0-1 numbers included above, but not at this time.

27.9.2 Our Three-Predictor Model, m2

```
m2 <- polr(genh ~ veg_day + bmi + costprob, data = sm1)
summary(m2)
```

```
Re-fitting to get Hessian
Call:
polr(formula = genh ~ veg_day + bmi + costprob, data = sm1)
Coefficients:
                            Value Std. Error t value
veg_day -0.17130 0.021783 -7.864
bmi 0.06673 0.003855 17.311
costprob 0.96825 0.084871 11.409
Intercepts:
            Value Std. Error t value
1-E|2_VG -0.1252 0.1229 -1.0183
2_VG|3_G 1.6358 0.1234 13.2572
3_G|4_F 3.1534 0.1294 24.3755
4_F|5_P 4.6881 0.1412 33.1928
Residual Deviance: 15229.24
AIC: 15243.24
```

This model contains four intercepts (to cover the five genh categories) and three slopes (one each for veg_day, bmi and costprob.)

27.9.3 Does the three-predictor model outperform m1?

```
anova(m1, m2)
```

Likelihood ratio tests of ordinal regression models

Response: genh

| | Model | Resid. df | Resid. Dev | Test | Df LR stat. Pr (Chi) | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | veg_day | 5389 | 15669.85 | | | |
| 2 veg_day + bmi + costprob | 5387 | 15229.24 | 1 | vs 2 | 2440.6041 | 0 |

It looks like the fit improves as we move from model 1 to model 2. The AIC and BIC are also better for the three-predictor model than they were for the model with veg_day alone.

```
AIC(m1, m2)
```

```
    df AIC
m1 5 15679.85
m2 7 15243.24
    BIC(m1, m2)
    df BIC
m1 5 15712.81
m2 7 15289.40
```


27.9.4 Wald tests for individual predictors

To obtain the appropriate Wald tests, we can use lrm to fit the model instead.

```
    d <- datadist(sm1)
    options(datadist = "d")
    m2_lrm <- lrm(genh ~ veg_day + bmi + costprob,
        data = sm1, x = T, y = T)
m2_lrm
```

Logistic Regression Model
$\operatorname{lrm}(f o r m u l a=$ genh \sim veg_day + bmi + costprob, data $=$ sm1, $\mathrm{x}=\mathrm{T}$,
$\mathrm{y}=\mathrm{T}$)

Frequencies of Responses

```
1-E 2_VG 3_G 4_F 5_P
822 1805 1667 801 299
```



```
y>=3_G -1.6358 0.1234 -13.26 <0.0001
y>=4_F -3.1534 0.1294 -24.38<0.0001
y>=5_P -4.6881 0.1412 -33.19<0.0001
veg_day -0.1713 0.0218 -7.86<0.0001
bmi 0.0667 0.0039 17.31<0.0001
costprob 0.9683 0.0849 11.41 <0.0001
```

It appears that each of the added predictors (bmi and costprob) adds statistically detectable value to the model.

27.9.5 A Cross-Tabulation of Predictions?

```
addmargins(table(predict(m2), sm1$genh))
```

| | 1-E | 2_VG | 3_G | 4_F | 5_P | Sum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1-E | 6 | 5 | 4 | 1 | 0 | 16 |
| 2_VG | 686 | 1295 | 950 | 388 | 141 | 3460 |
| 3_G | 128 | 495 | 672 | 374 | 135 | 1804 |
| 4_F | 1 | 9 | 38 | 36 | 20 | 104 |
| 5_P | 1 | 1 | 3 | 2 | 3 | 10 |
| Sum | 822 | 1805 | 1667 | 801 | 299 | 5394 |

At least the m2 model predicted that a few of the cases will fall in the Fair and Poor categories, but still, this isn't impressive.

27.9.6 Interpreting the Effect Sizes

We can do this in two ways:

- By exponentiating the polr output, which shows the effect of increasing each predictor by a single unit
- Increasing veg_day by 1 serving while holding the other predictors constant is associated with reducing the odds (by a factor of 0.84 with 95% CI $0.81,0.88$)) of higher values of genh: hence increasing veg_day is associated with increasing the odds of a response indicating better health.
- Increasing bmi by $1 \mathrm{~kg} / \mathrm{m}^{2}$ while holding the other predictors constant is associated with increasing the odds (by a factor of 1.07 with 95% CI 1.06, 1.08)) of higher values of genh: hence increasing bmi is associated with reducing the odds of a response indicating better health.
- Increasing costprob from 0 to 1 while holding the other predictors constant is associated with an increase (by a factor of 2.63 with 95% CI $2.23,3.11$)) of a higher genh value. Since higher genh values indicate worse health, those with costprob $=1$ are modeled to have generally worse health.

```
    exp(coef(m2))
    veg_day bmi costprob
0.8425722 1.0690045 2.6333356
    exp(confint(m2))
Waiting for profiling to be done...
Re-fitting to get Hessian
    2.5% 97.5 %
veg_day 0.8071346 0.879096
bmi 1.0609722 1.077126
costprob 2.2301783 3.110633
```

- Or by looking at the summary provided by 1 rm, which like all such summaries produced by rms shows the impact of moving from the 25 th to the 75 th percentile on all continuous predictors.

```
    summary(m2_lrm)
```

| Effects | | | | | | | | | |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | Response | : genh | | | | |
| Factor | Low | High | Diff. | Effect | S.E. | Lower 0.95 | Upper 0.95 | | |
| veg_day | 1.21 | 2.360 | 1.1500 | -0.19699 | 0.025051 | -0.24609 | -0.14789 | | |
| Odds Ratio | 1.21 | 2.360 | 1.1500 | 0.82120 | NA | 0.78185 | 0.86252 | | |
| bmi | 24.33 | 31.988 | 7.6575 | 0.51097 | 0.029515 | 0.45312 | 0.56882 | | |
| Odds Ratio | 24.33 | 31.988 | 7.6575 | 1.66690 | NA | 1.57320 | 1.76620 | | |
| costprob | 0.00 | 1.000 | 1.0000 | 0.96825 | 0.084871 | 0.80191 | 1.13460 | | |
| Odds Ratio | 0.00 | 1.000 | 1.0000 | 2.63330 | NA | 2.22980 | 3.10990 | | |

```
plot(summary(m2_lrm))
```


Odds Ratio

27.9.7 Quality of the Model Fit

Model m2, as we can see from the m2_lrm output, is still weak, with a Nagelkerke R^{2} of 0.10 , and a C statistic of 0.63.

27.9.8 Validating the Summary Statistics in m2_lrm

```
set.seed(43203); validate(m2_lrm)
```

| | index.orig | training | test | optimism | index.corrected |
| :--- | ---: | ---: | ---: | ---: | ---: | n

| Q | 0.0958 | 0.0984 | 1.6099 | -1.5115 | 1.607340 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| B | 0.2314 | 0.2308 | 0.2315 | -0.0007 | 0.232140 |
| g | 0.6199 | 0.6278 | 0.6182 | 0.0096 | 0.610340 |
| gp | 0.1434 | 0.1448 | 0.1430 | 0.0018 | 0.141740 |

As in our work with binary logistic regression, we can convert the index-corrected Dxy to an index-corrected C with $\mathrm{C}=0.5+(\mathrm{Dxy} / 2)$. Both the R^{2} and C statistics are pretty consistent with what we saw above.

27.9.9 Testing the Proportional Odds Assumption

Again, we'll fit the analogous multinomial logit model, with the multinom function from the nnet package.

```
    (m2_multi <- multinom(genh ~ veg_day + bmi + costprob,
    data = sm1))
```

```
# weights: 25 (16 variable)
initial value 8681.308100
iter 10 value 8025.745934
iter 20 value 7605.878993
final value 7595.767250
converged
Call:
multinom(formula = genh ~ veg_day + bmi + costprob, data = sm1)
Coefficients:
        (Intercept) veg_day bmi costprob
2_VG -0.9126285 -0.0905958 0.06947231 0.3258568
3_G -2.1886806 -0.1893454 0.11552563 1.0488262
4_F -3.4095145-0.3056028 0.13679908 1.4422074
5_P -4.2629564-0.3384199 0.13178846 1.8612088
```

Residual Deviance: 15191.53
AIC: 15223.53

The multinomial logit fits four intercepts and 12 slopes, for a total of 16 estimated parameters. The proportional odds logit in model m 2 , as we've seen, fits four intercepts and three slopes, for a total of 7 . The difference is 9 , and we use that number in the sequence below to build our test of the proportional odds assumption.

```
LL_2 <- logLik(m2)
LL_2m <- logLik(m2_multi)
(G <- -2 * (LL_2[1] - LL_2m[1]))
```

[1] 37.70952

```
pchisq(G, 9, lower.tail = FALSE)
```


[1] $1.965186 \mathrm{e}-05$

The resulting small p value suggests a problem with proportional odds assumption. When this happens, I suggest you build the following plot of score residuals:

```
par(mfrow = c(2,2))
resid(m2_lrm, 'score.binary', pl=TRUE)
par(mfrow= c(1,1))
```


From this plot, bmi (especially) and costprob vary as we move from the Very Good toward the Poor cutpoints, relative to veg_day, which is more stable.

27.9.10 Plotting the Fitted Model

27.9.10.1 Nomogram

```
fun.ge3 <- function(x) plogis(x - m2_lrm$coef[1] + m2_lrm$coef[2])
fun.ge4 <- function(x) plogis(x - m2_lrm$coef[1] + m2_lrm$coef[3])
fun.ge5 <- function(x) plogis(x - m2_lrm$coef[1] + m2_lrm$coef[4])
plot(nomogram(m2_lrm, fun=list('Prob Y >= 2 (VG or worse)' = plogis,
                            'Prob Y >= 3 (Good or worse)' = fun.ge3,
                            'Prob Y >= 4 (Fair or Poor)' = fun.ge4,
                            'Prob Y = 5 (Poor)' = fun.ge5)))
```

Points

veg_day

bmi
costprob

Total Points
0

Linear Predictor

Prob $\mathrm{Y}>=2$ (VG or worse)

Prob Y >= 3 (Good or worse)

Prob $Y>=4$ (Fair or Poor)

Prob $Y=5$ (Poor)

27.9.10.2 Using Predict and showing mean prediction on 1-5 scale
ggplot(Predict(m2_lrm, fun = Mean(m2_lrm, code = TRUE)))
ggplot(Predict(m2_lrm, fun = Mean(m2_lrm, code = TRUE)))

The nomogram and Predict results would be more interesting, of course, if we included a spline or interaction term. Let's do that in model m3_1rm, and also add the incomegroup information.

27.10 A Larger Model, including income group

```
m3_lrm <- lrm(gen_n ~ rcs(veg_day,3) + rcs(bmi, 4) +
        incomegroup + catg(costprob) +
        bmi %ia% costprob,
    data = sm1, x = T, y = T)
m3_lrm
```

Logistic Regression Model

```
lrm(formula = gen_n ~ rcs(veg_day, 3) + rcs(bmi, 4) + incomegroup +
    catg(costprob) + bmi %ia% costprob, data = sm1, x = T, y = T)
```

Frequencies of Responses

| 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: |
| 822 | 1805 | 1667 | 801 | 299 |

| | Model Likelihood Ratio Test | | Discrimination
 Indexes | Rank Discrim. | | |
|---|---|---|---|---|---|---|
| Obs 5394 | LR chi2 | 1190.35 | R2 0.209 | C | 0.696 |
| max \|deriv| 1e-11 | d.f. | 14 | R2 $(14,5394) 0.196$ | Dxy | 0.391 |
| | Pr (> chi2 | <0.0001 | R2 $(14,4995) 0.210$ | gamma | 0.392 |
| | | | Brier 0.214 | tau-a | 0.291 |

| | Coef | S.E. | Wald Z | Pr (>\|z|) |
| :---: | :---: | :---: | :---: | :---: |
| $y>=2$ | 3.7535 | 0.4852 | 7.74 | <0.0001 |
| $y>=3$ | 1.8717 | 0.4838 | 3.87 | 0.0001 |
| $y>=4$ | 0.2035 | 0.4831 | 0.42 | 0.6737 |
| y > $=5$ | -1.4386 | 0.4846 | -2.97 | 0.0030 |
| veg_day | -0.2602 | 0.0633 | -4.11 | <0.0001 |
| veg_day' | 0.1756 | 0.0693 | 2.53 | 0.0113 |
| bmi | -0.0325 | 0.0203 | -1.60 | 0.1086 |
| bmi' | 0.5422 | 0.0989 | 5.48 | <0.0001 |
| bmi'' | -1.4579 | 0.2663 | -5.47 | <0.0001 |
| incomegroup $=10-14 \mathrm{~K}$ | 0.2445 | 0.1705 | 1.43 | 0.1516 |
| incomegroup $=15-19 \mathrm{~K}$ | -0.2626 | 0.1582 | -1.66 | 0.0969 |
| incomegroup $=20-24 \mathrm{~K}$ | -0.6434 | 0.1501 | -4.29 | <0.0001 |
| incomegroup $=25-34 \mathrm{~K}$ | -0.7427 | 0.1459 | -5.09 | <0.0001 |
| incomegroup $=35-49 \mathrm{~K}$ | -1.1621 | 0.1415 | -8.21 | <0.0001 |
| incomegroup $=50-74 \mathrm{~K}$ | -1.4579 | 0.1418 | -10.28 | <0.0001 |
| incomegroup $=75 \mathrm{~K}+$ | -1.8592 | 0.1361 | -13.66 | <0.0001 |
| costprob=1 | 1.4576 | 0.3528 | 4.13 | <0.0001 |
| bmi * costprob | -0.0259 | 0.0116 | -2.24 | 0.0250 |

Another option here would have been to consider building incomegroup as a scored variable, with an order on its own, but I won't force that here. Here's the polr version...

```
m3 <- polr(genh ~ rcs(veg_day,3) + rcs(bmi, 4) +
    incomegroup + costprob +
    bmi %ia% costprob, data = sm1)
```


27.10.1 Cross-Tabulation of Predicted/Observed Classifications

```
addmargins(table(predict(m3), sm1$genh))
```

| | 1-E | 2_VG | 3_G | 4_F | 5_P | Sum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1-E | 3 | 2 | 0 | 0 | 0 | 5 |
| 2_VG | 642 | 1200 | 815 | 221 | 49 | 2927 |
| 3_G | 170 | 565 | 754 | 468 | 182 | 2139 |
| 4_F | 7 | 37 | 96 | 108 | 65 | 313 |
| 5_P | 0 | 1 | 2 | 4 | 3 | 10 |
| Sum | 822 | 1805 | 1667 | 801 | 299 | 5394 |

This model predicts more Fair results, but still far too many Very Good with no Excellent at all.

27.10.2 Nomogram

```
fun.ge3 <- function(x) plogis(x - m3_lrm$coef[1] + m3_lrm$coef[2])
fun.ge4 <- function(x) plogis(x - m3_lrm$coef[1] + m3_lrm$coef[3])
fun.ge5 <- function(x) plogis(x - m3_lrm$coef[1] + m3_lrm$coef[4])
plot(nomogram(m3_lrm, fun=list('Prob Y >= 2 (VG or worse)' = plogis,
    'Prob Y >= 3 (Good or worse)' = fun.ge3,
    'Prob Y >= 4 (Fair or Poor)' = fun.ge4,
    'Prob Y = 5 (Poor)' = fun.ge5)))
```


27.10.3 Using Predict and showing mean prediction on 1-5 scale

```
ggplot(Predict(m3_lrm, fun = Mean(m3_lrm, code = TRUE)))
```


Here, we're plotting the mean score on the 1-5 gen_n scale.

27.10.4 Validating the Summary Statistics in m3_1rm

```
set.seed(43221); validate(m3_lrm)
```

| | index.orig | training | test | optimism | index.corrected |
| :--- | ---: | ---: | ---: | ---: | ---: | n

Still not very impressive, but much better than where we started. It's not crazy to suggest that in new data, we might expect a Nagelkerke R^{2} of 0.205 and a C statistic of $0.5+(0.3886 / 2)$ $=0.6943$.

27.11 References for this Chapter

1. Some of the material here is adapted from http://stats.idre.ucla.edu/r/dae/ordinal-logistic-regression/.
2. I also found great guidance at http://data.library.virginia.edu/fitting-and-interpreting-a-proportional-odds-model/
3. Other parts are based on the work of Jeffrey S. Simonoff (2003) Analyzing Categorical Data in Chapter 10. Related data and R code are available at http://people.stern.nyu.edu/jsimonof/AnalCatData/Splus/.
4. Another good source for a simple example is https://onlinecourses.science.psu.edu/stat504/node/177.
5. Also helpful is https://onlinecourses.science.psu.edu/stat504/node/178 which shows a more complex example nicely.

28 Multinomial Logistic Regression

28.1 R Setup Used Here

```
knitr::opts_chunk$set(comment = NA)
library(broom)
library(knitr)
library(MASS)
library(nnet)
library(tidyverse)
theme_set(theme_bw())
```


28.1.1 Data Load

```
authorship <- read_csv("data/authorship.csv", show_col_types = FALSE)
```


28.2 The Authorship Example

This example is based on the work of Jeffrey S. Simonoff (2003) Analyzing Categorical Data in Chapter 10. Related data and R code are available at this link. Meanwhile, the data set and analysis are based on the work of Peng RD and Hengartner NW (2002) Quantitative analysis of literary styles, The American Statistician, 56, 175-185.

The authorship.csv data file contains 841 rows. Each row describes a block of text that contains 1700 total words from one of several books by four authors: Jane Austen (samples from 7 books), Jack London (6 books), John Milton (2 books), or William Shakespeare (12 books). The data include counts within the blocks of text of 69 function words, such as "a", "by", "no", "that" and "with". The goal of our analysis, mirroring that of Simonoff, will be to use the incidence of these function words to build a model that distinguishes the authors.

```
authorship$Author <- factor(authorship$Author,
    levels = c("Shakespeare", "Austen", "London", "Milton"))
authorship
```

\# A tibble: 841 x 71
BookID Author a all also an and any are as at be
<dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
$\begin{array}{lllllllllll}1 & \text { Austen } & 46 & 12 & 0 & 3 & 66 & 9 & 4 & 16 & 13\end{array} 13$
$\begin{array}{lllllllllll}1 \text { Austen } & 35 & 10 & 0 & 7 & 44 & 4 & 3 & 18 & 16 & 9\end{array}$
$\begin{array}{lrrrrrrrrrr}1 \text { Austen } & 46 & 2 & 0 & 3 & 40 & 1 & 13 & 11 & 9 & 23 \\ 1 \text { Austen } & 40 & 7 & 0 & 4 & 64 & 3 & 3 & 20 & 13 & 20\end{array}$
$\begin{array}{lrrrrrrrrrr}1 & \text { Austen } & 29 & 5 & 0 & 6 & 52 & 5 & 14 & 17 & 6 \\ 1 & 27 & 8 & 0 & 3 & 42 & 2 & 15 & 11 & 14 & 12\end{array}$
$\begin{array}{lrrrrrrrrrr}1 & \text { Austen } & 27 & 8 & 0 & 3 & 42 & 2 & 15 & 11 & 14 \\ 1 & \text { Austen } & 34 & 8 & 0 & 15 & 44 & 2 & 6 & 16 & 14\end{array}$
$\begin{array}{lllllllllll}1 & \text { Austen } & 38 & 6 & 1 & 2 & 67 & 3 & 6 & 17 & 4 \\ 21\end{array}$
$\begin{array}{rrrrrrrrrrr}1 \text { Austen } & 34 & 12 & 0 & 5 & 50 & 2 & 8 & 7 & 13 & 7 \\ 1 \text { Austen } & 54 & 8 & 0 & 6 & 44 & 4 & 8 & 13 & 17 & 14\end{array}$
831 more rows
59 more variables: been <dbl>, but <dbl>, by <dbl>, can <dbl>, do <dbl>,
down <dbl>, even <dbl>, every <dbl>, ‘for` <dbl>, from <dbl>, had <dbl>, has <dbl>, have <dbl>, her <dbl>, his <dbl>, ‘if` <dbl>, 'in` <dbl>,
into <dbl>, is <dbl>, it <dbl>, its <dbl>, may <dbl>, more <dbl>,
must <dbl>, my <dbl>, no <dbl>, not <dbl>, now <dbl>, of <dbl>, on <dbl>,
one <dbl>, only <dbl>, or <dbl>, our <dbl>, should <dbl>, so <dbl>, ...

To-morrow, and to-morrow, and to-morrow, Creeps in this petty pace from day to day, To the last syllable of recorded time; And all our yesterdays have lighted fools The way to dusty death. Out, out, brief candle! Life's but a walking shadow, a poor player, That struts and frets his hour upon the stage, And then is heard no more. It is a tale Told by an idiot, full of sound and fury, Signifying nothing.

28.3 Focus on 11 key words

Again, following Simonoff, we will focus on 11 words from the set of 69 potential predictors in the data, specifically...

- "be", "been", "had", "it", "may", "not", "on", "the", "upon", "was" and "which"

```
    auth2 <- authorship |>
        select(Author, BookID, be, been, had, it, may, not,
            on, the, upon, was, which)
    auth2.long <- auth2 |>
        gather("word", "n", 3:13)
    auth2.long
# A tibble: 9,251 x 4
    Author BookID word n
    <fct> <dbl> <chr> <dbl>
    1 Austen 1 be 13
2 Austen 1 be 9
3 Austen 1 be 23
4 Austen 1 be 20
5 \text { Austen 1 be 16}
6 Austen 1 be 12
7 Austen 1 be 11
8 Austen 1 be 21
9 Austen 1 be 7
1 0 ~ A u s t e n ~ 1 ~ b e ~ 1 4 ~
# i 9,241 more rows
```


28.3.1 Side by Side Boxplots

```
ggplot(auth2.long, aes(x = Author, \(\mathrm{y}=\mathrm{n})\) ) +
    geom_boxplot() +
    facet_wrap(~ word, ncol = 3, scales = "free_y") +
    labs(x = "", y = "")
```


Oh! do not attack me with your watch. A watch is always too fast or too slow. I cannot be dictated to by a watch.

28.4 A Multinomial Logistic Regression Model

Let's start with a multinomial model to predict Author on the basis of these 11 key predictors, using the multinom function from the nnet package.

```
    authnom1 <- multinom(Author ~ be + been + had + it + may + not + on +
            the + upon + was + which, data=authorship,
    maxit=200)
```

```
# weights: 52 (36 variable)
```


weights: 52 (36 variable)

initial value 1165.873558
initial value 1165.873558
iter 10 value 293.806160
iter 10 value 293.806160
iter 20 value 273.554538
iter 20 value 273.554538
iter 30 value 192.309644
iter 30 value 192.309644
iter 40 value 71.091334
iter 40 value 71.091334
iter 50 value 48.419335
iter 50 value 48.419335
iter 60 value 46.808141
iter 60 value 46.808141
iter 70 value 46.184752
iter 70 value 46.184752
iter }80\mathrm{ value 46.026162
iter }80\mathrm{ value 46.026162
iter 90 value 45.932823
iter 90 value 45.932823
iter }100\mathrm{ value 45.897793
iter }100\mathrm{ value 45.897793
iter 110 value 45.868017
iter 110 value 45.868017
iter 120 value 45.863256
iter 120 value 45.863256
final value 45.863228
final value 45.863228
converged
converged
summary(authnom1)
Call:
multinom(formula = Author ~ be + been + had + it + may + not +
on + the + upon + was + which, data = authorship, maxit = 200)
Coefficients:
(Intercept) be been had it may
Austen -15.504834 0.48974946 0.5380318 0.4620513 0.00388835 -0.15025084
London -14.671720 -0.07497073 0.1733116 0.4842272 0.08674782 -0.01590702

```
\begin{tabular}{lrrrrrrr} 
Milton & -1.776866 & -0.10891178 & -0.9127155 & 0.5319573 & -0.82046587 & -0.06760436 \\
& not & on & the & upon & was & which \\
Austen & -0.08861462 & 0.5967404 & -0.02361614 & -2.119001 & 0.7021371 & 0.10370827 \\
London & -0.32567063 & 0.5749969 & 0.12039782 & -1.914428 & 0.6767581 & -0.59121054 \\
Milton & 0.05575887 & 0.5198173 & 0.08739368 & -2.042475 & 0.3048202 & -0.05939104
\end{tabular}

Std. Errors:
(Intercept) be been had it may not

Austen 4.8922580 .16436940 .31173570 .26950810 .095543760 .30081640 .1078329
London \(\quad 5.3728980 .19166180 .33087590 .28125550 .113556970 .49468040 .1440760\)
Milton \(\quad 5.4173000 .16132820 .59105610 .31873040 .230154210 .35007530 .1309306\)
on the upon was which
Austen 0.2213827 0.03457288 0.6426484 0.1808681 0.1646472
London 0.22516420 .030888810 .70721290 .17689010 .2542886
Milton 0.22235750 .047836460 .64363990 .18208850 .2111105

Residual Deviance: 91.72646
AIC: 163.7265

\subsection*{28.4.1 Testing Model 1}

\section*{z1 <- summary(authnom1)\$coefficients/summary(authnom1)\$standard.errors round (z1,2)}
\begin{tabular}{lrrrrrrrrrrr} 
& (Intercept) & be & been & had & it & may & not & on & the & upon & was \\
Austen & -3.17 & 2.98 & 1.73 & 1.71 & 0.04 & -0.50 & -0.82 & 2.70 & -0.68 & -3.30 & 3.88 \\
London & -2.73 & -0.39 & 0.52 & 1.72 & 0.76 & -0.03 & -2.26 & 2.55 & 3.90 & -2.71 & 3.83 \\
Milton & -0.33 & -0.68 & -1.54 & 1.67 & -3.56 & -0.19 & 0.43 & 2.34 & 1.83 & -3.17 & 1.67 \\
& which & & & & & & & & & & \\
Austen 0.63 & & & & & & & & & & & \\
London & -2.32
\end{tabular}
```

p1 <- (1 - pnorm(abs(z1), 0, 1)) * 2
kable(round(p1,3))

```
\begin{tabular}{lcccccccccccc}
\hline & (Intercept) & be & been & had & it & may & not & on & the & upon & was & which \\
\hline Austen & 0.002 & 0.003 & 0.084 & 0.086 & 0.968 & 0.617 & 0.411 & 0.007 & 0.495 & 0.001 & 0.000 & 0.529 \\
London & 0.006 & 0.696 & 0.600 & 0.085 & 0.445 & 0.974 & 0.024 & 0.011 & 0.000 & 0.007 & 0.000 & 0.020
\end{tabular}
\begin{tabular}{lcccccccccccc}
\hline & (Intercept) & be & been & had & it & may & not & on & the & upon & was & which \\
\hline Milton & 0.743 & 0.500 & 0.123 & 0.095 & 0.000 & 0.847 & 0.670 & 0.019 & 0.068 & 0.002 & 0.094 & 0.778 \\
\hline
\end{tabular}

Simonoff suggests that "been" and "may" can be dropped. What do we think?
The proper function of man is to live, not to exist. I shall not waste my days in trying to prolong them. I shall use my time.

\subsection*{28.5 Model 2}
```

authnom2 <- multinom(Author ~ be + had + it + not + on +
the + upon + was + which, data=authorship,
maxit=200)

```
```


weights: 44 (30 variable)

initial value 1165.873558
iter }10\mathrm{ value 304.985478
iter 20 value 285.428679
iter 30 value 143.301103
iter 40 value 54.589791
iter 50 value 52.140470
iter 60 value 51.421454
iter 70 value 51.012790
iter }80\mathrm{ value 50.888718
iter 90 value 50.834262
iter 100 value 50.743136
final value 50.743111
converged
summary(authnom2)
Call:
multinom(formula = Author ~ be + had + it + not + on + the +
upon + was + which, data = authorship, maxit = 200)
Coefficients:
(Intercept) be had it on
Austen -16.55647 0.45995950 0.6698612 0.02621612 -0.03684654 0.4676716

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline London & -16.06419 & -0.13378141 & 0.6052164 & 0.10517792 & -0.27934022 & 0.4958923 \\
\hline Milton & -2.22344 & -0.07031256 & 0.1737526 & -0.81984885 & 0.05444678 & 0.5363108 \\
\hline & the & upon & was & which & & \\
\hline Austen & -0.001852454 & -1.950761 & 0.6543956 & 0.06363998 & & \\
\hline London & 0.128565811 & -1.643829 & 0.6418607 & -0.54690144 & & \\
\hline Milton & 0.074236636 & -1.762533 & 0.2932065 & -0.08748272 & & \\
\hline
\end{tabular}

Std. Errors:
(Intercept) be had it not on

Austen 4.7230010 .12937290 .22018230 .086577460 .087711570 .1949021
London 5.2027320 .15876390 .23068030 .101172170 .116083480 .2072383

Milton 4.5938060 .14991030 .20572580 .215513770 .121036780 .1895226
the upon was which
Austen 0.029451390 .56202730 .15249820 .1466250
London 0.027399650 .62199270 .15129110 .2087120
Milton 0.044637210 .62467660 .16013930 .1928361

Residual Deviance: 101.4862
AIC: 161.4862

\subsection*{28.5.1 Comparing Model 2 to Model 1}
```

anova(authnom1, authnom2)

```

Likelihood ratio tests of Multinomial Models

Response: Author


\subsection*{28.5.2 Testing Model 2}
```

z2 <- summary(authnom2)$coefficients/summary(authnom2)$standard.errors
round(z2,2)

```
\begin{tabular}{lrrrrrrrrrr} 
& (Intercept) & be & had & it & not & on & the & upon & was & which \\
Austen & -3.51 & 3.56 & 3.04 & 0.30 & -0.42 & 2.40 & -0.06 & -3.47 & 4.29 & 0.43 \\
London & -3.09 & -0.84 & 2.62 & 1.04 & -2.41 & 2.39 & 4.69 & -2.64 & 4.24 & -2.62 \\
Milton & -0.48 & -0.47 & 0.84 & -3.80 & 0.45 & 2.83 & 1.66 & -2.82 & 1.83 & -0.45
\end{tabular}
```

 p2 <- (1 - pnorm(abs(z2), 0, 1)) * 2
    ```
round (p2,3)
\begin{tabular}{lrrrccccccc} 
& (Intercept) & be & had & it & not & on & the & upon & was which \\
Austen & 0.000 & 0.000 & 0.002 & 0.762 & 0.674 & 0.016 & 0.950 & 0.001 & 0.000 & 0.664 \\
London & 0.002 & 0.399 & 0.009 & 0.299 & 0.016 & 0.017 & 0.000 & 0.008 & 0.000 & 0.009 \\
Milton & 0.628 & 0.639 & 0.398 & 0.000 & 0.653 & 0.005 & 0.096 & 0.005 & 0.067 & 0.650
\end{tabular}

\subsection*{28.5.3 A little history}

Simonoff has an interesting note: Consider the lifetimes of these four authors:
- William Shakespeare was born in 1564 and died in 1616
- John Milton was born in 1608 (44 years after Shakespeare) and died in 1674
- Jane Austen was born in 1775 (211 years after Shakespeare) and died in 1817
- Jack London was born in 1876 (312 years after Shakespeare) and died in 1916

How many large coefficients does each author display relative to Shakespeare?

\subsection*{28.6 Classification Table}

How well does this model (model 2) distinguish these authors based on blocks of 1700 words of text?
```

table(authorship\$Author, predict(authnom2))

```
\begin{tabular}{lrrrr} 
& Shakespeare & Austen & London & Milton \\
Shakespeare & 168 & 3 & 1 & 1 \\
Austen & 4 & 308 & 5 & 0 \\
London & 0 & 1 & 294 & 1 \\
Milton & 2 & 0 & 1 & 52
\end{tabular}

Based on this classification table, I'd say it does a nice job. Almost \(98 \%\) of the blocks of text are correctly classified.

Fly, envious Time, till thou run out thy race; Call on the lazy leaden-stepping hours, Whose speed is but the heavy plummet's pace; And glut thyself with what thy womb devours, Which is no more then what is false and vain, And merely mortal dross; So little is our loss, So little is thy gain. For when, as each thing bad thou hast entomb'd And last of all thy greedy self consumed, Then long Eternity shall greet our bliss, With an individual kiss; And Joy shall overtake us, as a flood, When every thing that is sincerely good, And perfectly divine, With truth, and peace, and love, shall ever shine, About the supreme throne Of Him, to whose happy-making sight, alone, When once our heavenly-guided soul shall climb, Then all this earthly grossness quit, Attired with stars, we shall for ever sit, Triumphing over Death, and Chance, and thee, O Time!

\subsection*{28.7 Probability Curves based on a Single Predictor}

In situations where only one predictor is used, we can develop nice plots of estimated probabilities for each group as a function of the predictor. Suppose we look at the single word "been" (note that this was left out of Model 2.)

Note that the possible values for counts of "been" in the data range from 0 to 27 ...
```

summary(authorship\$been)

Min. 1st Qu. Median	Mean	3rd Qu.	Max.		
0.000	2.000	4.000	4.614	7.000	27.000

```

Now, we'll build a model to predict the author based solely on the counts of the word "been".
```

authnom3 <- multinom(Author ~ been,
data=authorship, maxit=200)

```
```


weights: 12 (6 variable)

initial value 1165.873558
iter }10\mathrm{ value 757.915093
iter 20 value 755.454631
final value 755.454551
converged

```

Next, we'll build a grid of the predicted log odds for each author (as compared to Shakespeare) using the fitted coefficients. The grid will cover every possible value from 0 to 27 , increasing by 0.1 , using the following trick in R.
```

beengrid <- cbind(1,c(0:270)/10)
austenlogit <- beengrid %*% coef(authnom3)[1,]
londonlogit <- beengrid %*% coef(authnom3)[2,]
miltonlogit <- beengrid %*% coef(authnom3)[3,]

```

Next, we'll use that grid of logit values to estimate the fitted probabilities for each value of "been" between 0 and 27 .
```

 austenprob <- exp(austenlogit)/
 (exp(austenlogit) + exp(londonlogit) +
 exp(miltonlogit) + 1)
 londonprob <- exp(londonlogit)/
(exp(austenlogit) + exp(londonlogit) +
exp(miltonlogit) + 1)
miltonprob <- exp(miltonlogit)/
(exp(austenlogit) + exp(londonlogit) +
exp(miltonlogit) + 1)
shakesprob <- 1 - austenprob - londonprob - miltonprob
been_dat <- data_frame(been_count = beengrid[,2],
austen = austenprob[,1],
london = londonprob[,1],
milton = miltonprob[,1],
shakespeare = shakesprob[,1])

```
Warning: ‘data_frame()' was deprecated in tibble 1.1.0.
i Please use 'tibble()' instead.
    been_dat
\# A tibble: 271 x 5
    been_count austen london milton shakespeare
\begin{tabular}{ccccc} 
<dbl> & <dbl> & <dbl> & <dbl> & <dbl> \\
0 & 0.0258 & 0.136 & 0.285 & 0.553 \\
0.1 & 0.0288 & 0.147 & 0.272 & 0.553 \\
0.2 & 0.0321 & 0.158 & 0.258 & 0.551 \\
0.3 & 0.0357 & 0.171 & 0.245 & 0.548
\end{tabular}
\begin{tabular}{rrrrrr}
5 & 0.4 & 0.0396 & 0.184 & 0.232 & 0.545 \\
6 & 0.5 & 0.0438 & 0.197 & 0.219 & 0.540 \\
7 & 0.6 & 0.0484 & 0.211 & 0.207 & 0.534 \\
8 & 0.7 & 0.0534 & 0.225 & 0.195 & 0.527 \\
9 & 0.8 & 0.0587 & 0.240 & 0.183 & 0.518 \\
10 & 0.9 & 0.0644 & 0.256 & 0.171 & 0.509
\end{tabular}
\# i 261 more rows

Now, we gather the data by author name and probability
```

 been_dat_long <- been_dat |>
 gather("name", "prob", 2:5)
 been_dat_long

A tibble: 1,084 x 3

 been_count name prob
 <dbl> <chr> <dbl>
 0 austen 0.0258
 0.1 austen 0.0288
 0.2 austen 0.0321
 0.3 austen 0.0357
 0.4 austen 0.0396
 0.5 austen 0.0438
 0.6 austen 0.0484
 0.7 austen 0.0534
 0.8 austen 0.0587
 0.9 austen 0.0644
 i 1,074 more rows

```

\subsection*{28.7.1 Produce the Plot of Estimated Probabilities based on "been" counts}
```

ggplot(been_dat_long, aes(x = been_count, y = prob,
col = name)) +
geom_line(linewidth = 1.5) +
labs(x = "Count of the word `been`",
y = "Model probability")

```


\subsection*{28.7.2 Boxplot of "been" counts}

Compare this to what we see in the raw counts of the word "been".
```

been.long <- filter(auth2.long, word == "been")
been.long$Auth <- fct_relevel(been.long$Author,
"Austen", "London", "Milton", "Shakespeare")

releveling to make the colors match the model plot

ggplot(been.long, aes(x = Auth, y = n, fill = Auth)) +
geom_boxplot() +
guides(fill = "none") +
labs(x = "", y = "Count of the word `been`")

```


\subsection*{28.7.3 Quote Sources}
1. To-morrow, and to-morrow, and to-morrow ... Shakespeare Macbeth Act 5.
2. Oh! do not attack me with your watch. ... Jane Austen Mansfield Park
3. The proper function of man is to live, not to exist. ... Jack London The Bulletin San Francisco 1916-12-02.
4. Fly, envious Time, till thou run out thy race ... John Milton On Time

\section*{29 Time To Event / Survival Data}

In many medical studies, the main outcome variable is the time to the occurrence of a particular event.
- In a randomized controlled trial of cancer, for instance, surgery, radiation, and chemotherapy might be compared with respect to time from randomization and the start of therapy until death.
- In this case, the event of interest is the death of a patient, but in other situations it might be remission from a disease, relief from symptoms or the recurrence of a particular condition.
- Such observations are generally referred to by the generic term survival data even when the endpoint or event being considered is not death but something else.

These notes on survival analysis are just an introduction to the key ideas of the field. The PQHS department offers an entire course on survival analysis (PQHS 435) and I recommend that to those of you interested in deeper learning about the approaches we'll discuss, or in learning more about other approaches to survival analysis.

The OpenIntro Statistics extra material on Survival Analysis in R, written by David Diez is a very useful guide to survival analysis in R, using the survival package and supplemented by the KMsurv and OIsurv packages. A PDF version of that material is available, along with a full set of the code used in that guide, along with instructions to obtain the packages.

\subsection*{29.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(mosaic)
library(survival)
library(survminer)
library(tidyverse)
theme_set(theme_bw())

```

\subsection*{29.1.1 Data Load}
```

hem <- read_csv("data/hem.csv", show_col_types = FALSE)

```

\subsection*{29.2 An Outline of Key Topics Discussed in these Notes}

In this chapter, we tackle the building blocks of survival analysis, and use R to work with survival objects.
- The Survival Function, \(S(t)\)
- The Kaplan-Meier Estimate/Plot
- Comparing Survival Functions with log rank test
- The Hazard Function, \(H(t)=-\log (S(t))\)
- Using survival and related packages in R

In the next chapter, we introduce the the Cox Proportional Hazards Regression Model, one of several available models for fitting regressions to time-to-event (survival) outcomes.

\subsection*{29.3 Foundations of Survival Analysis}

Survival analysis is concerned with prospective studies, where we start with a cohort of subjects and follow them forwards in time to determine some clinical outcome. Follow-up continues until either some event of interest occurs, the study ends, or further observation becomes impossible.

The outcomes in a survival analysis consist of the subject's fate and length of follow-up at the end of the study.
- For some patients, the outcome of interest may not occur during follow-up.
- For such patients, whose follow-up time is censored, we know only that this event did not occur while the patient was being followed. We do not know whether or not it will occur at some later time.

The primary problems with survival data are non-normality and censoring...
1. Survival data are quantitative, but not symmetrically distributed. They will often appear positively skewed, with a few people surviving a very long time compared with the majority; so assuming a normal distribution will not be reasonable.
2. At the completion of the study, some patients may not have reached the endpoint of interest (death, relapse, etc.). Consequently, the exact survival times are not known.
- All that is known is that the survival times are greater than the amount of time the individual has been in the study.
- The survival times of these individuals are said to be censored (precisely, they are right-censored).

\subsection*{29.3.1 The Survival Function, \(S(t)\)}

The survival function, \(S(t)\) (sometimes called the survivor function) is the probability that the survival time, \(T\), is greater than or equal to a particular time, \(t\).
- \(S(t)=\) proportion of people surviving to time \(t\) or beyond

If there's no censoring, the survival function is easy to estimate.
\[
\hat{S}(t)=\frac{\# \text { of subjects with survival times } \geq t}{n}
\]
but this won't work if there is censoring.

\subsection*{29.3.2 Kaplan-Meier Estimator of the Survival Function}

The survival function \(S(t)\) is the probability of surviving until at least time \(t\). It is essentially estimated by the number of patients alive at time \(t\) divided by the total number of study subjects remaining at that time.

The Kaplan-Meier estimator first orders the (unique) survival times from smallest to largest, then estimates the survival function at each unique survival time.
- The survival function at the second death time, \(t_{(2)}\) is equal to the estimated probability of not dying at time \(t_{(2)}\) conditional on the individual being still at risk at time \(t_{(2)}\).

In the presence of censoring, the survival function is estimated as follows.
1. Order the survival times from smallest to largest, where \(\mathrm{t} \_\{(\mathrm{j})\}\) is the \(j\) th largest unique survival time, so we have...
\[
t_{(1)} \leq t_{(2)} \leq t_{(3)} \leq \ldots t_{(n)}
\]
2. The Kaplan-Meier estimate of the survival function is
\[
\hat{S}(t)=\prod_{j: t_{(j)} \leq t}\left(1-\frac{d_{j}}{r_{j}}\right)
\]
where \(r_{j}\) is the number of people at risk just before \(t_{(j)}\), including those censored at time \(t_{(j)}\), and \(d_{j}\) is the number of people who experience the event at time \(t_{(j)}\).
When we want to compare survival functions (or their Kaplan-Meier estimates, at least) we'll use a log rank test or one of several extensions of that test.

\subsection*{29.3.3 Creating a Survival Object in R}

To do survival analysis in \(R\), we're going to start with three main functions, all in the survival package:
- Surv creates a survival object
- survfit builds a Kaplan-Meier test, and the results may be plotted, as we've seen.
- survdiff builds a log rank test, that will let us compare two survival functions, as well as running several alternatives.

Plus, we'll build out some estimates of the hazard function.
The Surv function, part of the survival package in R, will create a survival object from two arguments:
1. time \(=\) follow-up time
2. event \(=\) a status indicator, where
- event \(=1\) or TRUE means the event was observed (for instance, the patient died)
- event \(=0\) or FALSE means the follow-up time was censored

\subsection*{29.4 A First Example: Recurrent Lobar Intracerebral Hemorrhage}

O'Donnell et al. (2000) studied the effect of the apolipoprotein E gene on the risk of recurrent lobar intracerebral hemorrhage in 70 patients who survived such a hemorrhage \({ }^{1}\). Patients in the study are classified by:
- time \(=\) follow-up time, in months
- recur \(=\) indicator of whether or not they had a recurrent event \((1=\) subject had a recurrence, 0 subject did not have a recurrence), and

\footnotetext{
\({ }^{1}\) These data come from Dupont WD (2002) Statistical Modeling for Biomedical Researchers. New York: Cambridge U. Press, section 6.4.
}
- genotype \(=\) the subject's apolipoprotein E genotype \((0=\) Homozygous \(\epsilon 3 / \epsilon 3\) and \(1=\) At least one \(\epsilon 2\) or \(\epsilon 4\) allele)
```

 hem |> head(4)
    ```
\# A tibble: \(4 \times 4\)
    id genotype time recur
    <dbl> <dbl> <dbl> <dbl>
\(\begin{array}{lllll}1 & 1 & 0 & 0.230 & 1\end{array}\)
\(\begin{array}{lllll}2 & 2 & 0 & 1.05 & 0\end{array}\)
\(\begin{array}{lllll}3 & 3 & 1 & 1.38 & 0\end{array}\)
\(\begin{array}{lllll}4 & 4 & 1 & 1.41 & 1\end{array}\)
    table(hem\$recur)
\(0 \quad 1\)
5218

We have 70 patients at the start, and observe 18 events (rest are censored.)
```

 favstats(time ~ recur, data = hem)
 recur min Q1 median Q3 max mean sd n
 1 0 1.0513350 14.414783 23.01437 38.64477 53.88091 25.51129 14.68242 52
2 1 0.2299795 3.367556 10.92403 24.84600 42.87474 14.98517 13.88893 18
missing
1 0
20

```

The median survival time looks like 23 weeks in the patients who do not exhibit a recurrence, but only 11 weeks in those who do.

\subsection*{29.5 Building a Survival Object}
```

 hemsurv <- Surv(time = hem$time, event = hem$recur)
 head(hemsurv, 4)
 [1] 0.2299795 1.0513350+1.3798770+1.4127311

```

This object both displays the survival time for each subject, and indicates whether or not the subject's follow-up was censored before a recurrent event occurred. Survival times with a + sign indicate censoring.
- Subject 1 lived for 0.23 months hemorrhage-free and then had a recurrence.
- Subject 2 lived for 1.05 months hemorrhage-free, at which point they were censored (perhaps because the study ended, or perhaps because the subject was no longer available for follow-up)

Remember that 18 of the subjects experienced a recurrent hemorrhage, and the other 52 are therefore censored.

\subsection*{29.6 Kaplan-Meier Estimate of the Survival Function}

To build a Kaplan-Meier estimate of the survival function (to account properly for censoring), we take the survival object we have created, and use the survfit function from the survival package.
```

hemfit1 <- survfit(hemsurv ~ 1)

```

We can look at the hemfit1 object directly, although the K-M estimate is usually plotted.
```

print(hemfit1, print.rmean=TRUE)
Call: survfit(formula = hemsurv ~ 1)
n events rmean* se(rmean) median 0.95LCL 0.95UCL
[1,] 70 18 40.4 2.63 NA 42.9 NA
* restricted mean with upper limit = 53.9

```

We see that 18 events occurred out of a total of 70 subjects. The median survival time is listed as NA (missing) which implies it cannot be estimated by this simple model.
- This is because only 18 of our 70 subjects have a known recurrence-free survival time (the rest are censored), so we don't actually know what the median survival time will be across our 70 subjects. Apparently, R can produce a lower bound on a \(95 \%\) confidence interval for the median survival time, but not the actual point estimate.

We also observe a restricted mean survival time estimate. The restricted mean uses as its upper limit the largest observed or censored survival time, which here is a censored value: 53.9 months. So it is the mean survival time, assuming all censored subjects lived hemorrhage-free for 53.9 months.
```

summary(hemfit1)

```

Call: survfit(formula = hemsurv ~ 1)
\begin{tabular}{rrrrrrr} 
time & n.risk & n.event & survival & std.err & lower & \(95 \%\) CI \\
0.23 & 70 & 1 & 0.986 & 0.0142 & 0.958 & 1.000 \\
1.41 & 67 & 1 & 0.971 & 0.0202 & 0.932 & 1.000 \\
1.58 & 65 & 1 & 0.956 & 0.0248 & 0.909 & 1.000 \\
3.06 & 63 & 1 & 0.941 & 0.0287 & 0.886 & 0.999 \\
3.32 & 62 & 1 & 0.926 & 0.0320 & 0.865 & 0.991 \\
3.52 & 61 & 1 & 0.911 & 0.0349 & 0.845 & 0.982 \\
3.55 & 60 & 1 & 0.895 & 0.0375 & 0.825 & 0.972 \\
4.76 & 57 & 1 & 0.880 & 0.0400 & 0.805 & 0.962 \\
9.53 & 54 & 1 & 0.863 & 0.0424 & 0.784 & 0.951 \\
12.32 & 50 & 1 & 0.846 & 0.0449 & 0.762 & 0.939 \\
15.57 & 46 & 1 & 0.828 & 0.0476 & 0.740 & 0.926 \\
19.15 & 38 & 1 & 0.806 & 0.0511 & 0.712 & 0.912 \\
24.77 & 32 & 1 & 0.781 & 0.0553 & 0.679 & 0.897 \\
24.87 & 31 & 1 & 0.756 & 0.0590 & 0.648 & 0.881 \\
28.09 & 26 & 1 & 0.726 & 0.0635 & 0.612 & 0.862 \\
33.61 & 22 & 1 & 0.693 & 0.0687 & 0.571 & 0.842 \\
37.52 & 17 & 1 & 0.653 & 0.0758 & 0.520 & 0.819 \\
42.87 & 8 & 1 & 0.571 & 0.1011 & 0.404 & 0.808
\end{tabular}

This written summary provides us with lots of detail on the Kaplan-Meier estimate. In particular, the first two lines of this summary can be read to indicate the following.
- Up to time 0.23 months, no patients had a recurrence. Then, an event occurred, and the estimated survival (i.e. non-recurrence) probability is reduced from 1 to 0.986 .
- By time 1.41 months, when the next event occurred, only 67 patients remained at risk. This is because one of them had a recurrent hemorrhage already (at 0.23 months) and two others had been right-censored. The estimated hemorrhage-free survival probability estimate starting at time 1.41 months is now 0.971 .

A Kaplan-Meier plot graphically represents this summary.

\subsection*{29.6.1 The Kaplan-Meier Plot, using Base \(R\)}

Now, let's plot the Kaplan-Meier estimate, so we can see what is going on.
```

plot(hemfit1, ylab="Pr(Hemorrhage-Free Survival)",
xlab="Months of Follow-Up",
main="Kaplan-Meier Plot for hem Data")

```


The solid line indicates estimated hemorrhage-free survival probability. The dotted lines identify pointwise confidence intervals (default \(95 \%\) ).
- For example, we see that the estimated probability of hemorrhage-free survival to 20 months is estimated to be about 0.8
- The estimated probability of hemorrhage-free survival to 50 months is estimated to be about 0.6

The steps down indicate events (recurrences.) The estimated probability of survival to 0 months starts at 1 , and drops down at each time point where an event (or more than one event) is observed.

\subsection*{29.6.2 Using survminer to draw survival curves}

Another approach to plotting the Kaplan-Meier estimate comes from ggsurvplot, from the survminer package.
```

ggsurvplot(hemfit1, data = hem)

```


Again, the solid line indicates estimated hemorrhage-free survival probability. The crosses indicate censoring. The steps down indicate events (recurrences,) and the shading indicates (default \(95 \%\) ) pointwise confidence intervals. By pointwise confidence intervals, I mean that these bounds apply only to individual points in the time scale.

For more on an alternative approach, using simultaneous confidence bands, visit the OpenIntro Statistics Survival Analysis in R materials, written by David Diez, which are also posted on our web site.

\subsection*{29.6.3 A "Fancy" K-M Plot with a number at risk table}

We can do a lot more with these plots. Following the suggestions at https://github.com/kassambara/survminer/ we can create the following...
```

ggsurvplot(hemfit1, data = hem,
conf.int = TRUE, \# Add confidence interval
risk.table = TRUE, \# Add risk table
xlab = "Time in months", \# adjust X axis label
break.time.by = 12 \# add tick every 12 months
)

```



This sort of plot is really designed to work best when we compare multiple groups in terms of their survival. So let's do that.

\subsection*{29.7 Comparing Survival Across the Two Genotypes}

Now, suppose we want to compare the hemorrhage-free survival functions for subjects classified by their apoliprotein E genotype. Working with the same survival object hemsurv we now run the survfit function to compare across the two genotype groups.
```

hemfit2 <- survfit(hemsurv ~ hem\$genotype)
print(hemfit2, print.rmean=TRUE)

```
Call: survfit(formula = hemsurv ~ hem\$genotype)
\begin{tabular}{rrrrrrrr} 
& \multicolumn{1}{c}{\(n\) events } & rmean* & se(rmean) & median & \(0.95 L C L\) & \(0.95 U C L\) \\
hem\$genotype \(=0\) & 32 & 4 & 47.8 & 2.87 & NA & NA & NA \\
hem\$genotype \(=1\) & 38 & 14 & 33.9 & 3.77 & 37.5 & 24.9 & NA \\
* restricted mean with upper limit \(=\) & 53.9 & &
\end{tabular}
- In genotype \(=0\) (the subjects who are Homozygous \(\epsilon 3 / \epsilon 3\),) we had 32 subjects, and observed 4 recurrent hemorrhages. Our estimated restricted mean survival time in those subjects is 47.8 months and we cannot estimate a median survival time because only a small fraction of our subjects were not censored.
- In genotype = 1 (subjects who have at least one \(\epsilon 2\) or \(\epsilon 4\) allele,) we had 38 subjects and observed 14 recurrences. The estimated restricted mean survival time is 33.9 months in these subjects, and we can (it seems) estimate a median survival time in this group of 37.5 months. Note that we don't actually need to observe the event in half of the subjects to estimate a median survival time.

\subsection*{29.7.1 Kaplan-Meier Survival Function Estimates, by Genotype}

I find I have to crank the figure height in Quarto up to at least 6 to get the risk table to show up nicely in this setting.
```

ggsurvplot(hemfit2, data = hem,
conf.int = TRUE,
xlab = "Time in months",
break.time.by = 12,
legend.labs = c("Homozygous", "Heterozygous"),
risk.table = TRUE,
risk.table.height = 0.25
)

```


It appears that patients who were homozygous for the \(\epsilon 3\) allele of this gene (i.e. genotype \(=\) 0 in the hemorrhage data) had a much better prognosis than others (genotype \(=1\).)

\subsection*{29.8 Testing the difference between two survival curves}

To obtain a significance test comparing these two survival curves, we turn to a log rank test, which tests the null hypothesis \(H_{0}: S_{1}(t)=S_{2}(t)\) for all \(t\) where the two exposures have
survival functions \(S_{1}(t)\) and \(S_{2}(t)\). We use the survdiff function to explore this test, which uses a \(\chi^{2}\) statistic to do the testing.
```

survdiff(hemsurv ~ hem$genotype)
Call:
survdiff(formula = hemsurv ~ hem$genotype)
N Observed Expected (O-E)^2/E (O-E) ~2/V

| hem\$genotype $=0$ | 32 | 4 | 9.28 | 3.00 | 6.28 |
| :--- | :--- | ---: | :--- | :--- | :--- |
| hem\$genotype $=1$ | 38 | 14 | 8.72 | 3.19 | 6.28 |

```
    Chisq= 6.3 on 1 degrees of freedom, \(p=0.01\)

Based on the log rank test, we see a pretty small \(p\) value ( \(p=.0122\) ) for the comparison of the hemorrhage-free survival curves for the two genotypes, as shown in the Kaplan-Meier plot.
- The log rank test generalizes to permit survival comparisons across more than two groups, with the test statistic having an asymptotic chi-squared distribution with one degree of freedom less than the number of patient groups being compared.

\subsection*{29.8.1 Alternative log rank tests}

An alternative approach to testing is the Peto and Peto modification of the Gehan-Wilcoxon test, which results from adding \(\mathrm{rho}=1\) to the survdiff function (rho=0, the default, yields the log rank test.)
```

 survdiff(hemsurv ~ hem$genotype, rho=1)
 Call:
survdiff(formula = hemsurv ~ hem$genotype, rho = 1)
 N Observed Expected (O-E)^2/E (O-E)^2/V
hem$genotype=0 32 3.63 7.87 2.29 5.46
hem\$genotype=1 38 11.79 7.54 笽 lllll
Chisq= 5.5 on 1 degrees of freedom, p= 0.02

```

As compared to the log rank test, this Peto-Peto modification (and others using rho >0) give greater weight to the left hand (earlier) side of the survival curves.
- To obtain chi-square tests that give greater weight to the right hand (later) side of the survival curves than the log rank test, use a rho value which is less than 0 .

\subsection*{29.9 A "Fancy" K-M Plot with a number at risk table}

We can add the log rank test result to our "fancy" K-M plot. Visit https://github.com/kassambara/survminer/ for more options.
```

ggsurvplot(hemfit2, data = hem, size = 1,
palette = c("purple", "darkgoldenrod"), \# custom colors
conf.int = TRUE, \# Add confidence interval
pval = TRUE, \# Add p-value
risk.table = TRUE, \# Add risk table
risk.table.height = 0.25, \# change if you have >2 groups
risk.table.y.text.col = T, \# show colors in table listing
xlab = "Time in months", \# adjust X axis label
break.time.by = 12, \# break X axis in time intervals
legend.labs = c("Homozygous", "Heterozygous"), \# labels
ggtheme = theme_bw() \# Change ggplot2 theme
)

```


\subsection*{29.9.1 Customizing the Kaplan-Meier Plot Presentation Further}

We can even add a plot of the number of censored subjects at each time point, as well as a median survival pointer (which, of course, we've seen that we can't estimate
in one of the groups), and customize the style of the confidence intervals. Again, see https://github.com/kassambara/survminer/ for even more customized results.
```

ggsurvplot(hemfit2,
data = hem,
palette = c("\#E7B800", "\#2E9FDF"),
risk.table = TRUE,
pval = TRUE,
conf.int = TRUE,
xlab = "Time in months",
break.time.by = 12,
ggtheme = theme_light(),
risk.table.y.text.col = T,
risk.table.height = 0.25,
risk.table.y.text = FALSE,
ncensor.plot = TRUE,
ncensor.plot.height = 0.25,
conf.int.style = "step",
surv.median.line = "hv",
legend.labs = c("Homozygous", "Heterozygous")
)

```




\subsection*{29.10 The Hazard Function}

To build regression models for time-to-event data, we will need to introduce the hazard function. Consider a subject in the hemorrhage study who has a hemorrhage-free survival time of 9 months.
- For this subject to have had a recurrent hemorrhage at 9 months, they had to be hemorrhage-free for the first 8 months.
- The subject's hazard at 9 months is the failure rate "per month" conditional on the subject being hemorrhage-free for the first 8 months.

If \(S(t)\) is the survival function, and time \(t\) is taken to be continuous, then \(S(t)=e^{H(t)}\) defines the hazard function \(H(t)\).
- Note that \(H(t)=-\ln (S(t))\).
- The function \(H(t)\) is an important analytic tool.
- It's used to describe the concept of the risk of "failure" in an interval after time \(t\), conditioned on the subject having survived to time \(t\).
- It's often called the cumulative hazard function, to emphasize the fact that its value is the "sum" of the hazard up to time \(t\).

There are several different methods to estimate \(H(t)\), but we'll focus on two...
1. The inverse Kaplan-Meier estimator
2. The Nelson-Aalen estimator

\subsection*{29.10.1 The Inverse Kaplan-Meier Estimator of \(H(t)\)}

Our first estimator of the hazard function, \(H(t)\) will be the inverse Kaplan-Meier estimate, which I'll place in an R object called H_est1.
- To start, we will take the negative of the log of the Kaplan-Meier survival estimate. That takes care of the first \(t-1\) levels of the eventual estimate.
- To complete the process, we will repeat the final one of those time-specific estimates at the end.
```

H_est1 <- -log(hemfit1\$surv)
H_est1 <- c(H_est1, tail(H_est1, 1))

```

Here are the first five, and last five values of the hazard function estimate.
```

head(H_est1,5) \# first 5 values

```
[1] 0.014388740 .014388740 .014388740 .029426610 .02942661
```

tail(H_est1, 5) \# last 5

```
[1] 0.56020490 .56020490 .56020490 .56020490 .5602049

We can create a little tibble containing the times and hazard estimates, like this:
```

haz_hem <- tibble(
time = c(hemfit1$time, tail(hemfit1$time, 1)),
inverse_KM = H_est1
)

```

\subsection*{29.10.2 Cumulative Hazard Function from Inverse K-M}

Since we've built the data set of times and hazard values, we can use the geom_step function in ggplot2.
```

ggplot(haz_hem, aes(x = time, y = inverse_KM)) +
geom_step() +
scale_x_continuous(breaks = c(0, 12, 24, 36, 48)) +
labs(x = "Months of Follow-Up",
y = "Cumulative Hazard",
title = "Cumulative Hazard Function via Inverse K-M")

```


\subsection*{29.10.3 The Nelson-Aalen Estimator of \(H(t)\)}

An alternative estimate of the cumulative hazard is called the Nelson-Aalen estimate, captured here in H_est2.
h_st <- hemfit1\$n.event / hemfit1\$n.risk
H_est2 <- cumsum (h_st)
H_est2 <- c (H_est2, tail(H_est2, 1))
haz_hem\$Nelson_Aalen <- H_est2
head(haz_hem)
\# A tibble: 6 x 3
time inverse_KM Nelson_Aalen
<dbl> <dbl> <dbl>
\(10.230 \quad 0.0144 \quad 0.0143\)
\(21.05 \quad 0.0144 \quad 0.0143\)
\(31.38 \quad 0.0144 \quad 0.0143\)
\(41.41 \quad 0.0294 \quad 0.0292\)
\(\begin{array}{llll}5 & 1.51 & 0.0294 & 0.0292\end{array}\)
\(\begin{array}{llll}6 & 1.58 & 0.0449 & 0.0446\end{array}\)

\subsection*{29.10.4 Convert Wide Data to Long}

In order to easily plot the two hazard function estimates in the same graph, we'll want to convert these data from wide format to long format, with the pivot_longer function.
```

 haz_hem_comp <- pivot_longer(data = haz_hem, cols = 2:3,
 names_to = "method", values_to = "hazardest")
 head(haz_hem_comp)
    ```
\# A tibble: 6 x 3
    time method hazardest
    <dbl> <chr>
        <dbl>
10.230 inverse_KM 0.0144
20.230 Nelson_Aalen 0.0143
31.05 inverse_KM 0.0144
41.05 Nelson_Aalen 0.0143
51.38 inverse_KM 0.0144
61.38 Nelson_Aalen 0.0143

\subsection*{29.10.5 Plot Comparison of Hazard Estimates}
```

ggplot(haz_hem_comp, aes(x = time, y = hazardest,
col = method)) +
geom_step(linewidth = 2) +
scale_x_continuous(breaks = c(0, 12, 24, 36, 48)) +
labs(x = "Months of Follow-Up",
y = "Cumulative Hazard",
title = "Cumulative Hazard Function") +
theme_bw()

```


We can see that the two cumulative hazard function estimates are nearly identical in this case. We could instead compare the two functions in faceted plots, if that would be helpful.
```

ggplot(haz_hem_comp, aes(x = time, y = hazardest)) +
geom_step() +
scale_x_continuous(breaks = c(0, 12, 24, 36, 48)) +
labs(x = "Months of Follow-Up",
y = "Cumulative Hazard",
title = "Cumulative Hazard Function") +
facet_grid(method ~ .) + theme_bw()

```


\subsection*{29.11 NEW!! Checking Assumptions Using a log (-log) plot}

When fitting a log rank test, we may wish to consider whether the proportional hazards assumption required by such a test is satisfied. One common approach to doing this is to fit a \(\log\) minus \(\log\) plot, as follows.
```

plot(hemfit2, fun = "cloglog",
main = "log minus log plot for hemfit2",
xlab = "Months (on log scale)",
ylab = "log(-log(survival)", col = c(1,2))
llab <- gsub("x = ","", names(hemfit2\$strata))
legend("bottomright", legend=llab, col=1:2,
lty = 1, horiz = FALSE, bty='n', cex = 0.7)

```

\section*{log minus \(\log\) plot for hemfit2}


Since the two curves shown in the plot cross during the observation period, this is an indication that the proportional hazard assumption made by the log rank test may be unsatisfied.

Next, we will consider the issue of modeling a survival outcome using Cox proportional hazards regression.

\section*{30 Cox Regression Models, Part 1}

\subsection*{30.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(broom)
library(survival)
library(rms)
library(tidyverse)
theme_set(theme_bw())

```

\subsection*{30.1.1 Data Load}
```

hem <- read_csv("data/hem.csv", show_col_types = FALSE)

```

The Cox proportional hazards (Cox regression) model fits survival data with a constant (i.e. not varying over time) covariate \(x\) to a hazard function of the form:
\[
h(t \mid x)=h_{0}(t) \exp \left[\beta_{1} x\right]
\]
where we will estimate the unknown value of \(\beta_{1}\) and where \(h_{0}(t)\) is the baseline hazard, which is a non-parametric and unspecified value which depends on \(t\) but not on \(x\).
- For particular \(x\) values, we will be able to estimate the survival function if we have an estimate of the baseline survival function, \(\widehat{S}_{0}(t)\).

The estimated survival function for an individual with covariate value \(x_{k}\) turns out to be
\[
\hat{S}\left(t \mid x_{k}\right)=\left[\hat{S}_{0}(t)\right]^{\exp \left(\beta_{1} x_{k}\right)}
\]

From Wikipedia (yes, really) ...

Survival models can be viewed as consisting of two parts: the underlying hazard function, describing how the risk of event per time unit changes over time at baseline levels of covariates; and the effect parameters, describing how the hazard varies in response to explanatory covariates.

The key assumption in a Cox model is that the hazards are proportional - other types of survival models need not have this restriction. Quoting the always reliable (well, it's better than you think) Wikipedia ...

In a proportional hazards model, the unique effect of a unit increase in a covariate is multiplicative with respect to the hazard rate. For example, taking a drug may halve one's hazard rate for a stroke occurring, or, changing the material from which a manufactured component is constructed may double its hazard rate for failure.

There are two main approaches to fitting Cox models in R.
- the coxph function in the survival package, and
- the cph function in the rms package.

\subsection*{30.2 Sources used in building this material}
- David Diez's excellent supplement for the OpenIntro Statistics project, on Survival Analysis in R.
- Some tools in R to do some fancier work can be viewed at https://cran.r-project.org/ web/views/Survival.html
- You might also look at these two blog posts, originally from the Just Another Data blog.
- https://www.r-bloggers.com/survival-analysis-1/
- https://www.r-bloggers.com/survival-analysis-2/
- https://rpubs.com/daspringate/survival has some great slides, and I've stolen from them quite a bit here.

\subsection*{30.3 Fitting a Cox Model in \(\mathbf{R}\) with coxph}

As a first example, I'll fit a model to predict time to recurrence in the hem data, on the basis of a single predictor: genotype.
```

cfit <- with(hem, coxph(Surv(time, recur) ~ genotype))
cfit

```
```

Call:
coxph(formula = Surv(time, recur) ~ genotype)
coef exp(coef) se(coef) z p
genotype 1.3317 3.7874 0.5699 2.337 0.0195
Likelihood ratio test=6.61 on 1 df, p=0.01015
n= 70, number of events= 18

```

This summary provides an overall comparison of the two genotypes, using a proportional hazards model.
- The default approach in R is to use the "efron" method of breaking ties: other options include "breslow" and "exact".

\subsection*{30.3.1 Summarizing the Fit}
```

summary(cfit)
Call:
coxph(formula = Surv(time, recur) ~ genotype)
n= 70, number of events= 18
coef exp(coef) se(coef) z Pr (> |z|)
genotype 1.3317 3.7874 0.5699 2.337 0.0195 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
exp(coef) exp(-coef) lower . }95\mathrm{ upper . 95
genotype 3.787 0.264 1.239 11.57
Concordance= 0.622 (se = 0.061)
Likelihood ratio test= 6.61 on 1 df, p=0.01
Wald test = 5.46 on 1 df, p=0.02
Score (logrank) test = 6.28 on 1 df, p=0.01

```

This provides estimates of the \(\beta\) value for genotype, including standard errors and \(p\) values for a Wald test. Also included is an estimate of the hazard ratio and its confidence interval.
- Here we have a hazard ratio estimate of \(\exp (c o e f)=3.787\), with \(95 \%\) CI \((1.24,11.57)\).
- The hazard ratio is the multiplicative effect of the covariate (here, having at least one of the \(\epsilon 2\) or \(\epsilon 4\) allele) on the hazard function for recurrent hemorrhage
- A hazard ratio of 1 indicates no effect
- A hazard ratio > 1 indicates an increase in the hazard as the covariate rises
- A hazard ratio \(<1\) indicates a decrease in the hazard as the covariate rises

We can also tidy the hazard ratio estimate with the broom package.
```

 tidy(cfit, exponentiate = TRUE)

A tibble: 1 x 5

 term estimate std.error statistic p.value
 <chr> <dbl> <dbl> <dbl> <dbl>
    ```


In addition, we have several other summaries:
- The concordance measure is only appropriate when we have at least one continuous predictor in our Cox model.
- The Cox \& Snell pseudo- \(R^{2}\) reflects the improvement of the model we've fit over the model with an intercept alone, but isn't a proportion of anything (hence the listing of the maximum possible value).
- The Likelihood ratio, Wald and Score (logrank) tests provide insight into the overall predictive value for the model.

We can obtain a more detailed description of the likelihood-ratio test of the model with anova.
```

 anova(cfit)
 Analysis of Deviance Table
Cox model: response is Surv(time, recur)
Terms added sequentially (first to last)
loglik Chisq Df Pr(>|Chi|)
NULL -66.675
genotype -63.371 6.6078 1 0.01015 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

\subsection*{30.3.2 Glancing at the model?}
```

glance(cfit)

A tibble: 1 x 18

 n nevent statistic.log p.value.log statistic.sc p.value.sc statistic.wald
 <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 70 18 10 6.61

i 11 more variables: p.value.wald <dbl>, statistic.robust <dbl>,

p.value.robust <dbl>, r.squared <dbl>, r.squared.max <dbl>,

concordance <dbl>, std.error.concordance <dbl>, logLik <dbl>, AIC <dbl>,

BIC <dbl>, nobs <int>

```

Here, we obtain several additional summaries of the model, including most of the important information from a summary of cfit.

\subsection*{30.3.3 Plot the baseline survival function}

Here, we'll plot the time in terms of months, but scaled to 12 month (one year) groups.
```

plot(survfit(cfit), xscale = 12,
xlab = "Years after initial hemorrhage",
ylab = "Proportion without recurrent hemorrhage",
main = "Baseline Survival Function")

```


\subsection*{30.3.4 Plot the genotype effect}

There are several ways to build these plots. One approach follows. Another uses a cph fit and the survplot function from the rms package.
```

newdat <- with(hem,
data.frame(
genotype =c(1, 0)
)
)
newdat
genotype
1 1
2 0
plot(survfit(cfit, newdata = newdat), xscale = 12,
conf.int = TRUE,
col = c("red", "blue"),
xlab = "Years after initial hemorrhage",

```
```

 ylab = "Proportion without recurrent hemorrhage",
 main = "Plotting the genotype effects from the cfit Model")
 legend(0.5, 0.2,
legend=c(
expression(paste("Homozygous ", epsilon, "3 / ",
epsilon, "3")),
expression(paste("At least one ", epsilon,"2 or ",
epsilon,"4 Allele"))
),
lty = 1,
col = c("red", "blue"),
text.col = c("red", "blue"))

```


\subsection*{30.3.5 Testing the Key Assumption: Proportional Hazards}

The cox.zph function in the survival package will test the proportionality of all of the predictors included in your model by creating interactions with time.
- A small \(p\) value would indicate a violation of the proportionality assumption.
```

cox.zph(cfit, transform="km", global=TRUE)

```
```

 chisq df p
 genotype 2.09 1 0.15
GLOBAL 2.09 1 0.15

```

Since the \(p\) value here is quite large, we may be all right. But it's sensible to focus further on plots derived from the model fit, rather than relying solely on this test.

\subsection*{30.3.6 Plotting the cox.zph results for the cfit model}
cox.zph function can be used to generate a plot for each of the individual predictors in the model. Of course, in this case, we have just one predictor: genotype. If the proportional hazards assumption is appropriate, then we should see a slope of essentially zero in each such plot. A slope that is seriously different from zero suggests a violation of the proportional hazards assumption.
```

plot(cox.zph(cfit, transform="km", global=TRUE))

```


The plot suggests only a slight rise in the plotted values over time, suggesting no serious problem with the proportional hazards assumption. This combined testing and plotting approach is a reasonable starting place for assessing the proportional hazards assumption, but it's likely insufficient for good practical work.

Should the proportional hazards assumption fit less well, we have two main options: (1) fit a non-linear term in the covariate in question, and (2) fit a different type of regression model that doesn't require the proportional hazards assumption.

\subsection*{30.4 Fitting a Cox Model using cph from the rms package}

To set up a cph fit for our comparison of genotypes in the hem data, we'll follow these steps.
```

units(hem$time) <- "month"
d <- datadist(hem)
options(datadist = "d")
hemsurv <- Surv(time = hem$time, event = hem\$recur)
model_hem <- cph(hemsurv ~ genotype, data = hem,
x = TRUE, y = TRUE, surv = TRUE)

```

Note that the surv = TRUE piece is required to get some of the follow-up analyses to work smoothly.

\subsection*{30.4.1 The Main cph results}
```

model_hem
Cox Proportional Hazards Model
cph(formula = hemsurv ~ genotype, data = hem, x = TRUE, y = TRUE,
surv = TRUE)

| | | Model Tests | | Discrimination |
| :--- | ---: | :--- | ---: | :--- | ---: |
| | | | | Indexes |

 Coef S.E. Wald Z Pr (>|Z|)
 genotype 1.3317 0.5699 2.34 0.0195

```

Included here are likelihood ratio and score tests for the model as a whole (as compared to the intercept-only model), as well as the usual discrimination indexes.
- These include both an \(R^{2}\) analog due to Nagelkerke (which can go all the way up to 1 ), and
- Somers' Dxy, which can also produce an estimate of the C statistic (area under the curve) via the formula \(\mathrm{C}=0.5+\mathrm{Dxy} / 2\), so here \(\mathrm{C}=0.5+(.244 / 2)=0.622\)
- For lots more on survival analysis C statistics, look at the survAUC package in R.

These results are followed by a table of Wald tests for each of the coefficients in the model.

\subsection*{30.4.2 Using anova with cph}

As in other rms fits, we can use anova to obtain more detailed (in terms of combining nonlinear terms and, if available, interactions) tests.
```

anova(model_hem)

```

Wald Statistics Response: hemsurv
\begin{tabular}{llll} 
Factor & Chi-Square & d.f. & P \\
genotype & 5.46 & 1 & 0.0195 \\
TOTAL & 5.46 & 1 & 0.0195
\end{tabular}

\subsection*{30.4.3 Effect Sizes after cph fit}

We can use summary on a cph object to get and plot effect size estimates (here, these are hazard ratios.)
```

summary(model_hem)
Effects Response : hemsurv
Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
genotype }\begin{array}{llllllllll}{0}\&{1}\&{1}\&{1.3317}\&{0.5699}\&{0.21468}\&{2.4486}
Hazard Ratio 0 1 1 3.7873 NA 1.23950 11.5730
plot(summary(model_hem))

```


\subsection*{30.4.4 Validating cph summaries}

For details on these last few indices (D, U, Q, etc.), visit ?validate.cph in R.
```

set.seed(43201); validate(model_hem)

```
\begin{tabular}{lrrrrr} 
& index.orig & training & test & optimism & index.corrected
\end{tabular} n

\subsection*{30.4.5 Plotting Survival Functions for each Genotype}

Here is the survplot approach I mentioned earlier.
```

survplot(model_hem, genotype,
lty = c(1,2), n.risk=TRUE, time.inc=12,
col=c("magenta", "dodgerblue"),
xlab="Hemorrhage-Free Survival in Months")

```


We can add, for instance, confidence interval bars, with:
```

survplot(model_hem, genotype,
lwd=3, lty = c(1,2), conf.int=.95,
n.risk=TRUE, time.inc = 12, conf='bars',
col=c("magenta", "dodgerblue"),
xlab="Hemorrhage-Free Survival Time in Months")

```


For more details, check out R's help file on survplot.

\subsection*{30.4.6 Genotype's effect on log relative hazard}
```

ggplot(Predict(model_hem, genotype))

```


\subsection*{30.4.7 Nomogram of our simple hem model}

We can estimate 1-year and 3-year hemorrhage-free survival probabilities, for example, with this model, and incorporate these results into our nomogram.
```

survx <- Survival(model_hem)
plot(nomogram(model_hem, fun=list(function(x) survx(12, x),
function(x) survx(36, x)),
funlabel=c("12-month Pr(Survival)",
"36-month Pr(Survival)")))

```


Again, this is just a very simple model, with one binary predictor.

\subsection*{30.4.8 Assessing the Proportional Hazards Assumption}
```

 cox.zph(model_hem, transform="km")
 chisq df p
 genotype 2.09 1 0.15
GLOBAL 2.09 1 0.15

```
- Consider using transform="rank" to transform the survival times by their ranks prior to performing the test.
- Or use transform="identity" as we'll do in the plot below.

\subsection*{30.4.9 Plot to Check PH Assumption}
```

plot(cox.zph(model_hem, "identity"))

```


\section*{31 Cox Regression Models, Part 2}

\subsection*{31.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(broom)
library(survival)
library(survminer)
library(rms)
library(tidyverse)
theme_set(theme_bw())

```

\subsection*{31.1.1 Data Load}
```

leukem <- read_csv("data/leukem.csv", show_col_types = FALSE)

```

\subsection*{31.2 A Second Example: The leukem data}

\begin{tabular}{rrlllrrrr}
7 & 7 & 28 & 88 & 88 & 20 & 98.6 & 9 & 0 \\
8 & 8 & 28 & 70 & 70 & 14 & 101 & 39 & 1 \\
9 & 9 & 31 & 72 & 72 & 5 & 98.8 & 20 & 1 \\
10 & 10 & 33 & 58 & 58 & 7 & 98.6 & 4 & 0 \\
\(\#\) i & 41 more rows & & & & & &
\end{tabular}

The data describe 51 leukemia patients. The variables are:
- id, a patient identification code
- age, age at diagnosis
- pblasts, the Smear differential percentage of blasts
- pinf, the Percentage of absolute marrow leukemia infiltrate
- plab, the Percentage labeling index of the bone marrow leukemia cells
- maxtemp, Highest temperature prior to treatment (in \({ }^{\circ} F\) )
- months, which is Survival time from diagnosis (in months)
- alive, which indicates Status as of the end of the study ( \(1=\) alive and thus censored, 0 \(=\) dead)
glimpse(leukem)

Rows: 51
Columns: 8
\$ id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ~
\$ age <dbl> 20, 25, 26, 26, 27, 27, 28, 28, 31, 33, 33, 33, 34, 36, 37, 40~
\$ pblasts <dbl> 78, 64, 61, 64, 95, 80, 88, 70, 72, 58, 92, 42, 26, 55, 71, 91~
\$ pinf <dbl> 39, 61, 55, 64, 95, 64, 88, 70, 72, 58, 92, 38, 26, 55, 71, 91~
\$ plab <dbl> \(7,16,12,16,6,8,20,14,5,7,5,12,7,14,15,9,12,4, \sim\)
\(\$\) maxtemp <dbl> 99.0, 103.0, 98.2, 100.0, 98.0, 101.0, 98.6, 101.0, 98.8, 98.6~
\(\$\) months <dbl> \(18,31,31,31,36,1,9,39,20,4,45,36,12,8,1,15,24, \sim\)
\(\$\) alive <dbl> \(0,1,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,1,0, \sim\)

\subsection*{31.2.1 Creating our response: A survival time object}

Regardless of how we're going to fit a survival model, we start by creating a survival time object that combines the information in months (the survival times, possibly censored) and alive (the censoring indicator) into a single variable we'll call stime in this example.

The function below correctly registers the survival time, and censors subjects who are alive at the end of the study (we need to indicate those whose times are known, and they are identified by alive \(==0\) ). All other subjects are alive for at least as long as we observe them, but their exact survival times are right-censored.
```

 stime <- Surv(leukem$months, leukem$alive == 0)
 stime
    ```
\begin{tabular}{rcrrrrrrrrrrrrrrrrrr}
{\([1]\)} & 18 & \(31+\) & 31 & 31 & 36 & 1 & 9 & \(39+\) & \(20+\) & 4 & \(45+\) & 36 & 12 & 8 & 1 & 15 & 24 & 2 & 33 \\
{\([20]\)} & \(29+\) & 7 & 0 & 1 & 2 & 12 & 9 & 1 & 1 & 9 & 5 & \(27+\) & 1 & 13 & 1 & 5 & 1 & 3 & 4 \\
{\([39]\)} & 1 & 18 & 1 & 2 & 1 & 8 & 3 & 4 & 14 & 3 & 13 & 13 & 1 & & & & & &
\end{tabular}

\subsection*{31.2.2 Models We'll Fit}

We'll fit several models here, including:
- Model A: A model for survival time using age at diagnosis alone.
- Model B: A model for survival time using the main effects of 5 predictors, specifically, age, pblasts, pinf, plab, and maxtemp.
- Model B2: The model we get after applying stepwise variable selection to Model B, which will include age, pinf and plab.
- Model C: A model using age (with a restricted cubic spline), plab and maxtemp

\subsection*{31.3 Model A: coxph Model for Survival Time using age at diagnosis}

We'll start by using age at diagnosis to predict our survival object (survival time, accounting for censoring).
```

modA <- coxph(Surv(months, alive==0) ~ age,
data=leukem, model=TRUE)
summary (modA)

```
Call:
\(\operatorname{coxph}(\) formula \(=\) Surv (months, alive == 0) \(\sim\) age, data \(=\) leukem,
    model = TRUE)
    \(\mathrm{n}=51\), number of events \(=45\)
    coef exp(coef) se(coef) z \(\operatorname{Pr}(>|z|)\)
age 0.0323971 .0329270 .0095213 .4030 .000667 ***
---

```

 exp(coef) exp(-coef) lower . }95\mathrm{ upper .95
 age 1.033 0.9681 1.014 1.052
Concordance= 0.65 (se = 0.047)
Likelihood ratio test= 11.85 on 1 df, p=6e-04
Wald test = 11.58 on 1 df, p=7e-04
Score (logrank) test = 12.29 on 1 df, p=5e-04
glance(modA) %>%
select(r.squared, r.squared.max,
concordance, std.error.concordance)

A tibble: 1 x 4

 r.squared r.squared.max concordance std.error.concordance
 <dbl> <dbl> <dbl> <dbl>
 1 0.207 0.996 0.650 0.0465

```

Across these 51 subjects, we observe 45 events (deaths) and 6 subjects are censored. The hazard ratio (shown under \(\exp\) (coef)) is 1.0329272 , and this means each additional year of age at diagnosis is associated with a 1.03 -fold increase in the hazard of death.

For this simple Cox regression model, we will focus on interpreting
1. the hazard ratio (specified by the \(\exp\) (coef) result and associated confidence interval) as a measure of effect size,
- Here, the hazard ratio associated with a 1-year increase in age is 1.033 , and its \(95 \%\) confidence interval is: \((1.014,1.052)\).
2. the concordance and Rsquare as measures of fit quality, and
- concordance is only appropriate when we have at least one continuous predictor in our Cox model, in which case it assesses the probability of agreement between the survival time and the risk score generated by the predictor (or set of predictors.) A value of 1 indicates perfect agreement, but values of 0.6 to 0.7 are more common in survival data. 0.5 is an agreement that is no better than chance. Here, our concordance is 0.65 , which is a fairly typical value.
- Rsquare in this setting is Cox and Snell's pseudo- \(R^{2}\), which reflects the improvement of the model we have fit over the model with the intercept alone - a comparison that is tested by the likelihood ratio test. The maximum value of this statistic is often less than one, in which case R will tell you that. Here, our observed pseudo- \(R^{2}\) is 0.207 and that is out of a possible maximum of 0.996 .
3. the significance tests, particularly the Wald test (shown next to the coefficient estimates in the position of a t test in linear regression), and the Likelihood ratio test at the bottom of the output, which compares this model to a null model which predicts the mean survival time for all subjects.
- The Wald test for an individual predictor compares the coefficient to its standard error, just like a \(t\) test in linear regression.
- The likelihood ratio test compares the entire model to the null model (interceptonly). Again, run an ANOVA (technically an analysis of deviance) to get more details on the likelihood-ratio test.
```

anova(modA)
Analysis of Deviance Table
Cox model: response is Surv(months, alive == 0)
Terms added sequentially (first to last)
loglik Chisq Df Pr(>|Chi|)
NULL -142.94
age -137.02 11.849 1 0.000577 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

\subsection*{31.3.1 Plotting the Survival Curve implied by Model A}
```

plot(survfit(modA), ylab="Probability of Survival",
xlab="Months in Study", col=c("red", "black", "black"))

```


\subsection*{31.3.2 Testing the Proportional Hazards Assumption}

As we've noted, the key assumption in a Cox model is that the hazards are proportional.
```

 cox.zph(modA)
 chisq df p
 age
1.05 1 0.31
GLOBAL 1.05 1 0.31

```

A small \(p\) value would indicate a problem with the proportional hazards assumption - again, not the case here. We can also plot the results:
```

plot(cox.zph(modA))

```


We're looking for the smooth curve to be fairly level across the time horizon here, as opposed to substantially increasing or decreasing in level as time passes.

\subsection*{31.4 Building Model A with cph for the leukem data}
```

units(leukem\$months) <- "month"
d <- datadist(leukem)
options(datadist="d")
modA_cph <- cph(Surv(months, alive==0) ~ age, data=leukem,
x=TRUE, y=TRUE, surv=TRUE, time.inc=12)
modA_cph

```

Cox Proportional Hazards Model
cph (formula \(=\operatorname{Surv}\) (months, alive == 0) ~ age, data = leukem, \(\mathrm{x}=\) TRUE, \(\mathrm{y}=\) TRUE, surv = TRUE, time.inc = 12)

Model Tests Discrimination
\begin{tabular}{lrlrlrr} 
& & & & Indexes \\
Obs & 51 & LR chi2 & 11.85 & R2 & 0.208 \\
Events & 45 & d.f. & 1 & R2 (1,51) & 0.192 \\
Center 1.6152 & Pr (> chi2) & 0.0006 & R2 (1,45) & 0.214 \\
& & Score chi2 & 12.29 & Dxy & 0.301 \\
& & Pr (> chi2) & 0.0005 & &
\end{tabular}

Coef S.E. Wald Z \(\operatorname{Pr}(>|Z|)\)
age \(0.03240 .0095 \quad 3.40 \quad 0.0007\)
\(\exp \left(c o e f\left(m o d A \_c p h\right)\right)\) \# hazard ratio estimate
age
1.032923
\(\exp \left(c o n f i n t\left(m o d A \_c p h\right)\right)\) \# hazard ratio \(95 \%\) CI
\(2.5 \% \quad 97.5 \%\)
age 1.0138261 .052379

\subsection*{31.4.1 Plotting the age effect implied by our model.}

We can plot the age effect implied by the model, using ggplot2, as follows...
```

ggplot(Predict(modA_cph, age))

```


\subsection*{31.4.2 Survival Plots (Kaplan-Meier) of the age effect}

The first survival plot I'll show displays \(95 \%\) confidence intervals for the probability of survival at the median age at diagnosis in the sample, which turns out to be 50 years, with numbers of patients still at risk indicated every 12 months of time in the study. We can substitute in conf \(=\) bars to get a different flavor for this sort of plot.
```

survplot(modA_cph, age=median(leukem\$age), conf.int=.95,
col='blue', time.inc=12, n.risk=TRUE,
conf='bands', type="kaplan-meier",
xlab="Study Survival Time in Months")

```


Or we can generate a survival plot that shows survival probabilities over time across a range of values for age at diagnosis, as follows...
```

survplot(modA_cph, levels.only=TRUE, time.inc=12,
type="kaplan-meier",
xlab="Study Survival Time in Months")

```
Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
collapsing to unique 'x' values
Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
collapsing to unique 'x' values
Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
collapsing to unique 'x' values
Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
collapsing to unique 'x' values
Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
collapsing to unique 'x' values


This plot shows a series of modeled survival probabilities, for five different diagnosis age levels, as identified by the labels. Generally we see that the younger the subject is at diagnosis, the longer their survival time in the study.

\subsection*{31.4.3 ANOVA test for the cph-built model for leukem}

We can run a likelihood-ratio (drop in deviance) test to consider the age effect...
```

anova(modA_cph)
Wald Statistics Response: Surv(months, alive == 0)
Factor Chi-Square d.f. P
age 11.57 1 7e-04
TOTAL 11.57 1 7e-04

```

\subsection*{31.4.4 Summarizing the Effect Sizes from modA_cph}

We can generate the usual summaries of effect size in this context, too.
```

summary(modA_cph)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Effects} & \multicolumn{2}{|r|}{Response :} & Surv (month & , alive = \\
\hline Factor & Low & High & Diff. & Effect & S.E. & Lower 0.95 & Upper 0.95 \\
\hline age & 35 & 61 & 26 & 0.8422 & 0.24755 & 0.35701 & 1.3274 \\
\hline Hazard Ratio & 35 & 61 & 26 & 2.3215 & NA & 1.42910 & 3.7712 \\
\hline
\end{tabular}


As with all rms package effect estimates, this quantitative predictor (age) yields an effect comparing age at the 25 th percentile of the sample (age \(=35\) ) to age at the 75 th percentile (age \(=61\) ). So the hazard ratio is 2.32 , with \(95 \%\) CI \((1.43,3.77)\) for the effect of moving 26 years. Our coxph version of this same model showed a hazard ratio for the effect of moving just a single year.

\subsection*{31.4.5 Validating the Cox Model Summary Statistics}
```

set.seed(432410); validate(modA_cph)

```
\begin{tabular}{lrrrrrr} 
& index.orig & training & test & optimism & index.corrected & n \\
Dxy & 0.3007 & 0.2950 & 0.3007 & -0.0057 & 0.3064 & 40 \\
R2 & 0.2081 & 0.2226 & 0.2081 & 0.0145 & 0.1936 & 40 \\
Slope & 1.0000 & 1.0000 & 1.0253 & -0.0253 & 1.0253 & 40 \\
D & 0.0379 & 0.0425 & 0.0379 & 0.0045 & 0.0334 & 40 \\
U & -0.0070 & -0.0070 & 0.0037 & -0.0107 & 0.0037 & 40 \\
Q & 0.0449 & 0.0495 & 0.0343 & 0.0152 & 0.0297 & 40 \\
g & 0.6210 & 0.6492 & 0.6210 & 0.0282 & 0.592840
\end{tabular}

The \(R^{2}\) statistic barely moves, and neither does the Somers' d estimate, so at least in this simple model, the nominal summary statistics are likely to hold up pretty well in new data.

\subsection*{31.4.6 Looking for Influential Points}

This plot shows the influence of each point, in terms of DFBETA - the impact on the coefficient of age in the model were that specific point to be removed from the data set. We can also identify the row numbers of the largest (positive and negative) DFBETAs.
```

plot(residuals(modA_cph, type="dfbeta",
collapse = leukem$id) ~
 leukem$id, main="Index Plot of DFBETA for Age",
type="h", ylab="DFBETA in modelA_cph")

```

\section*{Index Plot of DFBETA for Age}

```

which.max(residuals(modA_cph, type="dfbeta"))
8
8
which.min(residuals(modA_cph, type="dfbeta"))
50
50

```

The DFBETAs look very small here. Changes in the \(\beta\) estimates as large as 0.002 don't have a meaningful impact in this case, so I don't see anything particularly influential.

\subsection*{31.4.7 Checking the Proportional Hazards Assumption}

As before, we can check the proportional hazards assumption with a test, or plot.
```

 cox.zph(modA_cph)
 chisq df p
 age 1.05 1 0.31
GLOBAL 1.05 1 0.31
plot(cox.zph(modA_cph))

```


Still no serious signs of trouble, of course. We'll see what happens when we fit a bigger model.

\subsection*{31.5 Model B: Fitting a 5-Predictor Model with coxph}

Next, we use the coxph function from the survival package to apply a Cox regression model to predict the survival time using the main effects of the five predictors: age, pblasts, pinf, plab and maxtemp.
```

modB <- coxph(Surv(months, alive==0) ~
age + pblasts + pinf + plab + maxtemp, data=leukem)
modB

```
Call:
coxph(formula = Surv(months, alive == 0) ~ age + pblasts + pinf +
    plab + maxtemp, data \(=\) leukem)
\begin{tabular}{lrrrrr} 
& \(r\) coef & \(\exp\) (coef) & se(coef) & z & p \\
age & 0.033080 & 1.033633 & 0.010163 & 3.255 & 0.00113 \\
pblasts & 0.009452 & 1.009497 & 0.013959 & 0.677 & 0.49831 \\
pinf & -0.017102 & 0.983043 & 0.012244 & -1.397 & 0.16248
\end{tabular}
```

plab -0.066000 0.936131 0.038651 -1.708 0.08771
maxtemp 0.155448 1.168182 0.111978 1.388 0.16507
Likelihood ratio test=18.48 on 5 df, p=0.002405
n= 51, number of events= 45
tidy(modB, exponentiate = TRUE, conf.int = TRUE, conf.level = 0.95) |>
select(term, estimate, conf.low, conf.high)

A tibble: 5 x 4

 term estimate conf.low conf.high
 <chr> <dbl> <dbl> <dbl>
 1 age 1.03 1.01 1.05
2 pblasts 1.01 0.982 1.04
3 pinf 0.983 0.960 1.01
4 plab 0.936 0.868 1.01
5 maxtemp 1.17 0.938 1.45

```

The confidence intervals suggest that only the hazard ratio for age after accounting for all other predictors in this model seems to have a clear direction of its effect (higher hazard is associated with older age.)

\subsection*{31.5.1 Plotting the Survival Curve implied by Model B}
```

plot(survfit(modB), ylab="Probability of Survival",
xlab="Months in Study", col=c("red", "black", "black"))

```


The crosses in the plot indicate censoring points, while the drops indicate people who have died, and are thus no longer at risk.

\subsection*{31.5.2 Testing the Proportional Hazards Assumption}
```

 cox.zph(modB, transform="km", global=TRUE)
 chisq df p
 age 1.87 1 0.171
pblasts 4.37 1 0.037
pinf 3.51 1 0.061
plab 1.19 1 0.275
maxtemp 1.53 1 0.216
GLOBAL 9.22 5 0.101

```

Note that we get a global test, and a separate test for each predictor. None show substantial problems. We can plot the scaled Schoenfeld residuals directly with ggcoxzph from the survminer package.
```

ggcoxzph(cox.zph(modB))

```


\subsection*{31.5.3 Assessing Collinearity}

Perhaps we have some collinearity here, which might imply that we could sensibly fit a smaller model, which would be appealing anyway, with only 45 actual events - we should probably be sticking to a model with no more than 2 or perhaps as many as 3 coefficients to be estimated.
```

rms::vif(modB)
age pblasts pinf plab maxtemp
1.081775 3.029862 3.000944 1.035400 1.045249

```

The variance inflation factors don't look enormous - it may be that removing one of these variables will help us focus in on the mst useful predictors. Let's consider a stepwise variable selection algorithm to see what results...
- Note that the leaps library, which generates best subsets output, is designed for linear regression, as is the lars library, which generates the lasso. Either could be used here for some guidance, but not with the survival object stime \(=\) Surv(months, age) as the response, but instead only with months as the outcome, which ignores the censoring. The step procedure can be used on the survival object, though.

\subsection*{31.6 Model B2: A Stepwise Reduction of Model B}
```

stats::step(modB)
Start: AIC=277.4
Surv(months, alive == 0) ~ age + pblasts + pinf + plab + maxtemp
Df AIC

- pblasts 1 275.85
- pinf 1 277.17
- maxtemp 1 277.21
<none> 277.40
- plab 1 278.42
- age 1 286.47
Step: AIC=275.85
Surv(months, alive == 0) ~ age + pinf + plab + maxtemp
Df AIC
- maxtemp 1 275.63
<none> 275.85
- pinf 1 275.89
- plab 1 276.86
- age 1 284.47
Step: AIC=275.63
Surv(months, alive == 0) ~ age + pinf + plab

	Df	AIC
<none>	275.63	
- pinf	1	275.69
- plab	1	275.95
- age	1	285.52

Call:
coxph(formula = Surv(months, alive == 0) ~ age + pinf + plab,
data = leukem)

	coef	$\exp ($ coef $)$	se(coef)	z	p
age	0.033171	1.033727	0.009733	3.408	0.000655
pinf	-0.010147	0.989905	0.007088	-1.432	0.152246

```
```

plab -0.057558 0.944067 0.038476 -1.496 0.134662
Likelihood ratio test=16.25 on 3 df, p=0.001008
n= 51, number of events= 45

```

The stepwise procedure lands on a model with three predictors. How does this result look, practically?
```

modB2 <- coxph(Surv(months, alive==0) ~ age + pinf + plab, data=leukem)
summary(modB2)
Call:
coxph(formula = Surv(months, alive == 0) ~ age + pinf + plab,
data = leukem)
n= 51, number of events= 45
coef exp(coef) se(coef) z Pr (>|z|)
age 0.033171 1.033727 0.009733 3.408 0.000655 ***
pinf -0.010147 0.989905 0.007088 -1.432 0.152246
plab -0.057558 0.944067 0.038476 -1.496 0.134662

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

	exp(coef)	$\exp (-$ coef $)$	lower .95 upper .95	
age	1.0337	0.9674	1.0142	1.054
pinf	0.9899	1.0102	0.9762	1.004
plab	0.9441	1.0592	0.8755	1.018

Concordance= 0.676 (se = 0.046)
Likelihood ratio test= 16.25 on 3 df, p=0.001
Wald test = 15.28 on 3 df, p=0.002
Score (logrank) test = 16.21 on 3 df, p=0.001

```

\subsection*{31.6.1 The Survival Curve implied by Model B2}
```

plot(survfit(modB2), ylab="Probability of Survival", xlab="Months in Study",
col=c("red", "black", "black"))

```


\subsection*{31.6.2 Checking Proportional Hazards for Model B2}
```

cox.zph(modB2, transform="km", global=TRUE)

```
\begin{tabular}{lrrr} 
& chisq & df & \(p\) \\
age & 1.66 & 1 & 0.197 \\
pinf & 3.20 & 1 & 0.074 \\
plab & 2.17 & 1 & 0.141 \\
GLOBAL & 6.07 & 3 & 0.108
\end{tabular}
```

ggcoxzph(cox.zph(modB2))

```


\subsection*{31.7 Model C: Using a Spearman Plot to pick a model}

If we want to use the Spearman \(\rho^{2}\) plot to consider how we might perhaps incorporate nonlinear terms describing any or all of the five potential predictors (age, pblasts, pinf, plab and maxtemp) for survival time, we need to do so on the raw months variable, rather than the survival object (stime \(=\operatorname{Surv}(\) months, alive==0) ) which accounts for censoring...
```

plot(spearman2(months ~ age + pblasts + pinf + plab + maxtemp, data=leukem))

```

\section*{Spearman \(\rho^{2}\) Response:months}


Recognizing that we can probably only fit a small model safely (since we observe only 45 actual [uncensored] survival times) I will consider a non-linear term in age (specifically a restricted cubic spline with 3 knots), along with linear terms for plab and maxtemp. I'm mostly just looking for a new model to study for this example.

\subsection*{31.7.1 Fitting Model C}
```


still have datadist set up for leukem

modC <- cph(Surv(months, alive==0) ~ rcs(age, 3) + plab + maxtemp,
data=leukem, x=TRUE, y=TRUE, surv=TRUE, time.inc=12)
modC

```

Cox Proportional Hazards Model
cph (formula \(=\) Surv (months, alive == 0) ~ rcs (age, 3) + plab +
    maxtemp, data \(=\) leukem, \(x=\) TRUE, \(y=\) TRUE, surv \(=\) TRUE,
    time.inc \(=12\) )
\begin{tabular}{lrrrrr} 
& & Model Tests & & \begin{tabular}{r} 
Discrimination \\
Indexes
\end{tabular} \\
Obs & 51 & LR chi2 & 19.75 & R2 & 0.322
\end{tabular}
```

Events 45 d.f. 4 R2(4,51) 0.266
Center 20.3856 Pr(> chi2) 0.0006 R2(4,45) 0.295
Score chi2 18.66 Dxy 0.438
Pr(> chi2) 0.0009
Coef S.E. Wald Z Pr (>|Z|)
age 0.0804 0.0283 2.84 0.0045
age' -0.0629 0.0332 -1.90 0.0580
plab -0.0736 0.0381 -1.93 0.0536
maxtemp 0.1788 0.1145 1.56 0.1184

```

\subsection*{31.7.2 ANOVA for Model C}
```

anova(modC)

```
Wald Statistics Response: Surv(months, alive == 0)
Factor Chi-Square d.f. P
\(\begin{array}{llll}\text { age } & 11.55 \quad 2 & 0.0031\end{array}\)
    \(\begin{array}{llll}\text { Nonlinear } & 3.59 & 1 & 0.0580\end{array}\)
\(\begin{array}{llll}\text { plab } & 3.73 & 1 & 0.0536\end{array}\)
maxtemp \(\quad 2.44 \quad 1 \quad 0.1184\)
\(\begin{array}{llll}\text { TOTAL } 17.13 & 4 & 0.0018\end{array}\)

\subsection*{31.7.3 Summarizing Model C Effect Sizes}
```

summary(modC)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Effects} & \multicolumn{5}{|r|}{Response : Surv (months, alive == 0)} \\
\hline Factor & & Low & High & Diff. & Effect & S.E. & Lower 0.95 & Upper 0.95 \\
\hline age & & 35.0 & 61.0 & 26.0 & 1.06010 & 0.31559 & 0.44152 & 1.6786000 \\
\hline Hazard & Ratio & 35.0 & 61.0 & 26.0 & 2.88650 & NA & 1.55510 & 5.3580000 \\
\hline plab & & 6.5 & 13.5 & 7.0 & -0.51511 & 0.26686 & -1.03820 & 0.0079317 \\
\hline Hazard & Ratio & 6.5 & 13.5 & 7.0 & 0.59744 & NA & 0.35411 & 1.0080000 \\
\hline maxtemp & & 98.6 & 100.5 & 1.9 & 0.33979 & 0.21758 & -0.08666 & 0.7662400 \\
\hline Hazard & Ratio & 98.6 & 100.5 & 1.9 & 1.40470 & NA & 0.91699 & 2.1517000 \\
\hline
\end{tabular}
```

plot(summary(modC))

```


\subsection*{31.7.4 Plotting the diagnosis age effect in Model C}

Of course, we're no longer assuming that the log relative hazard is linear in age, once we include a restricted cubic spline for age in our Model C. So our hazard ratio and confidence intervals for age are a bit trickier to understand.
```

exp(coef(modC))
age age' plab maxtemp
1.0837479 0.9390008 0.9290553 1.1958265
exp(confint(modC))
2.5 % 97.5 %
age 1.0252687 1.145563
age' 0.8798328 1.002148
plab 0.8621662 1.001134
maxtemp 0.9554141 1.496734

```

We can use ggplot and the Predict function to produce plots of the log Relative Hazard associated with any of our predictors, while holding the others constant at their medians. The effects of maxtemp and plab in our Model C are linear in the log Relative Hazard, but age, thanks to our use of a restricted cubic spline with 3 knots, shows a single bend.
```

ggplot(Predict(modC, age))

```


Adjusted to:plab=10 maxtemp=99

\subsection*{31.7.5 Survival Plot associated with Model C}

Let's look at a survival plot associated with Model C for a subject with median values of our three predictors.
```

survplot(modC, age=median(leukem\$age), conf.int=0.95, col="blue",
time.inc=12, n.risk=TRUE, conf='bands',
xlab="Study Time in Months")

```


As before, we could fit such a plot to compare results across multiple age values, if desired.

\subsection*{31.7.6 Checking the Proportional Hazards Assumption}
```

 cox.zph(modC, transform="km", global=TRUE)
 chisq df p
 rcs(age, 3) 2.39 2 0.303
plab 1.55 1 0.214
maxtemp 1.14 1 0.285
GLOBAL 8.27 4 0.082
ggcoxzph(cox.zph(modC))

```

Global Schoenfeld Test p: 0.08221


\subsection*{31.7.7 Model C Nomogram}
```

sv <- Survival(modC)
surv12 <- function(x) sv(12, lp=x)
surv24 <- function(x) sv(24, lp=x)
plot(nomogram(modC, fun=list(surv12, surv24),
funlabel=c('12-month survival', '24-month survival')))

```


\subsection*{31.7.8 Validating Model C’s Summary Statistics}

We can validate the model for Somers' \(D_{x y}\), which is the rank correlation between the predicted log hazard and observed survival time, and for slope shrinkage.
```

set.seed(43234); validate(modC, B=100)
index.orig training test optimism index.corrected n

```
\begin{tabular}{lrrrrrr} 
Dxy & 0.4385 & 0.4749 & 0.4144 & 0.0605 & 0.3780 & 100 \\
R2 & 0.3222 & 0.3716 & 0.2785 & 0.0931 & 0.2292 & 100 \\
Slope & 1.0000 & 1.0000 & 0.8101 & 0.1899 & 0.8101 & 100 \\
D & 0.0656 & 0.0814 & 0.0547 & 0.0266 & 0.0390 & 100 \\
U & -0.0070 & -0.0070 & 0.0101 & -0.0171 & 0.0101 & 100 \\
Q & 0.0726 & 0.0884 & 0.0446 & 0.0437 & 0.0288 & 100 \\
g & 0.9466 & 1.0751 & 0.8364 & 0.2387 & 0.7078 & 100
\end{tabular}

\subsection*{31.7.9 Calibration of Model C (12-month survival estimates)}

Finally, we validate the model for calibration accuracy in predicting the probability of surviving one year.

Quoting Harrell (page 529, RMS second edition):
The bootstrap is used to estimate the optimism in how well predicted [one]-year survival from the final Cox model tracks flexible smooth estimates, without any binning of predicted survival probabilities or assuming proportional hazards.

The \(u\) variable specifies the length of time at which we look at the calibration. I've specified the units earlier to be months.
```

 set.seed(43233); plot(rms::calibrate(modC, B = 10, u = 12))
 Using Cox survival estimates at }12\mathrm{ months

```


The model seems neither especially well calibrated nor especially poorly so - looking at the comparison of the blue curve to the gray, our predictions basically aren't aggressive enough - more people are surviving to a year in our low predicted probability of 12 month survival group, and fewer people are surviving on the high end of the x -axis than should be the case.

\section*{32 NEW!! A Few LASSO Ideas}

\subsection*{32.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(janitor)
library(broom)
library(car)
library(gt)
library(Hmisc)
library(MASS)
library(mosaic)
library(glmnet)
library(conflicted)
library(patchwork)
library(tidyverse)
conflicts_prefer(dplyr::select)
theme_set(theme_bw())

```

\subsection*{32.1.1 Data Load}
```

pollution <- read_csv("data/pollution.csv", show_col_types = FALSE)

```

\subsection*{32.2 The pollution data}

Consider again the pollution data set we developed in Chapter 13 which contains 15 independent variables and a measure of mortality, describing 60 US metropolitan areas in 1959-1961.
```

pollution

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { A tibbl } \\
\mathrm{x} 1
\end{gathered}
\] & \[
\begin{aligned}
& 60 \\
& \text { x2 }
\end{aligned}
\] & & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 & x12 & x13 \\
\hline & <dbl> \\
\hline 1 & 13 & 49 & 68 & 7 & 3.36 & 12.2 & 90.7 & 2702 & 3 & 51.9 & 9.7 & 105 & 32 \\
\hline 2 & 28 & 32 & 81 & 7 & 3.27 & 12.1 & 81 & 3665 & 7.5 & 51.6 & 13.2 & 4 & 2 \\
\hline 3 & 10 & 55 & 70 & 7.3 & 3.11 & 12.1 & 88.9 & 3033 & 5.9 & 51 & 14 & 144 & 66 \\
\hline 4 & 43 & 32 & 74 & 10.1 & 3.38 & 9.5 & 79.2 & 3214 & 2.9 & 43.7 & 12 & 11 & 7 \\
\hline 5 & 25 & 12 & 73 & 9.2 & 3.28 & 12.1 & 83.1 & 2095 & 2 & 51.9 & 9.8 & 20 & 11 \\
\hline 6 & 35 & 46 & 85 & 7.1 & 3.22 & 11.8 & 79.9 & 1441 & 14.8 & 51.2 & 16.1 & 1 & 1 \\
\hline 7 & 60 & 67 & 82 & 10 & 2.98 & 11.5 & 88.6 & 4657 & 13.5 & 47.3 & 22.4 & 3 & 1 \\
\hline 8 & 11 & 53 & 68 & 9.2 & 2.99 & 12.1 & 90.6 & 4700 & 7.8 & 48.9 & 12.3 & 648 & 319 \\
\hline 9 & 31 & 24 & 72 & 9 & 3.37 & 10.9 & 82.8 & 3226 & 5.1 & 45.2 & 12.3 & 5 & 3 \\
\hline 10 & 15 & 30 & 73 & 8.2 & 3.15 & 12.2 & 84.2 & 4824 & 4.7 & 53.1 & 12.7 & 17 & 8 \\
\hline \multicolumn{14}{|l|}{\# i 50 more rows} \\
\hline \multicolumn{14}{|c|}{i 3 more variable} \\
\hline
\end{tabular}

Here's a codebook:
\begin{tabular}{rl}
\hline Variable & Description \\
\hline y & Total Age Adjusted Mortality Rate \\
x1 & Mean annual precipitation in inches \\
x2 & Mean January temperature in degrees Fahrenheit \\
x3 & Mean July temperature in degrees Fahrenheit \\
x4 & Percent of 1960 SMSA population that is 65 years of age or over \\
x5 & Population per household, 1960 SMSA \\
x6 & Median school years completed for those over 25 in 1960 SMSA \\
x7 & Percent of housing units that are found with facilities \\
x8 & Population per square mile in urbanized area in 1960 \\
x9 & Percent of 1960 urbanized area population that is non-white \\
x10 & Percent employment in white-collar occupations in 1960 urbanized area \\
x11 & Percent of families with income under \(\$ 30,000\) in 1960 urbanized area \\
x12 & Relative population potential of hydrocarbons, HC \\
x13 & Relative pollution potential of oxides of nitrogen, NOx \\
x14 & Relative pollution potential of sulfur dioxide, SO2 \\
x15 & Percent relative humidity, annual average at 1 p.m. \\
\hline
\end{tabular}

\subsection*{32.3 Should We Rescale any Predictors?}

Let's get some basic summary statistics for our candidate predictors. When we do, we see that variable x 8 is roughy 100 times larger than all of our other predictors.
```

 df_stats(~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 +
 x10 + x11 + x12 + x13 + x14 + x15, data = pollution)
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & response & min & Q1 & median & Q3 & max & mean & sd \\
\hline 1 & x 1 & 10.00 & 32.750 & 38.000 & 43.250 & 60.00 & 37.366667 & 9.9846775 \\
\hline 2 & x 2 & 12.00 & 27.000 & 31.500 & 40.000 & 67.00 & 33.983333 & 10.1688985 \\
\hline 3 & x3 & 63.00 & 72.000 & 74.000 & 77.250 & 85.00 & 74.583333 & 4.7631768 \\
\hline 4 & x 4 & 5.60 & 7.675 & 9.000 & 9.700 & 11.80 & 8.798333 & 1.4645520 \\
\hline 5 & x5 & 2.92 & 3.210 & 3.265 & 3.360 & 3.53 & 3.263167 & 0.1352523 \\
\hline 6 & x6 & 9.00 & 10.400 & 11.050 & 11.500 & 12.30 & 10.973333 & 0.8452994 \\
\hline 7 & x7 & 66.80 & 78.375 & 81.150 & 83.600 & 90.70 & 80.913333 & 5.1413731 \\
\hline 8 & x8 & 1441.00 & 3104.250 & 3567.000 & 4519.750 & 9699.00 & 3876.050000 & 1454.1023607 \\
\hline 9 & x9 & 0.80 & 4.950 & 10.400 & 15.650 & 38.50 & 11.870000 & 8.9211480 \\
\hline 10 & x 10 & 33.80 & 43.250 & 45.500 & 49.525 & 59.70 & 46.081667 & 4.6130431 \\
\hline 11 & x 11 & 9.40 & 12.000 & 13.200 & 15.150 & 26.40 & 14.373333 & 4.1600956 \\
\hline 12 & x 12 & 1.00 & 7.000 & 14.500 & 30.250 & 648.00 & 37.850000 & 91.9776732 \\
\hline 13 & x 13 & 1.00 & 4.000 & 9.000 & 23.750 & 319.00 & 22.650000 & 46.3332896 \\
\hline 14 & x14 & 1.00 & 11.000 & 30.000 & 69.000 & 278.00 & 53.766667 & 63.3904678 \\
\hline 15 & x15 & 38.00 & 55.000 & 57.000 & 60.000 & 73.00 & 57.666667 & 5.3699309 \\
\hline \multicolumn{9}{|c|}{n missing} \\
\hline 1 & 60 & 0 & & & & & & \\
\hline 2 & 60 & 0 & & & & & & \\
\hline 3 & 60 & 0 & & & & & & \\
\hline 4 & 60 & 0 & & & & & & \\
\hline 5 & 60 & 0 & & & & & & \\
\hline 6 & 60 & 0 & & & & & & \\
\hline 7 & 60 & 0 & & & & & & \\
\hline 8 & 60 & 0 & & & & & & \\
\hline 9 & 60 & 0 & & & & & & \\
\hline 10 & 60 & 0 & & & & & & \\
\hline 11 & & 0 & & & & & & \\
\hline 12 & 60 & 0 & & & & & & \\
\hline 13 & 60 & 0 & & & & & & \\
\hline 14 & 60 & 0 & & & & & & \\
\hline 15 & 60 & 0 & & & & & & \\
\hline
\end{tabular}

Let's dampen the size of that x8 variable down a little to make our coefficient comparisons easier later, by dividing all of the x 8 values by 100 .
```

pollution <- pollution |>
mutate(x8 = x8/100)

```

\subsection*{32.4 A Kitchen Sink Model}

We'll begin by fitting the obviously underpowered model with all 15 main effects used to predict our outcome.
```

mod_sink <- $\operatorname{lm}(\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3+\mathrm{x} 4+\mathrm{x} 5+\mathrm{x} 6+\mathrm{x} 7+\mathrm{x} 8+\mathrm{x} 9+$
$\mathrm{x} 10+\mathrm{x} 11+\mathrm{x} 12+\mathrm{x} 13+\mathrm{x} 14+\mathrm{x} 15$,
data $=$ pollution)

```

\subsection*{32.4.1 Considering an Outcome Transformation}
```

boxcox(mod_sink)

```


OK. In light of this Box-Cox plot, let's consider taking the inverse of our outcome here. I'll take that inverse and then standardize the result using the scale () function to both subtract the mean of the transformed outcome and divide by its standard deviation, so that our new outcome, which I'll call out_std has mean 0 , standard deviation 1, and a shape similar to that of the inverse of our \(y\).
```

pollution <- pollution |>
mutate(y_inverse = 1/y,
out_std = scale(1/y, center = TRUE, scale = TRUE))
p1 <- ggplot(pollution, aes(x = y_inverse)) + geom_density()
p2 <- ggplot(pollution, aes(x = out_std)) + geom_density()
p1 / p2

```



OK. So now, I'll build a revised kitchen sink model to use this new outcome.
```

mod_sink2 <- lm(out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 +
x10 + x11 + x12 + x13 + x14 + x15, data = pollution)
tidy(mod_sink2, conf.int = TRUE, conf.level = 0.9) |>
select(term, estimate, std.error, conf.low, conf.high, p.value) |>
gt() |> fmt_number(decimals = 3)

```
\begin{tabular}{lrrrrr}
\hline term & estimate & std.error & conf.low & conf.high & p.value \\
\hline (Intercept) & -15.899 & 6.886 & -27.469 & -4.328 & 0.026
\end{tabular}
\begin{tabular}{lrrrrr} 
x1 & -0.035 & 0.015 & -0.059 & -0.011 & 0.020 \\
x2 & 0.036 & 0.017 & 0.007 & 0.066 & 0.044 \\
x3 & 0.055 & 0.030 & 0.005 & 0.105 & 0.074 \\
x4 & 0.176 & 0.134 & -0.049 & 0.400 & 0.196 \\
x5 & 2.184 & 1.099 & 0.338 & 4.031 & 0.053 \\
x6 & 0.225 & 0.187 & -0.089 & 0.539 & 0.234 \\
x7 & 0.016 & 0.028 & -0.031 & 0.063 & 0.573 \\
x8 & -0.006 & 0.006 & -0.017 & 0.005 & 0.351 \\
x9 & -0.070 & 0.021 & -0.105 & -0.035 & 0.002 \\
x10 & 0.012 & 0.026 & -0.031 & 0.056 & 0.636 \\
x11 & 0.002 & 0.051 & -0.084 & 0.087 & 0.974 \\
x12 & 0.011 & 0.008 & -0.002 & 0.024 & 0.160 \\
x13 & -0.022 & 0.016 & -0.049 & 0.004 & 0.169 \\
x14 & -0.001 & 0.002 & -0.005 & 0.003 & 0.549 \\
x15 & 0.001 & 0.018 & -0.029 & 0.032 & 0.936 \\
\hline
\end{tabular}

Does this new model show a strong fit to the data?
```

glance(mod_sink2) |> select(r.squared:p.value, df, df.residual, nobs) |>
gt() |> fmt_number(r.squared:p.value, decimals = 3)

```
\begin{tabular}{rrrrrrrr}
\hline r.squared & adj.r.squared & sigma & statistic & p.value & df & df.residual & nobs \\
\hline 0.774 & 0.698 & 0.550 & 10.070 & 0.000 & 15 & 44 & 60 \\
\hline
\end{tabular}
glance(mod_sink2) |> select(logLik, AIC, BIC, deviance) |> gt() |>
    fmt_number (decimals = 2)
\begin{tabular}{rrrr}
\hline logLik & AIC & BIC & deviance \\
\hline-39.96 & 113.92 & 149.52 & 13.31 \\
\hline
\end{tabular}

\subsection*{32.4.2 How much collinearity are we dealing with?}
```

vif(mod_sink2)

| x 1 | x 2 | x 3 | x 4 | x 5 | x 6 | x |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4.113888 | 6.143551 | 3.967774 | 7.470045 | 4.307618 | 4.860538 | 3.994781 |
| x 8 | x 9 | x 10 | x 11 | x 12 | x 13 | x 14 |
| 1.658281 | 6.779599 | 2.841582 | 8.717068 | 98.639935 | 104.982405 | 4.228929 |
| x 15 | | | | | | |

```

Clearly, we have some enormous collinearity to deal with, given that we have many VIFs over 5 , some even over 100 .

So a reduction in the size of the model seems appealing for multiple reasons.

\subsection*{32.5 Using the LASSO to suggest a smaller model}

To begin, we will create a data matrix for our predictors, as follows:
```

pred_x <- model.matrix(mod_sink2)

```

Next, we create a matrix of our outcome.
```

out_y <- pollution |> select(out_std) |> as.matrix()

```

The LASSO involves both a cross-validation step, and a fitting step. Here's the code we'll use in this case:
```

set.seed(123456)
cv_poll1 <- cv.glmnet(pred_x, out_y, type.measure = "mse", nfolds = 10)
mod_las1 <- glmnet(pred_x, out_y, alpha = 1, lambda = cv_poll1\$lambda.min)

```

Now, let's look at what the LASSO does. As we can see from the tidied output below, some predictors are dropped from the model, while others have their coefficients shrunk towards zero as compared to what we saw in the "kitchen sink" model.
tidy(mod_las1) |> gt()
\begin{tabular}{lrrrr}
\hline term & step & estimate & lambda & dev.ratio \\
\hline (Intercept) & 1 & -2.345226117 & 0.03783146 & 0.7335261 \\
x1 & 1 & -0.026289494 & 0.03783146 & 0.7335261 \\
x2 & 1 & 0.020872173 & 0.03783146 & 0.7335261 \\
x3 & 1 & 0.017666053 & 0.03783146 & 0.7335261 \\
x6 & 1 & 0.101973313 & 0.03783146 & 0.7335261 \\
x7 & 1 & 0.012515424 & 0.03783146 & 0.7335261 \\
x8 & 1 & -0.006425945 & 0.03783146 & 0.7335261
\end{tabular}
\begin{tabular}{lrrrr} 
x9 & 1 & -0.060226425 & 0.03783146 & 0.7335261 \\
x10 & 1 & 0.007342706 & 0.03783146 & 0.7335261 \\
x14 & 1 & -0.003819796 & 0.03783146 & 0.7335261 \\
\hline
\end{tabular}

This new LASSO model includes only 9 of the original 15 predictors.

\subsection*{32.6 Would the 9-predictor model be a big improvement?}

Suppose we fit a new model inspired by this LASSO. It's still just a linear model, with no shrinkage, here.
```

mod_3 <- lm(out_std ~ x1 + x2 + x3 + x6 + x7 + x8 + x9 + x10 + x14,
data = pollution)
vif(mod_3)

```
\begin{tabular}{rrrrrrrr}
x 1 & x 2 & x 3 & x 6 & x 7 & x 8 & \(\mathrm{x9}\) & x 10 \\
1.850485 & 1.548039 & 1.867603 & 3.899194 & 2.318288 & 1.479122 & 2.281879 & 2.333836 \\
x 14 & & & & & & & \\
1.609159 & & & & & &
\end{tabular}

Well, the collinearity is certainly much improved.
```

tidy(mod_3, conf.int = TRUE, conf.level = 0.9) |>
select(term, estimate, std.error, conf.low, conf.high, p.value) |>
gt() |> fmt_number(decimals = 3)

```
\begin{tabular}{lrrrrr}
\hline term & estimate & std.error & conf.low & conf.high & p.value \\
\hline (Intercept) & -4.122 & 2.254 & -7.900 & -0.344 & 0.073 \\
x1 & -0.031 & 0.010 & -0.048 & -0.015 & 0.002 \\
x2 & 0.024 & 0.009 & 0.010 & 0.039 & 0.007 \\
x3 & 0.040 & 0.020 & 0.005 & 0.074 & 0.058 \\
x6 & 0.057 & 0.166 & -0.222 & 0.335 & 0.734 \\
x7 & 0.021 & 0.021 & -0.014 & 0.056 & 0.328 \\
x8 & -0.009 & 0.006 & -0.019 & 0.001 & 0.129 \\
x9 & -0.069 & 0.012 & -0.090 & -0.049 & 0.000 \\
x10 & 0.013 & 0.024 & -0.026 & 0.053 & 0.581 \\
x14 & -0.004 & 0.001 & -0.006 & -0.002 & 0.007 \\
\hline
\end{tabular}

Does this new model show a strong fit to the data?
```

glance(mod_3) |> select(r.squared:p.value, df, df.residual, nobs) |>
gt() |> fmt_number(r.squared:p.value, decimals = 3)

| r.squared | adj.r.squared | sigma | statistic | p.value | df | df.residual | nobs |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.747 | 0.702 | 0.546 | 16.413 | 0.000 | 9 | 50 | 60 |

```
```

glance(mod_3) |> select(logLik, AIC, BIC, deviance) |> gt() |>

```
glance(mod_3) |> select(logLik, AIC, BIC, deviance) |> gt() |>
    fmt_number(decimals = 2)
```

| logLik | AIC | BIC | deviance |
| ---: | ---: | ---: | ---: |
| -43.39 | 108.78 | 131.81 | 14.92 |

Finally, here's a set of plots for regression diagnostics. How do things look?

```
par(mfrow = c(2,2))
plot(mod_3)
```


Fitted values

Fitted values

Theoretical Quantiles

32.7 Using Stepwise Regression to suggest a smaller model

```
mod_4 <- step(mod_sink2)
Start: AIC=-58.35
out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +
    x11 + x12 + x13 + x14 + x15
            Df Sum of Sq RSS AIC
- x11 1 0.0003 13.310 -60.351
- x15 1 0.0020 13.311 -60.344
- x10 1 0.0689 13.378 -60.043
- x7 1 0.0976 13.407 -59.914
- x14 1 0.1102 13.420 -59.858
- x8 1 0.2693 13.579 -59.151
- x6 1 0.4401 13.749 -58.401
<none> 13.309 -58.353
- x4 1 0.5226 13.832 -58.042
- x13 1 0.5906 13.900 -57.747
- x12 1 0.6186 13.928 -57.627
- x3 1 1.0145 14.324 -55.945
- x5 1 1.1956 14.505 -55.191
- x2 1 1.3063 14.616 -54.735
- x1 1 1.7574 15.067 -52.911
- x9 1 3.4141 16.723 -46.652
Step: AIC=-60.35
out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +
    x12 + x13 + x14 + x15
        Df Sum of Sq RSS AIC
- x15 1 0.0017 13.311 -62.343
- x10 1 0.0696 13.379 -62.038
- x14 1 0.1119 13.422 -61.849
- x7 1 0.1411 13.451 -61.719
- x8 1 0.2752 13.585 -61.123
- x6 1 0.4398 13.749 -60.401
<none> 13.310 -60.351
- x13 1 0.5905 13.900 -59.747
- x4 1 0.6048 13.915 -59.685
- x12 1 0.6202 13.930 -59.618
```

```
- x3 1 1.0419 14.352 -57.829
- x5 1 1.2132 14.523 -57.117
- x1 1 1.8672 15.177 -54.474
- x2 1 2.3995 15.709 -52.406
- x9 1 4.5934 17.903 -44.562
Step: AIC=-62.34
out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +
    x12 + x13 + x14
Df Sum of Sq RSS AIC
- x10 1 0.0680 13.380 -64.037
- x14 1 0.1102 13.422 -63.849
- x7 1 0.1398 13.451 -63.717
- x8 1 0.2800 13.591 -63.094
<none> 13.311 -62.343
- x6 1 0.4538 13.765 -62.332
- x4 1 0.6066 13.918 -61.669
- x13 1 0.6080 13.919 -61.664
- x12 1 0.6251 13.937-61.590
- x5 1 1.2142 14.526 -59.106
- x3 1 1.5567 14.868 -57.707
- x1 1 1.8661 15.178 -56.472
- x2 1 2.7077 16.019 -53.234
- x9 1 4.6990 18.010 -46.204
Step: AIC=-64.04
out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x12 +
        x13 + x14
            Df Sum of Sq RSS AIC
- x14 1 0.0750 13.454 -65.702
- x7 1 0.1158 13.495 -65.520
- x8 1 0.2459 13.625 -64.945
<none> 13.380 -64.037
- x4 1 0.6708 14.050 -63.102
- x12 1 0.7497 14.129 -62.766
- x13 1 0.7575 14.137 -62.733
- x6 1 1.1206 14.500 -61.212
- x5 1 1.1650 14.544 -61.028
- x3 1 1.6471 15.027 -59.071
- x1 1 1.9708 15.350 -57.793
- x2 1 2.8845 16.264 -54.323
```

```
- x9 1 4.6459 18.025 -48.154
Step: AIC=-65.7
out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x12 +
    x13
\begin{tabular}{lrrrr} 
& Df & Sum of Sq & RSS & AIC \\
- x7 & 1 & 0.0736 & 13.528 & -67.375 \\
- x8 & 1 & 0.2931 & 13.748 & -66.409 \\
<none> & & & 13.454 & -65.702 \\
- x4 & 1 & 0.7633 & 14.218 & -64.391 \\
- x5 & 1 & 1.3276 & 14.782 & -62.056 \\
- x6 & 1 & 1.5095 & 14.964 & -61.322 \\
- x3 & 1 & 1.6936 & 15.148 & -60.588 \\
- x1 & 1 & 1.9047 & 15.359 & -59.758 \\
- x12 & 1 & 2.2433 & 15.698 & -58.450 \\
- x13 & 1 & 2.5554 & 16.010 & -57.269 \\
- x2 & 1 & 3.2927 & 16.747 & -54.567 \\
- x9 & 1 & 4.9296 & 18.384 & -48.972
\end{tabular}
Step: AIC=-67.37
out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x8 + x9 + x12 + x13
\begin{tabular}{lrrrr} 
& Df & Sum of Sq & RSS & AIC \\
- x8 & 1 & 0.2268 & 13.755 & -68.377 \\
<none> & & & 13.528 & -67.375 \\
- x4 & 1 & 0.6973 & 14.225 & -66.359 \\
- x5 & 1 & 1.2978 & 14.826 & -63.878 \\
- x3 & 1 & 1.6230 & 15.151 & -62.576 \\
- x1 & 1 & 1.8418 & 15.370 & -61.716 \\
- x6 & 1 & 2.1350 & 15.663 & -60.582 \\
- x12 & 1 & 2.2355 & 15.764 & -60.199 \\
- x13 & 1 & 2.5168 & 16.045 & -59.137 \\
- x2 & 1 & 3.3522 & 16.880 & -56.092 \\
- x9 & 1 & 6.1854 & 19.713 & -46.783
\end{tabular}
Step: AIC=-68.38
out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x9 + x12 + x13
    Df Sum of Sq RSS AIC
<none> 13.755 -68.377
- x4 1 0.8670 14.622 -66.710
- x3 1 1.6985 15.453 -63.391
```

| - x1 | 1 | 1.8777 | 15.633 | -62.700 |
| :--- | :--- | :--- | :--- | :--- |
| - x5 | 1 | 1.9839 | 15.739 | -62.293 |
| - x12 | 1 | 2.4622 | 16.217 | -60.497 |
| - x13 | 1 | 2.8317 | 16.587 | -59.145 |
| - x6 | 1 | 3.0868 | 16.842 | -58.229 |
| - x2 | 1 | 4.0486 | 17.803 | -54.897 |
| - x9 | 1 | 6.3106 | 20.065 | -47.721 |

Here's a summary of the fitted model after stepwise regression, which suggests a different set of 9 predictors.

```
tidy(mod_4, conf.int = TRUE, conf.level = 0.9) |>
    select(term, estimate, std.error, conf.low, conf.high, p.value) |>
    gt() |> fmt_number(decimals = 3)
```

| term | estimate | std.error | conf.low | conf.high | p.value |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | -17.332 | 5.257 | -26.142 | -8.522 | 0.002 |
| x1 | -0.034 | 0.013 | -0.057 | -0.012 | 0.012 |
| x2 | 0.042 | 0.011 | 0.024 | 0.060 | 0.000 |
| x3 | 0.055 | 0.022 | 0.018 | 0.092 | 0.016 |
| x4 | 0.200 | 0.113 | 0.011 | 0.388 | 0.082 |
| x5 | 2.530 | 0.942 | 0.951 | 4.109 | 0.010 |
| x6 | 0.373 | 0.111 | 0.186 | 0.559 | 0.002 |
| x9 | -0.073 | 0.015 | -0.099 | -0.048 | 0.000 |
| x12 | 0.015 | 0.005 | 0.007 | 0.023 | 0.004 |
| x13 | -0.031 | 0.010 | -0.047 | -0.015 | 0.002 |

```
glance(mod_4) |> select(r.squared:p.value, df, df.residual, nobs) |>
    gt() |> fmt_number(r.squared:p.value, decimals = 3)
```

| r.squared | adj.r.squared | sigma | statistic | p.value | df | df.residual | nobs |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.767 | 0.725 | 0.524 | 18.274 | 0.000 | 9 | 50 | 60 |

```
glance(mod_4) |> select(logLik, AIC, BIC, deviance) |> gt() |>
    fmt_number(decimals = 2)
```

| logLik | AIC | BIC | deviance |
| ---: | ---: | ---: | ---: |
| -40.95 | 103.90 | 126.93 | 13.75 |

How is the collinearity in this model?

```
vif(mod_4)
```

| x 1 | x 2 | x 3 | x 4 | x 5 | x 6 | x 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |$\quad \mathrm{x} 12$

That looks more troubling to me, at least as compared to mod_3. How about the residual plots? Do those for mod_4 below look meaningfully different from the ones we built for our LASSO-inspired model mod_3?

```
par(mfrow = c(2,2))
plot(mod_4)
```


Fitted values

Fitted values

Theoretical Quantiles

We now seem to have a point with a pretty substantial Cook's distance, specifically the point from row 8 of the data.

```
    pollution |> slice(8) |> select(x1:x12)
# A tibble: 1 x 12
    x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
    <dbl> <dbl>
1 11 53 68 9.2 2.99 12.1 
    pollution |> slice(8) |> select(x13:x15, y, y_inverse, out_std)
# A tibble: 1 x 6
        x13 x14 x15 y y_inverse out_std[,1]
    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1319 130 47 862. 0.00116 1.30
```

So what is unusual about Row 8? Well, it has an especially large value of x12 compared to the rest of the data.

```
describe(pollution$x12)
```

pollution\$x12

| n | missing | tinct | Info | Mean | Gmd | . 05 | . 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60 | 0 | 34 | 0.998 | 37.85 | 52.03 | 3.95 | 5.00 |
| . 25 | . 50 | . 75 | . 90 | . 95 | | | |
| 7.00 | 14.50 | 30.25 | 56.90 | 106.95 | | | |
| est : | 13 | 5 | highes | 8810 | 144311 | | |

That might be part of the problem, especially since stepwise regression maintains variable x 12 whereas our LASSO-inspired model (mod_3) does not.

33 NEW!! Bayes and a Linear Model

Almost all of this material is based on

- https://mc-stan.org/rstanarm/articles/continuous.html and
- https://easystats.github.io/bayestestR/articles/bayestestR.html and
- https://easystats.github.io/bayestestR/articles/example1.html

There's not a lot that is truly original here. That's a summer project.

33.1 R Setup Used Here

```
knitr::opts_chunk$set(comment = NA)
library(broom)
library(broom.mixed)
library(gt)
library(janitor)
library(mosaic)
library(bayestestR)
library(insight)
library(rstanarm)
library(conflicted)
library(tidyverse)
conflicts_prefer(dplyr::select, dplyr::filter, base::mean, base::range)
theme_set(theme_bw())
```


33.2 Return to the smalldat Example

Consider the smalldat.csv data we discussed in Chapter 22. The data includes 150 observations on 6 variables, and one of our goals was to build a model to predict total cholesterol.

```
smalldat <- read_csv("data/smalldat.csv", show_col_types = FALSE)
```

| Variable | Description |
| :--- | :--- |
| subject | Subject identification code |
| smoker | $1=$ current smoker, $0=$ not current smoker |
| totchol | total cholesterol, in $\mathrm{mg} / \mathrm{dl}$ |
| age | age in years |
| sex | subject's sex (M or F$)$ |
| educ | subject's educational attainment (4 levels) |

The educ levels are: 1_Low, 2_Middle, 3_High and 4_VHigh, which stands for Very High

33.3 The Distribution of Total Cholesterol

Across the 150 observations in the smalldat data, we have the following summaries of the distribution of total cholesterol, our outcome.

```
favstats(~ totchol, data = smalldat)
min Q1 median Q3 max mean sd n missing
150 209.25 237 265.75 332 236.78 38.76809 150 0
```


33.4 Fitting a Linear Model with lm() for Total Cholesterol

```
m1 <- lm(totchol ~ age + sex + smoker + factor(educ), data = smalldat)
glance(m1) |> select(r.squared, adj.r.squared, sigma,
    AIC, BIC, df, df.residual, nobs) |>
    gt() |> fmt_number(r.squared:sigma, decimals = 3)
```

| r.squared | adj.r.squared | sigma | AIC | BIC | df | df.residual | nobs |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.078 | 0.039 | 37.998 | 1525.772 | 1549.857 | 6 | 143 | 150 |

```
tidy(m1, conf.int = TRUE, conf.level = 0.95) |>
    gt() |> fmt_number(decimals = 3)
```

| term | estimate | std.error | statistic | p.value | conf.low | conf.high |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 167.153 | 21.639 | 7.725 | 0.000 | 124.380 | 209.926 |
| age | 1.248 | 0.379 | 3.296 | 0.001 | 0.500 | 1.996 |
| sexM | 3.153 | 6.515 | 0.484 | 0.629 | -9.725 | 16.030 |
| smoker | 3.462 | 6.526 | 0.531 | 0.597 | -9.438 | 16.363 |
| factor(educ)2_Middle | 11.330 | 7.740 | 1.464 | 0.145 | -3.970 | 26.631 |
| factor(educ)3_High | -2.202 | 9.426 | -0.234 | 0.816 | -20.834 | 16.431 |
| factor(educ)4_VHigh | 11.743 | 9.925 | 1.183 | 0.239 | -7.875 | 31.361 |

33.5 Fitting a Bayesian Linear Model

Can we fit a model for the same data using a Bayesian approach?
Yes, we can, for instance using the stan_glm() function from the rstanarm package.

```
set.seed(43211234) # best to set a random seed first
m2 <- stan_glm(totchol ~ age + sex + smoker + factor(educ),
    data = smalldat, refresh = 0)
```

Here the refresh $=0$ parameter stops the machine from printing out each of the updates it does while sampling, which is not generally something I need to look at. Here's what's placed in the m2 object:
m2

```
stan_glm
    family: gaussian [identity]
    formula: totchol ~ age + sex + smoker + factor(educ)
    observations: 150
    predictors: 7
```

| | Median | MAD_SD |
| :--- | ---: | :---: |
| (Intercept) | 166.3 | 21.5 |
| age | 1.3 | 0.4 |
| sexM | 3.1 | 6.5 |
| smoker | 3.8 | 6.3 |
| factor(educ)2_Middle | 11.4 | 7.7 |
| factor(educ)3_High | -2.4 | 9.5 |
| factor (educ)4_VHigh | 11.7 | 9.9 |

```
Auxiliary parameter(s):
    Median MAD_SD
sigma 38.1 2.4
```

* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg
- The first few lines specify the fitting process.
- Next, for each coefficient, we find the median value from the posterior distribution, and the MAD_SD value, which is an indicator of variation derived from the estimated posterior distribution of the parameters, and is used as a standard error in what follows.
- Finally, we see the estimated root mean squared error (residual standard deviation) sigma, again estimated with the median of the sigma values in the posterior distribution.

Using the summary () function provides some additional information about the parameter estimates, but mostly some convergence diagnostics for the Markov Chain Monte Carlo procedure that the rstanarm package used to build the estimates.

```
summary(m2)
```

```
Model Info:
```

```
    function: stan_glm
```

 function: stan_glm
 family: gaussian [identity]
 family: gaussian [identity]
 formula: totchol ~ age + sex + smoker + factor(educ)
 formula: totchol ~ age + sex + smoker + factor(educ)
 algorithm: sampling
 algorithm: sampling
 sample: 4000 (posterior sample size)
 sample: 4000 (posterior sample size)
 priors: see help('prior_summary')
 priors: see help('prior_summary')
 observations: 150
 observations: 150
 predictors: 7
 predictors: 7
 Estimates:

| | mean | sd | 10% | 50% | 90% |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 167.0 | 21.8 | 139.6 | 166.3 | 195.3 |
| age | 1.2 | 0.4 | 0.8 | 1.3 | 1.7 |
| sexM | 3.1 | 6.7 | -5.2 | 3.1 | 11.5 |
| smoker | 3.7 | 6.4 | -4.5 | 3.8 | 12.0 |
| factor (educ)2_Middle | 11.3 | 7.9 | 1.2 | 11.4 | 21.3 |
| factor (educ)3_High | -2.2 | 9.6 | -14.3 | -2.4 | 10.2 |
| factor (educ)4_VHigh | 11.8 | 10.0 | -1.1 | 11.7 | 24.8 |

```
```

sigma
38.2
2.3 35.4 38.1
41.3

```

Fit Diagnostics:
mean sd \(10 \% \quad 50 \% \quad 90 \%\)
mean_PPD \(236.8 \quad 4.4231 .0236 .7242 .4\)

The mean_ppd is the sample average posterior predictive distribution of the outcome variable

MCMC diagnostics
\begin{tabular}{lll} 
mcse & Rhat & \(n_{-}\)eff \\
0.4 & 1.0 & 3208 \\
0.0 & 1.0 & 3858 \\
0.1 & 1.0 & 4725 \\
0.1 & 1.0 & 3941 \\
0.1 & 1.0 & 3535 \\
0.2 & 1.0 & 3947 \\
0.2 & 1.0 & 3980 \\
0.0 & 1.0 & 4159 \\
0.1 & 1.0 & 4324 \\
0.0 & 1.0 & 1773
\end{tabular}

For each parameter, mcse is Monte Carlo standard error, \(n_{-}\)eff is a crude measure of effectiv

\subsection*{33.5.1 Extracting the Posterior}

Let's extract the coefficients of our model, using the get_parameters() function from the insight package:
```

```
    posteriors <- get_parameters(m2)
```

```
    posteriors <- get_parameters(m2)
head(posteriors)
head(posteriors)
    (Intercept) age sexM smoker factor(educ)2_Middle
    (Intercept) age sexM smoker factor(educ)2_Middle
1 147.0370 1.4540875 2.104415 15.0169219 19.5402757
1 147.0370 1.4540875 2.104415 15.0169219 19.5402757
2 190.0645 0.9457021 6.863091 -12.4867763 8.4980822
2 190.0645 0.9457021 6.863091 -12.4867763 8.4980822
3 136.3315 1.6844863 7.994193 9.1766741 24.8636150
3 136.3315 1.6844863 7.994193 9.1766741 24.8636150
4 169.9511 1.1722918 3.785779 0.5804774 6.5798777
4 169.9511 1.1722918 3.785779 0.5804774 6.5798777
5 141.0931 1.5370710 7.006277 12.6397405 17.0076561
5 141.0931 1.5370710 7.006277 12.6397405 17.0076561
6 153.6542 1.3556864 22.009667 11.4591142 -0.9136777
6 153.6542 1.3556864 22.009667 11.4591142 -0.9136777
factor(educ)3_High factor(educ)4_VHigh
```

factor(educ)3_High factor(educ)4_VHigh

```
```

 5.941676
    ```
    5.941676
    4.100910
```

 4.100910
    ```
1
\begin{tabular}{lrr}
2 & -9.449067 & 20.836287 \\
3 & 9.972711 & 12.456202 \\
4 & -7.890619 & 16.454040 \\
5 & 7.221881 & -9.123619 \\
6 & -4.333041 & 7.401950
\end{tabular}

In all, we have 4000 observations of this posterior distribution:
```

nrow(posteriors)

```
[1] 4000

Let's visualize the posterior distribution of our parameter for age.
```

ggplot(posteriors, aes(x = age)) + geom_density(fill = "dodgerblue")

```


This distribution describes the probability (on the vertical axis) of various age effects (shown on the horizontal axis). Most of the distribution is between 0.5 and 2, with the peak being around 1.25 .

Remember that our m 1 fit with \(\operatorname{lm}()\) had an estimated \(\beta\) for age of 1.248 , so, as is often the case, there is not a lot of difference between the two models in terms of the estimates they make.

Here's the mean and median of the age effect, across our 4000 simulations from the posterior distribution.
```

mean(posteriors\$age)

```
[1] 1.249122
```

median(posteriors\$age)

```
[1] 1.251402

Again, these are very close to what we obtained from least squares estimation.
Another option is to take the mode (peak) of the posterior distribution, and this is called the maximum a posteriori (MAP) estimate:
```

map_estimate(posteriors\$age)

```

\section*{MAP Estimate}
```

Parameter | MAP_Estimate

x | 1.26

```

Adding these estimates to our plot, we can see that they are all on top of each other:
```

ggplot(posteriors, aes(x = age)) +
geom_density(fill = "dodgerblue") +
\# The mean in yellow
geom_vline(xintercept = mean(posteriors$age), color = "yellow", linewidth = 1) +
 # The median in red
 geom_vline(xintercept = median(posteriors$age), color = "red", linewidth = 1) +
\# The MAP in purple
geom_vline(xintercept = as.numeric(map_estimate(posteriors\$age)), color = "purple", line

```


\subsection*{33.5.2 Describing Uncertainty}

We might describe the range of estimates for the age effect.
```

range(posteriors\$age)

```
[1] -0.03663079 2.63023158

Instead of showing the whole range, we usually compute the highest density interval at some percentage level, for instance a \(95 \%\) credible interval which shows the range containing the \(95 \%\) most probable effect values.
```

hdi(posteriors\$age, ci = 0.95)

```

95\% HDI: [0.50, 1.98]

So we conclude that the age effect has a \(95 \%\) chance of falling within the \([0.50,1.98]\) range.

\subsection*{33.5.3 Visualizing the Coefficients and Credible Intervals}

Here is a plot of the coefficients and parameters estimated in m 2 , along with credible intervals for their values. The inner interval (shaded region) here uses the default choice of \(50 \%\), and the outer interval (lines) uses a non-default choice of \(95 \%\) ( \(90 \%\) is the default choice here, as it turns out.) The point estimate shown here is the median of the posterior distribution, which is the default.
```

plot(m2, prob = 0.5, prob_outer = 0.95)

```


\subsection*{33.6 Summarizing the Posterior Distribution}

A more detailed set of summaries for the posterior distribution can be obtained from the describe_posterior() function from the bayestestR package.
A brief tutorial on what is shown here is available at https://easystats.github.io/bayestestR/ articles/bayestestR.html and https://easystats.github.io/bayestestR/articles/example1.html and this is the source for much of what I've built in this little chapter.
```

describe_posterior(m2) |> print_md(decimals = 3)

```

Table 33.2: Summary of Posterior Distribution
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameter & Median & 95\% CI & pd & ROPE & \[
\begin{array}{r}
\% \text { in } \\
\text { ROPE }
\end{array}
\] & Rhat & ESS \\
\hline (Intercept) & 166.28 & \[
\begin{aligned}
& {[124.14,} \\
& 209.25]
\end{aligned}
\] & 100\% & [-3.88, 3.88] & 0\% & 1.000 & 3208.00 \\
\hline age & 1.25 & [ 0.51, 1.99] & 99.95\% & [-3.88, 3.88] & 100\% & 1.000 & 3858.00 \\
\hline sexM & 3.07 & [-9.93, 16.46] & 68.20\% & [-3.88, 3.88] & 42.32\% & 1.000 & 4725.00 \\
\hline smoker & 3.75 & [ -9.12, 16.17] & 71.67\% & [-3.88, 3.88] & 41.61\% & 1.000 & 3941.00 \\
\hline \multicolumn{2}{|l|}{factor(educ)2_Middlle 39} & -4.42, 26.57] & 92.38\% & [-3.88, 3.88] & 14.45\% & 1.000 & 3535.00 \\
\hline \multicolumn{2}{|l|}{factor(educ)3_High -2.42} & [-20.30, 16.54] & 59.70\% & [-3.88, 3.88] & 31.45\% & 1.000 & 3947.00 \\
\hline \multicolumn{2}{|l|}{factor(educ)4_VHigh1.70} & [ \(-7.24,31.59]\) & 88.00\% & [-3.88, 3.88] & 16.58\% & 0.999 & 3980.00 \\
\hline
\end{tabular}

Let's walk through all of this output.

\subsection*{33.6.1 Summarizing the Parameter values}

For each parameter, we have:
- its estimated median across the posterior distribution
- its \(95 \%\) credible interval (highest density interval of values within the posterior distribution)
as we've previously discussed.

\subsection*{33.6.2 Probability of Direction (pd) estimates.}

The pd estimate helps us understand whether each effect is positive or negative. For instance, regarding age, we see the proportion of the posterior that is positive, no matter what the "size" of the effect is, will be as follows.
```

n_positive <- posteriors |> filter(age > 0) |> nrow()
100 * n_positive / nrow(posteriors)

```
[1] 99.95

So we see that the effect of age is positive with a probability of \(99.5 \%\), and this is called the probability of direction and abbreviated pd.

We can also calculate this with
```

 p_direction(posteriors$age)
 Probability of Direction
Parameter | pd
Posterior | 99.95%

```

As it turns out, this pd index is usually highly correlated with the p-value from our 1 m() fit for age. We could almost roughly infer the corresponding \(p\)-value with a simple transformation:
```

pd <- 99.95
onesided_p <- 1 - pd / 100
twosided_p <- onesided_p * 2
twosided_p

```
[1] 0.001

This implies that the \(p\)-value for age in our \(\operatorname{lm}()\) fit would be 0.001 , and that is, in fact, what we got when we fit model m1.

The probability that each effect is positive is summarized in the pd column of our describe_posterior() results.

\subsection*{33.6.3 The ROPE estimates}

Testing whether this distribution is different from 0 doesn't make sense, as 0 is a single value (and the probability that any distribution is different from a single value is infinite). However, one way to assess significance could be to define an area around 0 , which will consider as practically equivalent to zero (i.e., absence of, or a negligible, effect). This is called the Region of Practical Equivalence (ROPE).

The default (semi-objective) way of defining the ROPE is to use the tenth \((1 / 10)\) of the standard deviation (SD) of the outcome variable totchol. This is sometimes considered a "negligible" effect size.

In our case, totchol has a standard deviation of 38.8 , so the ROPE range is approximately \((-3.88,3.88)\), or somewhat more precisely:
```

rope_range(m2)

```

So we then compute the percentage in ROPE as the percentage of the posterior distribution that falls within this ROPE range. When most of the posterior distribution does not overlap with ROPE, we might conclude that the effect is important enough to be noted.
In our case, \(100 \%\) of the age effects are in the ROPE, so that's not really evidence of an important effect.

For smoker, though, only \(42 \%\) of the effects are in the ROPE, so that's indicative of a somewhat more substantial effect, but we'd only get really excited if a much smaller fraction, say \(1 \%\), \(5 \%\) or maybe \(10 \%\) were in the ROPE.

\subsection*{33.6.4 Convergence Diagnostics}

The value of Rhat should, ideally, be 1 for each element of the model, and indicate how well the MCMC procedure converged. Generally, values of Rhat below 1.05 are good, values between 1.05 and 1.1 are OK, but values above 1.1 are too high. Here, as you can see, we don't see any serious problems.

As for ESS, we'd like to see values of 1000 or more to ensure sufficiently stable estimates. Here, again, we're OK.
```

broom.mixed::tidy(m2, conf.int = TRUE, conf.level = 0.95) |>
gt() |> fmt_number(decimals = 3)

```
\begin{tabular}{lrrrr}
\hline term & estimate & std.error & conf.low & conf.high \\
\hline (Intercept) & 166.284 & 21.546 & 124.137 & 209.245 \\
age & 1.251 & 0.374 & 0.511 & 1.992 \\
sexM & 3.074 & 6.538 & -9.929 & 16.461 \\
smoker & 3.753 & 6.328 & -9.119 & 16.175 \\
factor(educ)2_Middle & 11.388 & 7.705 & -4.423 & 26.572 \\
factor(educ)3_High & -2.421 & 9.495 & -20.296 & 16.541 \\
factor(educ)4_VHigh & 11.702 & 9.889 & -7.241 & 31.592 \\
\hline
\end{tabular}

\subsection*{33.7 Summarizing the Priors Used}

From the bayestestR package, we also have the describe_prior() and print_md() functions to get the following summary of the priors we have assumed. Since we didn't specify anything about the priors in fitting model m 2 , we are looking at the default choices, which are weakly
informative priors following Normal distributions. Details on the default prior choices can be found at https://mc-stan.org/rstanarm/articles/priors.html.
```

describe_prior(m2) |> print_md(decimals = 3)

```
\begin{tabular}{lrrr}
\hline Parameter & Prior_Distribution & Prior_Location & Prior_Scale \\
\hline (Intercept) & normal & 236.78 & 96.92 \\
age & normal & 0.00 & 10.87 \\
sexM & normal & 0.00 & 195.71 \\
smoker & normal & 0.00 & 193.21 \\
factor(educ)2_Middle & normal & 0.00 & 210.79 \\
factor(educ)3_High & normal & 0.00 & 273.05 \\
factor(educ)4_VHigh & normal & 0.00 & 284.16 \\
\hline
\end{tabular}

\subsection*{33.8 Graphical Posterior Predictive Checks}

For more on these checks, visit https://mc-stan.org/rstanarm/articles/continuous.html\#the-posterior-predictive-distribution-1, for example.

Here's the first plot which compares the distribution of the observed outcome \(y\) (totchol) to several of the simulated data sets \(y_{\text {rep }}\) from the posterior predictive distribution using the same predictor values as were used to fit the model.
```

pp_check(m2, plotfun = "hist", nreps = 5, bins = 25)

```


The idea is that if the model is a good fit to the data we should be able to generate data \(y_{\text {rep }}\) from the posterior predictive distribution that looks a lot like the observed data \(y\). That is, given \(y\), the \(y_{\text {rep }}\) we generate should look plausible. We'd worry a bit if this plot showed histograms that were wildly different from one another.

Another useful plot (shown below) made using pp_check shows the distribution of a test quantity \(T\left(y_{\text {rep }}\right)\) compared to \(T(y)\), the value of the quantity in the observed data. I like this scatterplot version which allows us to look at where the simulations' mean and standard deviation fall compared to what the observed totchol values show us.
```

pp_check(m2, plotfun = "stat_2d", stat = c("mean", "sd"))

```


We can see that the cloud of simulated means and standard deviations has the observed statistics near its center, although perhaps the standard deviations are a bit higher than we might like to see, typically. Ideally, the dot would be right in the center of this cloud of simulated results.

\section*{34 NEW!! Bayes and a Logistic Model}

Almost all of this material is based on
- https://mc-stan.org/rstanarm/articles/binomial.html and
- https://easystats.github.io/bayestestR/articles/bayestestR.html and
- https://easystats.github.io/bayestestR/articles/example1.html and
- https://easystats.github.io/bayestestR/articles/example2.html\#logistic-model

There's not a lot that is truly original here. That's a summer project.

\subsection*{34.1 R Setup Used Here}
```

knitr::opts_chunk\$set(comment = NA)
library(broom)
library(broom.mixed)
library(gt)
library(janitor)
library(mosaic)
library(bayestestR)
library(insight)
library(rstanarm)
library(conflicted)
library(tidyverse)
conflicts_prefer(dplyr::select, dplyr::filter, base::mean, base::range)
theme_set(theme_bw())

```

\subsection*{34.2 Return to the smalldat Example}

Consider the smalldat.csv data we discussed initially Chapter 22. The data includes 150 observations on 6 variables, and our goal here is to predict smoker given four predictors
(totchol, age, sex and educ.)
```

smalldat <- read_csv("data/smalldat.csv", show_col_types = FALSE)

```
\begin{tabular}{ll}
\hline Variable & Description \\
\hline subject & Subject identification code \\
smoker & \(1=\) current smoker, \(0=\) not current smoker \\
totchol & total cholesterol, in mg/dl \\
age & age in years \\
sex & subject's sex (M or F) \\
educ & subject's educational attainment (4 levels) \\
\hline
\end{tabular}

The educ levels are: 1_Low, 2_Middle, 3_High and 4_VHigh, which stands for Very High

\subsection*{34.3 The Distribution of Smoking Status}

Across the 150 observations in the smalldat data, we have 74 smokers.
```

smalldat |> tabyl(smoker) |> adorn_pct_formatting() |> adorn_totals()
smoker n percent
076 50.7%
1 74 49.3%
Total }15

```

\subsection*{34.4 Fitting a Logistic Regression Model with glm()}
```

m1 <- glm((smoker == 1) ~ age + sex + totchol + factor(educ),
data = smalldat)
glance(m1) |> select(nobs, df.residual, AIC, BIC, logLik, deviance, null.deviance) |>
gt() |> fmt_number(AIC:null.deviance, decimals = 2)

```
\begin{tabular}{rrrrrrr}
\hline nobs & df.residual & AIC & BIC & \(\operatorname{logLik}\) & deviance & null.deviance \\
\hline 150 & 143 & 218.30 & 242.39 & -101.15 & 33.83 & 37.49 \\
\hline
\end{tabular}
```


raw coefficients

tidy(m1, conf.int = TRUE, conf.level = 0.95) |>
gt() |> fmt_number(decimals = 3)

```
\begin{tabular}{lrrrrrr}
\hline term & estimate & std.error & statistic & p.value & conf.low & conf.high \\
\hline (Intercept) & 1.071 & 0.317 & 3.374 & 0.001 & 0.449 & 1.693 \\
age & -0.014 & 0.005 & -2.872 & 0.005 & -0.024 & -0.004 \\
sexM & 0.131 & 0.083 & 1.578 & 0.117 & -0.032 & 0.293 \\
totchol & 0.001 & 0.001 & 0.531 & 0.597 & -0.002 & 0.003 \\
factor(educ)2_Middle & -0.089 & 0.100 & -0.894 & 0.373 & -0.284 & 0.106 \\
factor(educ)3_High & -0.073 & 0.121 & -0.604 & 0.547 & -0.309 & 0.163 \\
factor(educ)4_VHigh & -0.242 & 0.126 & -1.919 & 0.057 & -0.489 & 0.005 \\
\hline
\end{tabular}
\#\# with exponentiated coefficients
tidy(m1, exponentiate = TRUE, conf.int = TRUE, conf.level = 0.95) |>
    gt() |> fmt_number (decimals = 3)
\begin{tabular}{lrrrrrr}
\hline term & estimate & std.error & statistic & p.value & conf.low & conf.high \\
\hline (Intercept) & 2.918 & 0.317 & 3.374 & 0.001 & 1.566 & 5.435 \\
age & 0.986 & 0.005 & -2.872 & 0.005 & 0.977 & 0.996 \\
sexM & 1.140 & 0.083 & 1.578 & 0.117 & 0.969 & 1.340 \\
totchol & 1.001 & 0.001 & 0.531 & 0.597 & 0.998 & 1.003 \\
factor(educ)2_Middle & 0.915 & 0.100 & -0.894 & 0.373 & 0.753 & 1.112 \\
factor(educ)3_High & 0.930 & 0.121 & -0.604 & 0.547 & 0.734 & 1.177 \\
factor(educ)4_VHigh & 0.785 & 0.126 & -1.919 & 0.057 & 0.613 & 1.005 \\
\hline
\end{tabular}

\subsection*{34.5 Fitting a Bayesian Linear Model}

Can we fit a model for the same data using a Bayesian approach?
Yes, we can, for instance using the stan_glm() function from the rstanarm package.
```

set.seed(43234231) \# best to set a random seed first
m2 <- stan_glm((smoker == 1) ~ age + sex + totchol + factor(educ),
data = smalldat, refresh = 0)

```

Here the refresh \(=0\) parameter stops the machine from printing out each of the updates it does while sampling, which is not generally something I need to look at. Here's what's placed in the m2 object:

> m2
```

stan_glm
family: gaussian [identity]
formula: (smoker == 1) ~ age + sex + totchol + factor(educ)
observations: 150
predictors: 7

```
------
\begin{tabular}{lcc} 
& Median & MAD_SD \\
(Intercept) & 1.1 & 0.3 \\
age & 0.0 & 0.0 \\
sexM & 0.1 & 0.1 \\
totchol & 0.0 & 0.0 \\
factor (educ)2_Middle & -0.1 & 0.1 \\
factor (educ)3_High & -0.1 & 0.1 \\
factor (educ)4_VHigh & -0.2 & 0.1
\end{tabular}
Auxiliary parameter(s):
    Median MAD_SD
sigma 0.50 .0
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg
- The first few lines specify the fitting process.
- Next, for each coefficient, we find the median value from the posterior distribution, and the MAD_SD value, which is an indicator of variation derived from the estimated posterior distribution of the parameters, and is used as a standard error in what follows.
- Finally, we see the estimated root mean squared error (residual standard deviation) sigma, again estimated with the median of the sigma values in the posterior distribution.

Using the summary () function provides some additional information about the parameter estimates, but mostly some convergence diagnostics for the Markov Chain Monte Carlo procedure that the rstanarm package used to build the estimates.
```

summary(m2)

```
```

Model Info:

```
```

 function: stan_glm
    ```
    function: stan_glm
    family: gaussian [identity]
    family: gaussian [identity]
    formula: (smoker == 1) ~ age + sex + totchol + factor(educ)
    formula: (smoker == 1) ~ age + sex + totchol + factor(educ)
    algorithm: sampling
    algorithm: sampling
    sample: 4000 (posterior sample size)
    sample: 4000 (posterior sample size)
    priors: see help('prior_summary')
    priors: see help('prior_summary')
    observations: 150
    observations: 150
    predictors: 7
```

 predictors: 7
    ```
Estimates:
\begin{tabular}{lrrrrr} 
& mean & sd & \(10 \%\) & \multicolumn{1}{c}{\(50 \%\)} & \(90 \%\) \\
(Intercept) & 1.1 & 0.3 & 0.7 & 1.1 & 1.5 \\
age & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
sexM & 0.1 & 0.1 & 0.0 & 0.1 & 0.2 \\
totchol & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
factor (educ)2_Middle & -0.1 & 0.1 & -0.2 & -0.1 & 0.0 \\
factor (educ)3_High & -0.1 & 0.1 & -0.2 & -0.1 & 0.1 \\
factor (educ)4_VHigh & -0.2 & 0.1 & -0.4 & -0.2 & -0.1 \\
sigma & 0.5 & 0.0 & 0.5 & 0.5 & 0.5
\end{tabular}

Fit Diagnostics:
\begin{tabular}{llllll} 
mean & sd & \(10 \%\) & \(50 \%\) & \(90 \%\) \\
.5 & 0.1 & 0.4 & 0.5 & 0.6
\end{tabular}

The mean_ppd is the sample average posterior predictive distribution of the outcome variable

MCMC diagnostics
\begin{tabular}{llll} 
& mcse & Rhat & \(n_{-}\)eff \\
(Intercept) & 0.0 & 1.0 & 4790 \\
age & 0.0 & 1.0 & 2700 \\
sexM & 0.0 & 1.0 & 3922 \\
totchol & 0.0 & 1.0 & 3983 \\
factor(educ)2_Middle & 0.0 & 1.0 & 2847 \\
factor(educ)3_High & 0.0 & 1.0 & 3724 \\
factor(educ)4_VHigh & 0.0 & 1.0 & 3550 \\
sigma & 0.0 & 1.0 & 4324 \\
mean_PPD & 0.0 & 1.0 & 4262 \\
log-posterior & 0.0 & 1.0 & 1996
\end{tabular}

For each parameter, mcse is Monte Carlo standard error, \(n_{-} e f f\) is a crude measure of effectiv

\subsection*{34.5.1 Extracting the Posterior}

Let's extract the coefficients of our model, using the get_parameters() function from the insight package:
```

posteriors <- get_parameters(m2)
head(posteriors)
(Intercept) age sexM totchol factor(educ)2_Middle
1 1.0395289 -0.004619993 0.25120820 -0.0012609246 -0.07421785
2 1.3897359 -0.015504179 0.05308297 -0.0005806271 -0.05711548
3 0.6960912 -0.012991489 0.12013110 0.0015857650 0.08652352
4 0.3501038 -0.011626531 0.23179922 0.0024659073 0.12610455
5 1.5843855 -0.009405856 0.05310819 -0.0025427990 -0.05049668
6 1.0403138 -0.006376498 0.04919309 -0.0013779428 0.08575331
factor(educ)3_High factor(educ)4_VHigh
1 -0.247278983 -0.34931693
2 -0.027945532 -0.04715445
3 0.098936630 -0.09453129
4 0.055186994 -0.08377399
5 0.003482159 -0.11669724
6 0.123287117 -0.06056735

```

In all, we have 4000 observations of this posterior distribution:
```

nrow(posteriors)

```
[1] 4000

Let's visualize the posterior distribution of our parameter for age.
```

ggplot(posteriors, aes(x = age)) + geom_density(fill = "dodgerblue")

```


This distribution describes the probability (on the vertical axis) of various age effects (shown on the horizontal axis). Most of the distribution is between -0.025 and -0.005 , with the peak being around -0.15 .

Remember that our \(m 1\) fit with \(\operatorname{glm}()\) had an estimated \(\beta\) for age of -0.014 , so, as is often the case, there is not a lot of difference between the two models in terms of the estimates they make.

Here's the mean and median of the age effect, across our 4000 simulations from the posterior distribution.
```

mean(posteriors\$age)

```
[1] -0.01389409
```

median(posteriors\$age)

```
[1] -0.01391701

And here are the results after exponentiation, so that the estimates describe odds ratios:
```

mean(exp(posteriors\$age))

```
[1] 0.9862135
```

median(exp(posteriors\$age))

```
[1] 0.9861794

Again, these are very close to what we obtained from least squares estimation.
Another option is to take the mode (peak) of the posterior distribution, and this is called the maximum a posteriori (MAP) estimate:
```

map_estimate(posteriors\$age)

```

MAP Estimate
```

Parameter | MAP_Estimate

x | -0.01
map_estimate(exp(posteriors\$age)) \# on odds ratio scale

```

\section*{MAP Estimate}
\(\begin{array}{lr}\text { Parameter | MAP_Estimate } \\ \text {------------------- } \\ \text { x } & 0.99\end{array}\)

Adding these estimates to our plot, we can see that they are quite close:
```

ggplot(posteriors, aes(x = age)) +
geom_density(fill = "dodgerblue") +
\# The mean in yellow
geom_vline(xintercept = mean(posteriors$age), color = "yellow", linewidth = 1) +
 # The median in red
 geom_vline(xintercept = median(posteriors$age), color = "red", linewidth = 1) +

```
```


The MAP in purple

```
geom_vline(xintercept = as.numeric(map_estimate(posteriors\$age)), color = "purple", line


\subsection*{34.5.2 Describing Uncertainty}

We might describe the range of estimates for the age effect.
```

range(posteriors\$age)

```
[1] -0.03166005 0.00409895

Instead of showing the whole range, we usually compute the highest density interval at some percentage level, for instance a \(95 \%\) credible interval which shows the range containing the \(95 \%\) most probable effect values.
```

hdi(posteriors\$age, ci = 0.95)

```

95\% HDI: [-0.02, 0.00]

So we conclude that the age effect has a \(95 \%\) chance of falling within the \([-0.02,0.00]\) range. We can also exponentiate here, so as to provide the result in terms of an odds ratio.
```

hdi(exp(posteriors\$age), ci = 0.95)

```
\(95 \%\) HDI: [0.98, 1.00]

\subsection*{34.5.3 Visualizing the Coefficients and Credible Intervals}

Here is a plot of the coefficients and parameters estimated in m 2 , along with credible intervals for their values. The inner interval (shaded region) here uses the default choice of \(50 \%\), and the outer interval (lines) uses a non-default choice of \(95 \%\) ( \(90 \%\) is the default choice here, as it turns out.) The point estimate shown here is the median of the posterior distribution, which is the default.
```

plot(m2, prob = 0.5, prob_outer = 0.95)

```


\subsection*{34.6 Summarizing the Posterior Distribution}

A more detailed set of summaries for the posterior distribution can be obtained from the describe_posterior() function from the bayestestR package.

A brief tutorial on what is shown here is available at https://easystats.github.io/bayestestR/ articles/bayestestR.html and https://easystats.github.io/bayestestR/articles/example1.html and this is the source for much of what I've built in this little chapter.
```

describe_posterior(posteriors, test = c("pd", "ROPE")) |> print_md(decimals = 3)

```

Table 34.2: Summary of Posterior Distribution
\begin{tabular}{lrlrlr}
\hline & & & & & \(\%\) \\
Parameter & Median & \(95 \%\) CI & pd & ROPE & ROPE \\
\hline (Intercept) & 1.07 & {\([0.43,1.70]\)} & \(100 \%\) & {\([-0.10,0.10]\)} & \(0 \%\) \\
age & -0.01 & {\([-0.02,0.00]\)} & \(99.85 \%\) & {\([-0.10,0.10]\)} & \(100 \%\) \\
sexM & 0.13 & {\([-0.04,0.30]\)} & \(94.15 \%\) & {\([-0.10,0.10]\)} & \(35.08 \%\) \\
totchol & \(5.36 \mathrm{e}-04\) & {\([0.00,0.00]\)} & \(69.92 \%\) & {\([-0.10,0.10]\)} & \(100 \%\) \\
factor(educ)2_Middle & -0.08 & {\([-0.29,0.11]\)} & \(79.77 \%\) & {\([-0.10,0.10]\)} & \(54.87 \%\) \\
factor(educ)3_High & -0.07 & {\([-0.30,0.17]\)} & \(72.32 \%\) & {\([-0.10,0.10]\)} & \(53.47 \%\) \\
factor(educ)4_VHigh & -0.24 & {\([-0.49,0.01]\)} & \(96.88 \%\) & {\([-0.10,0.10]\)} & \(11.82 \%\) \\
\hline
\end{tabular}

Let's walk through all of this output.

\subsection*{34.6.1 Summarizing the Parameter values}

For each parameter, we have:
- its estimated median across the posterior distribution
- its \(95 \%\) credible interval (highest density interval of values within the posterior distribution)
as we've previously discussed.

\subsection*{34.6.2 Probability of Direction (pd) estimates.}

The pd estimate helps us understand whether each effect is positive or negative. For instance, regarding age, we see the proportion of the posterior that is in the direction of the median effect (negative), no matter what the "size" of the effect is, will be as follows.
```

n_negative <- posteriors |> filter(age < 0) |> nrow()
100 * n_negative / nrow(posteriors)

```
[1] 99.85

So we see that the effect of age is negative with a probability of \(99.85 \%\), and this is called the probability of direction and abbreviated pd.

We can also calculate this with
```

 p_direction(posteriors$age)
 Probability of Direction
Parameter | pd

Posterior | 99.85%

```

\subsection*{34.6.3 The ROPE estimates}

Testing whether this distribution is different from 0 doesn't make sense, as 0 is a single value (and the probability that any distribution is different from a single value is infinite). However, one way to assess significance could be to define an area around 0 , which will consider as practically equivalent to zero (i.e., absence of, or a negligible, effect). This is called the Region of Practical Equivalence (ROPE).

The default (semi-objective) way of defining the ROPE is to use ( \(-0.1,0.1\) ) in this context. This is sometimes considered a "negligible" effect size.
```

rope_range(posteriors)

```
[1] -0.1 0.1

So we then compute the percentage in ROPE as the percentage of the posterior distribution that falls within this ROPE range. When most of the posterior distribution does not overlap with ROPE, we might conclude that the effect is important enough to be noted.

In our case, \(100 \%\) of the age effects are in the ROPE, so that's not really evidence of an important effect.

For sex, though, only \(35 \%\) of the effects are in the ROPE, so that's indicative of a somewhat more substantial effect, but we'd only get really excited if a much smaller fraction, say \(1 \%\), \(5 \%\) or maybe \(10 \%\) were in the ROPE.

\subsection*{34.6.4 Summarizing the Coefficients as Odds Ratios}
```

broom.mixed::tidy(m2, exponentiate = TRUE,
conf.int $=$ TRUE, conf.level $=0.95$) |>
gt() |> fmt_number (decimals = 3)

```
\begin{tabular}{lrrrr}
\hline term & estimate & std.error & conf.low & conf.high \\
\hline (Intercept) & 2.912 & 0.949 & 1.531 & 5.492 \\
age & 0.986 & 0.005 & 0.977 & 0.996 \\
sexM & 1.141 & 0.096 & 0.965 & 1.348 \\
totchol & 1.001 & 0.001 & 0.998 & 1.003 \\
factor(educ)2_Middle & 0.920 & 0.093 & 0.751 & 1.121 \\
factor(educ)3_High & 0.931 & 0.111 & 0.738 & 1.188 \\
factor(educ)4_VHigh & 0.790 & 0.101 & 0.616 & 1.013 \\
\hline
\end{tabular}

\subsection*{34.7 Summarizing the Priors Used}

From the bayestestR package, we also have the describe_prior() and print_md() functions to get the following summary of the priors we have assumed. Since we didn't specify anything about the priors in fitting model m 2 , we are looking at the default choices, which are weakly informative priors following Normal distributions. Details on the default prior choices can be found at https://mc-stan.org/rstanarm/articles/priors.html.
```

describe_prior(m2) |> print_md(decimals = 3)

```
\begin{tabular}{lrrr}
\hline Parameter & Prior_Distribution & Prior_Location & Prior_Scale \\
\hline (Intercept) & normal & 0.49 & 1.25 \\
age & normal & 0.00 & 0.14 \\
sexM & normal & 0.00 & 2.53 \\
totchol & normal & 0.00 & 0.03 \\
factor(educ)2_Middle & normal & 0.00 & 2.73 \\
factor(educ)3_High & normal & 0.00 & 3.53 \\
factor(educ)4_VHigh & normal & 0.00 & 3.68 \\
\hline
\end{tabular}

\subsection*{34.8 Graphical Posterior Predictive Checks}

For more on these checks, visit https://mc-stan.org/rstanarm/articles/continuous.html\#the-posterior-predictive-distribution-1, for example.

Here's the first plot which compares the density function of the observed outcome \(y\) (totchol) to several of the simulated data sets \(y_{\text {rep }}\) from the posterior predictive distribution using the same predictor values as were used to fit the model.
```

pp_check(m2, nreps = 5)

```


The idea is that if the model is a good fit to the data we should be able to generate data \(y_{\text {rep }}\) from the posterior predictive distribution that looks a lot like the observed data \(y\). That is, given \(y\), the \(y_{\text {rep }}\) we generate should look plausible. We'd worry a bit if this plot showed histograms that were wildly different from one another.

Another useful plot (shown below) made using pp_check shows the distribution of a test quantity \(T\left(y_{\text {rep }}\right)\) compared to \(T(y)\), the value of the quantity in the observed data. I like this scatterplot version which allows us to look at where the simulations' mean and standard deviation fall compared to what the observed totchol values show us.
```

pp_check(m2, plotfun = "stat_2d", stat = c("mean", "sd"))

```


We can see that the cloud of simulated means and standard deviations has the observed statistics near its center, although perhaps the standard deviations are a bit higher than we might like to see, typically. Ideally, the dot would be right in the center of this cloud of simulated results.

\section*{References}```


[^0]:    ${ }^{1}$ Those over 80 years of age are coded 80 .

[^1]:    ${ }^{2}$ Those who responded with 15 drinks or more are coded 15 .

[^2]:    ${ }^{3}$ For more on the purrr package, visit https://purrr.tidyverse.org/

[^3]:    ${ }^{4}$ For more on replace_with_na(), visit https://naniar.njtierney.com/articles/replace-with-na.html

[^4]:    ${ }^{5}$ Sanity checks are a great idea while in the midst of coding, but can confuse the reader and thus should not be included in 432 submitted work.

[^5]:    ${ }^{6}$ For more on the across() function and how it can be used, visit https://dplyr.tidyverse.org/reference/across. html.

[^6]:    ${ }^{7}$ See Kroenke et al. 2010

[^7]:    ${ }^{8}$ Again, see Kroenke et al. (2010) at https://pubmed.ncbi.nlm.nih.gov/20633738/.

[^8]:    ${ }^{9}$ Again, I wouldn't usually include this sort of coding check in published work, like either of your 432 Projects.

[^9]:    ${ }^{10} \mathrm{https}: / /$ forcats.tidyverse.org/ is the home of forcats, although the Factors chapter at https://r4ds.hadley.nz/ factors.html in R for Data Science, 2nd edition is also helpful.

[^10]:    ${ }^{1}$ The e1071 package in R provides several such measures of skewness and kurtosis if you really want to see them.
    ${ }^{2}$ The Kolmogorov-Smirnov test is available in R: see ks.test ()
    ${ }^{3}$ See shapiro.test() in R

[^11]:    ${ }^{4}$ The pseudomedian of a distribution $F$ is the median of the distribution of $(u+v) / 2$, where $u$ and $v$ are independent and each have distribution $F$.

[^12]:    ${ }^{5}$ The pseudomedian of a distribution $F$ is the median of the distribution of $(u+v) / 2$, where $u$ and $v$ are independent and each have distribution $F$.

[^13]:    ${ }^{1}$ The expected frequency for a call under independence is the total for the cell's row multiplied by the total for the cell's column, divided by the grand total for the whole table.

[^14]:    ${ }^{2}$ The ggmosaic package has a geom_mosaic () tool for building such plots but its maintenance has been spotty in recent weeks.

[^15]:    ${ }^{1}$ The MPa is defined as the failure load (in Newtons) divided by the entire bonded area, in $\mathrm{mm}^{2}$.

[^16]:    ${ }^{2}$ If the data weren't approximately Normally distributed, we might instead consider a rank-based alternative to ANOVA, like the Kruskal-Wallis test.

[^17]:    ${ }^{1}$ I'll now refer to those who have smoked at least 100 cigarettes in their life as smokers, and those who have not as non-smokers to save some space.

[^18]:    ${ }^{2}$ See https://stats.idre.ucla.edu/r/dae/zinb/

[^19]:    ${ }^{3} \mathrm{http}: / /$ data.library.virginia.edu/getting-started-with-hurdle-models/ is an excellent introduction, by Clay Ford, a Statistical Research Consultant at the University of Virginia Library. I can also recommend

[^20]:    https://rpubs.com/kaz_yos/pscl-2 as a place to learn more about the pscl package, and the fitting and interpretation of both hurdle and zero-inflated regression models. That rpubs site has a link to this article by Hu, Pavlicova and Nunes from the Am J Drug Alcohol Abuse which provides a real set of examples from a trial of a behavioral health intervention meant to reduce the risk of unprotected sexual occasions as part of a strategy to reduce HIV risk.

[^21]:    Variable Description
    SEQNO Subject identification code
    genhealth Five categories ( $1=$ Excellent, $2=$ Very Good, $3=$ Good, $4=$ Fair, $5=$ Poor) on general health
    physhealth Now thinking about your physical health, which includes physical illness and injury, for how many days during the past 30 days was your physical health not good?

