
Data Science for Biological, Medical and
Health Research

Notes for PQHS/CRSP/MPHP 432 at CWRU

Thomas E. Love

2024-04-15

Table of contents

Introduction 24

This is work in progress 25

R Setup 26
General Theme for ggplot work . 27

1 Building the nh432 example 28
1.1 R Setup . 28
1.2 Selecting NHANES Variables . 28

1.2.1 Demographics and Sample Weights . 29
1.2.2 Oral Health . 30
1.2.3 Hospital Utilization & Access to Care 31
1.2.4 Body Measures . 31
1.2.5 Blood Pressure . 32
1.2.6 Complete Blood Count . 33
1.2.7 C-Reactive Protein . 33
1.2.8 Alcohol Use . 34
1.2.9 Dermatology . 35
1.2.10 Depression Screener . 35
1.2.11 Diet Behavior . 36
1.2.12 Food Security . 37
1.2.13 Health Insurance . 38
1.2.14 Medical Conditions . 39
1.2.15 Oral Health . 39
1.2.16 Physical Activity . 40
1.2.17 Reproductive Health . 41
1.2.18 Sleep Disorders . 42
1.2.19 Smoking Cigarettes . 42
1.2.20 Secondhand Smoke . 43
1.2.21 Weight History . 44

1.3 Filtering for Inclusion . 44
1.4 Merging the Data . 45

1.4.1 Merging Two Data Frames at a Time 45
1.4.2 Merging Many Data Frames Together 46

2

1.5 The “Raw” Data . 46
1.6 Cleaning Tasks . 50
1.7 Our identifying variable . 50
1.8 “Refused” & “Don’t Know” . 51
1.9 Variables without Variation . 52
1.10 Quantitative Variables . 52

1.10.1 Renaming the Quantities . 54
1.10.2 Sampling Weights . 54

1.11 Binary Variables . 55
1.11.1 Sex (RIAGENDR) . 55
1.11.2 Yes/No variables . 56
1.11.3 Renaming Binary Variables . 57

1.12 Create PHQ-9 Scores . 58
1.12.1 Forming the PHQ-9 Score . 58
1.12.2 Distribution of PHQ-9 Score . 61
1.12.3 Fixing the DPQ100 variable . 62

1.13 Multi-Categorical Variables . 62
1.13.1 Creating RACEETH from RIDRETH3 63
1.13.2 Creating EDUC from DMDEDUC2 . 64
1.13.3 Creating DENTAL from OHAREC . 65
1.13.4 Creating SROH from HUQ010 . 66
1.13.5 Creating SUNSCR from DEQ034D . 67
1.13.6 Creating DEPRDIFF from DPQ100 . 68
1.13.7 Creating DIETQUAL from DBQ700 . 68
1.13.8 Creating FOODSEC from FSDAD . 69
1.13.9 Creating SNORE from SLQ030 . 70
1.13.10Creating WTGOAL from WHQ040 . 70

1.14 Dropping Variables . 71
1.15 Resorting Variables . 72
1.16 nh432 analytic tibble . 72

1.16.1 Saving the tibble as nh432.Rds . 73

2 Codebook for nh432 74
2.1 R Setup . 74

2.1.1 Data Load . 74
2.2 Quantitative Variables in nh432 . 74
2.3 Two-Category (1/0) Variables in nh432 . 76
2.4 Factor Variables in nh432 . 77
2.5 Detailed Numerical Description for nh432 . 80
2.6 Missingness in nh432 . 90

3 431 Review: Comparing Means 95
3.1 R Setup . 95

3

3.2 Data Ingest . 96
3.3 Testing or Summarizing Normality? . 96
3.4 Comparing Two Means using Paired Samples 96
3.5 Comparing PULSE1 to PULSE2 . 97

3.5.1 Distribution of Paired Differences . 98
3.5.2 Using t.test to obtain a 90% CI for the mean pulse difference 99
3.5.3 Using linear regression to obtain a 90% CI for the mean pulse difference 100
3.5.4 Using the bootstrap to obtain a 90% CI for the mean pulse difference . 101
3.5.5 Wilcoxon signed rank approach to comparing pulse rates 102

3.6 Comparing WEIGHT to ESTWT . 103
3.6.1 Plotting The Paired Difference in Weight 104
3.6.2 t.test 90% CI for the mean weight difference 105
3.6.3 Linear Regression: 90% CI for mean weight difference 106
3.6.4 Bootstrap 90% CI for the mean weight difference 106
3.6.5 Wilcoxon signed rank approach to comparing weight estimates 107

3.7 Comparing Two Means using Independent Samples 108
3.8 Comparing White Blood Cell Count by Hospitalization Status 108

3.8.1 Exploring the Data . 108
3.8.2 Pooled t test (assumes equal variances) via linear model 110
3.8.3 Pooled t test (assumes equal variances) via t.test 112
3.8.4 Welch t test (doesn’t assume equal variance) via t.test 113
3.8.5 Bootstrap comparison of WBC by HOSPITAL 114
3.8.6 Transforming the WBC Counts . 115

3.9 Comparing Waist Circumference by Sleep Trouble 118
3.9.1 Summarizing the Data . 118
3.9.2 Pooled t test (assumes equal variances) via linear model 120
3.9.3 Pooled t test (assumes equal variances) via t.test 122
3.9.4 Welch t test (doesn’t assume equal variance) via t.test 123
3.9.5 Bootstrap comparison of WAIST by SLPTROUB 124
3.9.6 Wilcoxon-Mann-Whitney Rank Sum Approach 125

3.10 Comparing 3 Means using Independent Samples: Systolic BP by Weight Goal . 126
3.10.1 Summarizing SBP by WTGOAL . 126
3.10.2 Fitting an ANOVA Model . 128
3.10.3 Tukey HSD Pairwise Comparisons . 130
3.10.4 Holm pairwise comparisons of means . 132

3.11 Comparing 4 Means using Independent Samples: Weight by Food Security . . . 133
3.11.1 Summarizing the Data . 133
3.11.2 Fitting the ANOVA model . 134
3.11.3 Tukey HSD Pairwise Comparisons . 135
3.11.4 Kruskal-Wallis Test . 136
3.11.5 Dunn Test for Pairwise Comparisons after Kruskal-Wallis Test 136

4

4 431 Review: Comparing Rates 138
4.1 R Setup . 138

4.1.1 Data Load . 138
4.2 2x2 Contingency Table: DR_LOSE and NOWLOSE 139

4.2.1 Standard Epidemiological Format . 140
4.2.2 Obtaining Key Summaries with twoby2() 142

4.3 2x2 Table: SEDATE category and NOW_EXER 143
4.3.1 Creating a Low and High Group on SEDATE 143
4.3.2 Two-by-Two Table Summaries . 145
4.3.3 Flipping Levels . 146

4.4 A Larger (5x3) 2-Way Table: DIETQUAL and WTGOAL in Lighter Men . . . 147
4.4.1 What would independence look like? . 148
4.4.2 Back to the DIETQUAL and WTGOAL table 150

4.5 PHQ9 Category and Race/Ethnicity . 153
4.5.1 The Cochran conditions . 154
4.5.2 Collapsing Categories . 155
4.5.3 Pearson 𝜒2 Analysis . 156
4.5.4 Mosaic Plot . 157
4.5.5 Examining the Fit . 157

5 431 Review: Fitting Linear Models 159
5.1 R Setup . 159

5.1.1 Data Load . 160
5.2 Modeling Weekend Sleep Hours . 160

5.2.1 Should we transform our outcome? . 161
5.2.2 Scatterplot Matrix . 162
5.2.3 Collinearity? . 163
5.2.4 Fitting and Displaying Model m1 . 163
5.2.5 Using broom functions on Model m1 . 164
5.2.6 Residual Plots for Model m1 . 166
5.2.7 Fitting and Displaying Model m2 . 171
5.2.8 Using broom functions on m2 . 172
5.2.9 Residual Plots for Model m2 . 173
5.2.10 Conclusions . 175

5.3 Modeling High-Sensitivity C-Reactive Protein 175
5.3.1 Partitioning the Data . 176
5.3.2 Transforming the Outcome? . 176
5.3.3 Scatterplot Matrix and Collinearity . 178
5.3.4 Fit Model m3 . 179
5.3.5 Residual Plots for m3 . 180
5.3.6 Fit Model m4 . 182
5.3.7 Residual Plots for m4 . 182
5.3.8 In-Sample Fit Quality Comparison (m3 vs. m4) 184

5

5.3.9 Testing the models in new data . 184
5.3.10 Conclusions . 187

6 BRFSS SMART Data 188
6.1 R Setup Used Here . 188
6.2 Key resources . 189
6.3 Ingesting the Raw Data . 189
6.4 Ingesting from our CSV file . 190
6.5 What does the raw data look like? . 190
6.6 Cleaning the BRFSS Data . 191

6.6.1 Identifying Information . 191
6.6.2 Survey Method . 193
6.6.3 Health Status (1 item) . 195
6.6.4 Healthy Days - Health-Related Quality of Life (3 items) 196
6.6.5 Health Care Access (4 items) . 200
6.6.6 Blood Pressure (2 measures) . 203
6.6.7 Cholesterol (3 items) . 206
6.6.8 Chronic Health Conditions (14 items) 208
6.6.9 Arthritis Burden (4 items) . 213
6.6.10 Demographics (25 items) . 216
6.6.11 Tobacco Use (2 items) . 235
6.6.12 E-Cigarettes (2 items) . 237
6.6.13 Alcohol Consumption (6 items) . 238
6.6.14 Fruits and Vegetables (8 items) . 243
6.6.15 Exercise and Physical Activity (8 items) 247
6.6.16 Seatbelt Use (1 item) . 257
6.6.17 Immunization (3 items) . 258
6.6.18 HIV/AIDS (2 items) . 260

6.7 Imputing Age and Income as Quantitative from Thin Air 262
6.7.1 age_imp: Imputing Age Data . 262
6.7.2 inc_imp: Imputing Income Data . 263

6.8 Clean Data in the State of Ohio . 265
6.9 Clean Cleveland-Elyria Data . 266

6.9.1 Cleveland - Elyria Data . 266

7 Dealing with Missingness: Single Imputation 268
7.1 R Setup Used Here . 268

7.1.1 Data Load . 268
7.2 Selecting Some Variables from the smart_cle data 268
7.3 smart_cle1: Seeing our Missing Data . 270

7.3.1 Plotting Missingness . 273
7.4 Missing-data mechanisms . 275
7.5 Options for Dealing with Missingness . 276

6

7.6 Complete Case (and Available Case) analyses 276
7.7 Single Imputation . 277
7.8 Multiple Imputation . 277
7.9 Approach 1: Building a Complete Case Analysis: smart_cle1_cc 277
7.10 Approach 2: Single Imputation to create smart_cle1_sh 278

7.10.1 What Type of Missingness Do We Have? 279
7.10.2 Single imputation into smart_cle1_sh 280
7.10.3 Imputing Binary Categorical Variables 281
7.10.4 Imputing Quantitative Variables . 282
7.10.5 Imputation Results . 282
7.10.6 Imputing Multi-Categorical Variables 287
7.10.7 Saving the new tibbles . 289

8 Summarizing smart_cle1 290
8.1 R Setup Used Here . 290

8.1.1 Data Load . 290
8.2 What’s in these data? . 290
8.3 General Approaches to Obtaining Numeric Summaries 291

8.3.1 summary for a data frame . 291
8.3.2 The inspect function from the mosaic package 292
8.3.3 The describe function in Hmisc . 293

8.4 Counting as exploratory data analysis . 294
8.4.1 Did genhealth vary by smoking status? 295
8.4.2 What’s the distribution of physhealth? 296
8.4.3 What’s the distribution of bmi? . 298
8.4.4 How many of the respondents have a BMI below 30? 298
8.4.5 How many of the respondents with a BMI < 30 are highly active? . . . 299
8.4.6 Is obesity associated with smoking history? 299
8.4.7 Comparing drinks_wk summaries by obesity status 299

8.5 Can bmi predict physhealth? . 300
8.5.1 Fitting a Simple Regression Model . 301
8.5.2 Model Summary for a Simple (One-Predictor) Regression 302
8.5.3 Using the broom package . 307
8.5.4 How does the model do? (Residuals vs. Fitted Values) 309

9 Analysis of Variance with SMART 314
9.1 R Setup Used Here . 314

9.1.1 Data Load . 314
9.2 A One-Factor Analysis of Variance . 315

9.2.1 Can activity be used to predict bmi? 315
9.2.2 Should we transform bmi? . 316
9.2.3 Building the ANOVA model . 318
9.2.4 The ANOVA table . 319

7

9.2.5 The Model Coefficients . 319
9.2.6 Using tidy to explore the coefficients 321
9.2.7 Using glance to summarize the model’s fit 321
9.2.8 Using augment to make predictions . 322

9.3 A Two-Factor ANOVA (without Interaction) 323
9.3.1 Model Coefficients . 324

9.4 A Two-Factor ANOVA (with Interaction) . 327
9.4.1 Model Coefficients . 328
9.4.2 Is the interaction term necessary? . 331

10 Two-Way ANOVA and Interaction 336
10.1 R Setup Used Here . 336

10.1.1 Data Load . 336
10.2 The bonding data: A Designed Dental Experiment 336
10.3 A One-Factor Analysis of Variance . 337

10.3.1 Look at the Data! . 338
10.3.2 Table of Summary Statistics . 339

10.4 A Two-Way ANOVA: Looking at Two Factors 342
10.5 A Means Plot (with standard deviations) to check for interaction 343

10.5.1 Summarizing the data after grouping by resin and light 344
10.6 Fitting the Two-Way ANOVA model with Interaction 345

10.6.1 The ANOVA table for our model . 346
10.6.2 Is the interaction important? . 346
10.6.3 Interpreting the Interaction . 347

10.7 Comparing Individual Combinations of resin and light 347
10.8 The bonding model without Interaction . 349
10.9 cortisol: A Hypothetical Clinical Trial . 351

10.9.1 Codebook and Raw Data for cortisol 352
10.10Creating a factor combining sex and waist . 352
10.11A Means Plot for the cortisol trial (with standard errors) 353
10.12A Two-Way ANOVA model for cortisol with Interaction 355

10.12.1Notes on this Question . 356
10.13A Two-Way ANOVA model for cortisol without Interaction 359

10.13.1The Graph . 359
10.13.2The ANOVA Model . 359
10.13.3The Regression Summary . 360
10.13.4Tukey HSD Comparisons . 360

11 Analysis of Covariance 362
11.1 R Setup Used Here . 362

11.1.1 Data Load . 362
11.2 An Emphysema Study . 362

11.2.1 Codebook . 362

8

11.3 Does sex affect the mean change in theophylline? 363
11.4 Is there an association between age and sex in this study? 364
11.5 Adding a quantitative covariate, age, to the model 365

11.5.1 The ANCOVA model . 365
11.5.2 The ANCOVA Table . 366

11.6 Rerunning the ANCOVA model after simple imputation 366
11.7 Looking at a factor-covariate interaction . 368
11.8 Centering the Covariate to Facilitate ANCOVA Interpretation 369

12 Analysis of Covariance with the SMART data 371
12.1 R Setup Used Here . 371

12.1.1 Data Load . 371
12.2 A New Small Study: Predicting BMI . 371

12.2.1 Does smoke100 predict bmi well? . 372
12.3 mod1: A simple t-test model . 373
12.4 mod2: Adding another predictor (two-way ANOVA without interaction) 375
12.5 mod3: Adding the interaction term (Two-way ANOVA with interaction) 380
12.6 mod4: Using smoke100 and physhealth in a model for bmi 382
12.7 Making Predictions with a Linear Regression Model 385

12.7.1 Fitting an Individual Prediction and 95% Prediction Interval 385
12.7.2 Confidence Interval for an Average Prediction 386
12.7.3 Fitting Multiple Individual Predictions to New Data 386

12.8 Centering the model . 387
12.8.1 Plot of Model 4 on Centered physhealth: mod4_c 388

12.9 Rescaling an input by subtracting the mean and dividing by 2 standard deviations389
12.9.1 Refitting model mod4 to the rescaled data 390
12.9.2 Interpreting the model on rescaled data 390
12.9.3 Plot of model on rescaled data . 391

12.10mod5: What if we add more variables? . 392
12.11mod6: Would adding self-reported health help? 394
12.12Key Regression Assumptions for Building Effective Prediction Models 396

12.12.1Checking Assumptions in model mod6 397

13 Adding Non-linear Terms to a Linear Regression 402
13.1 R Setup Used Here . 402

13.1.1 Data Load . 402
13.2 The pollution data . 402
13.3 Fitting a straight line model to predict y from x2 403
13.4 Quadratic polynomial model to predict y using x2 405

13.4.1 The raw quadratic model . 405
13.4.2 Raw quadratic fit after centering x2 . 408

13.5 Orthogonal Polynomials . 411
13.6 Fit a cubic polynomial to predict y from x3 . 414

9

13.7 Fitting a restricted cubic spline in a linear regression 418
13.8 “Spending” Degrees of Freedom . 424

13.8.1 Overfitting and Limits on the # of Predictors 424
13.8.2 The Importance of Collinearity . 425
13.8.3 Collinearity in an Explanatory Model 426
13.8.4 Collinearity in a Prediction Model . 426

13.9 Spending DF on Non-Linearity: The Spearman Plot 426
13.9.1 Fitting a Big Model to the pollution data 428
13.9.2 Limitations of lm for fitting complex linear regression models 429

14 Using ols to fit linear models 430
14.1 R Setup Used Here . 430

14.1.1 Data Load . 430
14.2 Fitting a model with ols . 431

14.2.1 The Model Likelihood Ratio Test . 432
14.2.2 The g statistic . 432

14.3 ANOVA for an ols model . 433
14.4 Effect Estimates . 433

14.4.1 Simultaneous Confidence Intervals . 435
14.5 The Predict function for an ols model . 435
14.6 Checking Influence via dfbeta . 438

14.6.1 Using the residuals command for dfbetas 439
14.6.2 Using the residuals command for other summaries 439

14.7 Model Validation and Correcting for Optimism 441
14.8 Building a Nomogram for Our Model . 442

15 A Model for Prostate Cancer 444
15.1 R Setup Used Here . 444

15.1.1 Data Load . 444
15.2 Data Load and Background . 444
15.3 Code Book . 445
15.4 Additions for Later Use . 446
15.5 Fitting and Evaluating a Two-Predictor Model 447

15.5.1 Using tidy . 448
15.5.2 Interpretation . 448

15.6 Exploring Model prost_A . 449
15.6.1 summary for Model prost_A . 449
15.6.2 Adjusted 𝑅2 . 450
15.6.3 Coefficient Confidence Intervals . 450
15.6.4 ANOVA for Model prost_A . 451
15.6.5 Residuals, Fitted Values and Standard Errors with augment 451
15.6.6 Making Predictions with prost_A . 453

10

15.7 Plotting Model prost_A . 453
15.7.1 Residual Plots of prost_A . 455

16 Validating our Prostate Cancer Model 458
16.1 R Setup Used Here . 458

16.1.1 Data Load . 458
16.2 Data Cleaning . 458
16.3 Fitting the prostA model . 459
16.4 Split Validation of Model prost_A . 459
16.5 V-fold Cross-Validation Approach for model prostA 461

17 Multiple Imputation and Linear Regression 464
17.1 R Setup Used Here . 464
17.2 Data Load . 464
17.3 Developing a smart_16 data set . 464

17.3.1 Any missing values? . 466
17.4 Obtaining a Simple Imputation with mice . 467
17.5 Linear Regression: Considering a Transformation of the Outcome 468
17.6 Linear Regression: Considering Non-Linearity in the Predictors 469
17.7 “Main Effects” Linear Regression with lm on the Complete Cases 470

17.7.1 Quality of Fit Statistics . 471
17.7.2 Interpreting Effect Sizes . 472
17.7.3 Making Predictions with the Model . 473

17.8 “Augmented” Linear Regression with lm on the Complete Cases 474
17.8.1 Quality of Fit Statistics . 476
17.8.2 ANOVA assessing the impact of the non-linear terms 476
17.8.3 Interpreting Effect Sizes . 477
17.8.4 Making Predictions with the Model . 479

17.9 Using mice to perform Multiple Imputation . 481
17.10Running the Linear Regression in lm with Multiple Imputation 483
17.11Fit the Multiple Imputation Model with aregImpute 486
17.12Fit Linear Regression using ols and fit.mult.impute 490

17.12.1Summaries and Coefficients . 491
17.12.2Effect Sizes . 492
17.12.3Making Predictions with this Model . 493
17.12.4Nomogram . 494
17.12.5Validating Summary Statistics . 496

18 Building Table 1 497
18.1 R Setup Used Here . 497
18.2 Data Load . 497
18.3 Two examples from the New England Journal of Medicine 497

18.3.1 A simple Table 1 . 497

11

18.3.2 A group comparison . 498
18.4 The MR CLEAN trial . 499
18.5 Simulated fakestroke data . 501
18.6 Building Table 1 for fakestroke: Attempt 1 502

18.6.1 Some of this is very useful, and other parts need to be fixed. 504
18.6.2 fakestroke Cleaning Up Categorical Variables 504

18.7 fakestroke Table 1: Attempt 2 . 505
18.7.1 What summaries should we show? . 506

18.8 Obtaining a more detailed Summary . 508
18.9 Exporting the Completed Table 1 from R to Excel or Word 512

18.9.1 Approach A: Save and open in Excel . 512
18.9.2 Approach B: Produce the Table so you can cut and paste it 513

18.10A Controlled Biological Experiment - The Blood-Brain Barrier 514
18.11The bloodbrain.csv file . 514
18.12A Table 1 for bloodbrain . 515

18.12.1Generate final Table 1 for bloodbrain 519
18.12.2A More Finished Version (after Cleanup in Word) 522

19 Logistic Regression: The Foundations 523
19.1 R Setup Used Here . 523
19.2 A First Attempt: A Linear Probability Model 523
19.3 Logistic Regression . 525
19.4 The Logistic Regression Model . 526
19.5 The Link Function . 526
19.6 The logit or log odds . 528
19.7 Interpreting the Coefficients of a Logistic Regression Model 528
19.8 The Logistic Regression has non-constant variance 528
19.9 Fitting a Logistic Regression Model to our Simulated Data 529
19.10Plotting the Logistic Regression Model . 531

20 Logistic Regression with glm 534
20.1 R Setup Used Here . 534

20.1.1 Data Load . 534
20.2 The resect data . 534
20.3 Running A Simple Logistic Regression Model 536

20.3.1 Logistic Regression Can Be Harder than Linear Regression 536
20.4 Logistic Regression using glm . 537

20.4.1 Interpreting the Coefficients of a Logistic Regression Model 537
20.4.2 Using predict to describe the model’s fits 538
20.4.3 Odds Ratio interpretation of Coefficients 539
20.4.4 Interpreting the rest of the model output from glm 540
20.4.5 Deviance and Comparing Our Model to the Null Model 541
20.4.6 Using glance with a logistic regression model 542

12

20.5 Interpreting the Model Summary . 543
20.5.1 Wald Z tests for Coefficients in a Logistic Regression 544
20.5.2 Confidence Intervals for the Coefficients 544
20.5.3 Deviance Residuals . 545
20.5.4 Dispersion Parameter . 546
20.5.5 Fisher Scoring iterations . 546

20.6 Plotting a Simple Logistic Regression Model . 546
20.6.1 Using augment to capture the fitted probabilities 546
20.6.2 Plotting a Logistic Regression Model’s Fitted Values 547
20.6.3 Plotting a Simple Logistic Model using binomial_smooth 547

20.7 How well does Model A classify subjects? . 548
20.8 The Confusion Matrix . 549
20.9 Using the confusionMatrix tool from the caret package 550
20.10Receiver Operating Characteristic Curve Analysis 551

20.10.1 Interpreting the Area under the ROC curve 553
20.11The ROC Plot for res_modA . 559

20.11.1Another way to plot the ROC Curve . 560
20.12Assessing Residual Plots from Model A . 561
20.13Model B: A “Kitchen Sink” Logistic Regression Model 563

20.13.1Comparing Model A to Model B . 563
20.13.2 Interpreting Model B . 564

20.14Plotting Model B . 565
20.14.1Using augment to capture the fitted probabilities 565
20.14.2Plotting Model B Fits by Observed Mortality 566
20.14.3Confusion Matrix for Model B . 567
20.14.4The ROC curve for Model B . 568
20.14.5Residuals, Leverage and Influence . 569

21 Logistic Regression with lrm 570
21.1 R Setup Used Here . 570

21.1.1 Data Load . 570
21.2 Logistic Regression using lrm . 570

21.2.1 Interpreting Nagelkerke 𝑅2 . 571
21.2.2 Interpreting the C statistic and Plotting the ROC Curve 572
21.2.3 The C statistic and Somers’ D . 574
21.2.4 Validating the Logistic Regression Model Summary Statistics 574
21.2.5 Plotting the Summary of the lrm approach 575
21.2.6 Plot In-Sample Predictions for Model C 576
21.2.7 ANOVA from the lrm approach . 577
21.2.8 Are any points particularly influential? 578
21.2.9 A Nomogram for Model C . 578

21.3 Model D: An Augmented Kitchen Sink Model 580
21.3.1 Spearman 𝜌2 Plot . 580

13

21.3.2 Fitting Model D using lrm . 581
21.3.3 Assessing Model D using lrm’s tools . 581
21.3.4 ANOVA and Wald Tests for Model D 582
21.3.5 Effect Sizes in Model D . 582
21.3.6 Plot In-Sample Predictions for Model D 584
21.3.7 Plotting the ROC curve for Model D . 585
21.3.8 Validation of Model D summaries . 587

21.4 Model E: Fitting a Reduced Model in light of Model D 588
21.4.1 A Plot comparing the two intubation groups 589
21.4.2 Nomogram for Model E . 590
21.4.3 Effect Sizes from Model E . 591
21.4.4 Plot In-Sample Predictions for Model E 592
21.4.5 ANOVA for Model E . 594
21.4.6 Validation of Model E . 594
21.4.7 Do any points seem particularly influential? 595
21.4.8 Fitting Model E using glm to get plots about influence 595

21.5 Concordance: Comparing Model C, D and E’s predictions 596
21.6 Conclusions . 599

22 Estimating and Interpreting Effect Sizes 600
22.1 R Setup Used Here . 600

22.1.1 Data Load . 600
22.2 Available Variables . 600
22.3 Effect Interpretation in A Linear Regression Model 601
22.4 Making a prediction and building a prediction interval with an lm fit 604
22.5 What if we include a Spline or an Interaction? 605
22.6 Making a prediction and building a prediction interval with an ols fit 607
22.7 Effect Estimates in A Logistic Regression fit with glm 608
22.8 Estimates in The Same Logistic Regression fit with lrm 611
22.9 Estimates in A New Logistic Regression fit with lrm 613

23 Colorectal Cancer Screening and Some Special Cases 616
23.1 R Setup Used Here . 616
23.2 Data Load . 616
23.3 Logistic Regression for Aggregated Data . 617

23.3.1 Colorectal Cancer Screening Data . 617
23.3.2 Fitting a Logistic Regression Model to Proportion Data 619
23.3.3 Fitting a Logistic Regression Model to Counts of Successes and Failures 620
23.3.4 How does one address this problem in rms? 621

23.4 Probit Regression . 622
23.4.1 Colorectal Cancer Screening Data on Individuals 622
23.4.2 A logistic regression model . 624
23.4.3 Predicting status for Harry and Sally . 625

14

23.4.4 A probit regression model . 626
23.4.5 Interpreting the Probit Model’s Coefficients 627
23.4.6 What about Harry and Sally? . 628

24 Modeling a Count Outcome 629
24.1 R Setup Used Here . 629
24.2 Data Load . 629
24.3 Creating A Useful Analytic Subset, ohioA . 630

24.3.1 Is age group associated with physhealth? 630
24.4 Exploratory Data Analysis (in the 18-49 group) 633

24.4.1 Build a subset of those ages 18-49 . 633
24.4.2 Centering bmi . 634
24.4.3 Distribution of the Outcome . 634
24.4.4 Scatterplot Matrix . 635
24.4.5 Summary of the final subset of data . 636

24.5 Modeling Strategies Explored Here . 636
24.5.1 What Will We Demonstrate? . 637
24.5.2 Extra Data File for Harry and Sally . 637

24.6 The OLS Approach . 638
24.6.1 Interpreting the Coefficients . 639
24.6.2 Store fitted values and residuals . 639
24.6.3 Specify the 𝑅2 and log(likelihood) values 639
24.6.4 Check model assumptions . 640
24.6.5 Predictions for Harry and Sally . 642
24.6.6 Notes . 642

24.7 OLS model on log(physhealth + 1) days . 643
24.7.1 Interpreting the Coefficients . 644
24.7.2 Store fitted values and residuals . 644
24.7.3 Specify the 𝑅2 and log(likelihood) values 645
24.7.4 Getting 𝑅2 on the scale of physhealth 646
24.7.5 Check model assumptions . 646
24.7.6 Predictions for Harry and Sally . 648

24.8 A Poisson Regression Model . 648
24.8.1 The Fitted Equation . 650
24.8.2 Interpreting the Coefficients . 650
24.8.3 Testing the Predictors . 651
24.8.4 Correcting for Overdispersion with coeftest/coefci 652
24.8.5 Store fitted values and residuals . 653
24.8.6 Rootogram: see the fit of a count regression model 653
24.8.7 Specify the 𝑅2 and log(likelihood) values 654
24.8.8 Check model assumptions . 655
24.8.9 Using glm.diag.plots from the boot package 656
24.8.10Predictions for Harry and Sally . 658

15

24.9 Overdispersion in a Poisson Model . 658
24.9.1 Testing for Overdispersion? . 659

24.10Fitting the Quasi-Poisson Model . 660
24.10.1The Fitted Equation . 661
24.10.2 Interpreting the Coefficients . 661
24.10.3Testing the Predictors . 662
24.10.4Store fitted values and residuals . 662
24.10.5Specify the 𝑅2 and log(likelihood) values 663
24.10.6Check model assumptions . 664
24.10.7Predictions for Harry and Sally . 665

24.11Poisson and Quasi-Poisson models using Glm from the rms package 666
24.11.1Refitting the original Poisson regression with Glm 666
24.11.2Refitting the overdispersed Poisson regression with Glm 667
24.11.3ANOVA on a Glm fit . 667
24.11.4 ggplots from Glm fit . 668
24.11.5Summary of a Glm fit . 668
24.11.6Plot of the Summary . 669
24.11.7Nomogram of a Glm fit . 669

25 Negative Binomial Models for Count Data 671
25.1 R Setup Used Here . 671
25.2 Data Load and Subset Creation . 671
25.3 Setup for this Chapter . 672

25.3.1 What Will We Demonstrate? . 672
25.3.2 Extra Data File for Harry and Sally . 673
25.3.3 Our Poisson Model (for comparison) . 673

25.4 Negative Binomial Model . 673
25.4.1 The Fitted Equation . 675
25.4.2 Comparison with the (raw) Poisson model 675
25.4.3 Interpreting the Coefficients . 676
25.4.4 Interpretation of Coefficients in terms of IRRs 676
25.4.5 Testing the Predictors . 677
25.4.6 Store fitted values and residuals . 678
25.4.7 Rootogram for Negative Binomial model 679
25.4.8 Simulating what the Negative Binomial model predicts 680
25.4.9 Specify the 𝑅2 and log(likelihood) values 681
25.4.10Check model assumptions . 681
25.4.11Predictions for Harry and Sally . 683

25.5 The Problem: Too Few Zeros . 684

26 Zero-Inflated Models for Count Data 686
26.1 R Setup Used Here . 686
26.2 Data Load and Subset Creation . 686

16

26.3 Setup for this Chapter . 687
26.3.1 What Will We Demonstrate? . 687
26.3.2 Extra Data File for Harry and Sally . 688
26.3.3 Previous Models (for comparison) . 688

26.4 The Zero-Inflated Poisson Regression Model . 689
26.4.1 Comparison to a null model . 690
26.4.2 Comparison to a Poisson Model with the Vuong test 691
26.4.3 The Fitted Equation . 691
26.4.4 Interpreting the Coefficients . 692
26.4.5 Testing the Predictors . 692
26.4.6 Store fitted values and residuals . 693
26.4.7 Modeled Number of Zero Counts . 694
26.4.8 Rootogram for ZIP model . 694
26.4.9 Specify the 𝑅2 and log (likelihood) values 695
26.4.10Check model assumptions . 695
26.4.11Predictions for Harry and Sally . 696

26.5 The Zero-Inflated Negative Binomial Regression Model 696
26.5.1 Comparison to a null model . 698
26.5.2 Comparison to a Negative Binomial Model: Vuong test 699
26.5.3 The Fitted Equation . 699
26.5.4 Interpreting the Coefficients . 699
26.5.5 Testing the Predictors . 700
26.5.6 Store fitted values and residuals . 701
26.5.7 Modeled Number of Zero Counts . 701
26.5.8 Rootogram for Zero-Inflated Negative Binomial model 702
26.5.9 Specify the 𝑅2 and log (likelihood) values 702
26.5.10Check model assumptions . 703
26.5.11Predictions for Harry and Sally . 704

26.6 A “hurdle” model (with Poisson) . 704
26.6.1 Comparison to a null model . 706
26.6.2 Comparison to a Poisson Model: Vuong test 707
26.6.3 Comparison to a Zero-Inflated Poisson Model: Vuong test 708
26.6.4 The Fitted Equation . 708
26.6.5 Interpreting the Coefficients . 708
26.6.6 Testing the Predictors . 709
26.6.7 Store fitted values and residuals . 710
26.6.8 Modeled Number of Zero Counts . 710
26.6.9 Rootogram for Hurdle Model . 711
26.6.10Understanding the Modeled Counts in Detail 711
26.6.11Specify the 𝑅2 and log (likelihood) values 713
26.6.12Check model assumptions . 713
26.6.13Predictions for Harry and Sally . 714

17

26.7 A “hurdle” model (with negative binomial for overdispersion) 714
26.7.1 Comparison to a null model . 716
26.7.2 Comparison to a Negative Binomial Model: Vuong test 717
26.7.3 Comparison to a Zero-Inflated NB Model: Vuong test 717
26.7.4 Comparing the Hurdle Models with AIC and BIC 718
26.7.5 The Fitted Equation . 718
26.7.6 Interpreting the Coefficients . 718
26.7.7 Testing the Predictors . 719
26.7.8 Store fitted values and residuals . 720
26.7.9 Rootogram for NB Hurdle Model . 720
26.7.10Specify the 𝑅2 and log (likelihood) values 721
26.7.11Check model assumptions . 722
26.7.12Predictions for Harry and Sally . 723
26.7.13Note: Fitting a Different Hurdle Model for Counts and Pr(zero) 723
26.7.14Hanging Rootogram for this new Hurdle Model 724

26.8 A Tobit (Censored) Regression Model . 724
26.8.1 The Fitted Equation . 726
26.8.2 Interpreting the Coefficients . 726
26.8.3 Testing the Predictors . 727
26.8.4 Store fitted values and residuals . 727
26.8.5 Building Something Like a Rootogram 728
26.8.6 Tables of the Observed and Fitted physhealth from Tobit 729
26.8.7 Specify the 𝑅2 and log (likelihood) values 730
26.8.8 Check model assumptions . 730
26.8.9 Predictions for Harry and Sally . 732

27 Modeling an Ordinal Categorical Outcome 733
27.1 R Setup Used Here . 733

27.1.1 Data Load . 733
27.2 A subset of the Ohio SMART data . 733

27.2.1 Several Ways of Storing Multi-Categorical data 734
27.3 Building Cross-Tabulations . 735

27.3.1 Using base table functions . 735
27.3.2 Using xtabs . 737
27.3.3 Storing a table in a tibble . 737
27.3.4 Using CrossTable from the gmodels package 738

27.4 Graphing Categorical Data . 740
27.4.1 A Bar Chart for a Single Variable . 740
27.4.2 A Counts Chart for a 2-Way Cross-Tabulation 742

27.5 Building a Model for genh using veg_day . 743
27.5.1 A little EDA . 743
27.5.2 Describing the Proportional-Odds Cumulative Logit Model 744
27.5.3 Fitting a Proportional Odds Logistic Regression with polr 746

18

27.6 Interpreting Model m1 . 747
27.6.1 Looking at Predictions . 747
27.6.2 Making Predictions for Harry (and Sally) with predict 748
27.6.3 Predicting the actual classification of genh 749
27.6.4 A Cross-Tabulation of Predictions? . 749
27.6.5 The Fitted Model Equations . 749
27.6.6 Interpreting the veg_day coefficient . 751
27.6.7 Exponentiating the Slope Coefficient to facilitate Interpretation 751
27.6.8 Comparison to a Null Model . 752

27.7 The Assumption of Proportional Odds . 752
27.7.1 Testing the Proportional Odds Assumption 754

27.8 Can model m1 be fit using rms tools? . 755
27.9 Building a Three-Predictor Model . 757

27.9.1 Scatterplot Matrix . 757
27.9.2 Our Three-Predictor Model, m2 . 757
27.9.3 Does the three-predictor model outperform m1? 758
27.9.4 Wald tests for individual predictors . 759
27.9.5 A Cross-Tabulation of Predictions? . 760
27.9.6 Interpreting the Effect Sizes . 760
27.9.7 Quality of the Model Fit . 762
27.9.8 Validating the Summary Statistics in m2_lrm 762
27.9.9 Testing the Proportional Odds Assumption 763
27.9.10Plotting the Fitted Model . 765

27.10A Larger Model, including income group . 766
27.10.1Cross-Tabulation of Predicted/Observed Classifications 768
27.10.2Nomogram . 768
27.10.3Using Predict and showing mean prediction on 1-5 scale 769
27.10.4Validating the Summary Statistics in m3_lrm 770

27.11References for this Chapter . 771

28 Multinomial Logistic Regression 772
28.1 R Setup Used Here . 772

28.1.1 Data Load . 772
28.2 The Authorship Example . 772
28.3 Focus on 11 key words . 773

28.3.1 Side by Side Boxplots . 774
28.4 A Multinomial Logistic Regression Model . 776

28.4.1 Testing Model 1 . 777
28.5 Model 2 . 778

28.5.1 Comparing Model 2 to Model 1 . 779
28.5.2 Testing Model 2 . 779
28.5.3 A little history . 780

28.6 Classification Table . 780

19

28.7 Probability Curves based on a Single Predictor 781
28.7.1 Produce the Plot of Estimated Probabilities based on “been” counts . . 783
28.7.2 Boxplot of “been” counts . 784
28.7.3 Quote Sources . 785

29 Time To Event / Survival Data 786
29.1 R Setup Used Here . 786

29.1.1 Data Load . 787
29.2 An Outline of Key Topics Discussed in these Notes 787
29.3 Foundations of Survival Analysis . 787

29.3.1 The Survival Function, 𝑆(𝑡) . 788
29.3.2 Kaplan-Meier Estimator of the Survival Function 788
29.3.3 Creating a Survival Object in R . 789

29.4 A First Example: Recurrent Lobar Intracerebral Hemorrhage 789
29.5 Building a Survival Object . 791
29.6 Kaplan-Meier Estimate of the Survival Function 791

29.6.1 The Kaplan-Meier Plot, using Base R 793
29.6.2 Using survminer to draw survival curves 794
29.6.3 A “Fancy” K-M Plot with a number at risk table 795

29.7 Comparing Survival Across the Two Genotypes 795
29.7.1 Kaplan-Meier Survival Function Estimates, by Genotype 796

29.8 Testing the difference between two survival curves 797
29.8.1 Alternative log rank tests . 798

29.9 A “Fancy” K-M Plot with a number at risk table 799
29.9.1 Customizing the Kaplan-Meier Plot Presentation Further 800

29.10The Hazard Function . 803
29.10.1The Inverse Kaplan-Meier Estimator of 𝐻(𝑡) 803
29.10.2Cumulative Hazard Function from Inverse K-M 804
29.10.3The Nelson-Aalen Estimator of 𝐻(𝑡) . 805
29.10.4Convert Wide Data to Long . 806
29.10.5Plot Comparison of Hazard Estimates 806

29.11NEW!! Checking Assumptions Using a log (-log) plot 808

30 Cox Regression Models, Part 1 810
30.1 R Setup Used Here . 810

30.1.1 Data Load . 810
30.2 Sources used in building this material . 811
30.3 Fitting a Cox Model in R with coxph . 811

30.3.1 Summarizing the Fit . 812
30.3.2 Glancing at the model? . 814
30.3.3 Plot the baseline survival function . 814
30.3.4 Plot the genotype effect . 815
30.3.5 Testing the Key Assumption: Proportional Hazards 816

20

30.3.6 Plotting the cox.zph results for the cfit model 817
30.4 Fitting a Cox Model using cph from the rms package 818

30.4.1 The Main cph results . 818
30.4.2 Using anova with cph . 819
30.4.3 Effect Sizes after cph fit . 819
30.4.4 Validating cph summaries . 820
30.4.5 Plotting Survival Functions for each Genotype 820
30.4.6 Genotype’s effect on log relative hazard 822
30.4.7 Nomogram of our simple hem model . 823
30.4.8 Assessing the Proportional Hazards Assumption 824
30.4.9 Plot to Check PH Assumption . 824

31 Cox Regression Models, Part 2 826
31.1 R Setup Used Here . 826

31.1.1 Data Load . 826
31.2 A Second Example: The leukem data . 826

31.2.1 Creating our response: A survival time object 827
31.2.2 Models We’ll Fit . 828

31.3 Model A: coxph Model for Survival Time using age at diagnosis 828
31.3.1 Plotting the Survival Curve implied by Model A 830
31.3.2 Testing the Proportional Hazards Assumption 831

31.4 Building Model A with cph for the leukem data 832
31.4.1 Plotting the age effect implied by our model. 833
31.4.2 Survival Plots (Kaplan-Meier) of the age effect 834
31.4.3 ANOVA test for the cph-built model for leukem 836
31.4.4 Summarizing the Effect Sizes from modA_cph 836
31.4.5 Validating the Cox Model Summary Statistics 837
31.4.6 Looking for Influential Points . 838
31.4.7 Checking the Proportional Hazards Assumption 839

31.5 Model B: Fitting a 5-Predictor Model with coxph 840
31.5.1 Plotting the Survival Curve implied by Model B 841
31.5.2 Testing the Proportional Hazards Assumption 842
31.5.3 Assessing Collinearity . 843

31.6 Model B2: A Stepwise Reduction of Model B 844
31.6.1 The Survival Curve implied by Model B2 845
31.6.2 Checking Proportional Hazards for Model B2 846

31.7 Model C: Using a Spearman Plot to pick a model 847
31.7.1 Fitting Model C . 848
31.7.2 ANOVA for Model C . 849
31.7.3 Summarizing Model C Effect Sizes . 849
31.7.4 Plotting the diagnosis age effect in Model C 850
31.7.5 Survival Plot associated with Model C 851
31.7.6 Checking the Proportional Hazards Assumption 852

21

31.7.7 Model C Nomogram . 853
31.7.8 Validating Model C’s Summary Statistics 854
31.7.9 Calibration of Model C (12-month survival estimates) 855

32 NEW!! A Few LASSO Ideas 857
32.1 R Setup Used Here . 857

32.1.1 Data Load . 857
32.2 The pollution data . 857
32.3 Should We Rescale any Predictors? . 858
32.4 A Kitchen Sink Model . 860

32.4.1 Considering an Outcome Transformation 860
32.4.2 How much collinearity are we dealing with? 862

32.5 Using the LASSO to suggest a smaller model 863
32.6 Would the 9-predictor model be a big improvement? 864
32.7 Using Stepwise Regression to suggest a smaller model 867

33 NEW!! Bayes and a Linear Model 874
33.1 R Setup Used Here . 874
33.2 Return to the smalldat Example . 874
33.3 The Distribution of Total Cholesterol . 875
33.4 Fitting a Linear Model with lm() for Total Cholesterol 875
33.5 Fitting a Bayesian Linear Model . 876

33.5.1 Extracting the Posterior . 878
33.5.2 Describing Uncertainty . 881
33.5.3 Visualizing the Coefficients and Credible Intervals 882

33.6 Summarizing the Posterior Distribution . 882
33.6.1 Summarizing the Parameter values . 883
33.6.2 Probability of Direction (pd) estimates. 883
33.6.3 The ROPE estimates . 884
33.6.4 Convergence Diagnostics . 885

33.7 Summarizing the Priors Used . 885
33.8 Graphical Posterior Predictive Checks . 886

34 NEW!! Bayes and a Logistic Model 889
34.1 R Setup Used Here . 889
34.2 Return to the smalldat Example . 889
34.3 The Distribution of Smoking Status . 890
34.4 Fitting a Logistic Regression Model with glm() 890
34.5 Fitting a Bayesian Linear Model . 891

34.5.1 Extracting the Posterior . 894
34.5.2 Describing Uncertainty . 897
34.5.3 Visualizing the Coefficients and Credible Intervals 898

22

34.6 Summarizing the Posterior Distribution . 899
34.6.1 Summarizing the Parameter values . 899
34.6.2 Probability of Direction (pd) estimates. 899
34.6.3 The ROPE estimates . 900
34.6.4 Summarizing the Coefficients as Odds Ratios 901

34.7 Summarizing the Priors Used . 901
34.8 Graphical Posterior Predictive Checks . 902

References 904

23

Introduction

These Notes provide a series of examples using R to work through issues that are likely to
come up in PQHS/CRSP/MPHP 432.

While these Notes share some of the features of a textbook, they are neither comprehensive
nor completely original. The main purpose is to give students in 432 a set of common materials
on which to draw during the course. In class, we will sometimes:

• reiterate points made in this document,
• amplify what is here,
• simplify the presentation of things done here,
• use new examples to show some of the same techniques,
• refer to issues not mentioned in this document,

but what we don’t (always) do is follow these notes very precisely. We assume instead that
you will read the materials and try to learn from them, just as you will attend classes and try
to learn from them. We welcome feedback of all kinds on this document or anything else via
our Campuswire discussion forum.

What you will mostly find are brief explanations of a key idea or summary, accompanied (most
of the time) by R code and a demonstration of the results of applying that code.

Everything you see here is available to you in this HTML document. You will also have access
to the Quarto files, which contain the code which generates everything in the document,
including all of the R results. We will demonstrate the use of Quarto and R Studio (the
“program” which we use to interface with the R language) in class. At the end of the semester, I
hope to be able to get the PDF version of this document posted, but that may be a challenge.

To download the data and R code related to these notes, visit the 432-data page.

24

https://campuswire.com/
https://github.com/THOMASELOVE/432-data

This is work in progress

These materials are not yet finalized, although they are close to complete. Additional materials
may appear as the semester progresses. We thank you for your patience.

If you find any typographical or other errors, please let Dr. Love know about them, either
through the Typos folder in Campuswire or by email to Thomas dot Love at case dot
edu.

Thanks again.

25

R Setup

Here, we’ll show all of the R packages used in these notes. The list of R Packages we will use
in 432 is even more extensive, and is available on our course website.

knitr::opts_chunk$set(comment = NA) ## Dr. Love always includes this

library(arm)
library(boot)
library(car)
library(caret)
library(countreg) # install via R-Forge
library(DescTools)
library(distributions3)
library(Epi)
library(GGally)
library(ggridges)
library(glue)
library(gmodels)
library(gt)
library(gtsummary)
library(Hmisc)
library(janitor)
library(knitr)
library(lmboot)
library(lmtest)
library(MASS)
library(mice)
library(MKinfer)
library(mosaic)
library(naniar)
library(nhanesA)
library(nnet)
library(patchwork)
library(pROC)
library(pscl)

26

https://thomaselove.github.io/432-2024/software.html#r-packages-to-install

library(rms)
library(ROCR)
library(rstatix)
library(sandwich)
library(simputation)
library(survival)
library(survminer)
library(tableone)
library(topmodels) # install via R-Forge
library(vcd)
library(VGAM)
library(visdat)

library(tidymodels)
library(tidyverse)

General Theme for ggplot work

Dr. Love prefers theme_bw() to the default choice.

theme_set(theme_bw())

27

1 Building the nh432 example

In this Chapter, we will extract and tidy a data set using pre-pandemic (2017 - March 2020)
data from the National Health and Nutrition Examination Survey (NHANES). Then we’ll save
this data set (which I’ll call nh432 once it’s built) so that we can use it again in subsequent
work. Details on the data are available at this link to NHANES at CDC.

1.1 R Setup

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(gt)
library(gtsummary)
library(Hmisc)
library(naniar)
library(nhanesA)

library(tidyverse)

theme_set(theme_bw())

1.2 Selecting NHANES Variables

We’ll focus on NHANES data describing

• participating adults ages 30-59 years who
• completed both an NHANES interview and medical examination, and who
• also completed an oral health examination, and who
• also reported their overall health as either Excellent, Very Good, Good, Fair, or Poor

We will pull the following NHANES data elements using the nhanesA package:

28

https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?Cycle=2017-2020

1.2.1 Demographics and Sample Weights

From the Demographic Variables and Sample Weights database (P_DEMO), we collect the
following variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

RIDSTATR Interview and MEC exam status 1 = Interviewed only 2 = Interviewed
& MEC examined

RIDAGEYR Age at screening (years) We will
require ages 30-59.

Top coded at 801

RIDRETH3 Race/Hispanic origin 1 = Mexican American 2 = Other
Hispanic 3 = Non-Hispanic White 4 =
Non-Hispanic Black 6 = Non-Hispanic
Asian 7 = Other Race, including
Multi-Racial

DMDEDUC2 Education Level 1 = Less than 9th grade 2 = 9-11th
grade 3 = High school graduate 4 =
Some college or AA 5 = College graduate
or above 7 = Refused (will treat as NA)
9 = Don’t Know (will treat as NA)

RIAGENDR Sex 1 = Male, 2 = Female
WTINTPRP Full sample interview weight Sampling weight
WTMECPRP Full sample MEC examination

weight
Sampling weight

Note As part of our inclusion criteria, we will require that all participants in our analytic
data have RIDAGEYR values of 30-59 and thus drop the participants whose responses to that
item are missing or outside that range.

Here’s my code to select these variables from the P_DEMO data.

p_demo <- nhanes('P_DEMO', translate = FALSE) |>
select(SEQN, RIDSTATR, RIDAGEYR, RIDRETH3, DMDEDUC2, RIAGENDR,

WTINTPRP, WTMECPRP)

dim(p_demo) # gives number of rows (participants) and columns (variables)

[1] 15560 8
1Those over 80 years of age are coded 80.

29

https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Demographics&Cycle=2017-2020

Do we have any duplicate SEQN values?

p_demo |> get_dupes(SEQN)

No duplicate combinations found of: SEQN

[1] SEQN dupe_count RIDSTATR RIDAGEYR RIDRETH3 DMDEDUC2 RIAGENDR
[8] WTINTPRP WTMECPRP
<0 rows> (or 0-length row.names)

Good.

1.2.2 Oral Health

From the Oral Health - Recommendation of Care (P_OHXREF), we collect the following
variables.

Variable Description Values
SEQN Respondent Sequence

Number (participant ID)
link across databases

OHDEXSTS Overall Oral Health Exam
Status

1 = Complete 2 = Partial 3 = Not Done

OHAREC Overall Recommendation
for Dental Care

1 = See a dentist immediately 2 = See a dentist
within the next 2 weeks 3 = See a dentist at
your earliest convenience 4 = Continue your
regular routine care

Note In addition to requiring that all participants in our analytic data have OHDEXSTS =
1, we will (later) collapse values 1 and 2 in OHAREC because there are only a few participants
with code 1 in OHAREC.

Here’s my code to select these variables from the P_OHXREF data.

p_ohxref <- nhanes('P_OHXREF', translate = FALSE) |>
select(SEQN, OHDEXSTS, OHAREC)

dim(p_ohxref)

[1] 13772 3

30

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_OHXREF.htm

1.2.3 Hospital Utilization & Access to Care

From the Questionnaire on Hospital Utilization & Access to Care (P_HUQ) we collect the
following variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

HUQ010 General health condition we
require a 1-5 response

1 = Excellent 2 = Very Good 3 = Good
4 = Fair 5 = Poor 7 = Refused (to be
dropped) 9 = Don’t Know (to be dropped)

HUQ071 Overnight hospital patient in past
12 months

1 = Yes, 2 = No 7 = Refused (will treat
as NA) 9 = Don’t Know (will treat as
NA)

HUQ090 Seen mental health professional in
past 12 months

1 = Yes, 2 = No 7 = Refused (will treat
as NA) 9 = Don’t Know (will treat as
NA)

Note As part of our inclusion criteria, we will require that all participants in our analytic
data have HUQ010 values of 1-5 and drop participants whose responses are missing, Refused
or Don’t Know for that item.

Here’s my code to select these variables from the P_HUQ data.

p_huq <- nhanes('P_HUQ', translate = FALSE) |>
select(SEQN, HUQ010, HUQ071, HUQ090)

dim(p_huq)

[1] 15560 4

1.2.4 Body Measures

From the Body Measures database (P_BMX), we collect the following variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

BMXWT Body weight (kg) Measured in examination
BMXHT Standing height (cm) Measured in examination

31

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_HUQ.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_BMX.htm

Variable Description Values
BMXWAIST Waist Circumference (cm) Measured in examination

Here’s my code to select these variables from the P_BMX data.

p_bmx <- nhanes('P_BMX', translate = FALSE) |>
select(SEQN, BMXWT, BMXHT, BMXWAIST)

dim(p_bmx)

[1] 14300 4

1.2.5 Blood Pressure

From the Blood Pressure - Oscillometric Measurement (P_BPXO), we collect the following
variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

BPXOSY2 Systolic BP (2nd reading, in mm
Hg)

Measured in examination

BPXODI2 Diastolic BP (2nd reading, in mm
Hg)

Measured in examination

BPXOPLS1 Pulse (1st reading, beats/minute) Measured in examination
BPXOPLS2 Pulse (2nd reading, beats/minute) Measured in examination

• A “normal” blood pressure for most adults is < 120 systolic and < 80 diastolic.
• A “normal” resting pulse rate for most adults is between 60 and 100 beats/minute.

Here’s my code to select these variables from the P_BPXO data.

p_bpxo <- nhanes('P_BPXO', translate = FALSE) |>
select(SEQN, BPXOSY2, BPXODI2, BPXOPLS1, BPXOPLS2)

dim(p_bpxo)

[1] 11656 5

32

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_BPXO.htm

1.2.6 Complete Blood Count

From the Complete Blood Count with 5-Part Differential in Whole Blood (P_CBC), we collect
the following variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

LBXWBCSI White blood cell count in 1000
cells/uL

normal range: 4.5 - 11

LBXPLTSI Platelet count in 1000 cells/uL normal range: 150-450

Here’s my code to select these variables from the P_CBC data.

p_cbc <- nhanes('P_CBC', translate = FALSE) |>
select(SEQN, LBXWBCSI, LBXPLTSI)

dim(p_cbc)

[1] 13772 3

1.2.7 C-Reactive Protein

From the High-Sensitivity C-Reactive Protein (P_HSCRP) we collect the following vari-
ables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

LBXHSCRP High-Sensitivity C-Reactive
Protein (mg/L)

normal range: 1.0 - 3.0

Here’s my code to select these variables from the P_HSCRP data.

p_hscrp <- nhanes('P_HSCRP', translate = FALSE) |>
select(SEQN, LBXHSCRP)

dim(p_hscrp)

[1] 13772 2

33

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_CBC.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_HSCRP.htm

1.2.8 Alcohol Use

From the Questionnaire on Alcohol Use (P_ALQ) we collect the following variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

ALQ111 Ever had a drink of alcohol? 1 = Yes, 2 = No 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA)

ALQ130 Average drinks per day in past 12
months (Top coded at 152)

count (set to 0 if ALQ111 is No) 777
= Refused (treat as NA) 999 = Don’t
Know (treat as NA)

Here’s my code to select these variables from the P_ALQ data.

p_alq <- nhanes('P_ALQ', translate = FALSE) |>
select(SEQN, ALQ111, ALQ130)

dim(p_alq)

[1] 8965 3

As noted above, we set the value of ALQ130 to be 0 if the response to ALQ111 is 2 (No).

p_alq <- p_alq |>
mutate(ALQ130 = ifelse(ALQ111 == 2, 0, ALQ130))

p_alq |> count(ALQ130, ALQ111)

ALQ130 ALQ111 n
1 0 2 867
2 1 1 2126
3 2 1 1769
4 3 1 843
5 4 1 431
6 5 1 231
7 6 1 201
8 7 1 44

2Those who responded with 15 drinks or more are coded 15.

34

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_ALQ.htm

9 8 1 65
10 9 1 13
11 10 1 42
12 11 1 3
13 12 1 53
14 13 1 3
15 15 1 29
16 777 1 1
17 999 1 9
18 NA 1 1640
19 NA NA 595

1.2.9 Dermatology

From the Questionnaire on Dermatology (P_DEQ) we collect the following variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

DEQ034D Use sunscreen if outside on very
sunny day?

1 = Always 2 = Most of the time 3 =
Sometimes 4 = Rarely 5 = Never 7 =
Refused (treat as NA) 9 = Don’t Know
(treat as NA)

Here’s my code to select these variables from the P_DEQ data.

p_deq <- nhanes('P_DEQ', translate = FALSE) |>
select(SEQN, DEQ034D)

dim(p_deq)

[1] 5810 2

1.2.10 Depression Screener

From the Questionnaire on Mental Health - Depression Screener (P_DPQ) we collect the
following variables.

35

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_DEQ.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_DPQ.htm

Variable Description Values
SEQN Respondent Sequence Number (participant

ID)
link across databases

DPQ010 Have little interest in doing things 0-3: codes below
DPQ020 Feeling down, depressed or hopeless 0-3: codes below
DPQ030 Trouble sleeping or sleeping too much 0-3: codes below
DPQ040 Feeling tired or having little energy 0-3: codes below
DPQ050 Poor appetite or overeating 0-3: codes below
DPQ060 Feeling bad about yourself 0-3: codes below
DPQ070 Trouble concentrating on things 0-3: codes below
DPQ080 Moving or speaking slowly or too fast 0-3: codes below
DPQ090 Thoughts you would be better off dead 0-3: codes below
DPQ100 Difficulty these problems have caused 0-3: codes below

• For DPQ010 - DPQ090, the codes are 0 = Not at all, 1 = Several days in the past two
weeks, 2 = More than half the days in the past two weeks, 3 = Nearly every day in the
past two weeks, with 7 = Refused and 9 = Don’t Know which we will treat as NA.

• For DPQ100, the codes are 0 = Not at all difficult, 1 = Somewhat difficult, 2 = Very
difficult, 3 = Extremely difficult, with 7 = Refused and 9 = Don’t Know which we will
treat as NA. Also, the DPQ100 score should be 0 if the scores on DPQ010
through DPQ090 are all zero.

Later, we will sum the scores in DPQ010 - DPQ090 to produce a PHQ-9 score for each
participant.

Here’s my code to select these variables from the P_DPQ data.

p_dpq <- nhanes('P_DPQ', translate = FALSE)
we're actually pulling all available variables

dim(p_dpq)

[1] 8965 11

1.2.11 Diet Behavior

From the Questionnaire on Diet Behavior and Nutrition (P_DBQ) we collect the following
variables.

36

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_DBQ.htm

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

DBQ700 How healthy is your diet? 1 = Excellent 2 = Very Good 3 = Good
4 = Fair 5 = Poor 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA)

Here’s my code to select these variables from the P_DBQ data.

p_dbq <- nhanes('P_DBQ', translate = FALSE) |>
select(SEQN, DBQ700)

dim(p_dbq)

[1] 15560 2

1.2.12 Food Security

From the Questionnaire on Food Security (P_FSQ) we collect the following variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

FSDAD Adult food security category for
last 12m

1 = Full food security 2 = Marginal 3 =
Low 4 = Very low

Here’s my code to select these variables from the P_FSQ data.

p_fsq <- nhanes('P_FSQ', translate = FALSE) |>
select(SEQN, FSDAD)

dim(p_fsq)

[1] 15560 2

37

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_FSQ.htm

1.2.13 Health Insurance

From the Questionnaire on Health Insurance (P_HIQ) we collect the following variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

HIQ011 Covered by health insurance now? 1 = Yes, 2 = No 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA)

HIQ210 Time when no insurance in past
year?

1 = Yes, 2 = No 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA) (set
to Yes if HIQ011 is No.)

Here’s my code to select these variables from the P_HIQ data.

p_hiq <- nhanes('P_HIQ', translate = FALSE) |>
select(SEQN, HIQ011, HIQ210)

dim(p_hiq)

[1] 15560 3

As noted above, we set the value of HIQ210 to be 1 (Yes) if HIQ011 is 2 (No).

p_hiq <- p_hiq |>
mutate(HIQ210 = ifelse(HIQ011 == 2, 1, HIQ210))

p_hiq |> count(HIQ210, HIQ011)

HIQ210 HIQ011 n
1 1 1 960
2 1 2 1852
3 2 1 12682
4 7 1 2
5 9 1 25
6 NA 1 2
7 NA 7 8
8 NA 9 29

38

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_HIQ.htm

1.2.14 Medical Conditions

From the Questionnaire on Medical Conditions (P_MCQ) we collect the following variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

MCQ366A Doctor told you to control/lose
weight in the past 12 months?

1 = Yes, 2 = No 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA)

MCQ366B Doctor told you to exercise in the
past 12 months?

1 = Yes, 2 = No 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA)

MCQ371A Are you now controlling or losing
weight?

1 = Yes, 2 = No 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA)

MCQ371B Are you now increasing exercise? 1 = Yes, 2 = No 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA)

Here’s my code to select these variables from the P_MCQ data.

p_mcq <- nhanes('P_MCQ', translate = FALSE) |>
select(SEQN, MCQ366A, MCQ366B, MCQ371A, MCQ371B)

dim(p_mcq)

[1] 14986 5

1.2.15 Oral Health

From the Questionnaire on Oral Health (P_OHQ) we collect the following variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

OHQ870 Days using dental floss (in the last
week)

count (0-7) 9 = Unknown (treat as NA)
99 = Don’t Know (treat as NA)

Here’s my code to select these variables from the P_OHQ data.

39

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_MCQ.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_OHQ.htm

p_ohq <- nhanes('P_OHQ', translate = FALSE) |>
select(SEQN, OHQ870)

dim(p_ohq)

[1] 14986 2

1.2.16 Physical Activity

From the Questionnaire on Physical Activity (P_PAQ) we collect the following variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

PAQ605 Vigorous work activity for 10
min/week?

1 = Yes, 2 = No 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA)

PAQ610 # of days of vigorous work
activity in past week

count (1-7) 77 = Refused (treat as NA)
99 = Don’t Know (treat as NA) (set to
0 if PAQ605 is No.)

PAQ650 Vigorous recreational activity for
10 min/week?

1 = Yes, 2 = No 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA)

PAQ655 # of days of vigorous recreational
activity in past week

count (1-7) 77 = Refused (treat as NA)
99 = Don’t Know (treat as NA) (set to
0 if PAQ650 is No.)

PAD680 Minutes of sedentary activity
(min/day)

excludes sleeping 7777 = Refused (treat
as NA) 9999 = Don’t Know (treat as
NA)

Here’s my code to select these variables from the P_PAQ data.

p_paq <- nhanes('P_PAQ', translate = FALSE) |>
select(SEQN, PAQ605, PAQ610, PAQ650, PAQ655, PAD680)

dim(p_paq)

[1] 9693 6

Now, let’s set the value of PAQ610 to be 0 if PAQ605 is 2 (No).

40

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_PAQ.htm

p_paq <- p_paq |>
mutate(PAQ610 = ifelse(PAQ605 == 2, 0, PAQ610))

Finally, we set the value of PAQ655 to be 0 if PAQ650 is 2 (No).

p_paq <- p_paq |>
mutate(PAQ655 = ifelse(PAQ650 == 2, 0, PAQ655))

1.2.17 Reproductive Health

From the Questionnaire on Reproductive Health (P_RHQ) we collect the following variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

RHQ131 Ever been pregnant? 1 = Yes, 2 = No 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA)

RHQ160 How many times have you been
pregnant?

count (1-11) 77 = Refused (treat as NA)
99 = Don’t Know (treat as NA) (set to
0 if RHQ131 is No.)

Here’s my code to select these variables from the P_RHQ data.

p_rhq <- nhanes('P_RHQ', translate = FALSE) |>
select(SEQN, RHQ131, RHQ160)

dim(p_rhq)

[1] 5314 3

Now, let’s set the value of RHQ160 to be 0 if RHQ131 is 2 (No).

p_rhq <- p_rhq |>
mutate(RHQ160 = ifelse(RHQ131 == 2, 0, RHQ160))

41

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_RHQ.htm

1.2.18 Sleep Disorders

From the Questionnaire on Sleep Disorders (P_SLQ) we collect the following variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

SLD012 Usual hours of sleep (weekdays) hours limited to 2-14
SLD013 Usual hours of sleep (weekends) hours limited to 2-14
SLQ030 How often do you snore in the

past 12 months?
0 = Never 1 = Rarely (1-2 nights/week)
2 = Occasionally (3-4 nights/week) 3 =
Frequently (5+ nights/week) 7 =
Refused (treat as NA) 9 = Don’t Know
(treat as NA)

SLQ050 Have you ever told a doctor you
had trouble sleeping?

1 = Yes, 2 = No 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA)

Here’s my code to select these variables from the P_SLQ data.

p_slq <- nhanes('P_SLQ', translate = FALSE) |>
select(SEQN, SLD012, SLD013, SLQ030, SLQ050)

dim(p_slq)

[1] 10195 5

1.2.19 Smoking Cigarettes

From the Questionnaire on Smoking - Cigarette Use (P_SMQ) we collect the following vari-
ables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

SMQ020 Smoked at least 100 cigarettes in
your life?

1 = Yes, 2 = No 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA)

SMD641 Days (in past 30) when you
smoked a cigarette?

count (0-30) 77 = Refused (treat as NA)
99 = Don’t Know (treat as NA) (set to
0 if SMQ020 is No.)

42

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_SLQ.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_SMQ.htm

Here’s my code to select these variables from the P_SMQ data.

p_smq <- nhanes('P_SMQ', translate = FALSE) |>
select(SEQN, SMQ020, SMD641)

dim(p_smq)

[1] 11137 3

Now, let’s set the value of SMD641 to be 0 if SMQ020 is 2 (No).

p_smq <- p_smq |>
mutate(SMD641 = ifelse(SMQ020 == 2, 0, SMD641))

1.2.20 Secondhand Smoke

From the Questionnaire on Smoking - Secondhand Smoke Exposure (P_SMQSHS) we collect
the following variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

SMQ856 Last 7 days worked at a job not at
home?

1 = Yes, 2 = No 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA)

SMQ860 Last 7 days spent time in a
restaurant?

1 = Yes, 2 = No 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA)

SMQ866 Last 7 days spent time in a bar? 1 = Yes, 2 = No 7 = Refused (treat as
NA) 9 = Don’t Know (treat as NA)

Here’s my code to select these variables from the P_SMQSHS data.

p_smqshs <- nhanes('P_SMQSHS', translate = FALSE) |>
select(SEQN, SMQ856, SMQ860, SMQ866)

dim(p_smqshs)

[1] 15560 4

43

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_SMQSHS.htm

1.2.21 Weight History

From the Questionnaire on Weight History (P_WHQ) we collect the following variables.

Variable Description Values
SEQN Respondent Sequence Number

(participant ID)
link across databases

WHD010 Current self-reported height (in
inches)

49 to 82 7777 = Refused (treat as NA)
9999 = Don’t Know (treat as NA)

WHD020 Current self-reported weight (in
pounds)

67 to 578 7777 = Refused (treat as NA)
9999 = Don’t Know (treat as NA)

WHQ040 Like to weigh more, less, or same 1 = More 2 = Less 3 = Stay about the
same 7 = Refused (treat as NA) 9 =
Don’t Know (treat as NA)

Here’s my code to select these variables from the P_WHQ data.

p_whq <- nhanes('P_WHQ', translate = FALSE) |>
select(SEQN, WHD010, WHD020, WHQ040)

dim(p_whq)

[1] 10195 4

1.3 Filtering for Inclusion

First, I’ll filter the demographic data (p_demo) to the participants with known ages
(RIDAGEYR here) between 30 and 59 years (inclusive), and to those who were both
interviewed and examined (so RIDSTATR is 2) to match our inclusion criteria.

p_demo <- p_demo |>
filter(RIDAGEYR >= 30 & RIDAGEYR <= 59,

RIDSTATR == 2)

dim(p_demo)

[1] 4133 8

44

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_WHQ.htm

Second, I’ll restrict the p_ohxref sample to the participants who had a complete oral health
exam (so OHDEXSTS is 1) which is also part of our inclusion criteria.

p_ohxref <- p_ohxref |>
filter(OHDEXSTS == 1)

dim(p_ohxref)

[1] 13271 3

Third, I’ll restrict the p_hug sample to the participants who gave one of our five available
responses (codes 1-5) to the general health condition question in HUQ010, which is the final
element of our inclusion criteria.

p_huq <- p_huq |>
filter(HUQ010 <= 5)

dim(p_huq)

[1] 15550 4

Subjects that meet all of these requirements will be included in our analytic data. To achieve
that end, we’ll begin merging the individual data bases.

1.4 Merging the Data

1.4.1 Merging Two Data Frames at a Time

We have two ways to merge our data. We can merge data sets two at a time. In this case,
we’ll use inner_join() from the dplyr package to include only those participants with data
in each of the two data frames we’re merging. For example, we’ll create temp01 to include data
from both p_demo and p_ohxref for all participants (identified by their SEQN) that appear
in each of those two data frames. Then, we’ll merge the resulting temp01 with p_huq to create
temp02 in a similar way.

temp01 <- inner_join(p_demo, p_ohxref, by = "SEQN")
temp02 <- inner_join(temp01, p_huq, by = "SEQN")

dim(temp02)

45

[1] 3931 13

Note that we now have 3931 participants in our data, and this should be the case after we merge
in all of the other data sets, too. Rather than using inner_join() we will switch now to using
left_join() many more times so that we always add new information only on those subjects
who meet our inclusion criteria (as identified in temp02. For more on the various types of
joins we can use from the dplyr package, visit <https://dplyr.tidyverse.org/reference/mutate-
joins.html. The problem is that that approach would force us to create lots of new temporary
files as we add in each new variable.

1.4.2 Merging Many Data Frames Together

A better approach is to use the reduce() function in the purrr package3, which will let us
join this temp02 data frame with our remaining 17 data frames using left_join() in a much
more streamlined way. We’ll also ensure that the final result (which we’ll call nh_raw) is a
tibble, rather than just a data frame.

df_list <- list(temp02, p_bmx, p_bpxo, p_cbc, p_hscrp,
p_alq, p_deq, p_dpq, p_dbq, p_fsq,
p_hiq, p_mcq, p_ohq, p_paq, p_rhq,
p_slq, p_smqshs, p_smq, p_whq)

nh_raw <- df_list |>
reduce(left_join, by = 'SEQN') |>
as_tibble()

dim(nh_raw)

[1] 3931 64

1.5 The “Raw” Data

What does the data in nh_raw look like? Normally, I wouldn’t include this sort of intermediate
description in a published bit of work, but it may be helpful to compare this description to
the one we’ll generate at the end of the cleaning process in this case.

summary(nh_raw)

3For more on the purrr package, visit https://purrr.tidyverse.org/

46

https://purrr.tidyverse.org/

SEQN RIDSTATR RIDAGEYR RIDRETH3 DMDEDUC2
Min. :109271 Min. :2 Min. :30.00 Min. :1.000 Min. :1.00
1st Qu.:113103 1st Qu.:2 1st Qu.:37.00 1st Qu.:3.000 1st Qu.:3.00
Median :117059 Median :2 Median :45.00 Median :3.000 Median :4.00
Mean :117074 Mean :2 Mean :44.79 Mean :3.561 Mean :3.64
3rd Qu.:121040 3rd Qu.:2 3rd Qu.:53.00 3rd Qu.:4.000 3rd Qu.:5.00
Max. :124818 Max. :2 Max. :59.00 Max. :7.000 Max. :7.00

RIAGENDR WTINTPRP WTMECPRP OHDEXSTS OHAREC
Min. :1.000 Min. : 2467 Min. : 2589 Min. :1 Min. :1.000
1st Qu.:1.000 1st Qu.: 10615 1st Qu.: 11365 1st Qu.:1 1st Qu.:3.000
Median :2.000 Median : 17358 Median : 18422 Median :1 Median :4.000
Mean :1.533 Mean : 28434 Mean : 30353 Mean :1 Mean :3.455
3rd Qu.:2.000 3rd Qu.: 31476 3rd Qu.: 33155 3rd Qu.:1 3rd Qu.:4.000
Max. :2.000 Max. :311265 Max. :321574 Max. :1 Max. :4.000

HUQ010 HUQ071 HUQ090 BMXWT
Min. :1.000 Min. :1.000 Min. :1.000 Min. : 36.90
1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.: 69.30
Median :3.000 Median :2.000 Median :2.000 Median : 82.10
Mean :2.741 Mean :1.913 Mean :1.883 Mean : 86.31
3rd Qu.:3.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.: 99.10
Max. :5.000 Max. :2.000 Max. :9.000 Max. :254.30

NA's :28
BMXHT BMXWAIST BPXOSY2 BPXODI2

Min. :135.3 Min. : 57.9 Min. : 69.0 Min. : 31.00
1st Qu.:160.0 1st Qu.: 89.1 1st Qu.:110.0 1st Qu.: 69.00
Median :166.9 Median : 99.2 Median :120.0 Median : 76.00
Mean :167.4 Mean :101.5 Mean :121.5 Mean : 77.03
3rd Qu.:174.7 3rd Qu.:111.7 3rd Qu.:131.0 3rd Qu.: 84.00
Max. :198.7 Max. :178.0 Max. :222.0 Max. :136.00
NA's :30 NA's :149 NA's :346 NA's :346

BPXOPLS1 BPXOPLS2 LBXWBCSI LBXPLTSI
Min. : 38.0 Min. : 37.00 Min. : 2.300 Min. : 47.0
1st Qu.: 62.0 1st Qu.: 63.00 1st Qu.: 5.700 1st Qu.:210.0
Median : 69.0 Median : 70.00 Median : 6.900 Median :246.0
Mean : 70.3 Mean : 70.96 Mean : 7.254 Mean :253.3
3rd Qu.: 77.0 3rd Qu.: 78.00 3rd Qu.: 8.400 3rd Qu.:290.0
Max. :126.0 Max. :121.00 Max. :22.800 Max. :818.0
NA's :615 NA's :617 NA's :176 NA's :176

LBXHSCRP ALQ111 ALQ130 DEQ034D
Min. : 0.110 Min. :1.000 Min. : 0.000 Min. :1.000
1st Qu.: 0.890 1st Qu.:1.000 1st Qu.: 1.000 1st Qu.:3.000

47

Median : 2.090 Median :1.000 Median : 2.000 Median :4.000
Mean : 4.326 Mean :1.089 Mean : 2.345 Mean :3.675
3rd Qu.: 4.740 3rd Qu.:1.000 3rd Qu.: 3.000 3rd Qu.:5.000
Max. :182.820 Max. :2.000 Max. :15.000 Max. :5.000
NA's :267 NA's :205 NA's :789 NA's :19

DPQ010 DPQ020 DPQ030 DPQ040
Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
Median :0.0000 Median :0.0000 Median :0.0000 Median :1.0000
Mean :0.3907 Mean :0.3732 Mean :0.6529 Mean :0.7612
3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
Max. :9.0000 Max. :7.0000 Max. :9.0000 Max. :9.0000
NA's :212 NA's :212 NA's :212 NA's :212

DPQ050 DPQ060 DPQ070 DPQ080
Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000
Mean :0.4117 Mean :0.2504 Mean :0.2924 Mean :0.1622
3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.0000
Max. :9.0000 Max. :3.0000 Max. :3.0000 Max. :3.0000
NA's :212 NA's :213 NA's :213 NA's :213

DPQ090 DPQ100 DBQ700 FSDAD
Min. :0.000 Min. :0.0000 Min. :1.00 Min. :1.000
1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:2.00 1st Qu.:1.000
Median :0.000 Median :0.0000 Median :3.00 Median :1.000
Mean :0.053 Mean :0.3447 Mean :3.11 Mean :1.737
3rd Qu.:0.000 3rd Qu.:1.0000 3rd Qu.:4.00 3rd Qu.:2.000
Max. :3.000 Max. :3.0000 Max. :9.00 Max. :4.000
NA's :214 NA's :1448 NA's :231

HIQ011 HIQ210 MCQ366A MCQ366B
Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
Median :1.000 Median :2.000 Median :2.000 Median :2.000
Mean :1.211 Mean :1.742 Mean :1.699 Mean :1.574
3rd Qu.:1.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
Max. :9.000 Max. :9.000 Max. :9.000 Max. :9.000

NA's :12
MCQ371A MCQ371B OHQ870 PAQ605

Min. :1.000 Min. :1.000 Min. : 0.000 Min. :1.000
1st Qu.:1.000 1st Qu.:1.000 1st Qu.: 0.000 1st Qu.:1.000
Median :1.000 Median :1.000 Median : 3.000 Median :2.000
Mean :1.371 Mean :1.399 Mean : 3.503 Mean :1.723
3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.: 7.000 3rd Qu.:2.000

48

Max. :9.000 Max. :9.000 Max. :99.000 Max. :9.000
NA's :1

PAQ610 PAQ650 PAQ655 PAD680
Min. : 0.000 Min. :1.000 Min. : 0.0000 Min. : 2.0
1st Qu.: 0.000 1st Qu.:1.000 1st Qu.: 0.0000 1st Qu.: 180.0
Median : 0.000 Median :2.000 Median : 0.0000 Median : 300.0
Mean : 1.244 Mean :1.731 Mean : 0.9201 Mean : 363.7
3rd Qu.: 2.000 3rd Qu.:2.000 3rd Qu.: 1.0000 3rd Qu.: 480.0
Max. :99.000 Max. :2.000 Max. :99.0000 Max. :9999.0
NA's :4 NA's :11

RHQ131 RHQ160 SLD012 SLD013
Min. :1.000 Min. : 0.000 Min. : 2.000 Min. : 2.000
1st Qu.:1.000 1st Qu.: 2.000 1st Qu.: 6.500 1st Qu.: 7.000
Median :1.000 Median : 3.000 Median : 7.500 Median : 8.000
Mean :1.114 Mean : 3.159 Mean : 7.359 Mean : 8.231
3rd Qu.:1.000 3rd Qu.: 4.000 3rd Qu.: 8.000 3rd Qu.: 9.000
Max. :7.000 Max. :77.000 Max. :14.000 Max. :14.000
NA's :1970 NA's :1972 NA's :34 NA's :34

SLQ030 SLQ050 SMQ856 SMQ860
Min. :0.000 Min. :1.000 Min. :1.000 Min. :1.000
1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
Median :2.000 Median :2.000 Median :1.000 Median :1.000
Mean :2.015 Mean :1.711 Mean :1.323 Mean :1.423
3rd Qu.:3.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
Max. :9.000 Max. :9.000 Max. :2.000 Max. :9.000

SMQ866 SMQ020 SMD641 WHD010 WHD020
Min. :1.000 Min. :1.0 Min. : 0.000 Min. : 50 Min. : 86.0
1st Qu.:2.000 1st Qu.:1.0 1st Qu.: 0.000 1st Qu.: 63 1st Qu.: 152.0
Median :2.000 Median :2.0 Median : 0.000 Median : 66 Median : 180.0
Mean :1.846 Mean :1.6 Mean : 6.859 Mean : 247 Mean : 353.9
3rd Qu.:2.000 3rd Qu.:2.0 3rd Qu.: 5.000 3rd Qu.: 70 3rd Qu.: 220.0
Max. :2.000 Max. :7.0 Max. :99.000 Max. :9999 Max. :9999.0

NA's :724 NA's :24
WHQ040

Min. :1.00
1st Qu.:2.00
Median :2.00
Mean :2.18
3rd Qu.:2.00
Max. :9.00

49

1.6 Cleaning Tasks

We now have a tibble called nh_raw containing 3931 NHANES participants in the rows and
64 variables in the columns. What must we do to clean up the data?

1. Check that every identifier (here, SEQN) is unique.
2. Ensure that all coded values for “Refused”, “Don’t Know” or “Missing” are interpreted

as missing values by R.
3. Be sure all quantitative variables have plausible minimum and maximum values.
4. Replace the RIAGENDR variable with a new factor variable called SEX with levels Male

and Female.
5. Convert all binary Yes/No variables to 1/0 numeric variables where 1 = Yes, 0 = No.
6. Create the PHQ-9 score from the nine relevant items in the depression screener

(P_DPQ).
7. Use meaningful level names for all multi-categorical variables, and be sure R uses factors

to represent them.
8. Clean and adjust the names of the variables to something more useful, as desired. (Usu-

ally, I will do this first, but in this case, I’ve decided to do it last.)

Once we’ve accomplished these cleaning tasks, we’ll save the resulting tibble as an R data set
we can use later, and we’ll summarize our final analytic variables in a proper codebook.

1.7 Our identifying variable

SEQN is meant to identify the rows (participants) in these data, with one row per SEQN. Is
every SEQN unique?

nrow(nh_raw)

[1] 3931

n_distinct(nh_raw$SEQN)

[1] 3931

It looks like the number of rows in our tibble matches the number of unique (distinct) SEQN
values, so we’re OK. I prefer to specify that the SEQN be maintained by R as a character
variable, which reduces the chance of my accidentally including it in a model as if it were
something meaningful.

50

nh_fixing <- nh_raw |> mutate(SEQN = as.character(SEQN))

1.8 “Refused” & “Don’t Know”

Some of our variables have “hidden” missing values coded as “Refused” or “Don’t Know”. We
must ensure that R sees these values as missing.

• The following variables use code 7 for Refused and 9 for Don’t Know:

– DMDEDUC2, HUQ071, HUQ090, ALQ111, DEQ034D,
– DPQ010, DPQ020, DPQ030, DPQ040, DPQ050,
– DPQ060, DPQ070, DPQ080, DPQ090, DPQ100,
– DBQ700, HIQ011, HIQ210, MCQ366A, MCQ366B,
– MCQ371A, MCQ371B, PAQ605, PAQ650, RHQ131,
– SLQ030, SLQ050, SMQ020, SMQ856, SMQ860,
– SMQ866, WHQ040

• The following variables use code 9 for Unknown and 99 for Don’t Know:

– OHQ870

• The following variables use code 77 for Refused and 99 for Unknown:

– PAQ610, PAQ655, RHQ160, SMD641

• The following variables use code 777 for Refused and 999 for Don’t Know:

– ALQ130

• The following variables use code 7777 for Refused and 9999 for Don’t Know:

– PAD680, WHD010, WHD020

The replace_with_na() set of functions from the naniar package can be very helpful here4.

nh_fixing <- nh_fixing %>%
replace_with_na_at(.vars = c("DMDEDUC2", "HUQ071", "HUQ090", "ALQ111",

"DEQ034D", "DPQ010", "DPQ020", "DPQ030",
"DPQ040", "DPQ050", "DPQ060", "DPQ070",
"DPQ080", "DPQ090", "DPQ100", "DBQ700",
"HIQ011", "HIQ210", "MCQ366A", "MCQ366B",
"MCQ371A", "MCQ371B", "PAQ605", "PAQ650",
"RHQ131", "SLQ030", "SLQ050", "SMQ020",
"SMQ856", "SMQ860", "SMQ866", "WHQ040"),

4For more on replace_with_na(), visit https://naniar.njtierney.com/articles/replace-with-na.html

51

https://naniar.njtierney.com/articles/replace-with-na.html

condition = ~.x %in% c(7, 9)) %>%
replace_with_na_at(.vars = c("OHQ870"),

condition = ~.x %in% c(9, 99)) %>%
replace_with_na_at(.vars = c("PAQ610", "PAQ655", "RHQ160", "SMD641"),

condition = ~.x %in% c(77, 99)) %>%
replace_with_na_at(.vars = c("ALQ130"),

condition = ~.x %in% c(777, 999)) %>%
replace_with_na_at(.vars = c("PAD680", "WHD010", "WHD020"),

condition = ~.x %in% c(7777, 9999))

1.9 Variables without Variation

Note first that we have two variables which now have the same value for all participants.

Variable Description Codes
RIDSTATR Interview and examination status 2 = Both
OHDEXSTS Complete oral health exam? 1 = Yes

nh_fixing |> count(RIDSTATR, OHDEXSTS)

A tibble: 1 x 3
RIDSTATR OHDEXSTS n

<dbl> <dbl> <int>
1 2 1 3931

We won’t use these variables in our analyses, now that we’ve verified them.

1.10 Quantitative Variables

Here are our quantitative variables, and some key information about the values we observe,
along with their units of measurement. Our job here is to check the ranges of these variables,
and be sure we have no unreasonable values. It’s also helpful to keep an eye on how much
missingness we might have to deal with.

We’re also going to rename each of these variables, as indicated.

52

New Name
NHANES
Name Description Units # NA Range

AGE RIDAGEYR Age at screening years 0 30, 59
WEIGHT BMXWT Body weight kg 28 36.9, 254.3
HEIGHT BMXHT Standing height cm 30 135.3, 198.7
WAIST BMXWAIST Waist Circumference cm 149 57.9, 178
SBP BPXOSY2 Systolic BP (2nd

reading)
mm Hg 346 69, 222

DBP BPXODI2 Diastolic BP (2nd
reading)

mm Hg 346 31, 136

PULSE1 BPXOPLS1 Pulse (1st reading) 𝑏𝑒𝑎𝑡𝑠
𝑚𝑖𝑛𝑢𝑡𝑒 615 38, 126

PULSE2 BPXOPLS2 Pulse (2nd reading) 𝑏𝑒𝑎𝑡𝑠
𝑚𝑖𝑛𝑢𝑡𝑒 617 37, 121

WBC LBXWBCSI White blood cell count 1000 cells
𝑢𝐿 176 2.3, 22.8

PLATELET LBXPLTSI Platelet count 1000 cells
𝑢𝐿 176 47, 818

HSCRP LBXHSCRP High-Sensitivity
C-Reactive Protein

𝑚𝑔/𝐿 267 0.11, 182.82

DRINKS ALQ130 Average daily Alcoholic
drinks

drinks 789 0, 15

FLOSS OHQ870 Days using dental floss
in past week

days 4 0, 7

VIGWK_D PAQ610 Average days per week
with Vigorous work

days 5 0, 7

VIGREC_D PAQ655 Average days per week
with Vigorous
recreation

days 1 0, 7

SEDATE PAD680 Average daily
Sedentary activity

minutes 24 2, 1320

PREGNANT RHQ160 Pregnancies times 1975 0, 11
SLPWKDAY SLD012 Usual sleep (weekdays) hours 34 2, 14
SLPWKEND SLD013 Usual sleep (weekends) hours 34 2, 14
SMOKE30 SMD641 Days in past 30 when

you smoked a cigarette
days 726 0, 30

ESTHT WHD010 Self-reported height inches 95 50, 81
ESTWT WHD020 Self-reported weight pounds 68 86, 578

To insert the number of missing values and range (minimum, maximum among non-missing
values) into the table, I used inline R code like this:

n_miss(nh_fixing$BMXWT)

[1] 28

53

range(nh_fixing$BMXWT, na.rm = TRUE)

[1] 36.9 254.3

1.10.1 Renaming the Quantities

Here’s the renaming code:

nh_fixing <- nh_fixing |>
rename(AGE = RIDAGEYR, WEIGHT = BMXWT, HEIGHT = BMXHT,

WAIST = BMXWAIST, SBP = BPXOSY2, DBP = BPXODI2,
PULSE1 = BPXOPLS1, PULSE2 = BPXOPLS2, WBC = LBXWBCSI,
PLATELET = LBXPLTSI, HSCRP = LBXHSCRP, DRINKS = ALQ130,
FLOSS = OHQ870, VIGWK_D = PAQ610, VIGREC_D = PAQ655,
SEDATE = PAD680, PREGS = RHQ160, SLPWKDAY = SLD012,
SLPWKEND = SLD013, SMOKE30 = SMD641,
ESTHT = WHD010, ESTWT = WHD020)

1.10.2 Sampling Weights

Here are the sampling weights, which I think of as unitless, typically, though they represent
people.

Variable Description # NA Range
WTINTPRP Sampling Weight (interviews) 0 2467.1, 311265.2
WTMECPRP Sampling Weight (examinations) 0 2589.2, 321573.5

Note that to obtain these ranges formatted like this, I had to use some additional code in the
table:

format(round_half_up(range(nh_fixing$WTINTPRP, na.rm = TRUE),1), scientific = FALSE)

[1] " 2467.1" "311265.2"

54

1.11 Binary Variables

1.11.1 Sex (RIAGENDR)

To start, let’s do something about the variable describing the participant’s biological sex (so
we’ll rename it to a more useful name), and then we’ll recode the values of the SEX variable
to more useful choices.

New Name NHANES Name Description
SEX RIAGENDR Sex

Note that we have more female than male subjects, and no missing values, as it turns out.

nh_fixing |> count(RIAGENDR)

A tibble: 2 x 2
RIAGENDR n

<dbl> <int>
1 1 1837
2 2 2094

Now, let’s convert the information in RIAGENDR to SEX.

nh_fixing <- nh_fixing |>
rename(SEX = RIAGENDR) |>
mutate(SEX = factor(ifelse(SEX == 1, "Male", "Female")))

And we’ll run a little “sanity check” here to ensure that we’ve recoded this variable properly5.

nh_fixing |> count(SEX)

A tibble: 2 x 2
SEX n
<fct> <int>

1 Female 2094
2 Male 1837

5Sanity checks are a great idea while in the midst of coding, but can confuse the reader and thus should not
be included in 432 submitted work.

55

1.11.2 Yes/No variables

Now, let’s tackle the variables with code 1 = Yes, and 2 = No, and (potentially) some missing
values. I’ll summarize each with the percentage of “Yes” responses (out of those with code 1
or 2) and the number of missing values.

New
NAME

NHANES
NAME Description

%
Yes

#
NA

HOSPITAL HUQ071 Overnight hospital patient in past 12m? 8.7 0
MENTALH HUQ090 Seen mental health professional past 12m? 12.1 2
EVERALC ALQ111 Ever had a drink of alcohol? 91.1 205
INSURNOW HIQ011 Covered by health insurance now? 80.8 10
NOINSUR HIQ210 Time when no insurance in past year? 26.6 16
DR_LOSE MCQ366A Doctor told you to control/lose weight in the past 12

months?
30.3 1

DR_EXER MCQ366B Doctor told you to exercise in the past 12 months? 42.7 1
NOW_LOSEMCQ371A Are you now controlling or losing weight? 63.2 2
NOW_EXERMCQ371B Are you now increasing exercise? 60.3 1
WORK_V PAQ605 Vigorous work activity for 10 min/week? 28.4 4
REC_V PAQ650 Vigorous recreational activity for 10 min/week? 26.9 0

EVERPREG RHQ131 Ever been pregnant? 89.2 1972
SLPTROUB SLQ050 Ever told a doctor you had trouble sleeping? 29.5 3

CIG100 SMQ020 Smoked at least 100 cigarettes in your life? 40.1 1
AWAYWORKSMQ856 Last 7 days worked at a job not at home? 67.7 0
AWAYREST SMQ860 Last 7 days spent time in a restaurant? 58.1 2
AWAYBAR SMQ866 Last 7 days spent time in a bar? 15.4 0

The inline code I used in the tables was, for example:

round_half_up(100 * sum(nh_fixing$HUQ090 == "1", na.rm = TRUE) /
sum(nh_fixing$HUQ090 %in% c("1","2"), na.rm = TRUE), 1)

[1] 12.1

n_miss(nh_fixing$HUQ090)

[1] 2

56

To clean these (1 = Yes, 2 = No) variables, I’ll subtract the values from 2, to obtain variables
where 1 = Yes and 0 = No. I’ll use the across() function within my mutate() statement so
as to avoid having to type out each change individually6.

nh_fixing <- nh_fixing |>
mutate(across(c(HUQ071, HUQ090, ALQ111, HIQ011, HIQ210,

MCQ366A, MCQ366B, MCQ371A, MCQ371B, PAQ605,
PAQ650, RHQ131, SLQ050, SMQ020, SMQ856,
SMQ860, SMQ866),

~ 2 - .x))

Let’s do just one of the relevant sanity checks here. In addition to verifying that our new
variable has the values 0 and 1 (instead of 2 and 1), we want to be certain that we’ve maintained
any missing values.

nh_fixing |> count(SLQ050)

A tibble: 3 x 2
SLQ050 n
<dbl> <int>

1 0 2769
2 1 1159
3 NA 3

1.11.3 Renaming Binary Variables

Here’s the renaming code.

nh_fixing <- nh_fixing |>
rename(HOSPITAL = HUQ071, MENTALH = HUQ090, EVERALC = ALQ111,

INSURNOW = HIQ011, NOINSUR = HIQ210, DR_LOSE = MCQ366A,
DR_EXER = MCQ366B, NOW_LOSE = MCQ371A, NOW_EXER = MCQ371B,
WORK_V = PAQ605, REC_V = PAQ650, EVERPREG = RHQ131,
SLPTROUB = SLQ050, CIG100 = SMQ020, AWAYWORK = SMQ856,
AWAYREST = SMQ860, AWAYBAR = SMQ866)

6For more on the across() function and how it can be used, visit https://dplyr.tidyverse.org/reference/across.
html.

57

https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html

1.12 Create PHQ-9 Scores

The questions below are asked to assess depression severity, following the prompt “Over the
last two weeks, how often have you been bothered by any of the following problems?”

Variable Description Values
SEQN Respondent Sequence Number (participant

ID)
link across databases

DPQ010 Have little interest in doing things 0-3: see below
DPQ020 Feeling down, depressed or hopeless 0-3: see below
DPQ030 Trouble sleeping or sleeping too much 0-3: see below
DPQ040 Feeling tired or having little energy 0-3: see below
DPQ050 Poor appetite or overeating 0-3: see below
DPQ060 Feeling bad about yourself 0-3: see below
DPQ070 Trouble concentrating on things 0-3: see below
DPQ080 Moving or speaking slowly or too fast 0-3: see below
DPQ090 Thoughts you would be better off dead 0-3: see below

• For DPQ010 - DPQ090, the codes are 0 = Not at all, 1 = Several days in the past two
weeks, 2 = More than half the days in the past two weeks, 3 = Nearly every day in the
past two weeks.

1.12.1 Forming the PHQ-9 Score

One way to use this information is to sum the scores from items DPQ010 through DPQ090
to obtain a result on a scale from 0 - 27. Cutoffs of 5, 10, 15, and 20 then represent mild,
moderate, moderately severe, and severe levels of depressive symptoms, respectively7. If we
had no missing values in our responses, then this would be relatively straightforward.

temp <- nh_fixing |>
mutate(PHQ9 = DPQ010 + DPQ020 + DPQ030 + DPQ040 + DPQ050 +

DPQ060 + DPQ070 + DPQ080 + DPQ090)

temp |> count(PHQ9) |> tail()

A tibble: 6 x 2
PHQ9 n
<dbl> <int>

1 22 9
7See Kroenke et al. 2010

58

https://pubmed.ncbi.nlm.nih.gov/20633738/

2 23 5
3 24 2
4 25 2
5 26 3
6 NA 221

It turns out that this formulation of PHQ9 regards as missing the result for any participant
who failed to answer all 9 questions. A common approach to dealing with missing data in
creating PHQ-9 scores8 is to score all questionnaires with up to two missing values, replacing
any missing values with the average score of the completed items.

So how many of our subjects are missing only one or two of the 9 items?

temp2 <- temp |>
select(SEQN, DPQ010, DPQ020, DPQ030, DPQ040, DPQ050, DPQ060,

DPQ070, DPQ080, DPQ090)

miss_case_table(temp2)

A tibble: 5 x 3
n_miss_in_case n_cases pct_cases

<int> <int> <dbl>
1 0 3710 94.4
2 1 5 0.127
3 2 3 0.0763
4 4 1 0.0254
5 9 212 5.39

With a little googling I found an R script online that will perform this task, and create three
new variables:

• nvalid_phq9 = Number of Valid Responses (out of 9) to the PHQ-9 items
• PHQ9 = PHQ-9 score (0-27 scale, higher values indicate more depression)
• PHQ9_CAT = factor describing PHQ-9 score

– PHQ9 > 20 means PHQ9_CAT is”severe”,
– 15-19 = “moderately severe”,
– 10-14 = “moderate”
– 5-9 = “mild”
– 0-4 = “minimal”

8Again, see Kroenke et al. (2010) at https://pubmed.ncbi.nlm.nih.gov/20633738/.

59

https://scriptsandstatistics.wordpress.com/2018/06/29/scoring-the-phq-9-questionnaire-using-r
https://pubmed.ncbi.nlm.nih.gov/20633738/

scoring_phq9 <- function(data, items.phq9) {
data %>%

mutate(nvalid_phq9 = rowSums(!is.na(select(., items.phq9))),
nvalid_phq9 = as.integer(nvalid_phq9),
mean.temp = rowSums(select(., items.phq9), na.rm = TRUE)/nvalid_phq9,
phq.01.temp = as.integer(unlist(data[items.phq9[1]])),
phq.02.temp = as.integer(unlist(data[items.phq9[2]])),
phq.03.temp = as.integer(unlist(data[items.phq9[3]])),
phq.04.temp = as.integer(unlist(data[items.phq9[4]])),
phq.05.temp = as.integer(unlist(data[items.phq9[5]])),
phq.06.temp = as.integer(unlist(data[items.phq9[6]])),
phq.07.temp = as.integer(unlist(data[items.phq9[7]])),
phq.08.temp = as.integer(unlist(data[items.phq9[8]])),
phq.09.temp = as.integer(unlist(data[items.phq9[9]]))) %>%

mutate_at(vars(phq.01.temp:phq.09.temp),
funs(ifelse(is.na(.), round(mean.temp), .))) %>%

mutate(score.temp = rowSums(select(., phq.01.temp:phq.09.temp), na.rm = TRUE),
PHQ9 = ifelse(nvalid_phq9 >= 7, as.integer(round(score.temp)), NA),
PHQ9_CAT = case_when(
PHQ9 >= 20 ~ 'severe',
PHQ9 >= 15 ~ 'moderately severe',
PHQ9 >= 10 ~ 'moderate',
PHQ9 >= 5 ~ 'mild',
PHQ9 < 5 ~ 'minimal'),
PHQ9_CAT = factor(PHQ9_CAT, levels = c('minimal', 'mild',

'moderate', 'moderately severe',
'severe'))) %>%

select(-ends_with("temp"))

}

Applying this script to our nh_fixing data, our result is:

items.phq9 <- c("DPQ010", "DPQ020", "DPQ030", "DPQ040", "DPQ050",
"DPQ060", "DPQ070", "DPQ080", "DPQ090")

nh_fixing <- nh_fixing %>% scoring_phq9(., all_of(items.phq9))

nh_fixing |> count(nvalid_phq9, PHQ9, PHQ9_CAT)

A tibble: 36 x 4
nvalid_phq9 PHQ9 PHQ9_CAT n

<int> <int> <fct> <int>

60

1 0 NA <NA> 212
2 5 NA <NA> 1
3 7 1 minimal 1
4 7 2 minimal 1
5 7 7 mild 1
6 8 1 minimal 2
7 8 2 minimal 1
8 8 3 minimal 1
9 8 8 mild 1
10 9 0 minimal 1233
i 26 more rows

1.12.2 Distribution of PHQ-9 Score

Here’s a quick look at the distribution of PHQ-9 scores in our nh_fixing data.

nh_fixing |> filter(complete.cases(PHQ9, PHQ9_CAT)) %>%
ggplot(., aes(x = PHQ9, fill = PHQ9_CAT)) +
geom_histogram(binwidth = 1) +
scale_fill_viridis_d() +
labs(title = "PHQ-9 Scores for subjects in `nh_fixing`")

0

400

800

1200

0 10 20
PHQ9

co
un

t

PHQ9_CAT

minimal

mild

moderate

moderately severe

severe

PHQ−9 Scores for subjects in `nh_fixing`

61

1.12.3 Fixing the DPQ100 variable

The DPQ100 variable should be 0 (Not at all difficult) if the PHQ-9 score is zero. We need
to fix this, because NHANES participants who answered 0 (Not at all) to each of the nine
elements contained in the PHQ-9 were not asked the DPQ100 question. So, we set the value
of DPQ100 to be 0 if PHQ9 is 0.

nh_fixing <- nh_fixing |>
mutate(DPQ100 = ifelse(PHQ9 == 0, 0, DPQ100))

This will eliminate the “automatic missing” values in DPQ100.

nh_fixing |> tabyl(DPQ100)

DPQ100 n percent valid_percent
0 3039 0.77308573 0.81781485
1 541 0.13762401 0.14558665
2 93 0.02365810 0.02502691
3 43 0.01093869 0.01157158
NA 215 0.05469346 NA

1.13 Multi-Categorical Variables

Our remaining categorical variables with more than two levels are:

Variable Description Codes # NAs
RIDRETH3 Race/Hispanic origin 1, 2, 3, 4, 6, 7 0

DMDEDUC2 Education Level 1, 2, 3, 4, 5 1
OHAREC Overall Recommendation for Care 1, 2, 3, 4 0
HUQ010 General health condition 1, 2, 3, 4, 5 0

DEQ034D Use sunscreen if outside on very
sunny day?

1, 2, 3, 4, 5 19

DPQ100 Difficulty depression problems have
caused

0, 1, 2, 3 215

DBQ700 How healthy is your diet? 1, 2, 3, 4, 5 1
FSDAD Adult food security in last 12m 1, 2, 3, 4 231
SLQ030 How often do you snore? 0, 1, 2, 3 219

WHQ040 Like to weigh more, less, or same? 1, 2, 3 3

62

1.13.1 Creating RACEETH from RIDRETH3

At the moment, our RIDRETH3 data look like this:

t_ridreth3 <- nh_fixing |> tabyl(RIDRETH3) |> adorn_pct_formatting() |>
mutate(Code = c("Mexican American", "Other Hispanic", "Non-Hispanic White",

"Non-Hispanic Black", "Non-Hispanic Asian", "Other Race"))

gt(t_ridreth3)

RIDRETH3 n percent Code
1 500 12.7% Mexican American
2 403 10.3% Other Hispanic
3 1192 30.3% Non-Hispanic White
4 1049 26.7% Non-Hispanic Black
6 588 15.0% Non-Hispanic Asian
7 199 5.1% Other Race

Now, we’ll turn this RIDRETH3 variable into a new factor called RACEETH with meaningful
levels, and then sort those levels by their frequency in the data. We’ll also collapse together
the Mexican American and Other Hispanic levels, not because the distinction is irrelevant, but
more to demonstrate how this might be done.

nh_fixing <- nh_fixing |>
mutate(RACEETH =

fct_recode(
factor(RIDRETH3),
"Hispanic" = "1",
"Hispanic" = "2",
"Non-H White" = "3",
"Non-H Black" = "4",
"Non-H Asian" = "6",
"Other Race" = "7")) |>

mutate(RACEETH = fct_infreq(RACEETH))

I’m using fct_infreq() here to sort the (nominal) Race and Ethnicity data so that the most
common column appears first, and will thus be treated as the “baseline” level in models. Here
is the resulting order.

nh_fixing |> count(RACEETH)

63

A tibble: 5 x 2
RACEETH n
<fct> <int>

1 Non-H White 1192
2 Non-H Black 1049
3 Hispanic 903
4 Non-H Asian 588
5 Other Race 199

Now, let’s check9 to see if RACEETH and RIDRETH3 include the same information (after
collapsing the Mexican American and Other Hispanic categories.)

nh_fixing |> count(RACEETH, RIDRETH3)

A tibble: 6 x 3
RACEETH RIDRETH3 n
<fct> <dbl> <int>

1 Non-H White 3 1192
2 Non-H Black 4 1049
3 Hispanic 1 500
4 Hispanic 2 403
5 Non-H Asian 6 588
6 Other Race 7 199

1.13.2 Creating EDUC from DMDEDUC2

At the moment, our DMDEDUC2 data look like this:

t_dmdeduc2 <- nh_fixing |> tabyl(DMDEDUC2) |> adorn_pct_formatting() |>
mutate(Code = c("Less than 9th grade", "9th-11th grade", "High School Grad",

"Some College / AA", "College Grad", "Missing"))

gt(t_dmdeduc2)

DMDEDUC2 n percent valid_percent Code
1 272 6.9% 6.9% Less than 9th grade
2 424 10.8% 10.8% 9th-11th grade
3 850 21.6% 21.6% High School Grad

9Again, I wouldn’t usually include this sort of coding check in published work, like either of your 432 Projects.

64

4 1287 32.7% 32.7% Some College / AA
5 1097 27.9% 27.9% College Grad

NA 1 0.0% - Missing

Now, we’ll turn this DMDEDUC2 variable into a new factor called EDUC with meaningful levels.

nh_fixing <- nh_fixing |>
mutate(EDUC =

fct_recode(
factor(DMDEDUC2),
"Less than 9th Grade" = "1",
"9th - 11th Grade" = "2",
"High School Grad" = "3",
"Some College / AA" = "4",
"College Grad" = "5"))

Once again, checking our work…

nh_fixing |> tabyl(EDUC, DMDEDUC2) |> gt()

EDUC 1 2 3 4 5 NA_
Less than 9th Grade 272 0 0 0 0 0
9th - 11th Grade 0 424 0 0 0 0
High School Grad 0 0 850 0 0 0
Some College / AA 0 0 0 1287 0 0

College Grad 0 0 0 0 1097 0
NA 0 0 0 0 0 1

1.13.3 Creating DENTAL from OHAREC

t_oharec <- nh_fixing |> tabyl(OHAREC) |> adorn_pct_formatting() |>
mutate(Code = c("See a dentist immediately", "See a dentist within the next 2 weeks", "See a dentist at your earliest convenience", "Continue your regular routine care"))

gt(t_oharec)

OHAREC n percent Code
1 4 0.1% See a dentist immediately
2 230 5.9% See a dentist within the next 2 weeks

65

3 1671 42.5% See a dentist at your earliest convenience
4 2026 51.5% Continue your regular routine care

We’ll collapse categories 1 and 2 together since they are quite small.

nh_fixing <- nh_fixing |>
mutate(DENTAL =

fct_recode(
factor(OHAREC),
"See dentist urgently" = "1",
"See dentist urgently" = "2",
"See dentist soon" = "3",
"Regular Routine" = "4"))

Once again, checking our work…

nh_fixing |> tabyl(DENTAL, OHAREC) |> gt()

DENTAL 1 2 3 4
See dentist urgently 4 230 0 0
See dentist soon 0 0 1671 0
Regular Routine 0 0 0 2026

1.13.4 Creating SROH from HUQ010

Variable Description Codes # NAs
HUQ010 General health condition 1 = Excellent 2 = Very Good

3 = Good 4 = Fair 5 = Poor
0

nh_fixing <- nh_fixing |>
mutate(SROH =

fct_recode(
factor(HUQ010),
"Excellent" = "1",
"Very Good" = "2",
"Good" = "3",
"Fair" = "4",
"Poor" = "5"))

66

Checking our work…

nh_fixing |> tabyl(SROH, HUQ010) |> gt()

SROH 1 2 3 4 5
Excellent 495 0 0 0 0
Very Good 0 1071 0 0 0

Good 0 0 1462 0 0
Fair 0 0 0 765 0
Poor 0 0 0 0 138

1.13.5 Creating SUNSCR from DEQ034D

Variable Description Codes # NAs
DEQ034D Use sunscreen if outside

on very sunny day?
1 = Always 2 = Most of the
time 3 = Sometimes 4 =

Rarely 5 = Never

19

nh_fixing <- nh_fixing |>
mutate(SUNSCR =

fct_recode(
factor(DEQ034D),
"Always" = "1",
"Most of the time" = "2",
"Sometimes" = "3",
"Rarely" = "4",
"Never" = "5"))

nh_fixing |> tabyl(SUNSCR, DEQ034D) |> gt()

SUNSCR 1 2 3 4 5 NA_
Always 351 0 0 0 0 0

Most of the time 0 485 0 0 0 0
Sometimes 0 0 831 0 0 0
Rarely 0 0 0 662 0 0
Never 0 0 0 0 1583 0
NA 0 0 0 0 0 19

67

1.13.6 Creating DEPRDIFF from DPQ100

Variable Description Codes # NAs
DPQ100 Difficulty depression

problems have caused
0 = Not at all difficult 1 =
Somewhat difficult 2 = Very

difficult 3 = Extremely
difficult

215

nh_fixing <- nh_fixing |>
mutate(DEPRDIFF =

fct_recode(
factor(DPQ100),
"Not at all" = "0",
"Somewhat" = "1",
"Very" = "2",
"Extremely" = "3"))

nh_fixing |> tabyl(DEPRDIFF, DPQ100) |> gt()

DEPRDIFF 0 1 2 3 NA_
Not at all 3039 0 0 0 0
Somewhat 0 541 0 0 0

Very 0 0 93 0 0
Extremely 0 0 0 43 0

NA 0 0 0 0 215

1.13.7 Creating DIETQUAL from DBQ700

Variable Description Codes # NAs
DBQ700 How healthy is your

diet?
1 = Excellent 2 = Very Good
3 = Good 4 = Fair 5 = Poor

1

nh_fixing <- nh_fixing |>
mutate(DIETQUAL =

fct_recode(
factor(DBQ700),

68

"Excellent" = "1",
"Very Good" = "2",
"Good" = "3",
"Fair" = "4",
"Poor" = "5"))

nh_fixing |> tabyl(DIETQUAL, DBQ700) |> gt()

DIETQUAL 1 2 3 4 5 NA_
Excellent 260 0 0 0 0 0
Very Good 0 758 0 0 0 0

Good 0 0 1519 0 0 0
Fair 0 0 0 1082 0 0
Poor 0 0 0 0 311 0
NA 0 0 0 0 0 1

1.13.8 Creating FOODSEC from FSDAD

Variable Description Codes # NAs
FSDAD Adult food security

category for last 12m
1 = Full food security 2 =
Marginal food security 3 =
Low food security 4 = Very

low food security

231

nh_fixing <- nh_fixing |>
mutate(FOODSEC =

fct_recode(
factor(FSDAD),
"Full" = "1",
"Marginal" = "2",
"Low" = "3",
"Very Low" = "4"))

nh_fixing |> tabyl(FOODSEC, FSDAD) |> gt()

FOODSEC 1 2 3 4 NA_

69

Full 2247 0 0 0 0
Marginal 0 565 0 0 0

Low 0 0 503 0 0
Very Low 0 0 0 385 0

NA 0 0 0 0 231

1.13.9 Creating SNORE from SLQ030

Variable Description Codes # NAs
SLQ030 How often do you snore? 0 = Never 1 = Rarely (1-2

nights/week) 2 =
Occasionally (3-4

nights/week) 3 = Frequently
(5+ nights/week)

219

nh_fixing <- nh_fixing |>
mutate(SNORE =

fct_recode(
factor(SLQ030),
"Never" = "0",
"Rarely" = "1",
"Occasionally" = "2",
"Frequently" = "3"))

nh_fixing |> tabyl(SNORE, SLQ030) |> gt()

SNORE 0 1 2 3 NA_
Never 855 0 0 0 0
Rarely 0 959 0 0 0

Occasionally 0 0 700 0 0
Frequently 0 0 0 1198 0

NA 0 0 0 0 219

1.13.10 Creating WTGOAL from WHQ040

70

Variable Description Codes # NAs
WHQ040 Like to weigh more, less,

or same?
1 = More 2 = Less 3 = Stay

about the same
3

Since there’s a natural ordering here (more then same then less) I’ll adapt it using the
fct_relevel() function from the forcats package10 for this variable.

nh_fixing <- nh_fixing |>
mutate(WTGOAL =

fct_recode(
factor(WHQ040),
"More" = "1",
"Less" = "2",
"Same" = "3")) |>

mutate(WTGOAL = fct_relevel(WTGOAL, "More", "Same", "Less"))

nh_fixing |> tabyl(WTGOAL, WHQ040) |> gt()

WTGOAL 1 2 3 NA_
More 289 0 0 0
Same 0 0 974 0
Less 0 2665 0 0
NA 0 0 0 3

1.14 Dropping Variables

We’ll drop the following variables before saving an analytic tibble.

• Our two variables with no variation

– RIDSTATR, OHDEXSTS

• Elements of the PHQ-9 we no longer need

– nvalid_phq, DPQ010, DPQ020, DPQ030, DPQ040
– DPQ050, DPQ060, DPQ070, DPQ080, DPQ090

10https://forcats.tidyverse.org/ is the home of forcats, although the Factors chapter at https://r4ds.hadley.nz/
factors.html in R for Data Science, 2nd edition is also helpful.

71

https://r4ds.hadley.nz/factors.html
https://r4ds.hadley.nz/factors.html

• Multi-categorical variables that we renamed

– RIDRETH3, DMDEDUC2, OHAREC, HUQ010, DEQ034D
– DPQ100, DBQ700, FSDAD, SLQ030, WHQ040

nh_fixing <- nh_fixing |>
select(-c(RIDSTATR, OHDEXSTS, nvalid_phq9, DPQ010,

DPQ020, DPQ030, DPQ040, DPQ050, DPQ060,
DPQ070, DPQ080, DPQ090, RIDRETH3, DMDEDUC2,
OHAREC, HUQ010, DEQ034D, DPQ100, DBQ700,
FSDAD, SLQ030, WHQ040))

1.15 Resorting Variables

I’d like to have the variables in the following order:

nh432 <- nh_fixing |>
select(SEQN, AGE, RACEETH, EDUC, SEX, INSURNOW,

NOINSUR, SROH, WEIGHT, HEIGHT, WAIST,
SBP, DBP, PULSE1, PULSE2, WBC, PLATELET, HSCRP,
DR_LOSE, DR_EXER, NOW_LOSE, NOW_EXER,
ESTHT, ESTWT, WTGOAL, DIETQUAL, FOODSEC,
WORK_V, VIGWK_D, REC_V, VIGREC_D, SEDATE,
PHQ9, PHQ9_CAT, DEPRDIFF, MENTALH,
SLPWKDAY, SLPWKEND, SLPTROUB, SNORE,
HOSPITAL, EVERALC, DRINKS, CIG100, SMOKE30,
AWAYWORK, AWAYREST, AWAYBAR, DENTAL, FLOSS,
EVERPREG, PREGS, SUNSCR, WTINTPRP, WTMECPRP)

1.16 nh432 analytic tibble

nh432

A tibble: 3,931 x 55
SEQN AGE RACEETH EDUC SEX INSURNOW NOINSUR SROH WEIGHT HEIGHT WAIST
<chr> <dbl> <fct> <fct> <fct> <dbl> <dbl> <fct> <dbl> <dbl> <dbl>

1 109271 49 Non-H Wh~ 9th ~ Male 1 0 Fair 98.8 182. 120.
2 109273 36 Non-H Wh~ Some~ Male 1 1 Good 74.3 184. 86.8

72

3 109284 44 Hispanic 9th ~ Fema~ 0 1 Fair 91.1 153. 103.
4 109291 42 Non-H As~ Coll~ Fema~ 1 0 Fair 81.4 161. NA
5 109292 58 Hispanic High~ Male 1 0 Very~ 86 168. 108.
6 109293 44 Non-H Wh~ High~ Male 1 0 Good 99.4 182. 107
7 109295 54 Hispanic Less~ Fema~ 1 0 Good 61.7 157. 90.5
8 109297 30 Non-H As~ Some~ Fema~ 1 0 Very~ 55.4 155. 73.2
9 109300 54 Non-H As~ Coll~ Fema~ 1 0 Exce~ 62 145. 84.8

10 109305 55 Non-H As~ Coll~ Male 1 0 Good 64 175. 82.5
i 3,921 more rows
i 44 more variables: SBP <dbl>, DBP <dbl>, PULSE1 <dbl>, PULSE2 <dbl>,
WBC <dbl>, PLATELET <dbl>, HSCRP <dbl>, DR_LOSE <dbl>, DR_EXER <dbl>,
NOW_LOSE <dbl>, NOW_EXER <dbl>, ESTHT <dbl>, ESTWT <dbl>, WTGOAL <fct>,
DIETQUAL <fct>, FOODSEC <fct>, WORK_V <dbl>, VIGWK_D <dbl>, REC_V <dbl>,
VIGREC_D <dbl>, SEDATE <dbl>, PHQ9 <int>, PHQ9_CAT <fct>, DEPRDIFF <fct>,
MENTALH <dbl>, SLPWKDAY <dbl>, SLPWKEND <dbl>, SLPTROUB <dbl>, ...

1.16.1 Saving the tibble as nh432.Rds

write_rds(nh432, "data/nh432.Rds")

73

2 Codebook for nh432

2.1 R Setup

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(gt)
library(gtsummary)
library(Hmisc)
library(mosaic)
library(naniar)
library(tidyverse)

theme_set(theme_bw())

2.1.1 Data Load

nh432 <- read_rds("data/nh432.Rds")

2.2 Quantitative Variables in nh432

t1_quantitative <- df_stats(~ AGE + WEIGHT + HEIGHT + WAIST + SBP + DBP +
PULSE1 + PULSE2 + WBC + PLATELET + HSCRP +
ESTHT + ESTWT + VIGWK_D + VIGREC_D + SEDATE + PHQ9 +
SLPWKDAY + SLPWKEND + DRINKS + SMOKE30 +
FLOSS + PREGS, data = nh432) |>

mutate(across(.cols = -c(response, n, missing),
round_half_up, digits = 1)) |>

rename(med = median, "NA" = missing)

74

t1_quantitative |>
mutate(description =

c("Age (years)", "Weight (kg)", "Height (cm)",
"Waist circumference (cm)", "Systolic BP (mm Hg)",
"Diastolic BP (mm Hg)", "1st Pulse (beats/min)",
"2nd Pulse (beats/min)", "White Blood Cell Count (1000 cells/uL)",
"Platelets (1000 cells/uL)",
"High-Sensitivity C-Reactive Protein (mg/L)",
"Self Estimate: Height (in)", "Self-Estimate: Weight (lb)",
"Vigorous Work per week (days)",
"Vigorous Recreation per week (days)",
"Sedentary Activity per day (minutes)",
"PHQ-9 Depression Screener Score (points)",
"Average weekday sleep (hours)", "Average weekend sleep (hours)",
"Average Alcohol per day (drinks)",
"Days smoked cigarette in last 30",
"Days Flossed in last 7", "Pregnancies")) |>

select(response, description, everything()) |>
gt() |>
tab_header(title = "Quantitative Variables in nh432")

Quantitative Variables in nh432

response description min Q1 med Q3 max mean sd n NA
AGE Age (years) 30.0 37.0 45.0 53.0 59.0 44.8 8.7 3931 0
WEIGHT Weight (kg) 36.9 69.3 82.1 99.1 254.3 86.3 24.6 3903 28
HEIGHT Height (cm) 135.3 160.0 166.9 174.7 198.7 167.4 10.1 3901 30
WAIST Waist circumference (cm) 57.9 89.1 99.2 111.7 178.0 101.5 17.7 3782 149
SBP Systolic BP (mm Hg) 69.0 110.0 120.0 131.0 222.0 121.5 17.0 3585 346
DBP Diastolic BP (mm Hg) 31.0 69.0 76.0 84.0 136.0 77.0 11.7 3585 346
PULSE1 1st Pulse (beats/min) 38.0 62.0 69.0 77.0 126.0 70.3 11.6 3316 615
PULSE2 2nd Pulse (beats/min) 37.0 63.0 70.0 78.0 121.0 71.0 11.6 3314 617
WBC White Blood Cell Count (1000 cells/uL) 2.3 5.7 6.9 8.4 22.8 7.3 2.2 3755 176
PLATELET Platelets (1000 cells/uL) 47.0 210.0 246.0 290.0 818.0 253.3 66.4 3755 176
HSCRP High-Sensitivity C-Reactive Protein (mg/L) 0.1 0.9 2.1 4.7 182.8 4.3 8.3 3664 267
ESTHT Self Estimate: Height (in) 50.0 63.0 66.0 69.0 81.0 66.5 4.2 3836 95
ESTWT Self-Estimate: Weight (lb) 86.0 150.0 180.0 216.0 578.0 188.1 52.2 3863 68
VIGWK_D Vigorous Work per week (days) 0.0 0.0 0.0 2.0 7.0 1.2 2.1 3926 5
VIGREC_D Vigorous Recreation per week (days) 0.0 0.0 0.0 1.0 7.0 0.9 1.7 3930 1
SEDATE Sedentary Activity per day (minutes) 2.0 180.0 300.0 480.0 1320.0 332.7 210.2 3907 24
PHQ9 PHQ-9 Depression Screener Score (points) 0.0 0.0 2.0 5.0 26.0 3.3 4.3 3718 213

75

SLPWKDAY Average weekday sleep (hours) 2.0 6.5 7.5 8.0 14.0 7.4 1.6 3897 34
SLPWKEND Average weekend sleep (hours) 2.0 7.0 8.0 9.0 14.0 8.2 1.8 3897 34
DRINKS Average Alcohol per day (drinks) 0.0 1.0 2.0 3.0 15.0 2.3 2.2 3142 789
SMOKE30 Days smoked cigarette in last 30 0.0 0.0 0.0 5.0 30.0 6.8 12.1 3205 726
FLOSS Days Flossed in last 7 0.0 0.0 3.0 7.0 7.0 3.5 2.9 3927 4
PREGS Pregnancies 0.0 2.0 3.0 4.0 11.0 3.0 2.1 1956 1975

2.3 Two-Category (1/0) Variables in nh432

nh_dich_vars <- nh432 |>
select(HOSPITAL, MENTALH, EVERALC, INSURNOW, NOINSUR, DR_LOSE,

DR_EXER, NOW_LOSE, NOW_EXER, WORK_V, REC_V, EVERPREG,
SLPTROUB, CIG100, AWAYWORK, AWAYREST, AWAYBAR)

temp1 <- nh_dich_vars |> summarise(across(.cols = everything(),
~ sum(.x, na.rm = TRUE)))

temp2 <- nh_dich_vars |> summarise(across(.cols = everything(),
~ round_half_up(100*mean(.x, na.rm = TRUE), 1)))

temp3 <- nh_dich_vars |> summarise(across(.cols = everything(),
~ n_miss(.x)))

nh_dichotomous_summary <- bind_rows(temp1, temp2, temp3) |>
mutate(summary = c("Yes", "% Yes", "# NA")) |>
relocate(summary) |>
pivot_longer(!summary, names_to = "variable") |>
pivot_wider(names_from = summary) |>
mutate(Description =

c("Overnight hospital patient in past 12m?",
"Seen mental health professional past 12m?",
"Ever had a drink of alcohol?",
"Covered by health insurance now?",
"Time when no insurance in past year?",
"Doctor said to control/lose weight past 12m?",
"Doctor said to exercise in past 12m?",
"Are you now controlling or losing weight?",
"Are you now increasing exercise?",
"Vigorous work activity for 10 min/week?",
"Vigorous recreational activity for 10 min/week?",

76

"Ever been pregnant?",
"Ever told a doctor you had trouble sleeping?",
"Smoked at least 100 cigarettes in your life?",
"Last 7 days worked at a job not at home?",
"Last 7 days spent time in a restaurant?",
"Last 7 days spent time in a bar?"))

nh_dichotomous_summary |>
gt()

variable Yes % Yes # NA Description
HOSPITAL 343 8.7 0 Overnight hospital patient in past 12m?
MENTALH 475 12.1 2 Seen mental health professional past 12m?
EVERALC 3393 91.1 205 Ever had a drink of alcohol?
INSURNOW 3169 80.8 10 Covered by health insurance now?
NOINSUR 1041 26.6 16 Time when no insurance in past year?
DR_LOSE 1189 30.3 1 Doctor said to control/lose weight past 12m?
DR_EXER 1680 42.7 1 Doctor said to exercise in past 12m?
NOW_LOSE 2485 63.2 2 Are you now controlling or losing weight?
NOW_EXER 2369 60.3 1 Are you now increasing exercise?
WORK_V 1116 28.4 4 Vigorous work activity for 10 min/week?
REC_V 1056 26.9 0 Vigorous recreational activity for 10 min/week?
EVERPREG 1747 89.2 1972 Ever been pregnant?
SLPTROUB 1159 29.5 3 Ever told a doctor you had trouble sleeping?
CIG100 1576 40.1 1 Smoked at least 100 cigarettes in your life?
AWAYWORK 2663 67.7 0 Last 7 days worked at a job not at home?
AWAYREST 2283 58.1 2 Last 7 days spent time in a restaurant?
AWAYBAR 605 15.4 0 Last 7 days spent time in a bar?

2.4 Factor Variables in nh432

nh_factor_vars <- nh432 |>
select(where(~ is.factor(.x)))

tbl_summary(nh_factor_vars,
label = c(RACEETH = "RACEETH: Race/Ethnicity",

EDUC = "EDUC: Educational Attainment",
SROH = "SROH: Self-reported Overall Health",
WTGOAL = "WTGOAL: Like to weigh more/less/the same?",

77

DIETQUAL = "DIETQUAL: How healthy is your diet?",
FOODSEC = "FOODSEC: Adult food security (last 12m)",
PHQ9_CAT = "PHQ9_CAT: Depression Screen Category",
DEPRDIFF = "DEPRDIFF: Difficulty with Depression?",
SNORE = "SNORE: How often do you snore?",
DENTAL = "DENTAL: Recommendation for Dental Care?",
SUNSCR = "SUNSCR: Use sunscreen on very sunny day?"),

missing_text = "(# NA)")

Table printed with `knitr::kable()`, not {gt}. Learn why at
https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Characteristic N = 3,931
RACEETH: Race/Ethnicity
Non-H White 1,192 (30%)
Non-H Black 1,049 (27%)
Hispanic 903 (23%)
Non-H Asian 588 (15%)
Other Race 199 (5.1%)
EDUC: Educational Attainment
Less than 9th Grade 272 (6.9%)
9th - 11th Grade 424 (11%)
High School Grad 850 (22%)
Some College / AA 1,287 (33%)
College Grad 1,097 (28%)
(# NA) 1
SEX
Female 2,094 (53%)
Male 1,837 (47%)
SROH: Self-reported Overall Health
Excellent 495 (13%)
Very Good 1,071 (27%)
Good 1,462 (37%)
Fair 765 (19%)
Poor 138 (3.5%)
WTGOAL: Like to weigh more/less/the same?
More 289 (7.4%)
Same 974 (25%)
Less 2,665 (68%)

78

Characteristic N = 3,931
(# NA) 3
DIETQUAL: How healthy is your diet?
Excellent 260 (6.6%)
Very Good 758 (19%)
Good 1,519 (39%)
Fair 1,082 (28%)
Poor 311 (7.9%)
(# NA) 1
FOODSEC: Adult food security (last 12m)
Full 2,247 (61%)
Marginal 565 (15%)
Low 503 (14%)
Very Low 385 (10%)
(# NA) 231
PHQ9_CAT: Depression Screen Category
minimal 2,748 (74%)
mild 621 (17%)
moderate 220 (5.9%)
moderately severe 91 (2.4%)
severe 38 (1.0%)
(# NA) 213
DEPRDIFF: Difficulty with Depression?
Not at all 3,039 (82%)
Somewhat 541 (15%)
Very 93 (2.5%)
Extremely 43 (1.2%)
(# NA) 215
SNORE: How often do you snore?
Never 855 (23%)
Rarely 959 (26%)
Occasionally 700 (19%)
Frequently 1,198 (32%)
(# NA) 219
DENTAL: Recommendation for Dental Care?
See dentist urgently 234 (6.0%)
See dentist soon 1,671 (43%)
Regular Routine 2,026 (52%)
SUNSCR: Use sunscreen on very sunny day?
Always 351 (9.0%)
Most of the time 485 (12%)
Sometimes 831 (21%)

79

Characteristic N = 3,931
Rarely 662 (17%)
Never 1,583 (40%)
(# NA) 19

2.5 Detailed Numerical Description for nh432

describe(nh432)

nh432

55 Variables 3931 Observations
--
SEQN

n missing distinct
3931 0 3931

lowest : 109271 109273 109284 109291 109292, highest: 124807 124810 124813 124815 124818
--
AGE

n missing distinct Info Mean Gmd .05 .10
3931 0 30 0.999 44.79 10.09 31 33
.25 .50 .75 .90 .95
37 45 53 57 58

lowest : 30 31 32 33 34, highest: 55 56 57 58 59
--
RACEETH

n missing distinct
3931 0 5

Value Non-H White Non-H Black Hispanic Non-H Asian Other Race
Frequency 1192 1049 903 588 199
Proportion 0.303 0.267 0.230 0.150 0.051
--
EDUC

n missing distinct
3930 1 5

80

Value Less than 9th Grade 9th - 11th Grade High School Grad
Frequency 272 424 850
Proportion 0.069 0.108 0.216

Value Some College / AA College Grad
Frequency 1287 1097
Proportion 0.327 0.279
--
SEX

n missing distinct
3931 0 2

Value Female Male
Frequency 2094 1837
Proportion 0.533 0.467
--
INSURNOW

n missing distinct Info Sum Mean Gmd
3921 10 2 0.465 3169 0.8082 0.3101

--
NOINSUR

n missing distinct Info Sum Mean Gmd
3915 16 2 0.586 1041 0.2659 0.3905

--
SROH

n missing distinct
3931 0 5

Value Excellent Very Good Good Fair Poor
Frequency 495 1071 1462 765 138
Proportion 0.126 0.272 0.372 0.195 0.035
--
WEIGHT

n missing distinct Info Mean Gmd .05 .10
3903 28 969 1 86.31 26.59 54.20 58.82
.25 .50 .75 .90 .95

69.30 82.10 99.10 119.30 131.49

lowest : 36.9 39.4 39.6 39.8 39.9 , highest: 204.4 204.6 210.8 242.6 254.3
--
HEIGHT

81

n missing distinct Info Mean Gmd .05 .10
3901 30 484 1 167.4 11.45 152.0 154.8
.25 .50 .75 .90 .95

160.0 166.9 174.7 180.8 184.6

lowest : 135.3 138.3 139.7 141.4 141.9, highest: 195.8 195.9 196.6 198.3 198.7
--
WAIST

n missing distinct Info Mean Gmd .05 .10
3782 149 781 1 101.5 19.68 75.9 80.4
.25 .50 .75 .90 .95
89.1 99.2 111.7 125.4 134.5

lowest : 57.9 62.7 63.2 64.5 64.9 , highest: 166 167.1 170.8 173.1 178
--
SBP

n missing distinct Info Mean Gmd .05 .10
3585 346 116 1 121.5 18.61 98 102
.25 .50 .75 .90 .95
110 120 131 143 152

lowest : 69 72 77 79 80, highest: 199 200 211 219 222
--
DBP

n missing distinct Info Mean Gmd .05 .10
3585 346 81 0.999 77.03 13.01 59.2 63.0
.25 .50 .75 .90 .95

69.0 76.0 84.0 92.0 97.0

lowest : 31 44 45 46 47, highest: 121 122 126 127 136
--
PULSE1

n missing distinct Info Mean Gmd .05 .10
3316 615 76 0.999 70.3 12.92 53 57
.25 .50 .75 .90 .95
62 69 77 86 91

lowest : 38 40 41 42 44, highest: 114 115 120 121 126
--
PULSE2

n missing distinct Info Mean Gmd .05 .10
3314 617 80 0.999 70.96 12.92 54 57
.25 .50 .75 .90 .95

82

63 70 78 86 91

lowest : 37 39 40 41 42, highest: 117 118 119 120 121
--
WBC

n missing distinct Info Mean Gmd .05 .10
3755 176 136 1 7.254 2.387 4.3 4.8
.25 .50 .75 .90 .95
5.7 6.9 8.4 10.1 11.3

lowest : 2.3 2.5 2.6 2.7 2.8 , highest: 17.2 17.4 17.6 20.6 22.8
--
PLATELET

n missing distinct Info Mean Gmd .05 .10
3755 176 372 1 253.3 72.04 159 179
.25 .50 .75 .90 .95
210 246 290 337 371

lowest : 47 48 54 57 61, highest: 583 602 638 662 818
--
HSCRP

n missing distinct Info Mean Gmd .05 .10
3664 267 1065 1 4.326 5.271 0.350 0.470
.25 .50 .75 .90 .95

0.890 2.090 4.740 9.217 13.630

lowest : 0.11 0.16 0.17 0.18 0.19 , highest: 102.94 104.48 109.81 138.81 182.82
--
DR_LOSE

n missing distinct Info Sum Mean Gmd
3930 1 2 0.633 1189 0.3025 0.4221

--
DR_EXER

n missing distinct Info Sum Mean Gmd
3930 1 2 0.734 1680 0.4275 0.4896

--
NOW_LOSE

n missing distinct Info Sum Mean Gmd
3929 2 2 0.697 2485 0.6325 0.465

--

83

NOW_EXER
n missing distinct Info Sum Mean Gmd

3930 1 2 0.718 2369 0.6028 0.479

--
ESTHT

n missing distinct Info Mean Gmd .05 .10
3836 95 29 0.995 66.46 4.722 60 61
.25 .50 .75 .90 .95
63 66 69 72 74

lowest : 50 53 54 55 56, highest: 76 77 78 79 81
--
ESTWT

n missing distinct Info Mean Gmd .05 .10
3863 68 255 1 188.1 56.51 120.0 130.0
.25 .50 .75 .90 .95

150.0 180.0 216.0 258.0 281.9

lowest : 86 88 90 93 95, highest: 416 434 450 457 578
--
WTGOAL

n missing distinct
3928 3 3

Value More Same Less
Frequency 289 974 2665
Proportion 0.074 0.248 0.678
--
DIETQUAL

n missing distinct
3930 1 5

Value Excellent Very Good Good Fair Poor
Frequency 260 758 1519 1082 311
Proportion 0.066 0.193 0.387 0.275 0.079
--
FOODSEC

n missing distinct
3700 231 4

Value Full Marginal Low Very Low
Frequency 2247 565 503 385

84

Proportion 0.607 0.153 0.136 0.104
--
WORK_V

n missing distinct Info Sum Mean Gmd
3927 4 2 0.61 1116 0.2842 0.407

--
VIGWK_D

n missing distinct Info Mean Gmd
3926 5 8 0.632 1.22 1.904

Value 0 1 2 3 4 5 6 7
Frequency 2811 79 127 184 112 352 132 129
Proportion 0.716 0.020 0.032 0.047 0.029 0.090 0.034 0.033

For the frequency table, variable is rounded to the nearest 0
--
REC_V

n missing distinct Info Sum Mean Gmd
3931 0 2 0.589 1056 0.2686 0.393

--
VIGREC_D

n missing distinct Info Mean Gmd
3930 1 8 0.608 0.8952 1.436

Value 0 1 2 3 4 5 6 7
Frequency 2875 126 211 301 166 154 46 51
Proportion 0.732 0.032 0.054 0.077 0.042 0.039 0.012 0.013

For the frequency table, variable is rounded to the nearest 0
--
SEDATE

n missing distinct Info Mean Gmd .05 .10
3907 24 44 0.99 332.7 232.2 60 120
.25 .50 .75 .90 .95
180 300 480 600 720

lowest : 2 3 5 8 9, highest: 960 1020 1080 1200 1320
--
PHQ9

n missing distinct Info Mean Gmd .05 .10
3718 213 27 0.958 3.324 4.201 0 0

85

.25 .50 .75 .90 .95
0 2 5 9 13

lowest : 0 1 2 3 4, highest: 22 23 24 25 26
--
PHQ9_CAT

n missing distinct
3718 213 5

Value minimal mild moderate
Frequency 2748 621 220
Proportion 0.739 0.167 0.059

Value moderately severe severe
Frequency 91 38
Proportion 0.024 0.010
--
DEPRDIFF

n missing distinct
3716 215 4

Value Not at all Somewhat Very Extremely
Frequency 3039 541 93 43
Proportion 0.818 0.146 0.025 0.012
--
MENTALH

n missing distinct Info Sum Mean Gmd
3929 2 2 0.319 475 0.1209 0.2126

--
SLPWKDAY

n missing distinct Info Mean Gmd .05 .10
3897 34 22 0.984 7.359 1.735 5.0 5.5
.25 .50 .75 .90 .95
6.5 7.5 8.0 9.0 10.0

lowest : 2 3 3.5 4 4.5 , highest: 11 11.5 12 13 14
--
SLPWKEND

n missing distinct Info Mean Gmd .05 .10
3897 34 24 0.983 8.231 1.928 5 6
.25 .50 .75 .90 .95
7 8 9 10 11

86

lowest : 2 3 3.5 4 4.5 , highest: 12 12.5 13 13.5 14
--
SLPTROUB

n missing distinct Info Sum Mean Gmd
3928 3 2 0.624 1159 0.2951 0.4161

--
SNORE

n missing distinct
3712 219 4

Value Never Rarely Occasionally Frequently
Frequency 855 959 700 1198
Proportion 0.230 0.258 0.189 0.323
--
HOSPITAL

n missing distinct Info Sum Mean Gmd
3931 0 2 0.239 343 0.08726 0.1593

--
EVERALC

n missing distinct Info Sum Mean Gmd
3726 205 2 0.244 3393 0.9106 0.1628

--
DRINKS

n missing distinct Info Mean Gmd .05 .10
3142 789 15 0.948 2.345 2.051 0 0
.25 .50 .75 .90 .95
1 2 3 5 6

Value 0 1 2 3 4 5 6 7 8 9 10
Frequency 333 912 903 412 228 123 105 21 37 4 19
Proportion 0.106 0.290 0.287 0.131 0.073 0.039 0.033 0.007 0.012 0.001 0.006

Value 11 12 13 15
Frequency 1 26 2 16
Proportion 0.000 0.008 0.001 0.005

For the frequency table, variable is rounded to the nearest 0
--
CIG100

87

n missing distinct Info Sum Mean Gmd
3930 1 2 0.721 1576 0.401 0.4805

--
SMOKE30

n missing distinct Info Mean Gmd .05 .10
3205 726 26 0.594 6.808 10.5 0 0
.25 .50 .75 .90 .95
0 0 5 30 30

lowest : 0 1 2 3 4, highest: 26 27 28 29 30
--
AWAYWORK

n missing distinct Info Sum Mean Gmd
3931 0 2 0.656 2663 0.6774 0.4371

--
AWAYREST

n missing distinct Info Sum Mean Gmd
3929 2 2 0.73 2283 0.5811 0.487

--
AWAYBAR

n missing distinct Info Sum Mean Gmd
3931 0 2 0.391 605 0.1539 0.2605

--
DENTAL

n missing distinct
3931 0 3

Value See dentist urgently See dentist soon Regular Routine
Frequency 234 1671 2026
Proportion 0.060 0.425 0.515
--
FLOSS

n missing distinct Info Mean Gmd
3927 4 8 0.934 3.476 3.248

Value 0 1 2 3 4 5 6 7
Frequency 1104 288 395 329 230 179 44 1358
Proportion 0.281 0.073 0.101 0.084 0.059 0.046 0.011 0.346

88

For the frequency table, variable is rounded to the nearest 0
--
EVERPREG

n missing distinct Info Sum Mean Gmd
1959 1972 2 0.29 1747 0.8918 0.1931

--
PREGS

n missing distinct Info Mean Gmd .05 .10
1956 1975 12 0.973 3.046 2.24 0 0
.25 .50 .75 .90 .95
2 3 4 6 7

Value 0 1 2 3 4 5 6 7 8 9 10
Frequency 212 205 421 420 297 191 95 58 22 10 9
Proportion 0.108 0.105 0.215 0.215 0.152 0.098 0.049 0.030 0.011 0.005 0.005

Value 11
Frequency 16
Proportion 0.008

For the frequency table, variable is rounded to the nearest 0
--
SUNSCR

n missing distinct
3912 19 5

Value Always Most of the time Sometimes Rarely
Frequency 351 485 831 662
Proportion 0.090 0.124 0.212 0.169

Value Never
Frequency 1583
Proportion 0.405
--
WTINTPRP

n missing distinct Info Mean Gmd .05 .10
3931 0 3677 1 28434 27437 5911 7199
.25 .50 .75 .90 .95

10615 17358 31476 65098 94422

lowest : 2467.05 2779.46 2833.29 2917.41 2967.27
highest: 246250 248091 264719 282884 311265

89

--
WTMECPRP

n missing distinct Info Mean Gmd .05 .10
3931 0 3701 1 30353 29409 6217 7634
.25 .50 .75 .90 .95

11365 18422 33155 68569 102038

lowest : 2589.17 2782.74 3003.52 3009.53 3016.64
highest: 267064 268879 273958 308015 321574
--

2.6 Missingness in nh432

miss_case_table(nh432) |> gt()

n_miss_in_case n_cases pct_cases
0 907 23.0730094
1 533 13.5588909
2 1030 26.2019842
3 591 15.0343424
4 307 7.8097176
5 161 4.0956500
6 87 2.2131773
7 106 2.6965149
8 68 1.7298397
9 18 0.4578988
10 20 0.5087764
11 39 0.9921140
12 27 0.6868481
13 14 0.3561435
14 9 0.2289494
15 14 0.3561435

gg_miss_var(nh432)

90

AGE
AWAYBAR

AWAYWORK
DENTAL

HOSPITAL
RACEETH

REC_V
SEQN

SEX
SROH

WTINTPRP
WTMECPRP

CIG100
DIETQUAL
DR_EXER
DR_LOSE

EDUC
NOW_EXER

VIGREC_D
AWAYREST

MENTALH
NOW_LOSE
SLPTROUB

WTGOAL
FLOSS

WORK_V
VIGWK_D

INSURNOW
NOINSUR
SUNSCR
SEDATE
WEIGHT
HEIGHT

SLPWKDAY
SLPWKEND

ESTWT
ESTHT
WAIST

PLATELET
WBC

EVERALC
PHQ9

PHQ9_CAT
DEPRDIFF

SNORE
FOODSEC

HSCRP
DBP
SBP

PULSE1
PULSE2

SMOKE30
DRINKS

EVERPREG
PREGS

0 500 1000 1500 2000
Missing

V
ar

ia
bl

es

91

miss_var_summary(nh432) |> gt()

variable n_miss pct_miss
PREGS 1975 50.2
EVERPREG 1972 50.2
DRINKS 789 20.1
SMOKE30 726 18.5
PULSE2 617 15.7
PULSE1 615 15.6
SBP 346 8.80
DBP 346 8.80
HSCRP 267 6.79
FOODSEC 231 5.88
SNORE 219 5.57
DEPRDIFF 215 5.47
PHQ9 213 5.42
PHQ9_CAT 213 5.42
EVERALC 205 5.21
WBC 176 4.48
PLATELET 176 4.48
WAIST 149 3.79
ESTHT 95 2.42
ESTWT 68 1.73
SLPWKDAY 34 0.865
SLPWKEND 34 0.865
HEIGHT 30 0.763
WEIGHT 28 0.712
SEDATE 24 0.611
SUNSCR 19 0.483
NOINSUR 16 0.407
INSURNOW 10 0.254
VIGWK_D 5 0.127
WORK_V 4 0.102
FLOSS 4 0.102
WTGOAL 3 0.0763
SLPTROUB 3 0.0763
NOW_LOSE 2 0.0509
MENTALH 2 0.0509
AWAYREST 2 0.0509
EDUC 1 0.0254
DR_LOSE 1 0.0254

92

DR_EXER 1 0.0254
NOW_EXER 1 0.0254
DIETQUAL 1 0.0254
VIGREC_D 1 0.0254
CIG100 1 0.0254
SEQN 0 0
AGE 0 0
RACEETH 0 0
SEX 0 0
SROH 0 0
REC_V 0 0
HOSPITAL 0 0
AWAYWORK 0 0
AWAYBAR 0 0
DENTAL 0 0
WTINTPRP 0 0
WTMECPRP 0 0

miss_var_table(nh432) |> gt()

n_miss_in_var n_vars pct_vars
0 12 21.818182
1 7 12.727273
2 3 5.454545
3 2 3.636364
4 2 3.636364
5 1 1.818182

10 1 1.818182
16 1 1.818182
19 1 1.818182
24 1 1.818182
28 1 1.818182
30 1 1.818182
34 2 3.636364
68 1 1.818182
95 1 1.818182
149 1 1.818182
176 2 3.636364
205 1 1.818182
213 2 3.636364

93

215 1 1.818182
219 1 1.818182
231 1 1.818182
267 1 1.818182
346 2 3.636364
615 1 1.818182
617 1 1.818182
726 1 1.818182
789 1 1.818182

1972 1 1.818182
1975 1 1.818182

94

3 431 Review: Comparing Means

In this Chapter, we will review some key issues about comparing means, mostly drawn from
the 431 course. This and the other Chapters labeled “431 Review” show elements of the two
studies involved in a “431 Project B” using the pre-pandemic (2017 - March 2020) data from
the National Health and Nutrition Examination Survey (NHANES) called nh432 that we
developed in Chapter 1 and then summarized in Chapter 2. Note that we’ll ignore the issue of
sampling weights and assume a “missing completely at random” (MCAR) mechanism in these
“431 Review” chapters, so that we can work with complete cases.

The 431 course notes are at https://thomaselove.github.io/431-notes/ and will remain there
until June 1.

3.1 R Setup

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(broom)
library(car)
library(glue)
library(gt)
library(gtsummary)
library(lmboot)
library(MKinfer)
library(mosaic)
library(naniar)
library(patchwork)
library(rstatix)

library(tidyverse)

theme_set(theme_bw())

95

https://thomaselove.github.io/431-projectB-2022/
https://thomaselove.github.io/431-notes/

3.2 Data Ingest

Since we’ve already got the nh432 file formatted as an R data set, we’ll use that.

nh432 <- read_rds("data/nh432.Rds")

3.3 Testing or Summarizing Normality?

As we’ll see, the two most useful strategies for dealing with problematic non-Normality when
comparing means are (1) transformation of the outcome to make the assumption of Normality
more tenable, and (2) alternate inference approaches (for example, using a bootstrap or rank-
based procedure instead of a t test.)

While it is possible to obtain numerical summaries of deviations from Normality, perhaps a
measure of skewness (asymmetry) or kurtosis (heavy-tailed behavior), in practical work, I
never use such summaries to overrule my assessment of the plots. It’s critical instead to focus
on the pictures of a distribution, most especially Normal Q-Q plots.

Perhaps the simplest skewness summary is 𝑠𝑘𝑒𝑤1 = (mean-median)/(standard deviation),
where values below -0.2 are meant to indicate (meaningful) left skew, and values above +0.2
indicate (meaningful) right skew. Unfortunately, this approach works poorly with many dis-
tributions (for example, multimodal distributions) and so do many other (more sophisticated)
measures1.

It is also possible to develop hypothesis tests of whether a particular batch of data follows a
Normal distribution, for example, the Kolmogorov-Smirnov test2, or the Shapiro-Wilk test3,
but again, I find these to be without value in practical work and cannot recommend their
use.

3.4 Comparing Two Means using Paired Samples

Now, we’ll demonstrate some approaches to comparing two means coming from paired samples.
This will include:

• a paired t test (one-sample t test on the paired differences), which we can obtain from a
linear model, or from t.test()

1The e1071 package in R provides several such measures of skewness and kurtosis if you really want to see
them.

2The Kolmogorov-Smirnov test is available in R: see ks.test()
3See shapiro.test() in R

96

These procedures based on the t distribution for paired samples require that the distribution
of the sample paired differences is well-approximated by a Normal model. As an alternative
without that requirement, we’ll focus primarily on a bootstrap comparison (not assuming
Normality) from boot.t.test(), which comes from the MKinfer package. It is also possible
to generate rank-based inference, such as using the Wilcoxon signed rank approach, but this
introduces the major weakness of not estimating the population mean (or even the population
median.)

We’ll assume a Missing Completely at Random (MCAR) mechanism for missing data, so that
a complete case analysis makes sense, and we’ll also use functions from the broom package to
tidy our output, and from the gt package to help present it in an attractive table.

3.5 Comparing PULSE1 to PULSE2

We have two measurements of pulse rate (in beats per minute) in nh432 for each participant.
Let’s compare the two for all participants with two PULSE readings. Since we have a value of
PULSE1 and PULSE2 for each participant, it makes sense to treat these as paired samples,
and study the paired differences in pulse rate.

dat1 <- nh432 |> select(SEQN, PULSE1, PULSE2) |>
drop_na() |>
mutate(PULSEDIFF = PULSE2 - PULSE1)

summary(dat1 |> select(-SEQN))

PULSE1 PULSE2 PULSEDIFF
Min. : 38.0 Min. : 37.00 Min. :-22.0000
1st Qu.: 62.0 1st Qu.: 63.00 1st Qu.: -1.0000
Median : 69.0 Median : 70.00 Median : 1.0000
Mean : 70.3 Mean : 70.96 Mean : 0.6533
3rd Qu.: 77.0 3rd Qu.: 78.00 3rd Qu.: 2.0000
Max. :126.0 Max. :121.00 Max. : 26.0000

df_stats(~ PULSE1 + PULSE2 + PULSEDIFF, data = dat1) |>
mutate(across(.cols = c(mean, sd), \(x) num(x, digits = 2))) |>
gt()

response min Q1 median Q3 max mean sd n missing
PULSE1 38 62 69 77 126 70.30 11.61 3314 0

97

PULSE2 37 63 70 78 121 70.96 11.57 3314 0
PULSEDIFF -22 -1 1 2 26 0.65 3.43 3314 0

3.5.1 Distribution of Paired Differences

p1 <- ggplot(dat1, aes(sample = PULSEDIFF)) +
geom_qq(col = "dodgerblue") + geom_qq_line(col = "navy") +
theme(aspect.ratio = 1) +
labs(title = "Normal Q-Q plot")

p2 <- ggplot(dat1, aes(x = PULSEDIFF)) +
geom_histogram(aes(y = after_stat(density)),

bins = 25, fill = "dodgerblue", col = "white") +
stat_function(fun = dnorm,

args = list(mean = mean(dat1$PULSEDIFF),
sd = sd(dat1$PULSEDIFF)),

col = "navy", linewidth = 1.5) +
labs(title = "Histogram and Normal Density")

p3 <- ggplot(dat1, aes(x = PULSEDIFF, y = "")) +
geom_boxplot(fill = "dodgerblue", outlier.color = "dodgerblue") +
stat_summary(fun = "mean", geom = "point",

shape = 23, size = 3, fill = "white") +
labs(title = "Boxplot with mean", y = "")

p1 + (p2 / p3 + plot_layout(heights = c(4,1))) +
plot_annotation(title = "Pulse 2 - Pulse 1 difference in nh432",

subtitle = glue(nrow(dat1), " NHANES Participants ages 30-59 in nh432 data"))

98

−20

−10

0

10

20

y

−2 0 2
x

Normal Q−Q plot

0.00

0.05

0.10

0.15

−20 −10 0 10 20
PULSEDIFF

de
ns

ity

Histogram and Normal Density

−20 −10 0 10 20
PULSEDIFF

Boxplot with mean

3314 NHANES Participants ages 30−59 in nh432 data

Pulse 2 − Pulse 1 difference in nh432

These data appear to come from a distribution that is essentially symmetric, but extremely
heavy-tailed, with many outlier candidates on both the low and high end of the distribution.
It seems unwise to assume a Normal distribution for these differences in pulse rate.

3.5.2 Using t.test to obtain a 90% CI for the mean pulse difference

Note that I use 90% as my confidence level here, mostly to make sure that we don’t always
simply default to 95% without engaging our brains.

tt1 <- t.test(dat1$PULSEDIFF, conf.level = 0.90)

tt1

One Sample t-test

data: dat1$PULSEDIFF
t = 10.98, df = 3313, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
90 percent confidence interval:
0.5553989 0.7511792

99

sample estimates:
mean of x
0.6532891

tidy(tt1, conf.int = TRUE, conf = 0.90) |>
select(estimate, low.90 = conf.low, hi.90 = conf.high,

"Paired t" = statistic, p.value, method) |>
mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
gt() |>
tab_header(title = "Pulse 2 - Pulse 1 Difference Estimate with 90% T-based CI",

subtitle = glue(nrow(dat1), " NHANES Participants ages 30-59 in nh432 data"))

Pulse 2 - Pulse 1 Difference Estimate with 90% T-based CI
3314 NHANES Participants ages 30-59 in nh432 data

estimate low.90 hi.90 Paired t p.value method
0.653 0.555 0.751 10.980 0.000 One Sample t-test

3.5.3 Using linear regression to obtain a 90% CI for the mean pulse difference

A linear regression model predicting the paired differences with an intercept alone produces
the same result as the paired t test.

lm1 <- lm(PULSEDIFF ~ 1, data = dat1)

summary(lm1)

Call:
lm(formula = PULSEDIFF ~ 1, data = dat1)

Residuals:
Min 1Q Median 3Q Max

-22.6533 -1.6533 0.3467 1.3467 25.3467

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.6533 0.0595 10.98 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

100

Residual standard error: 3.425 on 3313 degrees of freedom

tidy(lm1, conf.int = TRUE, conf = 0.90) |>
mutate(method = c("Linear Model")) |>
select(estimate, low.90 = conf.low, hi.90 = conf.high,

"Paired t" = statistic, p.value, method) |>
mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
gt() |>
tab_header(title = "Pulse 2 - Pulse 1 Difference Estimate with 90% T-based CI",

subtitle = glue(nrow(dat1), " NHANES Participants ages 30-59 in nh432 data"))

Pulse 2 - Pulse 1 Difference Estimate with 90% T-based CI
3314 NHANES Participants ages 30-59 in nh432 data

estimate low.90 hi.90 Paired t p.value method
0.653 0.555 0.751 10.980 0.000 Linear Model

3.5.4 Using the bootstrap to obtain a 90% CI for the mean pulse difference

This is a better choice than the t test if the distribution of the paired differences veer far
away from a Normal distribution, but you are still interested in making inferences about the
population mean. This is a different approach to obtaining a bootstrap than I have used in the
past, but I prefer it because it works well with the tidy() function in the broom package.

set.seed(4321)
bs1 <- boot.t.test(dat1$PULSEDIFF, conf.level = 0.90,

boot = TRUE, R = 999)

bs1

Bootstrap One Sample t-test

data: dat1$PULSEDIFF
number of bootstrap samples: 999
bootstrap p-value < 0.001001
bootstrap mean of x (SE) = 0.6554904 (0.05954107)
90 percent bootstrap percentile confidence interval:
0.5554617 0.7526554

101

Results without bootstrap:
t = 10.98, df = 3313, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
90 percent confidence interval:
0.5553989 0.7511792
sample estimates:
mean of x
0.6532891

tidy(bs1, conf.int = TRUE, conf = 0.90) |>
select(estimate, low.90 = conf.low, hi.90 = conf.high,

"Bootstrap t" = statistic, p.value, method) |>
mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
gt() |>
tab_header(title = "Pulse 2 - Pulse 1 Difference Estimate with 90% Bootstrap CI",

subtitle = glue(nrow(dat1), " NHANES Participants ages 30-59 in nh432 data"))

Pulse 2 - Pulse 1 Difference Estimate with 90% Bootstrap CI
3314 NHANES Participants ages 30-59 in nh432 data

estimate low.90 hi.90 Bootstrap t p.value method
0.653 0.555 0.751 10.980 0.000 Bootstrap One Sample t-test

Given our large sample size, it is perhaps not overly surprising that even a small difference
in mean pulse rate (0.653 beats per minute) turns out to have a 90% confidence interval well
above the value (0) that would occur if there were no difference at all between the groups.

3.5.5 Wilcoxon signed rank approach to comparing pulse rates

We can obtain a 90% confidence interval for the pseudo-median of our paired differences in
pulse rate with the Wilcoxon signed rank approach.

wt1 <- wilcox.test(dat1$PULSEDIFF, conf.int = TRUE, conf.level = 0.90)

wt1

Wilcoxon signed rank test with continuity correction

102

data: dat1$PULSEDIFF
V = 2449203, p-value < 2.2e-16
alternative hypothesis: true location is not equal to 0
90 percent confidence interval:
0.5000466 0.9999290
sample estimates:
(pseudo)median

0.9999809

But this is of limited value, even though it doesn’t assume Normality of the distribution of
paired differences, because the summary statistic is a pseudo-median4, which isn’t straight-
forward to interpret, unless the true distribution of the paired differences is symmetric, in
which case the pseudo-median and the median have the same value.

Let’s consider another example using two paired samples to compare means, this time with a
somewhat smaller sample size.

3.6 Comparing WEIGHT to ESTWT

We have two assessments of each participant’s weight in nh432: their WEIGHT (as measured
using a scale, in kilograms) and their ESTWT (self-reported weight via questionnaire, in
pounds.) First, let’s create a data set containing those values, and converting pounds to
kilograms for the ESTWT results so that we can compare the two assessments fairly. To
shrink the sample size a bit, let’s only look at people whose age is 43, and who describe their
overall health as either Good or Fair.

dat2 <- nh432 |> select(SEQN, AGE, SROH, WEIGHT, ESTWT) |>
filter(AGE == 43, SROH %in% c("Good", "Fair")) |>
drop_na() |>
mutate(ESTWTKG = ESTWT*0.45359,

WTDIFF = WEIGHT - ESTWTKG)

glimpse(dat2)

Rows: 70
Columns: 7
$ SEQN <chr> "109342", "109602", "109805", "110286", "110645", "111149", "1~
$ AGE <dbl> 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43~

4The pseudomedian of a distribution 𝐹 is the median of the distribution of (u + v)/2, where u and v are
independent and each have distribution 𝐹 .

103

$ SROH <fct> Good, Good, Good, Fair, Good, Good, Good, Good, Good, Fair, Go~
$ WEIGHT <dbl> 92.1, 76.5, 133.0, 86.8, 119.3, 74.1, 75.8, 106.8, 102.1, 77.0~
$ ESTWT <dbl> 200, 167, 260, 198, 230, 145, 167, 240, 223, 172, 150, 265, 22~
$ ESTWTKG <dbl> 90.71800, 75.74953, 117.93340, 89.81082, 104.32570, 65.77055, ~
$ WTDIFF <dbl> 1.38200, 0.75047, 15.06660, -3.01082, 14.97430, 8.32945, 0.050~

df_stats(~ WEIGHT + ESTWTKG + WTDIFF, data = dat2) |>
mutate(across(.cols = -c(response, n, missing), \(x) num(x , digits = 3))) |>
gt()

response min Q1 median Q3 max mean sd n missing
WEIGHT 36.900 74.525 89.400 106.175 204.600 93.040 29.211 70 0
ESTWTKG 45.359 74.842 89.130 103.759 204.115 92.532 27.869 70 0
WTDIFF -9.871 -2.256 -0.028 1.923 15.067 0.508 4.671 70 0

3.6.1 Plotting The Paired Difference in Weight

p1 <- ggplot(dat2, aes(sample = WTDIFF)) +
geom_qq(col = "seagreen") + geom_qq_line(col = "deeppink") +
theme(aspect.ratio = 1) +
labs(title = "Normal Q-Q plot")

p2 <- ggplot(dat2, aes(x = WTDIFF)) +
geom_histogram(aes(y = after_stat(density)),

bins = 15, fill = "seagreen", col = "white") +
stat_function(fun = dnorm,

args = list(mean = mean(dat2$WTDIFF),
sd = sd(dat2$WTDIFF)),

col = "deeppink", linewidth = 1.5) +
labs(title = "Histogram and Normal Density")

p3 <- ggplot(dat2, aes(x = WTDIFF, y = "")) +
geom_boxplot(fill = "seagreen", outlier.color = "seagreen") +
stat_summary(fun = "mean", geom = "point",

shape = 23, size = 3, fill = "white") +
labs(title = "Boxplot with mean", y = "")

p1 + (p2 / p3 + plot_layout(heights = c(4,1))) +
plot_annotation(title = "Measured - Self-reported Weight (in kilograms)",

104

subtitle = glue(nrow(dat2), " participants in Good or Fair Health aged 43 in nh432"))

−10

−5

0

5

10

15

y

−2 −1 0 1 2
x

Normal Q−Q plot

0.00

0.05

0.10

0.15

−10 0 10
WTDIFF

de
ns

ity

Histogram and Normal Density

−10 −5 0 5 10 15
WTDIFF

Boxplot with mean

70 participants in Good or Fair Health aged 43 in nh432

Measured − Self−reported Weight (in kilograms)

As we saw with the differences in pulse rate, the differences in weight for this sample appear
to come from a distribution that might be symmetric, but that still has several outlier candi-
dates, especially on the high end of the distribution. We may want to consider whether the
assumption of a t-based confidence interval is reasonable here, and whether we might be better
off using a bootstrap approach.

3.6.2 t.test 90% CI for the mean weight difference

tt2 <- t.test(dat2$WTDIFF, conf.level = 0.90)

tidy(tt2, conf.int = TRUE, conf = 0.90) |>
select(estimate, low.90 = conf.low, hi.90 = conf.high,

"Paired t" = statistic, p.value, method) |>
mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
gt() |>
tab_header(title = "Measured - Self-reported Weight with 90% T-based CI",

subtitle = glue(nrow(dat2), " NHANES Participants aged 43 in Good or Fair Health in nh432 data"))

105

Measured - Self-reported Weight with 90% T-based CI
70 NHANES Participants aged 43 in Good or Fair Health in nh432 data

estimate low.90 hi.90 Paired t p.value method
0.508 -0.423 1.438 0.909 0.366 One Sample t-test

3.6.3 Linear Regression: 90% CI for mean weight difference

lm2 <- lm(WTDIFF ~ 1, data = dat2)

tidy(lm2, conf.int = TRUE, conf = 0.90) |>
mutate(method = c("Linear Model")) |>
select(estimate, low.90 = conf.low, hi.90 = conf.high,

"Paired t" = statistic, p.value, method) |>
mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
gt() |>
tab_header(title = "Measured - Self-reported Weight with 90% T-based CI",

subtitle = glue(nrow(dat2), " NHANES Participants aged 43 in Good or Fair Health in nh432 data"))

Measured - Self-reported Weight with 90% T-based CI
70 NHANES Participants aged 43 in Good or Fair Health in nh432 data

estimate low.90 hi.90 Paired t p.value method
0.508 -0.423 1.438 0.909 0.366 Linear Model

3.6.4 Bootstrap 90% CI for the mean weight difference

set.seed(4322)
bs2 <- boot.t.test(dat2$WTDIFF, conf.level = 0.90,

boot = TRUE, R = 999)

tidy(bs2, conf.int = TRUE, conf = 0.90) |>
select(estimate, low.90 = conf.low, hi.90 = conf.high,

"Bootstrap t" = statistic, p.value, method) |>
mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
gt() |>
tab_header(title = "Measured - Self-reported Weight",

subtitle = "with 90% Bootstrap CI") |>

106

tab_footnote(footnote = glue(nrow(dat1), " NHANES Participants age 43 in Good or Fair Health in nh432 data"))

Measured - Self-reported Weight
with 90% Bootstrap CI

estimate low.90 hi.90 Bootstrap t p.value method
0.508 -0.423 1.438 0.909 0.366 Bootstrap One Sample t-test

3314 NHANES Participants age 43 in Good or Fair Health in nh432 data

In light of the clear issue with outliers in the plots of the weight differences, I think I would
choose the bootstrap confidence interval, which clearly includes both negative and positive
values as plausible estimates of the population mean difference.

3.6.5 Wilcoxon signed rank approach to comparing weight estimates

We can obtain a 90% confidence interval for the pseudo-median of our paired differences in
weight with the Wilcoxon signed rank approach.

wt2 <- wilcox.test(dat2$WTDIFF, conf.int = TRUE, conf.level = 0.90)

wt2

Wilcoxon signed rank test with continuity correction

data: dat2$WTDIFF
V = 1262, p-value = 0.9115
alternative hypothesis: true location is not equal to 0
90 percent confidence interval:
-0.6347756 0.7941699
sample estimates:
(pseudo)median

0.06155979

But this is of limited value, even though it doesn’t assume Normality of the distribution of
paired differences, because the summary statistic is a pseudo-median5, which isn’t straight-
forward to interpret, unless the true distribution of the paired differences is symmetric, in
which case the pseudo-median and the median have the same value.

5The pseudomedian of a distribution 𝐹 is the median of the distribution of (u + v)/2, where u and v are
independent and each have distribution 𝐹 .

107

3.7 Comparing Two Means using Independent Samples

Now, we’ll demonstrate some approaches to comparing two means coming from independent
samples. This will include:

• a pooled t test (t test assuming equal population variances), which we can obtain from
a linear model, or from t.test()

• a Welch t test (t test not assuming equal population variances), from t.test()

Each of these t tests requires the distribution of each of our two independent samples to be
well-approximated by a Normal model. As an alternative without that requirement, we’ll focus
on a bootstrap comparison (not assuming equal variances or Normality) from boot.t.test()
(again from the MKinfer package.) Once more, it is also possible to generate rank-based
inference, such as using the Wilcoxon-Mann-Whitney rank sum approach, but again this does
not provide us with estimates of either the difference in population means or medians, which
limits its utility.

3.8 Comparing White Blood Cell Count by Hospitalization Status

Now, we’ll use independent samples to compare subjects who were hospitalized in the past
year to those who were not, in terms of their white blood cell count. The normal range of
WBCs in the blood is 4.5 to 11 on the scale (1000 cells per microliter) our data is available.

3.8.1 Exploring the Data

dat3 <- nh432 |>
select(SEQN, HOSPITAL, WBC) |>
drop_na()

ggplot(dat3, aes(x = factor(HOSPITAL), y = WBC)) +
geom_violin(aes(fill = factor(HOSPITAL))) +
geom_boxplot(width = 0.3, notch = TRUE) +
stat_summary(aes(fill = factor(HOSPITAL)), fun = "mean", geom = "point",

shape = 23, size = 3) +
guides(fill = "none", col = "none") +
scale_fill_viridis_d(option = "cividis", alpha = 0.3) +
coord_flip() +
labs(x = "Hospitalized in Past Year? (0 = No, 1 = Yes)",

y = "White blood cell count (1000 cells / uL)",
title = "White Blood Cell Count by Hospitalization Status",

108

subtitle = glue(nrow(dat3), " NHANES participants in nh432"))

0

1

5 10 15 20
White blood cell count (1000 cells / uL)

H
os

pi
ta

liz
ed

 in
 P

as
t Y

ea
r?

 (
0

=
 N

o,
 1

 =
 Y

es
) 3755 NHANES participants in nh432

White Blood Cell Count by Hospitalization Status

Each of these distributions shows some signs of right skew, or at least more than a few outlier
candidates on the upper end of the white blood cell count’s distribution, according to the
boxplot. A pair of Normal Q-Q plots should help clarify issues for us.

ggplot(dat3, aes(sample = WBC)) +
geom_qq(aes(col = factor(HOSPITAL))) + geom_qq_line(col = "red") +
facet_wrap(~ HOSPITAL, labeller = "label_both") +
guides(col = "none") +
scale_color_viridis_d(option = "cividis", end = 0.5) +
labs(x = "Expectation Under Standard Normal Distribution",

y = "Observed White Blood Cell Count (1000 cells/uL)",
title = "Normal Q-Q plots of White Blood Cell Count",
subtitle = "By Hospitalization Status in the Past Year",
caption = glue(nrow(dat3), " NHANES participants in nh432"))

109

HOSPITAL: 0 HOSPITAL: 1

−2 0 2 −2 0 2

0

5

10

15

20

Expectation Under Standard Normal Distribution

O
bs

er
ve

d
W

hi
te

 B
lo

od
 C

el
l C

ou
nt

 (
10

00
 c

el
ls

/u
L)

By Hospitalization Status in the Past Year

Normal Q−Q plots of White Blood Cell Count

3755 NHANES participants in nh432

It seems unreasonable to assume that each of these samples comes from a distribution that
is well-approximated by the Normal. There’s just too much skew here. Here are some key
numerical summaries of the data in each sample.

favstats(WBC ~ HOSPITAL, data = dat3) |>
mutate(across(.cols = c(mean, sd), \(x) num(x, digits = 3))) |>
gt()

HOSPITAL min Q1 median Q3 max mean sd n missing
0 2.3 5.7 7.0 8.4 22.8 7.246 2.170 3430 0
1 2.5 5.6 6.9 8.7 17.1 7.332 2.392 325 0

3.8.2 Pooled t test (assumes equal variances) via linear model

The pooled t test for comparison of two population means using independent samples as-
sumes:

• that the WBC (outcome) in each of the two HOSPITAL (exposure) groups follows a
Normal distribution, and

• that the population variances are equal in the two groups

110

The “equal population variances” assumption can be relaxed and a pooled t test used if we
have a balanced design, with the same number of subjects in each exposure group.

In our setting, we shouldn’t be particularly comfortable with the assumption of Normality, as
mentioned above. Were we able to get past that, though, we can see that the two distribu-
tions have fairly similar sample variances (remember this is just the square of the standard
deviation.) The sample sizes are wildly different, with many more non-hospitalized subjects
than hospitalized ones.

For completeness, though, we’ll start by running the pooled t test.

lm3 <- lm(WBC ~ HOSPITAL, data = dat3)

summary(lm3)

Call:
lm(formula = WBC ~ HOSPITAL, data = dat3)

Residuals:
Min 1Q Median 3Q Max

-4.9463 -1.5463 -0.3463 1.1537 15.5537

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.24633 0.03740 193.760 <2e-16 ***
HOSPITAL 0.08567 0.12712 0.674 0.5

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.19 on 3753 degrees of freedom
Multiple R-squared: 0.000121, Adjusted R-squared: -0.0001454
F-statistic: 0.4542 on 1 and 3753 DF, p-value: 0.5004

confint(lm3, level = 0.90)

5 % 95 %
(Intercept) 7.1847964 7.3078567
HOSPITAL -0.1234734 0.2948204

111

tidy(lm3, conf.int = TRUE, conf.level = 0.90) |>
filter(term == "HOSPITAL") |>
mutate(method = "Pooled t") |>
select(estimate, low.90 = conf.low, hi.90 = conf.high,

"Pooled t" = statistic, p.value, method) |>
mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
gt() |>
tab_header(title = "White Blood Cell Count (Hospitalized - Non-Hospitalized)",

subtitle = "with 90% Pooled t-based CI via Linear Model") |>
tab_footnote(footnote = glue(nrow(dat3), " NHANES Participants ages 30-59 in nh432 data"))

White Blood Cell Count (Hospitalized - Non-Hospitalized)
with 90% Pooled t-based CI via Linear Model

estimate low.90 hi.90 Pooled t p.value method
0.086 -0.123 0.295 0.674 0.500 Pooled t

3755 NHANES Participants ages 30-59 in nh432 data

3.8.3 Pooled t test (assumes equal variances) via t.test

Note that this approach estimates the difference with Not Hospitalized - Hospitalized, as
opposed to the approach used in the linear model. Be careful to check the sample estimates
provided in your output against the original summary of the sample data to avoid making a
mistake.

tt3p <- t.test(WBC ~ HOSPITAL, data = dat3, var.equal = TRUE, conf.level = 0.90)

tt3p

Two Sample t-test

data: WBC by HOSPITAL
t = -0.67395, df = 3753, p-value = 0.5004
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
90 percent confidence interval:
-0.2948204 0.1234734
sample estimates:
mean in group 0 mean in group 1

112

7.246327 7.332000

tidy(tt3p, conf.int = TRUE, conf.level = 0.90) |>
select(estimate, low.90 = conf.low, hi.90 = conf.high,

"Pooled t" = statistic, p.value, method) |>
mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
gt() |>
tab_header(title = "White Blood Cell Count (Non-Hospitalized minus Hospitalized)",

subtitle = "with 90% Pooled t-based Confidence Interval") |>
tab_footnote(footnote = glue(nrow(dat3), " NHANES Participants ages 30-59 in nh432 data"))

White Blood Cell Count (Non-Hospitalized minus Hospitalized)
with 90% Pooled t-based Confidence Interval

estimate low.90 hi.90 Pooled t p.value method
-0.086 -0.295 0.123 -0.674 0.500 Two Sample t-test

3755 NHANES Participants ages 30-59 in nh432 data

Again, note that the t.test() approach estimates Non-Hospitalized - Hospitalized (so that
the sample mean is negative.)

3.8.4 Welch t test (doesn’t assume equal variance) via t.test

The Welch t test (which is actually the default t.test in R) assumes that the two groups
each follow a Normal distribution, but does not require that those distributions have the same
population variance.

tt3w <- t.test(WBC ~ HOSPITAL, data = dat3, conf.level = 0.90)

tt3w

Welch Two Sample t-test

data: WBC by HOSPITAL
t = -0.6218, df = 376.28, p-value = 0.5345
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
90 percent confidence interval:
-0.3128672 0.1415202

113

sample estimates:
mean in group 0 mean in group 1

7.246327 7.332000

tidy(tt3w, conf.int = TRUE, conf.level = 0.90) |>
select(estimate, low.90 = conf.low, hi.90 = conf.high,

"Welch t" = statistic, p.value, method) |>
mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
gt() |>
tab_header(title = "White Blood Cell Count (Non-Hospitalized minus Hospitalized)",

subtitle = "with 90% Welch t-based Confidence Interval") |>
tab_footnote(footnote = glue(nrow(dat3), " NHANES Participants ages 30-59 in nh432 data"))

White Blood Cell Count (Non-Hospitalized minus Hospitalized)
with 90% Welch t-based Confidence Interval

estimate low.90 hi.90 Welch t p.value method
-0.086 -0.313 0.142 -0.622 0.534 Welch Two Sample t-test

3755 NHANES Participants ages 30-59 in nh432 data

3.8.5 Bootstrap comparison of WBC by HOSPITAL

The bootstrap approach is appealing in part because it neither assumes Normality or equal
population variances.

set.seed(4323)
bs3 <- boot.t.test(WBC ~ HOSPITAL, data = dat3,

R = 999, conf.level = 0.90)

bs3

Bootstrap Welch Two Sample t-test

data: WBC by HOSPITAL
number of bootstrap samples: 999
bootstrap p-value = 0.5325
bootstrap difference of means (SE) = -0.08734076 (0.1376246)
90 percent bootstrap percentile confidence interval:

114

-0.3137606 0.1414317

Results without bootstrap:
t = -0.6218, df = 376.28, p-value = 0.5345
alternative hypothesis: true difference in means is not equal to 0
90 percent confidence interval:
-0.3128672 0.1415202
sample estimates:
mean in group 0 mean in group 1

7.246327 7.332000

tidy(bs3, conf.int = TRUE, conf.level = 0.90) |>
mutate(diff = estimate1 - estimate2) |>
select(est1 = estimate1, est2 = estimate2, diff,

low.90 = conf.low, hi.90 = conf.high,
p.value, method) |>

mutate(across(.cols = -method, \(x) num(x, digits = 3))) |>
gt() |>
tab_header(title = "White Blood Cell Count (Non-Hospitalized minus Hospitalized)",

subtitle = "with 90% Bootstrap Confidence Interval") |>
tab_footnote(footnote = glue(nrow(dat3), " NHANES Participants ages 30-59 in nh432 data"))

White Blood Cell Count (Non-Hospitalized minus Hospitalized)
with 90% Bootstrap Confidence Interval

est1 est2 diff low.90 hi.90 p.value method
7.246 7.332 -0.086 -0.313 0.142 0.534 Bootstrap Welch Two Sample t-test

3755 NHANES Participants ages 30-59 in nh432 data

In any case, though, we come to the same basic conclusion - both positive and negative
differences in WBC count are plausible.

Given the huge imbalance between the two groups in terms of sample size, and the apparent
skew in the distribution of each sample, I would probably be most comfortable with the
bootstrap approach here than the t-based intervals.

3.8.6 Transforming the WBC Counts

Since the White Blood Cell counts are far from Normally distributed, and in fact appear to
be substantially skewed (asymmetric) we might want to consider a transformation of the data.

115

The Box-Cox approach can be used to suggest potential transformations even in a simple case
like this. We can use the boxCox() function from the car package, for example.

m3 <- lm(WBC ~ HOSPITAL, data = dat3)

boxCox(m3)

−2 −1 0 1 2

−
19

40
0

−
18

80
0

−
18

20
0

Profile Log−likelihood

λ

lo
g−

lik
el

ih
oo

d

 95%

The estimated power (𝜆) shown in the plot is close to 0. The ladder of power transforma-
tions looks like this:

$� Transformation Formula
-2 inverse square 1/𝑦2

-1 inverse 1/𝑦
-0.5 inverse square root 1/√𝑦

0 logarithm 𝑙𝑜𝑔𝑦
0.5 square root √𝑦
1 no transformation y
2 square 𝑦2

3 cube 𝑦3

So in this case, the Box-Cox approach is suggesting we try the logarithm (we use the natural
logarithm, with base e, here) of WBC.

116

Let’s redraw our Normal Q-Q plots with this transformation applied.

ggplot(dat3, aes(sample = log(WBC))) +
geom_qq(aes(col = factor(HOSPITAL))) + geom_qq_line(col = "red") +
facet_wrap(~ HOSPITAL, labeller = "label_both") +
guides(col = "none") +
scale_color_viridis_d(option = "cividis", end = 0.5) +
labs(x = "Expectation Under Standard Normal Distribution",

y = "Log of White Blood Cell Count (1000 cells/uL)",
title = "Normal Q-Q plots of log(WBC)",
subtitle = "By Hospitalization Status in the Past Year",
caption = glue(nrow(dat3), " NHANES participants in nh432"))

HOSPITAL: 0 HOSPITAL: 1

−2 0 2 −2 0 2

1.0

1.5

2.0

2.5

3.0

Expectation Under Standard Normal Distribution

Lo
g

of
 W

hi
te

 B
lo

od
 C

el
l C

ou
nt

 (
10

00
 c

el
ls

/u
L) By Hospitalization Status in the Past Year

Normal Q−Q plots of log(WBC)

3755 NHANES participants in nh432

The assumption of Normality now looks much more plausible for each of our samples. So we
might try building a 90% confidence interval for the mean of log(WBC), as follows:

favstats(log(WBC) ~ HOSPITAL, data = dat3) |>
mutate(across(.cols = -c(HOSPITAL, n, missing), \(x) num(x, digits = 3))) |>
gt() |>
tab_header(title = "log(WBC) by Hospitalization Status",

subtitle = "NHANES participants in nh432")

117

log(WBC) by Hospitalization Status
NHANES participants in nh432

HOSPITAL min Q1 median Q3 max mean sd n missing
0 0.833 1.740 1.946 2.128 3.127 1.938 0.293 3430 0
1 0.916 1.723 1.932 2.163 2.839 1.941 0.322 325 0

We see that there’s essentially no difference at all in the means of the log(WBC) values across
the two levels of hospitalization status.

tt3log <- t.test(log(WBC) ~ HOSPITAL, data = dat3, var.equal = TRUE, conf.level = 0.90)

tidy(tt3log, conf.int = TRUE, conf.level = 0.90) |>
select(estimate1, estimate2, estimate, conf.low, conf.high, p.value)

A tibble: 1 x 6
estimate1 estimate2 estimate conf.low conf.high p.value

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1.94 1.94 -0.00320 -0.0314 0.0250 0.852

Let’s consider a second example for comparing means from independent samples.

3.9 Comparing Waist Circumference by Sleep Trouble

Now, we’ll restrict ourselves to NHANES participants who rated their overall health as “Fair”,
and we’ll compare the mean waist circumference (WAIST, in cm) of people in that group who
responded Yes (vs. No) to the question of whether they had told a doctor that they had trouble
sleeping (gathered in the SLPTROUB variable.)

3.9.1 Summarizing the Data

dat4 <- nh432 |>
select(SEQN, SROH, SLPTROUB, WAIST) |>
filter(SROH == "Fair") |>
drop_na()

ggplot(dat4, aes(x = factor(SLPTROUB), y = WAIST)) +
geom_violin(aes(fill = factor(SLPTROUB))) +
geom_boxplot(width = 0.3, notch = TRUE) +

118

stat_summary(fill = "red", fun = "mean", geom = "point",
shape = 23, size = 3) +

guides(fill = "none", col = "none") +
scale_fill_brewer(palette = "Accent") +
labs(x = "Reported Sleep Trouble to a Doctor? (0 = No, 1 = Yes)",

y = "Waist circumference (cm)",
title = "Waist Circumference by Sleep Trouble",
subtitle = glue(nrow(dat4), " NHANES participants in Fair health in nh432"))

90

120

150

180

0 1
Reported Sleep Trouble to a Doctor? (0 = No, 1 = Yes)

W
ai

st
 c

irc
um

fe
re

nc
e

(c
m

)

734 NHANES participants in Fair health in nh432

Waist Circumference by Sleep Trouble

ggplot(dat4, aes(sample = WAIST)) +
geom_qq(aes(col = factor(SLPTROUB))) + geom_qq_line(col = "red") +
facet_wrap(~ SLPTROUB, labeller = "label_both") +
guides(col = "none") +
scale_color_brewer(palette = "Accent") +
labs(x = "Expectation Under Standard Normal Distribution",

y = "Observed Waist Circumference (in cm)",
title = "Normal Q-Q plots of Waist Circumference",
subtitle = "By Reported Sleep Trouble",
caption = glue(nrow(dat4), " NHANES participants in Fair health in nh432"))

119

SLPTROUB: 0 SLPTROUB: 1

−2 0 2 −2 0 2
40

80

120

160

Expectation Under Standard Normal DistributionO
bs

er
ve

d
W

ai
st

 C
irc

um
fe

re
nc

e
(in

 c
m

)

By Reported Sleep Trouble

Normal Q−Q plots of Waist Circumference

734 NHANES participants in Fair health in nh432

Here’s a situation where we might be willing to consider a t test, since a Normal distribution
is a much better fit for the data in each of our two samples. Let’s look at some brief numerical
summaries, too.

favstats(WAIST ~ SLPTROUB, data = dat4) |>
mutate(across(.cols = c(mean, sd), \(x) num(x, digits = 2))) |>
gt()

SLPTROUB min Q1 median Q3 max mean sd n missing
0 65.8 91.7 102.1 117.5 178 104.71 18.35 425 0
1 69.6 97.4 109.4 124.0 166 110.69 18.86 309 0

3.9.2 Pooled t test (assumes equal variances) via linear model

Here’s the pooled t test via linear model.

lm4 <- lm(WAIST ~ SLPTROUB, data = dat4)

summary(lm4)

120

Call:
lm(formula = WAIST ~ SLPTROUB, data = dat4)

Residuals:
Min 1Q Median 3Q Max

-41.093 -13.293 -2.293 12.790 73.290

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 104.7099 0.9006 116.27 < 2e-16 ***
SLPTROUB 5.9830 1.3881 4.31 1.85e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18.57 on 732 degrees of freedom
Multiple R-squared: 0.02475, Adjusted R-squared: 0.02342
F-statistic: 18.58 on 1 and 732 DF, p-value: 1.853e-05

confint(lm4, level = 0.90)

5 % 95 %
(Intercept) 103.226621 106.193144
SLPTROUB 3.696944 8.269052

tidy(lm4, conf.int = TRUE, conf.level = 0.90) |>
filter(term == "SLPTROUB") |>
mutate(method = "Pooled t") |>
select(estimate, low.90 = conf.low, hi.90 = conf.high,

"Pooled t" = statistic, p.value, method) |>
mutate(across(.cols = -method, \(x) num(x, digits = 2))) |>
gt() |>
tab_header(title = "Waist Circumference by Sleep Trouble",

subtitle = "with 90% Pooled t-based CI via Linear Model") |>
tab_footnote(footnote = glue(nrow(dat4), " NHANES Participants in Fair Health in nh432 data"))

Waist Circumference by Sleep Trouble
with 90% Pooled t-based CI via Linear Model

121

estimate low.90 hi.90 Pooled t p.value method
5.98 3.70 8.27 4.31 0.00 Pooled t

734 NHANES Participants in Fair Health in nh432 data

3.9.3 Pooled t test (assumes equal variances) via t.test

tt4p <- t.test(WAIST ~ SLPTROUB, data = dat4, var.equal = TRUE, conf.level = 0.90)

tt4p

Two Sample t-test

data: WAIST by SLPTROUB
t = -4.3103, df = 732, p-value = 1.853e-05
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
90 percent confidence interval:
-8.269052 -3.696944
sample estimates:
mean in group 0 mean in group 1

104.7099 110.6929

tidy(tt4p, conf.int = TRUE, conf.level = 0.90) |>
select(estimate, low.90 = conf.low, hi.90 = conf.high,

"Pooled t" = statistic, p.value, method) |>
mutate(across(.cols = -method, \(x) num(x , digits = 2))) |>
gt() |>
tab_header(title = "Waist Circumference by Sleep Trouble",

subtitle = "with 90% Pooled t-based Confidence Interval") |>
tab_footnote(footnote = glue(nrow(dat4), " NHANES Participants in Fair Health in nh432 data"))

Waist Circumference by Sleep Trouble
with 90% Pooled t-based Confidence Interval

estimate low.90 hi.90 Pooled t p.value method
-5.98 -8.27 -3.70 -4.31 0.00 Two Sample t-test

734 NHANES Participants in Fair Health in nh432 data

122

3.9.4 Welch t test (doesn’t assume equal variance) via t.test

tt4w <- t.test(WAIST ~ SLPTROUB, data = dat4, conf.level = 0.90)

tt4w

Welch Two Sample t-test

data: WAIST by SLPTROUB
t = -4.2919, df = 653.24, p-value = 2.04e-05
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
90 percent confidence interval:
-8.279237 -3.686759
sample estimates:
mean in group 0 mean in group 1

104.7099 110.6929

tidy(tt4w, conf.int = TRUE, conf.level = 0.90) |>
select(estimate, low.90 = conf.low, hi.90 = conf.high,

"Welch t" = statistic, p.value, method) |>
mutate(across(.cols = -method, \(x) num(x, digits = 2))) |>
gt() |>
tab_header(title = "Waist Circumference by Sleep Trouble",

subtitle = "with 90% Welch t-based Confidence Interval") |>
tab_footnote(footnote = glue(nrow(dat4), " NHANES Participants in Fair Health in nh432 data"))

Waist Circumference by Sleep Trouble
with 90% Welch t-based Confidence Interval

estimate low.90 hi.90 Welch t p.value method
-5.98 -8.28 -3.69 -4.29 0.00 Welch Two Sample t-test

734 NHANES Participants in Fair Health in nh432 data

123

3.9.5 Bootstrap comparison of WAIST by SLPTROUB

set.seed(4324)
bs4 <- boot.t.test(WAIST ~ SLPTROUB, data = dat4,

R = 999, conf.level = 0.90)

bs4

Bootstrap Welch Two Sample t-test

data: WAIST by SLPTROUB
number of bootstrap samples: 999
bootstrap p-value < 0.001001
bootstrap difference of means (SE) = -5.991814 (1.389937)
90 percent bootstrap percentile confidence interval:
-8.207833 -3.747965

Results without bootstrap:
t = -4.2919, df = 653.24, p-value = 2.04e-05
alternative hypothesis: true difference in means is not equal to 0
90 percent confidence interval:
-8.279237 -3.686759
sample estimates:
mean in group 0 mean in group 1

104.7099 110.6929

tidy(bs4, conf.int = TRUE, conf.level = 0.90) |>
mutate(diff = estimate1 - estimate2) |>
select(est1 = estimate1, est2 = estimate2, diff,

low.90 = conf.low, hi.90 = conf.high,
p.value, method) |>

mutate(across(.cols = -method, \(x) num(x, digits = 2))) |>
gt() |>
tab_header(title = "Waist Circumference by Sleep Trouble",

subtitle = "with 90% Bootstrap Confidence Interval") |>
tab_footnote(footnote = glue(nrow(dat4), " NHANES Participants in Fair Health in nh432 data"))

124

Waist Circumference by Sleep Trouble
with 90% Bootstrap Confidence Interval

est1 est2 diff low.90 hi.90 p.value method
104.71 110.69 -5.98 -8.28 -3.69 0.00 Bootstrap Welch Two Sample t-test

734 NHANES Participants in Fair Health in nh432 data

3.9.6 Wilcoxon-Mann-Whitney Rank Sum Approach

The Wilcoxon-Mann-Whitney rank sum approach also allows us (like the bootstrap) to avoid
the assumptions of Normality and equal population variances, but at the cost of no longer
yielding direct inference about the population mean.

wt4 <- wilcox.test(WAIST ~ SLPTROUB, data = dat4,
conf.int = TRUE, conf.level = 0.90, paired = FALSE)

wt4

Wilcoxon rank sum test with continuity correction

data: WAIST by SLPTROUB
W = 53322, p-value = 1.355e-05
alternative hypothesis: true location shift is not equal to 0
90 percent confidence interval:
-8.599997 -3.900026
sample estimates:
difference in location

-6.299963

Note that the estimated “difference in location” here is not the difference in the medians
across the two groups, but instead the median of the difference between a sample from the
SLPTROUB = Yes group and a sample from the SLPTROUB = No group.

Just to prove my point, here are the sample median WAIST results in the two SLPTROUB
groups. You can see that the difference between these medians does not match the “difference
in location” estimate from the Wilcoxon-Mann-Whitney rank sum output.

dat4 |> group_by(SLPTROUB) |> summarise(median(WAIST))

125

A tibble: 2 x 2
SLPTROUB `median(WAIST)`

<dbl> <dbl>
1 0 102.
2 1 109.

In conclusion, the confidence intervals (from any of these approaches) suggest that plausible
means of waist circumference are around 3-8 centimeters larger in the “told Dr. about sleep
problems” group, which I suppose isn’t especially surprising, at least in terms of its direction.

3.10 Comparing 3 Means using Independent Samples: Systolic BP
by Weight Goal

We’ll compare systolic blood pressure means across the three samples defined by WTGOAL
(goal is to weigh more, less or stay about the same), restricting to our participants of Hispanic
or Latinx ethnicity in nh432.

dat5 <- nh432 |>
select(SEQN, RACEETH, SBP, WTGOAL) |>
filter(RACEETH == "Hispanic") |>
drop_na()

3.10.1 Summarizing SBP by WTGOAL

ggplot(dat5, aes(x = SBP, y = WTGOAL)) +
geom_violin(aes(fill = WTGOAL)) +
geom_boxplot(width = 0.3, notch = TRUE) +
guides(fill = "none") +
labs(title = "Comparing Mean Systolic BP by Weight Goal",

subtitle = glue("among ", nrow(dat5), " Hispanic participants in nh432"),
x = "Systolic Blood Pressure (mm Hg)", y = "Weight Goal")

126

More

Same

Less

75 100 125 150 175 200
Systolic Blood Pressure (mm Hg)

W
ei

gh
t G

oa
l

among 788 Hispanic participants in nh432

Comparing Mean Systolic BP by Weight Goal

favstats(SBP ~ WTGOAL, data = dat5) |>
as_tibble() |>
mutate(across(.cols = c("mean", "sd"), \(x) num(x, digits = 2))) |>
gt()

WTGOAL min Q1 median Q3 max mean sd n missing
More 84 104.5 114.0 123 150 114.08 14.76 36 0
Same 87 107.0 116.5 128 200 119.26 16.49 188 0
Less 80 109.0 119.0 131 199 120.70 17.17 564 0

The analysis of variance is our primary tool for comparing more than two means (this is the
extension of the pooled t test, with similar assumptions.) So the assumptions we might want
to think about here are:

• SBP in each Weight Goal group is assumed to follow a Normal distribution
• SBP in each Weight Goal group is assumed to have the same population variance

The ANOVA, however, is far more robust to minor violations of these assumptions than is the
pooled t test. So we might go ahead and fit the ANOVA model anyway, despite the apparent
right skew in the “Less” group.

127

3.10.2 Fitting an ANOVA Model

m5 <- lm(SBP ~ WTGOAL, data = dat5)

anova(m5)

Analysis of Variance Table

Response: SBP
Df Sum Sq Mean Sq F value Pr(>F)

WTGOAL 2 1639 819.45 2.8656 0.05754 .
Residuals 785 224477 285.96

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A small p value (remember we are using 90% confidence in our 432 work) like this isn’t really
very important - usually it simply steers us towards trying to identify confidence intervals for
differences between pairs of SBP means defined by WTGOAL.

3.10.2.1 ANOVA without assuming Equal Variances?

R will also fit an ANOVA-style model and produce a p value without the assumption of equal
population SBP variance across the three groups of WTGOAL.

oneway.test(SBP ~ WTGOAL, data = dat5)

One-way analysis of means (not assuming equal variances)

data: SBP and WTGOAL
F = 3.5255, num df = 2.000, denom df = 93.753, p-value = 0.0334

I don’t use this approach much, as ANOVA is pretty robust to the assumption of equal variance.
The huge differences in sample size in this study (many more participants are in the Less group
than the More, for instance) are most of the cause of the difference we see here.

128

3.10.2.2 Testing for Equal Population Variance?

Some people like to perform tests for equal population variance to help choose between ANOVA
and the oneway.test() approach, but I do not. If I’m happy with the assumption of Normality,
I virtually always just use ANOVA. There are many such tests of “equal variance”, including:

• Bartlett’s test
• Levene’s test (which in R comes from the car package)
• Fligner-Killeen test

Bartlett’s test is the least reliable of these when the data in at least one sample appear to
be poorly described by the Normal distribution. Either Levene or Fligner-Killeen is a better
choice in that setting, but again, I don’t use any of these in my work.

bartlett.test(SBP ~ WTGOAL, data = dat5)

Bartlett test of homogeneity of variances

data: SBP by WTGOAL
Bartlett's K-squared = 1.6722, df = 2, p-value = 0.4334

leveneTest(SBP ~ WTGOAL, data = dat5)

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 2 0.6557 0.5193
785

fligner.test(SBP ~ WTGOAL, data = dat5)

Fligner-Killeen test of homogeneity of variances

data: SBP by WTGOAL
Fligner-Killeen:med chi-squared = 1.26, df = 2, p-value = 0.5326

129

3.10.2.3 Is there a bootstrap one-way ANOVA approach?

If all you are looking for is a p value for the ANOVA model, then yes, there is a bootstrap
approach available to perform one-way ANOVA testing. But I don’t actually use it, again
usually preferring the usual ANOVA if the data seem reasonably likely to have been drawn
from a Normal distribution, and the Kruskal-Wallis rank-based test otherwise. If you are
willing to install the lmboot package, and use its ANOVA.boot() function, you can do so, like
this.

bs5 <- ANOVA.boot(SBP ~ WTGOAL, B = 1000, seed = 4325, data = dat5)
bs5$`p-value`

[1] 0.052

In this case, it doesn’t seem that we have a wildly different result than we got from the original
ANOVA. That is often the case, and I have never actually used ANOVA.boot() in practical
work.

3.10.3 Tukey HSD Pairwise Comparisons

When pairwise comparisons are pre-planned, especially when the design is close to balanced,
my favorite choice for generating adjusted inferences about the means is Tukey’s Honestly
Significant Differences (HSD) approach.

Here, we generate confidence intervals for the pairwise differences in the SBP means by WT-
GOAL group with a 90% family-wise confidence level.

th5 <- TukeyHSD(aov(SBP ~ WTGOAL, data = dat5),
ordered = TRUE, conf.level = 0.90)

tidy(th5) |>
select(-c(term, null.value)) |>
mutate(across(.cols = -contrast, \(x) num(x, digits = 3))) |>
arrange(desc(estimate)) |>
gt() |>
tab_header(title = "Comparing Mean Systolic BP across pairs of WTGOAL groups",

subtitle = "90% Tukey HSD Confidence Intervals") |>
tab_footnote(footnote = glue(nrow(dat5), " Hispanic participants in nh432"))

130

Comparing Mean Systolic BP across pairs of WTGOAL groups
90% Tukey HSD Confidence Intervals

contrast estimate conf.low conf.high adj.p.value
Less-More 6.617 0.642 12.592 0.060
Same-More 5.172 -1.151 11.495 0.213
Less-Same 1.445 -1.482 4.372 0.568

788 Hispanic participants in nh432

tidy(th5) |>
mutate(contrast = fct_reorder(contrast, estimate, .desc = TRUE)) %>%
ggplot(., aes(x = contrast, y = estimate, ymin = conf.low, ymax = conf.high)) +
geom_crossbar() +
geom_hline(yintercept = 0, col = "red", linetype = "dashed") +
geom_label(aes(label = round_half_up(estimate, 2))) +
labs(title = "Comparing Mean Systolic BP across pairs of WTGOAL groups",

subtitle = "90% Tukey HSD Confidence intervals",
caption = glue(nrow(dat5), " Hispanic participants in nh432"),
x = "Pairwise Difference between WTGOAL groups",
y = "Difference in Systolic Blood Pressure (mm Hg)")

5.17
6.62

1.45
0

4

8

12

Less−More Same−More Less−Same
Pairwise Difference between WTGOAL groupsD

iff
er

en
ce

 in
 S

ys
to

lic
 B

lo
od

 P
re

ss
ur

e
(m

m
 H

g)

90% Tukey HSD Confidence intervals

Comparing Mean Systolic BP across pairs of WTGOAL groups

788 Hispanic participants in nh432

131

The main problems here are that:

• the sample sizes in the various levels of WTGOAL are very different from one another,
and

• the SBP data are not especially well-described by a Normal distribution, at least in the
“Less” group.

3.10.4 Holm pairwise comparisons of means

Another approach to developing pairwise inferences would be to use either Bonferroni or (my
preference) Holm-adjusted p values for the relevant t tests. First, we’ll run the appropri-
ate Holm comparison of means assuming equal population variances of SBP across all three
WTGOAL groups.

ht5 <- pairwise.t.test(dat5$SBP, dat5$WTGOAL, pool.sd = TRUE, p.adjust.method = "holm")
tidy(ht5) |>
gt()

group1 group2 p.value
Same More 0.18625400
Less More 0.06929224
Less Same 0.31056211

The results are merely p-values, and not confidence intervals. There’s nothing being esti-
mated here of interest. We can also perform these Holm comparisons without assuming equal
population variances, as shown below.

ht5un <- pairwise.t.test(dat5$SBP, dat5$WTGOAL, pool.sd = FALSE,
p.adjust.method = "holm")

tidy(ht5un) |>
gt()

group1 group2 p.value
Same More 0.12866665
Less More 0.04046259
Less Same 0.30396220

Again, the problem with this approach is that it’s only producing a p value, which tempts
us into talking about useless things like “statistical significance.” This is part of the reason I
prefer Tukey HSD approaches when appropriate.

132

3.11 Comparing 4 Means using Independent Samples: Weight by
Food Security

dat6 <- nh432 |>
select(SEQN, WEIGHT, FOODSEC) |>
drop_na()

3.11.1 Summarizing the Data

ggplot(dat6, aes(x = FOODSEC, y = WEIGHT)) +
geom_violin(aes(fill = FOODSEC)) +
geom_boxplot(width = 0.3, notch = TRUE) +
guides(fill = "none") +
scale_fill_viridis_d(option = "rocket") +
labs(title = "Comparing Mean Weight by Food Security",

subtitle = glue("among ", nrow(dat6), " participants in nh432"),
x = "Food Security Category", y = "Weight (kg)")

50

100

150

200

250

Full Marginal Low Very Low
Food Security Category

W
ei

gh
t (

kg
)

among 3673 participants in nh432

Comparing Mean Weight by Food Security

133

favstats(WEIGHT ~ FOODSEC, data = dat6) |>
as_tibble() |>
mutate(across(.cols = -c("FOODSEC", "n", "missing"), \(x) num(x, digits = 1))) |>
gt()

FOODSEC min Q1 median Q3 max mean sd n missing
Full 36.9 68.6 81.0 97.7 210.8 85.2 24.5 2233 0
Marginal 39.9 69.2 83.0 100.2 242.6 87.0 25.0 560 0
Low 40.9 70.4 83.6 102.3 201.0 88.2 24.6 501 0
Very Low 46.1 73.4 85.8 101.3 254.3 90.1 24.4 379 0

3.11.2 Fitting the ANOVA model

m6 <- lm(WEIGHT ~ FOODSEC, data = dat6)

anova(m6)

Analysis of Variance Table

Response: WEIGHT
Df Sum Sq Mean Sq F value Pr(>F)

FOODSEC 3 10021 3340.3 5.525 0.0008786 ***
Residuals 3669 2218162 604.6

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Does the bootstrap ANOVA give a meaningfully different result? No.

bs6 <- ANOVA.boot(WEIGHT ~ FOODSEC, B = 5000, seed = 4326, data = dat6)
bs6$`p-value`

[1] 8e-04

134

3.11.3 Tukey HSD Pairwise Comparisons

th6 <- TukeyHSD(aov(WEIGHT ~ FOODSEC, data = dat6),
ordered = TRUE, conf.level = 0.90)

tidy(th6) |>
select(-c(term, null.value)) |>
mutate(across(.cols = -contrast, \(x) num(x, digits = 3))) |>
arrange(desc(estimate)) |>
gt() |>
tab_header(title = "Comparing Mean Weight across pairs of Food Security groups",

subtitle = "90% Tukey HSD Confidence Intervals") |>
tab_footnote(footnote = glue(nrow(dat6), " participants in nh432"))

Comparing Mean Weight across pairs of Food Security groups
90% Tukey HSD Confidence Intervals

contrast estimate conf.low conf.high adj.p.value
Very Low-Full 4.877 1.746 8.008 0.002
Very Low-Marginal 3.103 -0.646 6.851 0.229
Low-Full 2.930 0.144 5.717 0.075
Very Low-Low 1.946 -1.891 5.783 0.650
Marginal-Full 1.774 -0.889 4.438 0.422
Low-Marginal 1.156 -2.310 4.622 0.870

3673 participants in nh432

tidy(th6) |>
mutate(contrast = fct_reorder(contrast, estimate, .desc = TRUE)) %>%
ggplot(., aes(x = contrast, y = estimate, ymin = conf.low, ymax = conf.high)) +
geom_pointrange() +
geom_hline(yintercept = 0, col = "blue", linetype = "dashed") +
geom_label(aes(label = round_half_up(estimate, 2))) +
labs(title = "Comparing Mean Weight across pairs of Food Security groups",

subtitle = "90% Tukey HSD Confidence intervals",
caption = glue(nrow(dat5), " non-Hispanic Black participants in nh432"),
x = "Pairwise Difference between FOODSEC groups",
y = "Difference in Weight (kg)")

135

1.77

2.93

4.88

1.16

3.1

1.95

0

3

6

Very Low−FullVery Low−Marginal Low−Full Very Low−Low Marginal−Full Low−Marginal
Pairwise Difference between FOODSEC groups

D
iff

er
en

ce
 in

 W
ei

gh
t (

kg
)

90% Tukey HSD Confidence intervals

Comparing Mean Weight across pairs of Food Security groups

788 non−Hispanic Black participants in nh432

3.11.4 Kruskal-Wallis Test

When the assumption of Normality is really unreasonable, many people (including me) will
instead use a rank-based method, called the Kruskal-Wallis test to compare the locations of
WEIGHT across levels of FOODSEC.

kruskal.test(WEIGHT ~ FOODSEC, data = dat6)

Kruskal-Wallis rank sum test

data: WEIGHT by FOODSEC
Kruskal-Wallis chi-squared = 21.102, df = 3, p-value = 0.0001003

3.11.5 Dunn Test for Pairwise Comparisons after Kruskal-Wallis Test

Should you develop a Kruskal-Wallis test result which implies that running a set of pair-
wise comparisons is important, I would suggest the use of the Dunn test, available in the
dunn_test() function from the rstatix package.

136

dunn_test(data = dat6, WEIGHT ~ FOODSEC,
p.adjust.method = "holm", detailed = TRUE) |>

select(group1, group2, p.adj, n1, n2, estimate1, estimate2, estimate) |>
mutate(across(.cols = -c(group1, group2, n1, n2), \(x) num(x, digits = 3))) |>
gt() |>
tab_header(title = "Dunn Tests comparing WEIGHT by FOODSEC",

subtitle = "Pairwise Comparisons after Kruskal-Wallis test") |>
tab_footnote(footnote = glue(nrow(dat6), " participants in nh432"))

Dunn Tests comparing WEIGHT by FOODSEC
Pairwise Comparisons after Kruskal-Wallis test

group1 group2 p.adj n1 n2 estimate1 estimate2 estimate
Full Marginal 0.269 2233 560 1780.595 1865.621 85.026
Full Low 0.049 2233 501 1780.595 1916.147 135.551
Full Very Low 0.000 2233 379 1780.595 2022.412 241.816
Marginal Low 0.438 560 501 1865.621 1916.147 50.525
Marginal Very Low 0.105 560 379 1865.621 2022.412 156.790
Low Very Low 0.282 501 379 1916.147 2022.412 106.265

3673 participants in nh432

Again, a problem with this approach is that all it provides is a set of adjusted p values for
these comparisons, but if we’re not willing to assume even very approximate Normality (and
thus use an ANOVA approach) this is what we’ll have to cope with.

137

4 431 Review: Comparing Rates

In this Chapter, we will review some key issues about comparing proportions or rates, mostly
drawn from the 431 course. This and the other Chapters labeled “431 Review” show elements
of the two studies involved in a “431 Project B” using the pre-pandemic (2017 - March 2020)
data from the National Health and Nutrition Examination Survey (NHANES) called nh432
that we developed in Chapter 1 and then summarized in Chapter 2. Note that we’ll ignore the
issue of sampling weights and assume a “missing completely at random” (MCAR) mechanism
in these “431 Review” chapters, so that we can work with complete cases.

The 431 course notes are at https://thomaselove.github.io/431-notes/ and will remain there
until June 1.

4.1 R Setup

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(broom)
library(DescTools)
library(Epi)
library(gt)
library(Hmisc)
library(vcd)

library(tidyverse)

theme_set(theme_bw())

4.1.1 Data Load

nh432 <- read_rds("data/nh432.Rds")

138

https://thomaselove.github.io/431-projectB-2022/
https://thomaselove.github.io/431-notes/

4.2 2x2 Contingency Table: DR_LOSE and NOWLOSE

Let’s compare the probability that NOWLOSE is 1 (The subject is currently working on losing
or controlling their body weight) between NHANES participants who have (vs. who have not)
been told by a doctor to lose or control their weight in the past 12 months (DR_LOSE). Each
of these (DR_LOSE and NOWLOSE) is stored in R as a numeric variable with non-missing
values equal to 0 or 1.

temp <- nh432 |>
select(SEQN, DR_LOSE, NOW_LOSE) |>
drop_na()

As with any categorical variable, we start by counting, and the natural way to display the
counts of these two variables (DR_LOSE and NOW_LOSE) is in a table, rather than a
graph, I think.

temp |>
tabyl(DR_LOSE, NOW_LOSE) |>
adorn_totals(where = c("row", "col")) |>
adorn_title()

NOW_LOSE
DR_LOSE 0 1 Total

0 1198 1541 2739
1 246 943 1189

Total 1444 2484 3928

Now that we have a 2x2 table, we could consider obtaining some more detailed summary
statistics, with a tool like the twoby2() function in the Epi package. There is a problem with
this, though.

twoby2(temp$DR_LOSE, temp$NOW_LOSE)

2 by 2 table analysis:
--
Outcome : 0
Comparing : 0 vs. 1

0 1 P(0) 95% conf. interval
0 1198 1541 0.4374 0.4189 0.4560

139

1 246 943 0.2069 0.1848 0.2309

95% conf. interval
Relative Risk: 2.1140 1.8766 2.3815

Sample Odds Ratio: 2.9801 2.5412 3.4949
Conditional MLE Odds Ratio: 2.9793 2.5350 3.5096

Probability difference: 0.2305 0.2002 0.2594

Exact P-value: 0.0000
Asymptotic P-value: 0.0000

--

The code runs fine, but the table isn’t really in a useful format. This table shows the probability
that NOWLOSE = 0 (“No”) comparing DR_LOSE = 0 (“No”) to DR_LOSE = 1 (“Yes”),
and that’s just confusing.

It would be much better if we did two things:

1. used factors with meaningful labels to represent the 1/0 variables for this table
2. set up the table in standard epidemiological format, and then made a better choice as

to what combination should be in the top left of the 2x2 table.

So let’s do that.

4.2.1 Standard Epidemiological Format

Standard Epidemiological Format for a 2x2 table places the exposure in the rows, and the
outcome in the columns, with the top left representing the combination of interest when we
obtain things like an odds ratio or probability difference. Typically this means we want to put
the “Yes” and “Yes” combination in the top left.

First, let’s create factor versions (with more meaningful labels than 1 and 0) out of the two
variables of interest: DR_LOSE and NOW_LOSE.

dat1 <- nh432 |>
select(SEQN, DR_LOSE, NOW_LOSE) |>
drop_na() |>
mutate(DR_LOSE_f = fct_recode(factor(DR_LOSE), "Dr_said_Lose_Wt" = "1", No = "0"),

DR_LOSE_f = fct_relevel(DR_LOSE_f, "Dr_said_Lose_Wt", "No"),
NOW_LOSE_f = fct_recode(factor(NOW_LOSE), "Now_losing_Wt" = "1", No = "0"),
NOW_LOSE_f = fct_relevel(NOW_LOSE_f, "Now_losing_Wt", "No"))

140

Note that after recoding the levels to more meaningful labels, we also re-leveled the factors so
that the “Yes” result comes first rather than last.

This produces the following table, which is now in standard epidemiological format, where we
are using the DR_LOSE_f information to predict NOW_LOSE_f.

dat1 |>
tabyl(DR_LOSE_f, NOW_LOSE_f) |>
adorn_totals(where = c("row", "col")) |>
adorn_title()

NOW_LOSE_f
DR_LOSE_f Now_losing_Wt No Total

Dr_said_Lose_Wt 943 246 1189
No 1541 1198 2739

Total 2484 1444 3928

We could, I suppose, make the table even prettier.

tab1 <- dat1 |>
tabyl(DR_LOSE_f, NOW_LOSE_f) |>
adorn_totals(where = c("row", "col"))

gt(tab1, rowname_col = "DR_LOSE_f") |>
tab_header(title = "DR_LOSE vs. NOW_LOSE",

subtitle = "Standard Epidemiological Format") |>
tab_stubhead(label = "Dr said Lose Weight?") |>
tab_spanner(label = "Currently Losing Weight?",

columns = c(Now_losing_Wt, No))

DR_LOSE vs. NOW_LOSE
Standard Epidemiological Format

Currently Losing Weight?
Dr said Lose Weight? Now_losing_Wt No Total
Dr_said_Lose_Wt 943 246 1189
No 1541 1198 2739
Total 2484 1444 3928

141

4.2.2 Obtaining Key Summaries with twoby2()

And, finally, we can obtain necessary summaries (including estimates and confidence intervals)
using the twoby2() function.

twoby2(dat1$DR_LOSE_f, dat1$NOW_LOSE_f, conf.level = 0.90)

2 by 2 table analysis:
--
Outcome : Now_losing_Wt
Comparing : Dr_said_Lose_Wt vs. No

Now_losing_Wt No P(Now_losing_Wt) 90% conf. interval
Dr_said_Lose_Wt 943 246 0.7931 0.7731 0.8118
No 1541 1198 0.5626 0.5470 0.5781

90% conf. interval
Relative Risk: 1.4097 1.3586 1.4627

Sample Odds Ratio: 2.9801 2.6071 3.4065
Conditional MLE Odds Ratio: 2.9793 2.5998 3.4195

Probability difference: 0.2305 0.2052 0.2548

Exact P-value: 0.0000
Asymptotic P-value: 0.0000

--

Some brief descriptions of these results:

• The probability that a participant is now losing weight (NOW_LOSE is 1) is estimated
to be 0.79 (with 90% CI 0.77, 0.81) if the participant has been told to lose weight by a
doctor in the past 12 months (DR_LOSE = 1), but only 0.56 (with 90% CI 0.55, 0.58)
if the participant has not been told this.

• The relative risk of a participant now losing weight is estimated to be 0.7931
0.5626 = 1.41 (with

90% CI 1.36, 1.46) for a participant who has been told to lose weight vs. a participant
who has not.

• The odds of a participant now losing weight are 0.7931(1−0.5626)
0.5626(1−0.7931) = 2.98 times as high for

a participant who has been told to lose weight than for one who has not, with 90% CI
(2.61, 3.41).

• The difference in probability is estimated to be 0.7931 - 0.5626 = 0.2305 (90% CI:
0.21, 0.25), indicating again that the true probability of now losing weight is higher in
participants who have been told to lose weight than in those who have not.

142

The “exact” p-value listed comes from the Fisher exact test, while the “asymptotic” p-value
comes from a Pearson 𝜒2 (chi-squared) test. I would focus on the meaningful estimates (those
with confidence intervals) in making comparisons, rather than on trying to determine “statis-
tical significance” with the p-values.

4.3 2x2 Table: SEDATE category and NOW_EXER

Let’s now look at another example, where we compare the probability that a participant is
“now exercising” (NOW_EXER = 1) on the basis of their level of sedentary activity in a
typical day (collected in the SEDATE variable, in minutes.)

dat2 <- nh432 |>
select(SEQN, SEDATE, NOW_EXER) |>
drop_na()

summary(dat2 |> select(-SEQN))

SEDATE NOW_EXER
Min. : 2.0 Min. :0.0000
1st Qu.: 180.0 1st Qu.:0.0000
Median : 300.0 Median :1.0000
Mean : 332.8 Mean :0.6019
3rd Qu.: 480.0 3rd Qu.:1.0000
Max. :1320.0 Max. :1.0000

As you can see above, the information in SEDATE is quantitative, and suppose we want to
compare a High SEDATE group vs. a Low SEDATE group.

4.3.1 Creating a Low and High Group on SEDATE

We can use the cut2() function from the Hmisc package to partition the data by the SEDATE
variable into three groups of equal sample size. At the same time, we’ll make NOW_EXER
into a more useful (for tabulation) factor with more meaningful level descriptions.

dat2 <- dat2 |>
mutate(SED_f = cut2(SEDATE, g = 3),

NOW_EXER_f = fct_recode(factor(NOW_EXER), "Now_exercising" = "1", No = "0"),
NOW_EXER_f = fct_relevel(NOW_EXER_f, "Now_exercising", "No"))

143

As you can see, we now have three groups defined by their SEDATE values, of roughly equal
sample sizes.

dat2 |> tabyl(SED_f)

SED_f n percent
[2, 200) 1323 0.3387097
[200, 420) 1301 0.3330773
[420,1320] 1282 0.3282130

The group labeled [2, 200) contains the 1323 subjects who had SEDATE values ranging from
2 up to (but not including) 200 minutes, for example.

ggplot(dat2, aes(x = SEDATE)) +
geom_histogram(aes(fill = SED_f), col = "black", bins = 25) +
scale_fill_manual(values = c("seagreen", "white", "seagreen")) +
labs(title = "Comparing Low SEDATE to High SEDATE",

subtitle = "Identification of Groups")

0

200

400

0 500 1000
SEDATE

co
un

t

SED_f

[2, 200)

[200, 420)

[420,1320]

Identification of Groups

Comparing Low SEDATE to High SEDATE

Now, we want to compare the Lowest SEDATE group (SED_F = [2, 200)) to the Highest
SEDATE group (SED_F = [420, 1320]). To do that, we’ll drop the middle group, and then look

144

at the cross-tabulation of our two remaining SEDATE groups with our outcome: NOW_EXER
(in factor form.)

dat2 <- dat2 |>
filter(SED_f != "[200, 420)") |>
mutate(SED_f = fct_drop(SED_f))

dat2 |> tabyl(SED_f, NOW_EXER_f)

SED_f Now_exercising No
[2, 200) 776 547
[420,1320] 789 493

4.3.2 Two-by-Two Table Summaries

Let’s look at the analytic results for this table.

twoby2(dat2$SED_f, dat2$NOW_EXER_f)

2 by 2 table analysis:
--
Outcome : Now_exercising
Comparing : [2, 200) vs. [420,1320]

Now_exercising No P(Now_exercising) 95% conf. interval
[2, 200) 776 547 0.5865 0.5598 0.6128
[420,1320] 789 493 0.6154 0.5885 0.6417

95% conf. interval
Relative Risk: 0.9530 0.8952 1.0146

Sample Odds Ratio: 0.8864 0.7577 1.0371
Conditional MLE Odds Ratio: 0.8865 0.7553 1.0403

Probability difference: -0.0289 -0.0664 0.0087

Exact P-value: 0.1388
Asymptotic P-value: 0.1322

--

Uh, oh. There’s a bit of a problem here now. We have the right rows and the right columns,
but they’re not in the best possible order, since the estimated probability of Now Exercising

145

for the group on top (SED = [2, 200)) is smaller than it is for the people in the high group
in terms of sedentary activity As a result of this problem with ordering, our relative risk and
odds ratio estimates are less than 1, and our probability difference is negative.

4.3.3 Flipping Levels

Since which exposure goes at the top is an arbitrary decision, let’s switch the factor levels in
SED_f, so that the people with high sedentary activity and who are now exercising are shown
in the top left cell of the table. This should flip the point estimates of the relative risk and
odds ratio above 1, and the estimated probability difference to a positive number. Note the
use of the fct_rev() function from the forcats package to accomplish this.

dat2 <- dat2 |>
mutate(SED_f = fct_rev(SED_f))

dat2 |> tabyl(SED_f, NOW_EXER_f) |>
adorn_totals(where = c("row", "col")) |>
adorn_title()

NOW_EXER_f
SED_f Now_exercising No Total

[420,1320] 789 493 1282
[2, 200) 776 547 1323

Total 1565 1040 2605

twoby2(dat2$SED_f, dat2$NOW_EXER_f, conf.level = 0.90)

2 by 2 table analysis:
--
Outcome : Now_exercising
Comparing : [420,1320] vs. [2, 200)

Now_exercising No P(Now_exercising) 90% conf. interval
[420,1320] 789 493 0.6154 0.5929 0.6375
[2, 200) 776 547 0.5865 0.5641 0.6086

90% conf. interval
Relative Risk: 1.0493 0.9956 1.1059

Sample Odds Ratio: 1.1281 0.9889 1.2869
Conditional MLE Odds Ratio: 1.1281 0.9858 1.2910

146

Probability difference: 0.0289 -0.0027 0.0604

Exact P-value: 0.1388
Asymptotic P-value: 0.1322

--

We conclude now that the participants who were in the high SEDATION group (as compared
to those in the low SEDATION group) had:

• a relative risk of 1.05 (90% CI: 0.995, 1.106) for Now exercising,
• a sample odds ratio of 1.13 (90% CI: 0.989, 1.287) for Now exercising,
• and probability for Now exercising that was 0.029 higher (-0.003, 0.060) than for those

in the low SEDATION group.

4.4 A Larger (5x3) 2-Way Table: DIETQUAL and WTGOAL in
Lighter Men

Here, we’ll look at Male participants who weighed less than 100 kg (approximately 220 pounds)
and ask whether their DIETQUAL (diet quality: self-rated as Excellent to poor in 5 categories)
response is associated with their response to WTGOAL (would you like to weigh more, about
the same, or less than you do now: 3 categories.)

The resulting two-way contingency table includes 5 rows and 3 columns. We are interested
in evaluating the relationship between the rows and the columns. It’s called a two-way table
because there are two categorical variables (DIETQUAL and WTGOAL) under study.

If the rows and columns were found to be independent of one another, this would mean that
the probabilities of falling in each column do not change, regardless of what row of the table
we look at.

If the rows and columns are associated, then the probabilities of falling in each column do
depend on which row we’re looking at.

dat3 <- nh432 |>
select(SEQN, DIETQUAL, WTGOAL, WEIGHT, SEX) |>
filter(WEIGHT < 100 & SEX == "Male") |>
drop_na()

dat3 |>
tabyl(DIETQUAL, WTGOAL)

147

DIETQUAL More Same Less
Excellent 16 53 32
Very Good 37 153 117

Good 68 179 238
Fair 44 111 144
Poor 15 18 43

If we want a graphical representation of a two-way table, the most common choice is probably
a mosaic plot.

vcd::mosaic(~ DIETQUAL + WTGOAL, data = dat3,
highlighting = "WTGOAL")

WTGOAL

D
IE

T
Q

U
A

L
P

oo
r

Fa
ir

G
oo

d
V

er
y

G
oo

d
E

xc
el

le
nt More Same Less

Larger observed frequencies in the contingency table show up with larger tile areas in the in
the mosaic plot. So, for instance, we see the larger proportion of “less” WTGOAL in the
“Poor” DIETQUAL category, as compared to most of the other DIETQUAL categories.

4.4.1 What would independence look like?

A mosaic plot displaying perfect independence (using simulated data) might look something
like this:

148

var1 <- c(rep("A", 48), rep("B", 54), rep("C", 60), rep("D", 24))
var2 <- c(rep(c("G1", "G1", "G2", "G2", "G2", "G3"), 31))
temp_tab <- tibble(var1, var2); rm(var1, var2)
vcd::mosaic(~ var1 + var2, data = temp_tab, highlighting = "var1")

var2

va
r1

G1

D
C

B
A

G2 G3

Here’s the table for our simulated data, where independence holds perfectly.

xtabs(~ var1 + var2, data = temp_tab)

var2
var1 G1 G2 G3

A 16 24 8
B 18 27 9
C 20 30 10
D 8 12 4

Note that in these simulated data, we have the same fraction of people in each of the four var1
categories (A, B, C, and D) regardless of which of the three var2 categories (G1, G2 and G3)
we are in, and vice versa. That’s what it means for rows and columns to be independent.

149

4.4.2 Back to the DIETQUAL and WTGOAL table

Now, returning to our problem, to obtain detailed results from the Pearson 𝜒2 test, I use the
xtabs() function and then the chisq.test() function, like this:

chi3 <- chisq.test(xtabs(~ DIETQUAL + WTGOAL, data = dat3))

chi3

Pearson's Chi-squared test

data: xtabs(~DIETQUAL + WTGOAL, data = dat3)
X-squared = 32.603, df = 8, p-value = 7.261e-05

The null hypothesis being tested here is that DIETQUAL and WTGOAL are independent of
each other. A small p value like this is indicative of an association between the two variables.

The chi3 object we have created also contains:

• the observed frequencies in each cell, as well as
• the expected frequencies under the hypothesis of independence of the rows and the

columns1, and
• the Pearson residuals (observed - expected)/√

expected for each cell, among other things.

chi3$observed

WTGOAL
DIETQUAL More Same Less
Excellent 16 53 32
Very Good 37 153 117
Good 68 179 238
Fair 44 111 144
Poor 15 18 43

chi3$expected

1The expected frequency for a call under independence is the total for the cell’s row multiplied by the total
for the cell’s column, divided by the grand total for the whole table.

150

WTGOAL
DIETQUAL More Same Less
Excellent 14.33754 40.94164 45.72082
Very Good 43.58044 124.44637 138.97319
Good 68.84858 196.60095 219.55047
Fair 42.44479 121.20347 135.35174
Poor 10.78864 30.80757 34.40379

chi3$residuals # Pearson residuals

WTGOAL
DIETQUAL More Same Less
Excellent 0.4390501 1.8845411 -2.0291917
Very Good -0.9968028 2.5595886 -1.8639211
Good -0.1022694 -1.2552875 1.2451396
Fair 0.2387127 -0.9268093 0.7433564
Poor 1.2821492 -2.3074805 1.4655618

An association plot presents a graphical description of the Pearson residuals, with the area
of each box shown proportional to the difference between the observed and expected frequen-
cies.

• If the observed frequency of a cell is greater than the expectation under the hypothesis
of independence, then the box rises above the baseline.

– An example here is the (DIETQUAL = Very Good, WTGOAL = Same) which
had an observed frequency of 153 but an expected frequency of 124.4, yielding the
largest positive Pearson residual at 2.56.

• Boxes shown below the baseline indicate that the observed frequency was less than the
expectation under the independence hypothesis.

– The largest negative Pearson residual is the (DIETQUAL = Poor, WTGOAL =
Same) cell, where we observed 18 observations but the independence model would
predict 30.8, yielding a Pearson residual of -2.31.

vcd::assoc(~ DIETQUAL + WTGOAL, data = dat3)

151

WTGOAL

D
IE

T
Q

U
A

L
P

oo
r

Fa
irG

oo
dV

er
y

G
oo

dE
xc

el
le

nt

More Same Less

Some people also like to calculate a correlation between categorical variables. If each of your
categorical variables is ordinal (as in this case) then Kendall’s tau (version b) is probably the
best choice. As with a Pearson correlation for quantities, the value for this measure ranges from
-1 to 1, with -1 indicating a strong negative correlation, and +1 a strong positive correlation,
with 0 indicating no correlation.

To use this approach, though, we first have to be willing to treat our multi-categorical variables
as if they were numeric, which may or may not be reasonable.

dat3 <- dat3 |>
mutate(DIETQUAL_num = as.numeric(DIETQUAL))

dat3 |> tabyl(DIETQUAL_num, DIETQUAL)

DIETQUAL_num Excellent Very Good Good Fair Poor
1 101 0 0 0 0
2 0 307 0 0 0
3 0 0 485 0 0
4 0 0 0 299 0
5 0 0 0 0 76

152

dat3 <- dat3 |>
mutate(WTGOAL_num = as.numeric(WTGOAL))

dat3 |> tabyl(WTGOAL_num, WTGOAL)

WTGOAL_num More Same Less
1 180 0 0
2 0 514 0
3 0 0 574

cor(dat3$DIETQUAL_num, dat3$WTGOAL_num, method = "kendall")

[1] 0.07193663

If you want to obtain a confidence interval for this correlation coefficient, then you would need
to use the KendallTauB() function from the DescTools package.

KendallTauB(dat3$DIETQUAL_num, dat3$WTGOAL_num, conf.level = 0.90)

tau_b lwr.ci upr.ci
0.07193663 0.03147130 0.11240196

Again, it’s just a number, and not especially valuable.

4.5 PHQ9 Category and Race/Ethnicity

Let’s look next at the association of race-ethnicity (RACEETH, which has 5 levels) and
the depression category (minimal, mild, moderate, moderately severe, or severe) available
in PHQ9_CAT, which we derived from the PHQ-9 depression screener score. We’ll restrict
this small analysis to NHANES participants who did not receive care from a mental health
provider (so MENTALH is 0) in the last 12 months.

temp <- nh432 |>
select(SEQN, RACEETH, PHQ9_CAT, MENTALH) |>
filter(MENTALH == 0) |>
drop_na()

So here’s our first attempt at a 5x5 table describing this association.

153

temp |>
tabyl(RACEETH, PHQ9_CAT)

RACEETH minimal mild moderate moderately severe severe
Non-H White 770 151 41 20 8
Non-H Black 668 143 34 13 1

Hispanic 581 133 36 12 5
Non-H Asian 428 49 11 1 1
Other Race 105 34 12 5 1

We note some very small observed frequencies, especially in the bottom right of the table.
Should we try to run a Pearson 𝜒2 test on these results, we will generate a warning that the
Chi-square approximation may be incorrect.

xtabs(~ RACEETH + PHQ9_CAT, data = temp) |>
chisq.test()

Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
incorrect

Pearson's Chi-squared test

data: xtabs(~RACEETH + PHQ9_CAT, data = temp)
X-squared = 49.288, df = 16, p-value = 2.974e-05

4.5.1 The Cochran conditions

R sets off this warning when the “Cochran conditions” are not met. The Cochran conditions
require that we have:

• no cells with 0 counts
• at least 80% of the cells in our table with counts of 5 or higher
• expected counts in each cell of the table should be 5 or more

In our table, we have four cells with observed counts below 5 (all have count 1) and two more
with observed counts of exactly 5. If we look at the expected frequencies under the hypothesis
of independence, what do we see?

154

temp_chi <- xtabs(~ RACEETH + PHQ9_CAT, data = temp) |>
chisq.test()

Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
incorrect

temp_chi$expected

PHQ9_CAT
RACEETH minimal mild moderate moderately severe severe
Non-H White 774.2813 154.73491 40.655838 15.473491 4.8544284
Non-H Black 671.8259 134.25988 35.276126 13.425988 4.2120748
Hispanic 599.8725 119.88048 31.498008 11.988048 3.7609562
Non-H Asian 383.2302 76.58596 20.122587 7.658596 2.4026969
Other Race 122.7901 24.53877 6.447441 2.453877 0.7698437

Every cell in the “severe” category has an expected frequency below 5, and we also have some
generally small counts, in the Non-Hispanic Asian and Other Race categories, as well as the
“moderately severe” category.

4.5.2 Collapsing Categories

So what might we do about this?

Let us consider two approaches that we’ll use simultaneously:

1. drop two of the RACEETH groups, and just use the top 3 (Non-H White, Non-H Black
and Hispanic) using filter()

2. collapse together the two right-most levels of PHQ9_CAT (moderately severe and severe)
into a new level which I’ll call “More Severe”, using fct_lump_n()

dat5 <- nh432 |>
select(SEQN, RACEETH, PHQ9_CAT, MENTALH) |>
filter(MENTALH == 0) |>
filter(RACEETH %in% c("Non-H White", "Non-H Black", "Hispanic")) |>
drop_na() |>
mutate(RACEETH = fct_drop(RACEETH),

PHQ9_CAT = fct_lump_n(PHQ9_CAT, 3,
other_level = "More Severe"))

155

dat5 |>
tabyl(RACEETH, PHQ9_CAT)

RACEETH minimal mild moderate More Severe
Non-H White 770 151 41 28
Non-H Black 668 143 34 14

Hispanic 581 133 36 17

Now, we have at least 14 participants in every cell of the table.

4.5.3 Pearson 𝜒2 Analysis

Now, let’s consider what the Pearson 𝜒2 test suggests.

tab5 <- xtabs(~ RACEETH + PHQ9_CAT, data = dat5)

tab5

PHQ9_CAT
RACEETH minimal mild moderate More Severe
Non-H White 770 151 41 28
Non-H Black 668 143 34 14
Hispanic 581 133 36 17

chisq.test(tab5)

Pearson's Chi-squared test

data: tab5
X-squared = 5.0157, df = 6, p-value = 0.5418

Now we have no warning, and notice also how large a change this has meant in terms of the
p-value, as compared to our original 𝜒2 result.

156

4.5.4 Mosaic Plot

Here’s a mosaic plot2 of the table.

vcd::mosaic(tab5, highlighting = "PHQ9_CAT")

PHQ9_CAT

R
A

C
E

E
T

H
H

is
pa

ni
cN

on
−

H
 B

la
ckN

on
−

H
 W

hi
te

minimal mildmoderateMore Severe

4.5.5 Examining the Fit

We’ll finish up with a look at the expected frequencies, and a table and association plot of the
Pearson residuals.

chisq.test(tab5)$observed

PHQ9_CAT
RACEETH minimal mild moderate More Severe
Non-H White 770 151 41 28
Non-H Black 668 143 34 14
Hispanic 581 133 36 17

2The ggmosaic package has a geom_mosaic() tool for building such plots but its maintenance has been spotty
in recent weeks.

157

chisq.test(tab5)$expected

PHQ9_CAT
RACEETH minimal mild moderate More Severe
Non-H White 764.0711 161.5940 42.00688 22.32798
Non-H Black 662.9667 140.2114 36.44839 19.37347
Hispanic 591.9622 125.1946 32.54472 17.29855

chisq.test(tab5)$residuals

PHQ9_CAT
RACEETH minimal mild moderate More Severe
Non-H White 0.21449006 -0.83339100 -0.15535235 1.20036381
Non-H Black 0.19548040 0.23550271 -0.40554793 -1.22081874
Hispanic -0.45055624 0.69759600 0.60567876 -0.07178083

assoc(tab5)

PHQ9_CAT

R
A

C
E

E
T

H
H

is
pa

ni
cN
on

−
H

 B
la

ckN
on

−
H

 W
hi

te

minimal mild moderateMore Severe

158

5 431 Review: Fitting Linear Models

In this Chapter, we will review some key issues about comparing proportions or rates, mostly
drawn from the 431 course. This and the other Chapters labeled “431 Review” show elements
of the two studies involved in a “431 Project B” using the pre-pandemic (2017 - March 2020)
data from the National Health and Nutrition Examination Survey (NHANES) called nh432
that we developed in Chapter 1 and then summarized in Chapter 2. Note that we’ll ignore the
issue of sampling weights and assume a “missing completely at random” (MCAR) mechanism
in these “431 Review” chapters, so that we can work with complete cases.

The 431 course notes are at https://thomaselove.github.io/431-notes/ and will remain there
until June 1.

5.1 R Setup

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(broom)
library(car)
library(GGally)
library(gt)
library(Hmisc)
library(knitr)
library(patchwork)

library(tidyverse)

theme_set(theme_bw())

159

https://thomaselove.github.io/431-projectB-2022/
https://thomaselove.github.io/431-notes/

5.1.1 Data Load

nh432 <- read_rds("data/nh432.Rds")

5.2 Modeling Weekend Sleep Hours

In this example, we’ll try to build an effective model to predict our outcome: average weekend
hours of sleep (SLPWKEND) on the basis of four predictors:

• average weekday hours of sleep (SLPWKDAY)
• systolic blood pressure (SBP)
• PHQ-9 depression screener score (PHQ9), and
• whether or not the participant has mentioned trouble sleeping to a physician (SLP-

TROUB)

We’ll compare a model using all four of these predictors to a model using just the two directly
related to sleep (SLPWKDAY and SLPTROUB), and we’ll restrict our analysis to those par-
ticipants whose self-reported overall health (SROH) was “Good”.

dat1 <- nh432 |>
select(SEQN, SLPWKEND, SLPWKDAY, SBP, PHQ9, SLPTROUB, SROH) |>
filter(SROH == "Good") |>
drop_na()

dat1

A tibble: 1,293 x 7
SEQN SLPWKEND SLPWKDAY SBP PHQ9 SLPTROUB SROH
<chr> <dbl> <dbl> <dbl> <int> <dbl> <fct>

1 109273 8 6.5 110 15 1 Good
2 109293 6.5 7.5 130 3 0 Good
3 109295 7 7 161 0 1 Good
4 109305 6.5 6 125 0 0 Good
5 109307 11 7.5 114 0 0 Good
6 109315 5 5 123 1 0 Good
7 109336 8 4 148 1 1 Good
8 109342 8 6.5 107 16 1 Good
9 109365 9.5 9.5 133 7 0 Good
10 109378 9 9 133 0 0 Good
i 1,283 more rows

160

5.2.1 Should we transform our outcome?

We can develop a Box-Cox plot to help us choose between potential transformations of our
outcome, so as to improve the adherence to regression assumptions. To do so, we first fit our
larger model.

m1 <- lm(SLPWKEND ~ SLPWKDAY + SBP + PHQ9 + SLPTROUB, data = dat1)

boxCox(m1)

−2 −1 0 1 2

−
64

00
−

58
00

−
52

00

Profile Log−likelihood

λ

lo
g−

lik
el

ih
oo

d

 95%

The Box-Cox suggested set of transformations centers near 𝜆 = 1. As we saw back in Chapter 3,
The ladder of power transformations looks like this:

𝜆 Transformation Formula
-2 inverse square 1/𝑦2

-1 inverse 1/𝑦
-0.5 inverse square root 1/√𝑦

0 logarithm 𝑙𝑜𝑔𝑦
0.5 square root √𝑦
1 no transformation y
2 square 𝑦2

161

𝜆 Transformation Formula
3 cube 𝑦3

So, in this case, the Box-Cox approach (again, with 𝜆 near 1) suggests that we leave the
existing SLPWKEND outcome alone.

5.2.2 Scatterplot Matrix

ggpairs(dat1, columns = c(3:6, 2), switch = "both",
lower=list(combo=wrap("facethist", bins=25)))

Corr:

−0.053.

Corr:

−0.001

Corr:

−0.062*

Corr:

−0.003

Corr:

−0.007

Corr:

0.299***

Corr:

0.452***

Corr:

−0.074**

Corr:

−0.083**

Corr:
−0.076**

SLPWKDAY SBP PHQ9 SLPTROUB SLPWKEND

S
LP

W
K

D
AY

S
B

P
P

H
Q

9
S

LP
T

R
O

U
B

S
LP

W
K

E
N

D

5 10 100 140 180 0 10 20 0.000.250.500.751.00 5 10

0.0
0.1
0.2
0.3

100
140
180

0

10

20

0.00
0.25
0.50
0.75
1.00

5

10

• The reason I included column 2 (our outcome: SLPWKEND) last in this plot is so that
the bottom row would include each of our predictors plotted on the X (horizontal) axis
against the outcome on the Y (vertical) axis, next to a density plot of the outcome.

• I also switched the locations of the facet labels on both the x and y axis from their
defaults, so that the labels are to the left and below the plots, since I find that a bit
easier to work with.

• The lower business is to avoid getting a warning about binwidths.
• The binary variable (SLPTROUB) is included here as a 1-0 numeric variable, rather

than a factor, which is why the scatterplot matrix looks as it does, rather than creating
a series of boxplots (as we’ll see when we work with a factor later.)

162

5.2.3 Collinearity?

In any multiple regression setting, two or more of the predictors might be highly correlated
with one another, and this is referred to as multicollinearity or just collinearity. If we have a
serious problem with collinearity, this can cause several problems, including difficulty fitting
and interpreting the resulting model.

Is collinearity a serious concern in our situation? Looking at the scatterplot matrix, we see that
the largest observed correlation between two predictors is between PHQ9 and SLPTROUB.
Does that rise to the level of a problem?

I usually use the vif() function from the car package to help make this decision. The variance
inflation factor (or VIF) measures how much the variance of a regression coefficient is inflated
due to collinearity in the model. The smallest possible VIF value is 1, and VIFs near 1, as
we’ll see here, indicate no problems with collinearity worth worrying about.

vif(m1)

SLPWKDAY SBP PHQ9 SLPTROUB
1.002807 1.006778 1.102341 1.098187

Should we see a VIF (or generalized VIF, which is produced by the vif() function when we
have factor variables in the model) above, say, 5, that would be an indication that the model
would be improved by not including the variable that exhibits collinearity. Here, we have no
such issues, and will proceed to fit the model including all of these predictors.

5.2.4 Fitting and Displaying Model m1

Here are the coefficients obtained from fitting the model m1.

m1 <- lm(SLPWKEND ~ SLPWKDAY + SBP + PHQ9 + SLPTROUB, data = dat1)

m1

Call:
lm(formula = SLPWKEND ~ SLPWKDAY + SBP + PHQ9 + SLPTROUB, data = dat1)

Coefficients:
(Intercept) SLPWKDAY SBP PHQ9 SLPTROUB

5.26266 0.52661 -0.00560 -0.02945 -0.20813

163

If Harry and Sally have the same values of SLPWKDAY, SBP and SLPTROUB, but Harry’s
PHQ9 is one point higher than Sally’s, then model m1 predicts that Harry will sleep 0.029
hours less than Sally on the weekends.

A summary of the regression model m1 provides lots of useful information about the parameters
(including their standard errors) and the quality of fit (at least as measured by 𝑅2 and adjusted
𝑅2.)

summary(m1)

Call:
lm(formula = SLPWKEND ~ SLPWKDAY + SBP + PHQ9 + SLPTROUB, data = dat1)

Residuals:
Min 1Q Median 3Q Max

-5.1173 -0.9609 -0.1005 0.9248 6.3659

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.262657 0.388427 13.549 < 2e-16 ***
SLPWKDAY 0.526612 0.028950 18.190 < 2e-16 ***
SBP -0.005600 0.002515 -2.227 0.02613 *
PHQ9 -0.029450 0.010955 -2.688 0.00727 **
SLPTROUB -0.208129 0.098758 -2.107 0.03527 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.554 on 1288 degrees of freedom
Multiple R-squared: 0.2171, Adjusted R-squared: 0.2147
F-statistic: 89.3 on 4 and 1288 DF, p-value: < 2.2e-16

5.2.5 Using broom functions on Model m1

If we want to actually use the information in the model summary elsewhere, we use the tidy()
and glance() functions from the broom package to help us.

tidy(m1, conf.int = TRUE, conf.level = 0.90)

A tibble: 5 x 7
term estimate std.error statistic p.value conf.low conf.high

164

<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.26 0.388 13.5 3.41e-39 4.62 5.90
2 SLPWKDAY 0.527 0.0290 18.2 5.52e-66 0.479 0.574
3 SBP -0.00560 0.00251 -2.23 2.61e- 2 -0.00974 -0.00146
4 PHQ9 -0.0294 0.0110 -2.69 7.27e- 3 -0.0475 -0.0114
5 SLPTROUB -0.208 0.0988 -2.11 3.53e- 2 -0.371 -0.0456

We can produce a neater version of the tidy() output, produced using the gt() function, but
I will just show the code here, since it causes trouble when I build a PDF of these Notes.

tidy(m1, conf.int = TRUE, conf.level = 0.90) |>
mutate(across(.cols = -c(term), \(x) round_half_up(x, digits = 3))) |>
gt()

Note that none of the 90% confidence intervals here cross zero. This just means that we have
a pretty good handle on the direction of effects - for example, our estimate for the slope of
SLPWKDAY is positive, suggesting that people who sleep more during the week also sleep
more on the weekend, after accounting for SBP, PHQ9 and SLPTROUB.

glance(m1)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.217 0.215 1.55 89.3 4.93e-67 4 -2402. 4817. 4848.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

Model m1 shows an 𝑅2 value of 0.217, which means that 21.7% of the variation in our outcome
SLPWKEND is accounted for by the model using SLPWKDAY, SBP, PHQ9 and SLPTROU-
BLE.

The adjusted 𝑅2 value isn’t a percentage or proportion of anything, but it is a handy index
when comparing two models fit to the same outcome for the same observations. It penalizes
the raw 𝑅2 value for models that require more coefficients to be fit. If the raw 𝑅2 is much
larger than the adjusted 𝑅2 value, this is also an indication that the model may be “overfit”
- capitalizing on noise in the data more than we’d like, so that the amount of signal in the
predictors may be overstated by raw 𝑅2.

Here’s a cleaner presentation of some of the more important elements in the glance() out-
put:

165

glance(m1) |>
select(r2 = r.squared, adjr2 = adj.r.squared,

AIC, BIC, sigma, nobs, df, df.res = df.residual) |>
kable(digits = c(3, 3, 1, 1, 2, 0, 0, 0))

r2 adjr2 AIC BIC sigma nobs df df.res
0.217 0.215 4816.6 4847.6 1.55 1293 4 1288

• AIC and BIC are measures used to compare models for the same outcome using the
same data, so we’ll see those again when we fit a second model to these data. In those
comparisons, smaller values of AIC and BIC indicate better fitting models.

• nobs is the number of observations used to actually fit our model m1,
• df indicates the number of degrees of freedom used by the model, and represents the

number of estimated coefficients fit, while
• df.res = nobs - df - 1 = residual degrees of freedom.

5.2.6 Residual Plots for Model m1

The key assumptions for a linear regression model include:

1. Linearity of the association under study
2. Normality of the residuals
3. Constant Variance (Homoscedasticity)
4. Independence (not an issue with cross-sectional data like this)

A residual for a point in a regression model is just the observed value of our outcome (here,
SLPWKEND) minus the value predicted by the model based on the predictor values (also
called the fitted value.)

The four key plots that R will generate for you to help assess these results are shown below
for model m1.

I used
#| fig.height: 8
at the top of this code chunk
to make the plots tall enough to see well

par(mfrow = c(2,2)); plot(m1); par(mfrow = c(1,1))

166

5 6 7 8 9 10

−
6

−
4

−
2

0
2

4
6

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

210 701
1126

−3 −1 0 1 2 3

−
2

0
2

4
Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals

210701
1126

5 6 7 8 9 10

0.
0

0.
5

1.
0

1.
5

2.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
210 701

1126

0.000 0.010 0.020

−
4

−
2

0
2

4

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

1126

286

210

167

5.2.6.1 Residuals vs. Fitted values

The top left plot (Residuals vs. Fitted Values) helps us to assess the linearity and constant
variance assumptions.

• We want to see a “fuzzy football” shape.
• A clear curve is indicative of a problem with linearity, and suggests that perhaps a

transformation of the outcome (or perhaps one or more predictors) may be in order
• A fan shape, with much more variation at one end of the fitted values (left or right)

than the other indicates a problem with the constant variance assumption, and again a
transformation may be needed.

The diagonal lines we see in the Residuals vs. Fitted plot are the result of the fact that both
the outcome (SLPWKEND) and a key predictor (SLPWKDAYS) aren’t really continuous in
the data, as most of the responses to those questions were either integers, or used 0.5 as the
fraction. So those two variables are more discrete than we might have expected.

5.2.6.2 Normal Q-Q plot of standardized residuals

The top right plot (Normal Q-Q) is a Normal Q-Q plot of the standardized regression residuals
for our model m1. Substantial issues with skew (a curve in the plot) or a major problem with
outliers (as indicated by a reverse S-shape) indicate potential concerns with the Normality
assumption. Since the y-axis here shows standardized residuals, we can also assess whether
what we’re seeing is especially surprising relative to our expectations for any standardized
values (for example, we should see values above +3 or below -3 approximately 3 times in
1000).

• Remember that this plot represents nobs = 1293 residuals, so a few values near 3 in
absolute value aren’t surprising.

• We’re looking for big deviations from Normality here.
• The plot() function in R will always identify three of the cases, by default, in these four

plots.

Suppose we wanted to look at the data for case 210, identified by these plots as a potential
outlier, or at least a poorly fit point.

dat1_aug <- augment(m1, data = dat1)

dat1_aug |> slice(210) |>
select(SEQN, SLPWKEND, .fitted, .resid, .std.resid, everything())

168

A tibble: 1 x 13
SEQN SLPWKEND .fitted .resid .std.resid SLPWKDAY SBP PHQ9 SLPTROUB SROH
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <fct>

1 111688 13 6.63 6.37 4.11 4 126 1 0 Good
i 3 more variables: .hat <dbl>, .sigma <dbl>, .cooksd <dbl>

We see that row 210 contains SEQN 111688, whose

• observed SLPWKEND is 13
• fitted SLPWKEND is 6.63
• yielding a residual of 6.37,
• or a standardized residual of 4.11

We can use the outlierTest() function in the car package to help assess whether this value
is unusual enough to merit more careful consideration. This function actually works with the
studentized residual, which is similar to the standardized residual we saw above. Here, this
point (SEQN 111688) is fit poorly enough to be flagged by the Bonferroni outlier test as a
mean-shift outlier.

outlierTest(m1)

rstudent unadjusted p-value Bonferroni p
210 4.131972 3.8289e-05 0.049508

Having seen that, though, I’m going to essentially ignore it for the moment, and press on to
the rest of our residual analysis.

5.2.6.3 Scale-Location plot

The bottom left plot in our set of four residual plots is the Scale-Location plot, which presents
the square root of the standardized residuals against the fitted values. This plot provides
another check on the “equal variance” assumption - if the plot shows a clear trend either up
or down as we move left to right, then that indicates an issue with constant variance. While a
loess smooth is provided (red curve) to help guide our thinking, it’s important not to get too
excited about small changes or changes associated with small numbers of observations.

You’ll also note the presence of curves (in particular, little “V” shapes) formed by the points
of the plot. Again, this is caused by the discrete nature of the outcome (and one of the key
predictors) and wouldn’t be evident if our outcome was more continuous.

Despite the drop in the red loess smooth as fitted values move from 5 to about 8, I don’t see
much of a pattern here to indicate trouble with non-constant variance.

169

5.2.6.4 Residuals vs. Leverage plot

The bottom-left plot is a plot of residuals vs. leverage, with influence contours.

Highly leveraged points have unusual combinations of predictor values.

Highly influential points have a big impact on the model, in that the model’s coefficients or
quality of fit would change markedly were those points to be removed from the model. To
measure influence, we combine leverage and residuals together, with a measure like Cook’s
distance.

• To look for points with substantial leverage on the model by virtue of having unusual
values of the predictors - look for points whose leverage is at least 3 times as large as
the average leverage value.

• The average leverage is always k/n, where k is the number of coefficients fit by the model
(including the slopes and intercept), and n is the number of observations in the model.

• To obtain the leverage values, the augment() function stores them in .hat.
• To look for points with substantial influence on the model, that is, removing them

from the model would change it substantially, consider the Cook’s distance, plotted in
contours here.

• Any Cook’s distance point > 1 will likely have a substantial impact on the model.
• Any points with Cook’s distance > 0.5, if any, will be indicated in the bottom-right

(Residuals vs. Leverage) plot, and are worthy of investigation.
• In model m1, we have no points with values of Cook’s distance > 0.5. To obtain the

Cook’s distance values for each point, use the augment() function, which stores them in
.cooksd.

Here, for example, we identify the points with largest leverage and with largest Cook’s distance,
across the points used to fit m1.

dat1_aug <- augment(m1, data = dat1)

dat1_aug |> slice_max(.hat) |>
select(SEQN, .hat, .resid, .fitted, .cooksd, everything())

A tibble: 1 x 13
SEQN .hat .resid .fitted .cooksd SLPWKEND SLPWKDAY SBP PHQ9 SLPTROUB
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>

1 123474 0.0268 -1.03 8.03 0.00250 7 8 126 25 0
i 3 more variables: SROH <fct>, .sigma <dbl>, .std.resid <dbl>

170

dat1_aug |> slice_max(.cooksd) |>
select(SEQN, .hat, .resid, .fitted, .cooksd, everything())

A tibble: 1 x 13
SEQN .hat .resid .fitted .cooksd SLPWKEND SLPWKDAY SBP PHQ9 SLPTROUB
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>

1 122894 0.0113 5.38 5.62 0.0277 11 2 114 2 0
i 3 more variables: SROH <fct>, .sigma <dbl>, .std.resid <dbl>

It turns out that SEQN 123474 has the largest value of leverage (.hat) and SEQN 122894 has
the largest value of influence (.cooksd) in our model. We will worry about .cooksd values
above 0.5, but the largest value in this model is much smaller than that, so I think we’re OK
for now.

5.2.7 Fitting and Displaying Model m2

We will now move on to compare the results of this model (m1) to a smaller model.

Our second model, m2 is a subset of m1, including only the two predictors directly related to
sleep, SLPWKDAY and SLPTROUB.

m2 <- lm(SLPWKEND ~ SLPWKDAY + SLPTROUB, data = dat1)

m2

Call:
lm(formula = SLPWKEND ~ SLPWKDAY + SLPTROUB, data = dat1)

Coefficients:
(Intercept) SLPWKDAY SLPTROUB

4.4813 0.5301 -0.2862

Note that the slopes of both SLPWKDAY and SLPTROUB have changed from model m1
(although not very much), and that the intercept has changed more substantially.

171

5.2.8 Using broom functions on m2

tidy(m2, conf.int = TRUE, conf.level = 0.90) |>
kable(digits = 3)

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 4.481 0.219 20.475 0.000 4.121 4.842
SLPWKDAY 0.530 0.029 18.268 0.000 0.482 0.578
SLPTROUB -0.286 0.095 -3.025 0.003 -0.442 -0.130

glance(m2) |>
select(r2 = r.squared, adjr2 = adj.r.squared,

AIC, BIC, sigma, nobs, df, df.res = df.residual) |>
kable(digits = c(3, 3, 1, 1, 2, 0, 0, 0))

r2 adjr2 AIC BIC sigma nobs df df.res
0.21 0.209 4824.1 4844.8 1.56 1293 2 1290

Since we want to compare the fit of m1 to that of m2, we probably want to do so in a single
table, like this:

temp1 <- glance(m1) |>
select(r2 = r.squared, adjr2 = adj.r.squared,

AIC, BIC, sigma, nobs, df, df.res = df.residual) |>
mutate(model = "m1") |>
relocate(model)

temp2 <- glance(m2) |>
select(r2 = r.squared, adjr2 = adj.r.squared,

AIC, BIC, sigma, nobs, df, df.res = df.residual) |>
mutate(model = "m2") |>
relocate(model)

bind_rows(temp1, temp2) |>
kable(digits = c(0, 3, 3, 1, 1, 2, 1, 0, 0, 0))

model r2 adjr2 AIC BIC sigma nobs df df.res
m1 0.217 0.215 4816.6 4847.6 1.55 1293 4 1288

172

model r2 adjr2 AIC BIC sigma nobs df df.res
m2 0.210 0.209 4824.1 4844.8 1.56 1293 2 1290

Each model uses the same number of observations to predict the same outcome (SLPWKEND).
So we can compare them directly. As compared to model m2, model m1 has:

• the larger 𝑅2 (as it must, since model m2 includes a subset of the predictors in model
m1),

• the larger adjusted 𝑅2,
• the smaller AIC (Akaike Information Criterion: smaller values are better),
• the larger BIC (Bayes Information Criterion: again, smaller values are better),

• and the smaller residual standard error (𝜎) (smaller values are better.)

The key realizations for these data are that the AIC, adjusted 𝑅2 and 𝜎 results favor model
m1 while the BIC favors model m2.

5.2.9 Residual Plots for Model m2

I used #| fig.height: 8 in this code chunk
to make the plots tall enough to see well

par(mfrow = c(2,2)); plot(m2); par(mfrow = c(1,1))

173

6 7 8 9 10

−
6

−
4

−
2

0
2

4
6

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

210 701
1126

−3 −1 0 1 2 3

−
2

0
2

4
Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals

210
701

1126

6 7 8 9 10

0.
0

0.
5

1.
0

1.
5

2.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
210

701
1126

0.000 0.010

−
4

−
2

0
2

4

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

1126

210

660

174

The residual plots here show (even more starkly than in model m1) the discrete nature of our
outcome and the two variables we’re using to predict it. I see no especially serious problems
with the assumptions of linearity or constant variance here, and while there are still some
fairly poorly fit values, there are no highly influential points, so I’ll accept these residual plots
as indicative of a fairly reasonable model on the whole.

5.2.10 Conclusions

Three of our four in-sample measures of fit quality (AIC, 𝜎 and adjusted 𝑅2) favor the larger
model m1 over m2, but there’s not a lot to choose from here. Neither model showed important
problems with regression assumptions, so I would probably wind up choosing m1 based on the
analyses we’ve done in this Chapter.

However, a more appropriate strategy for prediction assessment would be to partition the data
into separate samples for model training (the development or building sample) and model
testing. We adopt such a model validation strategy in our next little study.

5.3 Modeling High-Sensitivity C-Reactive Protein

In this, our second linear modeling example, we will try to predict High-Sensitivity C-Reactive
Protein levels (HSCRP) on the basis of these three predictor variables:

• the participant’s mean pulse rate, specifically the mean of the two gathered pulse rates,
PULSE1 and PULSE2

• the participant’s self-reported overall health (SROH, which is an ordinal factor with
levels Excellent, Very Good, Good, Fair and Poor)

• HOSPITAL, a 1-0 binary variable indicating whether or not the participant was hospi-
talized in the past year.

In this case, we’ll use all NHANES participants with complete data on the relevant variables
to fit the three-predictor model, and then a second model using mean pulse rate alone.

dat2 <- nh432 |>
select(SEQN, HSCRP, PULSE1, PULSE2, SROH, HOSPITAL) |>
drop_na() |>
mutate(MEANPULSE = 0.5*(PULSE1 + PULSE2))

glimpse(dat2)

175

Rows: 3,117
Columns: 7
$ SEQN <chr> "109271", "109273", "109291", "109292", "109293", "109295", ~
$ HSCRP <dbl> 28.68, 0.98, 5.31, 3.08, 15.10, 6.28, 0.56, 1.45, 0.32, 0.86~
$ PULSE1 <dbl> 73, 71, 77, 93, 62, 93, 74, 59, 66, 83, 64, 55, 54, 63, 68, ~
$ PULSE2 <dbl> 71, 70, 76, 91, 64, 93, 74, 58, 64, 87, 68, 55, 54, 63, 70, ~
$ SROH <fct> Fair, Good, Fair, Very Good, Good, Good, Very Good, Excellen~
$ HOSPITAL <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
$ MEANPULSE <dbl> 72.0, 70.5, 76.5, 92.0, 63.0, 93.0, 74.0, 58.5, 65.0, 85.0, ~

5.3.1 Partitioning the Data

Before partitioning, it’s always a good idea to be sure that the number of rows in the tibble
matches the number of distinct (unique) values in the identifier column.

identical(nrow(dat2), n_distinct(dat2 |> select(SEQN)))

[1] TRUE

OK. Now, be sure to set a seed so that we can replicate the selection. We’ll put 70% of the
data in our training sample, setting aside the remaining 30% for the test sample.

set.seed(432005)

dat2_train <- slice_sample(dat2, prop = 0.70)

dat2_test <- anti_join(dat2, dat2_train, by = "SEQN")

c(nrow(dat2), nrow(dat2_train), nrow(dat2_test))

[1] 3117 2181 936

In what follows, we’ll work with the dat2_train sample, and set aside the dat2_test sample
for a while.

5.3.2 Transforming the Outcome?

Let’s use the Box-Cox approach to help us think about which potential transformations of our
outcome might be helpful, within our training sample.

176

m_temp <- lm(HSCRP ~ MEANPULSE + SROH + HOSPITAL, data = dat2_train)

boxCox(m_temp)

−2 −1 0 1 2

−
18

00
0

−
14

00
0

−
10

00
0

Profile Log−likelihood

λ

lo
g−

lik
el

ih
oo

d

 95%

The estimated 𝜆 value is very close to 0, which according to the ladder of power transforma-
tions, suggests we take the logarithm of our outcome, so as to improve the residual plots for
the model. This will also, as it turns out, lead to a much less right-skewed outcome variable.

p1 <- ggplot(dat2_train, aes(sample = HSCRP)) +
geom_qq() + geom_qq_line(col = "red") +
labs(title = "Normal Q-Q: untransformed HSCRP")

p2 <- ggplot(dat2_train, aes(sample = log(HSCRP))) +
geom_qq() + geom_qq_line(col = "red") +
labs(title = "Normal Q-Q: Natural Log of HSCRP")

p1 + p2

177

0

40

80

−2 0 2
x

y

Normal Q−Q: untransformed HSCRP

−4

−2

0

2

4

−2 0 2
x

y

Normal Q−Q: Natural Log of HSCRP

Clearly, one benefit of the transformation is some improvement in the Normality of our out-
come’s distribution.

5.3.3 Scatterplot Matrix and Collinearity

To build the relevant scatterplot matrix with our transformed outcome, I’ll create a variable
containing the result of the transformation within our training sample.

dat2_train <- dat2_train |>
mutate(logHSCRP = log(HSCRP))

names(dat2_train)

[1] "SEQN" "HSCRP" "PULSE1" "PULSE2" "SROH" "HOSPITAL"
[7] "MEANPULSE" "logHSCRP"

ggpairs(dat2_train, columns = c(7,5,6,8), switch = "both",
lower=list(combo=wrap("facethist", bins=25)))

178

Corr:

0.038.

Corr:

0.228***

Corr:

0.044*

MEANPULSE SROH HOSPITAL logHSCRP

M
E

A
N

P
U

LS
E

S
R

O
H

H
O

S
P

IT
A

L
lo

gH
S

C
R

P

40 60 80 100 1200204060800204060800204060800204060800204060800.000.250.500.751.00−2.5 0.0 2.5 5.0

0.00
0.01
0.02
0.03

0306090

0306090

0306090

0306090

0306090

0.00
0.25
0.50
0.75
1.00

−2.5

0.0

2.5

5.0

As a collinearity check, we’ll run vif() from the car package here.

m3 <- lm(log(HSCRP) ~ MEANPULSE + SROH + HOSPITAL,
data = dat2_train)

vif(m3)

GVIF Df GVIF^(1/(2*Df))
MEANPULSE 1.036382 1 1.018028
SROH 1.063545 4 1.007731
HOSPITAL 1.027860 1 1.013834

Again, no signs of meaningful collinearity. Note the presentation of the factor variable SROH
in the scatterplot matrix, and in the generalized VIF output.

5.3.4 Fit Model m3

m3 <- lm(log(HSCRP) ~ MEANPULSE + SROH + HOSPITAL,
data = dat2_train)

179

tidy(m3, conf.int = TRUE, conf.level = 0.90) |>
kable(digits = 3)

term estimate std.error statistic p.value conf.low conf.high
(Intercept) -1.108 0.160 -6.914 0.000 -1.372 -0.845
MEANPULSE 0.020 0.002 9.359 0.000 0.017 0.024
SROHVery
Good

0.237 0.081 2.939 0.003 0.104 0.370

SROHGood 0.532 0.078 6.857 0.000 0.404 0.660
SROHFair 0.641 0.087 7.353 0.000 0.497 0.784
SROHPoor 0.860 0.143 6.020 0.000 0.625 1.095
HOSPITAL 0.052 0.088 0.594 0.552 -0.092 0.197

• If Harry and Sally have the same values of HOSPITAL and MEANPULSE, but Harry’s
SROH is “Very Good” while Sally’s is “Excellent”, then model m3 predicts that Harry will
have a log(HSCRP) that is 0.237 (90% CI: 0.104, 0.370) larger than Sally’s log(HSCRP).

• On the other hand, if Harry and Gary have the same values of HOSPITAL and MEAN-
PULSE, but Harry’s SROH remains “Very Good” while Gary’s is only “Good”, then
model m3 predicts that Gary will have a log(HSCRP) that is (0.532 - 0.237 = 0.295)
larger than Harry’s log(HSCRP).

5.3.5 Residual Plots for m3

don't forget to use #| fig.height: 8
to make the residual plots taller

par(mfrow = c(2,2)); plot(m3); par(mfrow = c(1,1))

180

0.0 0.5 1.0 1.5 2.0

−
4

−
2

0
2

4

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

443

1764 976

−3 −1 1 2 3

−
3

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals

443

1764976

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
443

1764 976

0.000 0.010

−
3

−
2

−
1

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

443

1728

354

181

I see no serious concerns with regression assumptions here. The residuals vs. fitted plot shows
no signs of meaningful non-linearity or heteroscedasticity. The standardized residuals in the
Normal Q-Q plot follow the reference line closely. There is no clear trend in the scale-location
plot, and the residuals vs. leverage plot reveals no particularly influential points.

5.3.6 Fit Model m4

Let’s now fit the simple regression model, m4, with only MEANPULSE as a predictor of the
log of HSCRP.

m4 <- lm(log(HSCRP) ~ MEANPULSE,
data = dat2_train)

Now, let’s look at the tidied coefficients.

tidy(m4, conf.int = TRUE, conf.level = 0.90) |>
kable(digits = 3)

term estimate std.error statistic p.value conf.low conf.high
(Intercept) -0.929 0.154 -6.048 0 -1.181 -0.676
MEANPULSE 0.023 0.002 10.934 0 0.020 0.027

• If Harry’s mean pulse rate is one beat per minute higher than Sally’s, then model m4
predicts that the logarithm of Harry’s HSCRP will be 0.023 higher than Sally’s, with
90% CI (0.020, 0.027).

• Note that if Harry’s mean pulse rate is ten beats per minute higher than Sally’s, then
model m4 predicts that the logarithm of Harry’s HSCRP will be 0.23 higher than Sally’s,
with 90% CI (0.20, 0.27).

5.3.7 Residual Plots for m4

par(mfrow = c(2,2)); plot(m4); par(mfrow = c(1,1))

182

0.0 0.5 1.0 1.5

−
4

−
2

0
2

4

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

1845

6741556

−3 −1 1 2 3

−
3

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals

1845

6741556

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
18456741556

0.000 0.004 0.008

−
3

−
2

−
1

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

1083
15

976

183

5.3.8 In-Sample Fit Quality Comparison (m3 vs. m4)

g3 <- glance(m3) |>
select(r2 = r.squared, adjr2 = adj.r.squared,

AIC, BIC, sigma, nobs, df, df.res = df.residual) |>
mutate(model = "m3") |>
relocate(model)

g4 <- glance(m4) |>
select(r2 = r.squared, adjr2 = adj.r.squared,

AIC, BIC, sigma, nobs, df, df.res = df.residual) |>
mutate(model = "m4") |>
relocate(model)

bind_rows(g3, g4) |> kable()

model r2 adjr2 AIC BIC sigma nobs df df.res
m3 0.0907079 0.0881984 6636.024 6681.525 1.105532 2181 6 2174
m4 0.0520082 0.0515731 6716.928 6733.990 1.127517 2181 1 2179

The larger model (model m3) has better results than model m4 in the sense that it produces a
larger adjusted 𝑅2, and smaller values for AIC, BIC and 𝜎. Based on this comparison within
the training sample, we clearly prefer m3, since each model shows reasonable adherence to the
assumptions of a linear regression model.

5.3.9 Testing the models in new data

At last we return to the dat2_test sample which was not used in fitting models m3 and m4 to
investigate which of these models has better predictive results in new data. When doing this
sort of testing, I recommend a look at the following 4 summaries, each of which is based on
the fitted (predicted) and observed values of our outcome in our new data, using the models
we want to compare:

• squared correlation of predicted with observed values (validated 𝑅2; higher values are
better)

• mean absolute prediction error (MAPE; smaller values indicate smaller errors, hence
better prediction)

• square root of the mean squared prediction error (RMSPE; again, smaller values indicate
better predictions)

• maximum (in absolute value) prediction error (Max Error)

184

To obtain observed, predicted, and error (observed - predicted) values for each new data point
when we apply model m3, we first use the augment() function from the broom package to
obtain our .fitted values.

m3_test_aug <- augment(m3, newdata = dat2_test)
head(m3_test_aug)

A tibble: 6 x 9
SEQN HSCRP PULSE1 PULSE2 SROH HOSPITAL MEANPULSE .fitted .resid
<chr> <dbl> <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>

1 109273 0.98 71 70 Good 0 70.5 0.839 -0.859
2 109293 15.1 62 64 Good 0 63 0.688 2.03
3 109312 0.86 83 87 Very Good 0 85 0.835 -0.985
4 109332 2.29 63 63 Excellent 0 63 0.156 0.673
5 109340 4.64 78 78 Fair 0 78 1.10 0.437
6 109342 5.51 72 70 Good 0 71 0.849 0.858

Remember, however, that our models m3 and m4 do not predict HSCRP, but rather the loga-
rithm of HSCRP, so we need to exponentiate the .fitted values to get what we want.

m3_test_aug <- augment(m3, newdata = dat2_test) |>
mutate(fits = exp(.fitted),

resid = HSCRP - fits) |>
select(SEQN, HSCRP, fits, resid, everything())

head(m3_test_aug)

A tibble: 6 x 11
SEQN HSCRP fits resid PULSE1 PULSE2 SROH HOSPITAL MEANPULSE .fitted .resid
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>

1 109273 0.98 2.31 -1.33 71 70 Good 0 70.5 0.839 -0.859
2 109293 15.1 1.99 13.1 62 64 Good 0 63 0.688 2.03
3 109312 0.86 2.30 -1.44 83 87 Very~ 0 85 0.835 -0.985
4 109332 2.29 1.17 1.12 63 63 Exce~ 0 63 0.156 0.673
5 109340 4.64 3.00 1.64 78 78 Fair 0 78 1.10 0.437
6 109342 5.51 2.34 3.17 72 70 Good 0 71 0.849 0.858

Now, we can obtain our summaries, as follows.

185

m3_test_results <- m3_test_aug |>
summarize(validated_R_sq = cor(HSCRP, fits)^2,

MAPE = mean(abs(resid)),
RMSPE = sqrt(mean(resid^2)),
max_Error = max(abs(resid)))

m3_test_results

A tibble: 1 x 4
validated_R_sq MAPE RMSPE max_Error

<dbl> <dbl> <dbl> <dbl>
1 0.114 3.45 10.7 177.

For model m4, we have:

m4_test_aug <- augment(m4, newdata = dat2_test) |>
mutate(fits = exp(.fitted),

resid = HSCRP - fits) |>
select(SEQN, HSCRP, fits, resid, everything())

m4_test_results <- m4_test_aug |>
summarize(validated_R_sq = cor(HSCRP, fits)^2,

MAPE = mean(abs(resid)),
RMSPE = sqrt(mean(resid^2)),
max_Error = max(abs(resid)))

m4_test_results

A tibble: 1 x 4
validated_R_sq MAPE RMSPE max_Error

<dbl> <dbl> <dbl> <dbl>
1 0.102 3.50 10.8 177.

And we can put the two sets of results together into a nice table.

bind_rows(m3_test_results, m4_test_results) |>
mutate(model = c("m3", "m4")) |>
relocate(model) |>
kable()

186

model validated_R_sq MAPE RMSPE max_Error
m3 0.1135858 3.451295 10.72894 176.9855
m4 0.1015280 3.496673 10.79613 177.0716

Based on these out-of-sample validation results, it seems that Model m3 has the better results
across each of these four summaries than Model 4 does.

5.3.10 Conclusions

We fit two models to predict HSCRP, a larger model (m3) containing three predictors (MEAN-
PULSE, SROH and HOSPITAL), and a smaller model (m4) containing only the MEANPULSE
as a predictor.

• Both models (after transforming to log(HSCRP) for our outcome) seem to generally meet
the assumptions of linear regression

• Model m3 had a raw 𝑅2 value of 0.091, so it accounted for about 9.1% of the variation
in log(HSCRP) within our training sample. Model m4 accounted for 5.2%.

• In our in-sample checks, Model m3 had better results in terms of adjusted 𝑅2, AIC, BIC
and 𝜎.

• In a validation (test) sample, our Model m3 also showed superior predictive performance,
including better results in terms of MAPE, RMSPE and maximum absolute error, as
well as a validated 𝑅2 of 11.4%, higher than model m4’s result of 10.2%.

Overall, model m3 seems like the meaningfully better choice.

187

6 BRFSS SMART Data

The Centers for Disease Control analyzes Behavioral Risk Factor Surveillance System (BRFSS)
survey data for specific metropolitan and micropolitan statistical areas (MMSAs) in a pro-
gram called the Selected Metropolitan/Micropolitan Area Risk Trends of BRFSS (SMART
BRFSS.)

In this work, we will focus on data from the 2017 SMART, and in particular on data from
the state of Ohio, and from the Cleveland-Elyria, OH, Metropolitan Statistical Area. The
purpose of this survey is to provide localized health information that can help public health
practitioners identify local emerging health problems, plan and evaluate local responses, and
efficiently allocate resources to specific needs.

In this chapter, I describe some cleaning of the BRFSS SMART data, and break it out into
national, statewide, and local samples.

The data files produced by this chapter include:

• smart_ohio.Rds which includes data on approximately 100 variables for over 7000 sub-
jects in six MMSAs that are at least partially located in the state of Ohio.

• smart_cle.Rds which includes data on those same variables for a little over 1000 subjects
in the Cleveland-Elyria-Lorain OH MMSA.

6.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(Hmisc)
library(patchwork)
library(tidyverse)

theme_set(theme_bw())

188

6.2 Key resources

• the “raw” data, in the form of the 2017 SMART BRFSS MMSA Data, found in a zipped
SAS Transport Format file. The data were released in October 2018.

• the MMSA Variable Layout which simply lists the variables included in the data file
• the Calculated Variables PDF which describes the risk factors by data variable names -

there is also an online summary matrix of these calculated variables.
• the lengthy 2017 Survey Questions PDF which lists all questions asked as part of the

BRFSS in 2017
• the enormous Codebook for the 2017 BRFSS Survey PDF which identifies the variables

by name for us.

Also, for each subject, we are also provided with a sampling weight, in _MMSAWT, which will
help us incorporate the sampling design later. These weights are at the MMSA level, and
are used for generating MMSA-level estimates for variables in the data set. Details on the
weighting methodology are available at this PDF.

6.3 Ingesting the Raw Data

To create the data files we’ll use, I used the read_xpt function from the haven package to
bring in the SAS XPT data file that is provided by CDC. The codes I used (but won’t use in
these Notes) were:

smart_raw <- read_xpt("MMSA2017/MMSA2017.xpt")

This gives the nationwide data, which has 230,875 rows and 177 columns.

But for the purposes of putting these Notes online, I needed to crank down the sample size
enormously. To that end, I created a new data file, which I developed by

• importing the MMSA2017.xpt file as above
• filtering away all observations except those from MMSAs which include Ohio in their

name, and
• saving the result, which now has 7,412 rows and 177 columns.

The code (again, not run here) that I used to filter to the OH-based MMSAs was:

smart_ohio_raw <- smart_raw |>
filter(str_detect(MMSANAME, "OH"))

write_csv(smart_ohio_raw, "data/smart_ohio_raw.csv")

189

https://www.cdc.gov/brfss/annual_data/2017/files/MMSA2017_XPT.zip
https://www.cdc.gov/brfss/annual_data/2017/MMSA_VarLayout_17.html
https://www.cdc.gov/brfss/annual_data/2017/pdf/2017-calculated-variables-version4-508.pdf
https://www.cdc.gov/brfss/annual_data/2017/Summary_Matrix_17.html
https://www.cdc.gov/brfss/questionnaires/pdf-ques/2017_BRFSS_Pub_Ques_508_tagged.pdf
https://www.cdc.gov/brfss/annual_data/2017/pdf/codebook17_llcp-v2-508.pdf
https://www.cdc.gov/brfss/annual_data/2017/pdf/2017_SMART_BRFSS_MMSA_Methodology-508.pdf
https://www.cdc.gov/brfss/annual_data/2017/pdf/2017_SMART_BRFSS_MMSA_Methodology-508.pdf

So, for purposes of these notes, our complete data set is actually coming from smart_ohio_raw.csv
and consists only of the 7,412 observations associated with the six MMSAs that include Ohio
in their names.

6.4 Ingesting from our CSV file

Note that the smart_ohio_raw.csv and other data files we’re developing in this Chapter are
available on our 432-Data website

smart_ohio_raw <- read_csv("data/smart_ohio_raw.csv", show_col_types = FALSE)

dim(smart_ohio_raw)

[1] 7412 177

6.5 What does the raw data look like?

Here is a list of all variable names included in this file. We’re not going to use all of those
variables, but this will give you a sense of what is available.

names(smart_ohio_raw)

[1] "DISPCODE" "STATERE1" "SAFETIME" "HHADULT" "GENHLTH" "PHYSHLTH"
[7] "MENTHLTH" "POORHLTH" "HLTHPLN1" "PERSDOC2" "MEDCOST" "CHECKUP1"
[13] "BPHIGH4" "BPMEDS" "CHOLCHK1" "TOLDHI2" "CHOLMED1" "CVDINFR4"
[19] "CVDCRHD4" "CVDSTRK3" "ASTHMA3" "ASTHNOW" "CHCSCNCR" "CHCOCNCR"
[25] "CHCCOPD1" "HAVARTH3" "ADDEPEV2" "CHCKIDNY" "DIABETE3" "DIABAGE2"
[31] "LMTJOIN3" "ARTHDIS2" "ARTHSOCL" "JOINPAI1" "SEX" "MARITAL"
[37] "EDUCA" "RENTHOM1" "NUMHHOL2" "NUMPHON2" "CPDEMO1A" "VETERAN3"
[43] "EMPLOY1" "CHILDREN" "INCOME2" "INTERNET" "WEIGHT2" "HEIGHT3"
[49] "PREGNANT" "DEAF" "BLIND" "DECIDE" "DIFFWALK" "DIFFDRES"
[55] "DIFFALON" "SMOKE100" "SMOKDAY2" "STOPSMK2" "LASTSMK2" "USENOW3"
[61] "ECIGARET" "ECIGNOW" "ALCDAY5" "AVEDRNK2" "DRNK3GE5" "MAXDRNKS"
[67] "FRUIT2" "FRUITJU2" "FVGREEN1" "FRENCHF1" "POTATOE1" "VEGETAB2"
[73] "EXERANY2" "EXRACT11" "EXEROFT1" "EXERHMM1" "EXRACT21" "EXEROFT2"
[79] "EXERHMM2" "STRENGTH" "SEATBELT" "FLUSHOT6" "FLSHTMY2" "PNEUVAC3"
[85] "SHINGLE2" "HIVTST6" "HIVTSTD3" "HIVRISK5" "CASTHDX2" "CASTHNO2"
[91] "CALLBCKZ" "WDUSENOW" "WDINFTRK" "WDHOWOFT" "WDSHARE" "NAMTRIBE"

190

https://github.com/THOMASELOVE/432-data

[97] "NAMOTHR" "_URBNRRL" "_STSTR" "_IMPSEX" "_RFHLTH" "_PHYS14D"
[103] "_MENT14D" "_HCVU651" "_RFHYPE5" "_CHOLCH1" "_RFCHOL1" "_MICHD"
[109] "_LTASTH1" "_CASTHM1" "_ASTHMS1" "_DRDXAR1" "_LMTACT1" "_LMTWRK1"
[115] "_LMTSCL1" "_PRACE1" "_MRACE1" "_HISPANC" "_RACE" "_RACEG21"
[121] "_RACEGR3" "_AGEG5YR" "_AGE65YR" "_AGE80" "_AGE_G" "WTKG3"
[127] "_BMI5" "_BMI5CAT" "_RFBMI5" "_EDUCAG" "_INCOMG" "_SMOKER3"
[133] "_RFSMOK3" "_ECIGSTS" "_CURECIG" "DRNKANY5" "_RFBING5" "_DRNKWEK"
[139] "_RFDRHV5" "FTJUDA2_" "FRUTDA2_" "GRENDA1_" "FRNCHDA_" "POTADA1_"
[145] "VEGEDA2_" "_MISFRT1" "_MISVEG1" "_FRTRES1" "_VEGRES1" "_FRUTSU1"
[151] "_VEGESU1" "_FRTLT1A" "_VEGLT1A" "_FRT16A" "_VEG23A" "_FRUITE1"
[157] "_VEGETE1" "_TOTINDA" "_MINAC11" "_MINAC21" "_PACAT1" "_PAINDX1"
[163] "_PA150R2" "_PA300R2" "_PA30021" "_PASTRNG" "_PAREC1" "_PASTAE1"
[169] "_RFSEAT2" "_RFSEAT3" "_FLSHOT6" "_PNEUMO2" "_AIDTST3" "_MMSA"
[175] "_MMSAWT" "SEQNO" "MMSANAME"

6.6 Cleaning the BRFSS Data

6.6.1 Identifying Information

The identifying variables for each subject are gathered in SEQNO, which I’ll leave alone.

• Each statistical (geographic) area is identified by a _MMSA variable, which I’ll rename
mmsa_code, and by an MMSANAME which I’ll rename as mmsa_name

• For each subject, we are also provided with a sampling weight, in _MMSAWT, which
will help us incorporate the sampling design later in the semester. We’ll re-
name this as mmsa_wt. Details on the weighting methodology are available at
https://www.cdc.gov/brfss/annual_data/2017/pdf/2017_SMART_BRFSS_MMSA_Methodology-
508.pdf

smart_ohio_raw <- smart_ohio_raw |>
mutate(mmsa_code = `_MMSA`,

mmsa_name = `MMSANAME`,
mmsa_wt = `_MMSAWT`)

smart_ohio_raw |> count(mmsa_code, mmsa_name)

A tibble: 6 x 3
mmsa_code mmsa_name n

<dbl> <chr> <int>
1 17140 Cincinnati, OH-KY-IN, Metropolitan Statistical Area 1737

191

2 17460 Cleveland-Elyria, OH, Metropolitan Statistical Area 1133
3 18140 Columbus, OH, Metropolitan Statistical Area 2033
4 19380 Dayton, OH, Metropolitan Statistical Area 587
5 26580 Huntington-Ashland, WV-KY-OH, Metropolitan Statistical Area 1156
6 45780 Toledo, OH, Metropolitan Statistical Area 766

Those names are very long. I’ll build some shorter ones, by dropping everything after the
comma.

smart_ohio_raw <- smart_ohio_raw |>
mutate(mmsa = str_replace_all(string = mmsa_name, pattern="\\,.*$",replacement=" "))

smart_ohio_raw |> count(mmsa, mmsa_name)

A tibble: 6 x 3
mmsa mmsa_name n
<chr> <chr> <int>

1 "Cincinnati " Cincinnati, OH-KY-IN, Metropolitan Statistical Ar~ 1737
2 "Cleveland-Elyria " Cleveland-Elyria, OH, Metropolitan Statistical Ar~ 1133
3 "Columbus " Columbus, OH, Metropolitan Statistical Area 2033
4 "Dayton " Dayton, OH, Metropolitan Statistical Area 587
5 "Huntington-Ashland " Huntington-Ashland, WV-KY-OH, Metropolitan Statis~ 1156
6 "Toledo " Toledo, OH, Metropolitan Statistical Area 766

And here are the sampling weights for the subjects in the Cleveland-Elyria MSA.

smart_ohio_raw |>
filter(mmsa_code == 17460) %>%
ggplot(., aes(x = mmsa_wt)) +
geom_histogram(bins = 30, fill = "blue", col = "white")

192

0

50

100

150

0 2000 4000 6000
mmsa_wt

co
un

t

6.6.2 Survey Method

6.6.2.1 DISPCODE and its cleanup to completed

DISPCODE which is 1100 if the subject completed the interview, and 1200 if they partially
completed the interview. We’ll create a variable called completed that indicates (1 = complete,
0 = not) whether the subject completed the interview.

smart_ohio_raw <- smart_ohio_raw |>
mutate(completed = 12 - (DISPCODE/100))

smart_ohio_raw |> count(DISPCODE, completed)

A tibble: 2 x 3
DISPCODE completed n

<dbl> <dbl> <int>
1 1100 1 6277
2 1200 0 1135

193

6.6.2.2 STATERE1 and SAFETIME and their reduction to landline

BRFSSS is conducted by telephone. The next two variables help us understand whether the
subject was contacted via land line or via cellular phone.

• STATERE1 is 1 if the subject is a resident of the state (only asked of people in the land
line version of the survey).

• SAFETIME is 1 if this is a safe time to talk (only asked of people in the cell phone version
of the survey).

• We’ll use STATERE1 and SAFETIME to create an indicator variable landline that specifies
how the respondent was surveyed (1 = land line, 0 = cell phone), as follows…

smart_ohio_raw <- smart_ohio_raw |>
mutate(landline = replace_na(STATERE1, 0))

smart_ohio_raw |> count(STATERE1, SAFETIME, landline)

A tibble: 2 x 4
STATERE1 SAFETIME landline n

<dbl> <dbl> <dbl> <int>
1 1 NA 1 3649
2 NA 1 0 3763

6.6.2.3 HHADULT and its cleanup to hhadults

• HHADULT is the response to “How many members of your household, including yourself,
are 18 years of age or older?”

– The permitted responses range from 1-76, with special values 77 for Don’t
Know/Not Sure and 99 for refused, with BLANK for missing or not asked.

– So we should change all numerical values above 76 to NA for our analyses (the
blanks are already regarded as NAs by R in the ingestion process.)

smart_ohio_raw |> tabyl(HHADULT)

HHADULT n percent valid_percent
1 274 0.0369670804 0.236206897
2 603 0.0813545602 0.519827586
3 170 0.0229357798 0.146551724
4 73 0.0098488937 0.062931034
5 28 0.0037776579 0.024137931

194

6 4 0.0005396654 0.003448276
7 3 0.0004047491 0.002586207
8 1 0.0001349164 0.000862069
10 1 0.0001349164 0.000862069
11 1 0.0001349164 0.000862069
99 2 0.0002698327 0.001724138
NA 6252 0.8434970318 NA

smart_ohio_raw <- smart_ohio_raw |>
mutate(hhadults = HHADULT,

hhadults = replace(hhadults, hhadults > 76, NA))

smart_ohio_raw |> count(HHADULT, hhadults) |> tail()

A tibble: 6 x 3
HHADULT hhadults n

<dbl> <dbl> <int>
1 7 7 3
2 8 8 1
3 10 10 1
4 11 11 1
5 99 NA 2
6 NA NA 6252

6.6.3 Health Status (1 item)

The next variable describes relate to the subject’s health status.

6.6.3.1 GENHLTH and its cleanup to genhealth

• GENHLTH, the General Health variable, which is the response to “Would you say that in
general your health is …”

– 1 = Excellent
– 2 = Very good
– 3 = Good
– 4 = Fair
– 5 = Poor
– 7 = Don’t know/Not sure
– 9 = Refused

195

– BLANK = Not asked or missing

To clean up the GENHLTH data into a new variable called genhealth we’ll need to - convince
R that the 7 and 9 values are in fact best interpreted as NA, - and perhaps change the variable
to a factor and incorporate the names into the levels.

smart_ohio_raw <- smart_ohio_raw |>
mutate(genhealth = fct_recode(factor(GENHLTH),

"1_Excellent" = "1",
"2_VeryGood" = "2",
"3_Good" = "3",
"4_Fair" = "4",
"5_Poor" = "5",
NULL = "7",
NULL = "9"))

smart_ohio_raw |> count(GENHLTH, genhealth)

A tibble: 7 x 3
GENHLTH genhealth n

<dbl> <fct> <int>
1 1 1_Excellent 1057
2 2 2_VeryGood 2406
3 3 3_Good 2367
4 4 4_Fair 1139
5 5 5_Poor 428
6 7 <NA> 10
7 9 <NA> 5

6.6.4 Healthy Days - Health-Related Quality of Life (3 items)

The next three variables describe the subject’s health-related quality of life.

6.6.4.1 PHYSHLTH and its cleanup to physhealth

PHYSHLTH‘, the Number of Days Physical Health Not Good variable, which is the response
to “Now thinking about your physical health, which includes physical illness and injury, for
how many days during the past 30 days was your physical health not good?”

• Values of 1-30 are numeric and reasonable.
• A value of 88 indicates “none” and should be recoded to 0.

196

• 77 is the code for Don’t know/Not sure
• 99 is the code for Refused
• BLANK indicates Not asked or missing, and R recognizes this as NA properly.

To clean up PHYSHLTH to a new variable called physhealth, we’ll need: - to convince R that
the 77 and 99 values are in fact best interpreted as NA, and - to convince R that the 88 should
be interpreted as 0.

smart_ohio_raw <- smart_ohio_raw |>
mutate(physhealth = PHYSHLTH,

physhealth = replace(physhealth, physhealth %in% c(77, 99), NA),
physhealth = replace(physhealth, physhealth == 88, 0))

smart_ohio_raw |> count(PHYSHLTH, physhealth) |> tail()

A tibble: 6 x 3
PHYSHLTH physhealth n

<dbl> <dbl> <int>
1 28 28 12
2 29 29 14
3 30 30 677
4 77 NA 123
5 88 0 4380
6 99 NA 15

Note that we present the tail of the counts in this case so we can see what happens to the
key values (77, 88, 99) of our original variable PHYSHLTH.

6.6.4.2 MENTHLTH and its cleanup to menthealth

MENTHLTH‘, the Number of Days Mental Health Not Good variable, which is the response to
“Now thinking about your mental health, which includes stress, depression, and problems with
emotions, for how many days during the past 30 days was your mental health not good?”

• This is coded just like the PHYSHLTH variable, so we need to do the same cleaning we did
there.

To clean up MENTHLTH to a new variable called menthealth, we’ll need: - to convince R that
the 77 and 99 values are in fact best interpreted as NA, and - to convince R that the 88 should
be interpreted as 0.

197

smart_ohio_raw <- smart_ohio_raw |>
mutate(menthealth = MENTHLTH,

menthealth = replace(menthealth, menthealth %in% c(77, 99), NA),
menthealth = replace(menthealth, menthealth == 88, 0))

smart_ohio_raw |> count(MENTHLTH, menthealth) |> tail()

A tibble: 6 x 3
MENTHLTH menthealth n

<dbl> <dbl> <int>
1 28 28 7
2 29 29 10
3 30 30 475
4 77 NA 86
5 88 0 4823
6 99 NA 28

6.6.4.3 POORHLTH and its cleanup to poorhealth

POORHLTH, the Poor Physical or Mental Health variable, which is the response to “During the
past 30 days, for about how many days did poor physical or mental health keep you from
doing your usual activities, such as self-care, work, or recreation?”

• Again, we recode just like the PHYSHLTH variable.

smart_ohio_raw <- smart_ohio_raw |>
mutate(poorhealth = POORHLTH,

poorhealth = replace(poorhealth, poorhealth %in% c(77, 99), NA),
poorhealth = replace(poorhealth, poorhealth == 88, 0))

smart_ohio_raw |> count(POORHLTH, poorhealth) |> tail()

A tibble: 6 x 3
POORHLTH poorhealth n

<dbl> <dbl> <int>
1 29 29 4
2 30 30 382
3 77 NA 64
4 88 0 2194
5 99 NA 11
6 NA NA 3337

198

There’s a lot more missingness in the poorhealth counts than in the other health-related
quality of life measures. There’s also a strong mode at 0, and a smaller mode at 30 in each
variable.

p1 <- ggplot(smart_ohio_raw, aes(x = physhealth)) +
geom_histogram(binwidth = 1, fill = "orange") +
labs(title = paste0("Bad Physical Health Days (",

sum(is.na(smart_ohio_raw$physhealth)),
" NA)"))

p2 <- ggplot(smart_ohio_raw, aes(x = menthealth)) +
geom_histogram(binwidth = 1, fill = "blue") +
labs(title = paste0("Bad Mental Health Days (",

sum(is.na(smart_ohio_raw$menthealth)),
" NA)"))

p3 <- ggplot(smart_ohio_raw, aes(x = poorhealth)) +
geom_histogram(binwidth = 1, fill = "red") +
labs(title = paste0("Unable to Do Usual Activities Days (",

sum(is.na(smart_ohio_raw$poorhealth)),
" NA)"))

(p1 + p2) / p3 +
plot_annotation(title = "Health Related Quality of Life Measures in BRFSS/SMART (Ohio MMSAs)")

199

0
1000
2000
3000
4000

0 10 20 30
physhealth

co
un

t

Bad Physical Health Days (138 NA)

0
1000
2000
3000
4000
5000

0 10 20 30
menthealth

co
un

t

Bad Mental Health Days (114 NA)

0
500

1000
1500
2000

0 10 20 30
poorhealth

co
un

t

Unable to Do Usual Activities Days (3412 NA)

Health Related Quality of Life Measures in BRFSS/SMART (Ohio MMSAs)

6.6.5 Health Care Access (4 items)

The next four variables relate to the subject’s health care access.

6.6.5.1 HLTHPLN1 and its cleanup to healthplan

HLTHPLN1, the Have any health care coverage variable, is the response to “Do you have any
kind of health care coverage, including health insurance, prepaid plans such as HMOs, or
government plans such as Medicare, or Indian Health Service?”

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused

To clean up the HLTHPLN1 data into a new variable called healthplan we’ll
- convince R that the 7 and 9 values are in fact best interpreted as NA, - and turn it into an
indicator variable, e.g., we will leave the variable as numeric, but change the values to 1 = Yes
and 0 = No.

200

smart_ohio_raw <- smart_ohio_raw |>
mutate(healthplan = HLTHPLN1,

healthplan = replace(healthplan, healthplan %in% c(7, 9), NA),
healthplan = replace(healthplan, healthplan == 2, 0))

smart_ohio_raw |> count(HLTHPLN1, healthplan)

A tibble: 4 x 3
HLTHPLN1 healthplan n

<dbl> <dbl> <int>
1 1 1 6994
2 2 0 398
3 7 NA 10
4 9 NA 10

6.6.5.2 PERSDOC2 and its cleanup to hasdoc and to numdocs2

PERSDOC2, the Multiple Health Care Professionals variable, is the response to “Do you have
one person you think of as your personal doctor or health care provider?” where if the response
is “No”, the survey then asks “Is there more than one or is there no person who you think of
as your personal doctor or health care provider?”

• 1 = Yes, only one
• 2 = More than one
• 3 = No
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

To clean up the PERSDOC2 data into a new variable called hasdoc we’ll
- convince R that the 7 and 9 values are in fact best interpreted as NA, - and turn it into an
indicator variable, e.g., we will leave the variable as numeric, but change the values to 1 = Yes
and 0 = No, so that the original 1 and 2 become 1, and the original 3 becomes 0.

smart_ohio_raw <- smart_ohio_raw |>
mutate(hasdoc = PERSDOC2,

hasdoc = replace(hasdoc, hasdoc %in% c(7, 9), NA),
hasdoc = replace(hasdoc, hasdoc %in% c(1, 2), 1),
hasdoc = replace(hasdoc, hasdoc == 3, 0))

smart_ohio_raw |> count(PERSDOC2, hasdoc)

201

A tibble: 5 x 3
PERSDOC2 hasdoc n

<dbl> <dbl> <int>
1 1 1 5784
2 2 1 623
3 3 0 990
4 7 NA 14
5 9 NA 1

6.6.5.3 MEDCOST and its cleanup to costprob

MEDCOST, the Could Not See Doctor Because of Cost variable, is the response to “Was there a
time in the past 12 months when you needed to see a doctor but could not because of cost?”

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

This is just like HLTHPLAN.

smart_ohio_raw <- smart_ohio_raw |>
mutate(costprob = MEDCOST,

costprob = replace(costprob, costprob %in% c(7, 9), NA),
costprob = replace(costprob, costprob == 2, 0))

smart_ohio_raw |> count(MEDCOST, costprob)

A tibble: 4 x 3
MEDCOST costprob n

<dbl> <dbl> <int>
1 1 1 714
2 2 0 6680
3 7 NA 14
4 9 NA 4

6.6.5.4 CHECKUP1 and its cleanup to t_checkup

CHECKUP1, the Length of time since last routine checkup variable, is the response to “About
how long has it been since you last visited a doctor for a routine checkup? [A routine checkup
is a general physical exam, not an exam for a specific injury, illness, or condition.]”

202

• 1 = Within past year (anytime less than 12 months ago)
• 2 = Within past 2 years (1 year but less than 2 years ago)
• 3 = Within past 5 years (2 years but less than 5 years ago)
• 4 = 5 or more years ago
• 7 = Don’t know/Not sure
• 8 = Never
• 9 = Refused
• BLANK = Not asked or missing

To clean up the CHECKUP1 data into a new variable called t_checkup we’ll - convince R that
the 7 and 9 values are in fact best interpreted as NA, - relabel options 1, 2, 3, 4 and 8 while
turning the variable into a factor.

smart_ohio_raw <- smart_ohio_raw |>
mutate(t_checkup = fct_recode(factor(CHECKUP1),

"1_In-past-year" = "1",
"2_1-to-2-years" = "2",
"3_2-to-5-years" = "3",
"4_5_plus_years" = "4",
"8_Never" = "8",
NULL = "7",
NULL = "9"))

smart_ohio_raw |> count(CHECKUP1, t_checkup)

A tibble: 7 x 3
CHECKUP1 t_checkup n

<dbl> <fct> <int>
1 1 1_In-past-year 5803
2 2 2_1-to-2-years 714
3 3 3_2-to-5-years 413
4 4 4_5_plus_years 376
5 7 <NA> 68
6 8 8_Never 32
7 9 <NA> 6

6.6.6 Blood Pressure (2 measures)

6.6.6.1 BPHIGH4 and its cleanup to bp_high

BPHIGH4 is asking about awareness of a hypertension diagnosis. It’s the response to the ques-
tion: “Have you EVER been told by a doctor, nurse or other health professional that you have

203

high blood pressure?” In addition, if the answer was “Yes” and the respondent is female, they
were then asked “Was this only when you were pregnant?”

The available codes are:

• 1 = Yes
• 2 = Yes, but female told only during pregnancy
• 3 = No
• 4 = Told borderline high or pre-hypertensive
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

To clean up the BPHIGH4 data into a new variable called bp_high we’ll - convince R that the 7
and 9 values are in fact best interpreted as NA, - relabel (and re-order) options 1, 2, 3, 4 while
turning the variable into a factor.

smart_ohio_raw <- smart_ohio_raw |>
mutate(bp_high = fct_recode(factor(BPHIGH4),

"0_No" = "3",
"1_Yes" = "1",
"2_Only_while_pregnant" = "2",
"4_Borderline" = "4",
NULL = "7",
NULL = "9"),

bp_high = fct_relevel(bp_high,
"0_No", "1_Yes",
"2_Only_while_pregnant",
"4_Borderline"))

smart_ohio_raw |> count(BPHIGH4, bp_high)

A tibble: 6 x 3
BPHIGH4 bp_high n

<dbl> <fct> <int>
1 1 1_Yes 3161
2 2 2_Only_while_pregnant 67
3 3 0_No 4114
4 4 4_Borderline 49
5 7 <NA> 19
6 9 <NA> 2

204

6.6.6.2 BPMEDS and its cleanup to bp_meds

BPMEDS is the response to the question “Are you currently taking medicine for your high blood
pressure?”

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

To clean up the BPMEDS data into a new variable called bp_meds we’ll treat it just as we did
with HLTHPLN1 and - convince R that the 7 and 9 values are in fact best interpreted as NA, -
and turn it into an indicator variable, e.g., we will leave the variable as numeric, but change
the values to 1 = Yes and 0 = No.

smart_ohio_raw <- smart_ohio_raw |>
mutate(bp_meds = BPMEDS,

bp_meds = replace(bp_meds, bp_meds %in% c(7, 9), NA),
bp_meds = replace(bp_meds, bp_meds == 2, 0))

smart_ohio_raw |> count(BPMEDS, bp_meds)

A tibble: 5 x 3
BPMEDS bp_meds n
<dbl> <dbl> <int>

1 1 1 2675
2 2 0 481
3 7 NA 4
4 9 NA 1
5 NA NA 4251

What is the relationship between our two blood pressure variables? Only the people with
bp_meds = “1_Yes” were asked the bp_meds question.

smart_ohio_raw |> tabyl(bp_high, bp_meds)

bp_high 0 1 NA_
0_No 0 0 4114
1_Yes 481 2675 5

2_Only_while_pregnant 0 0 67

205

4_Borderline 0 0 49
<NA> 0 0 21

6.6.7 Cholesterol (3 items)

6.6.7.1 CHOLCHK1 and its cleanup to t_chol

CHOLCHK1, the Length of time since cholesterol was checked, is the response to “Blood choles-
terol is a fatty substance found in the blood. About how long has it been since you last had
your blood cholesterol checked?”

• 1 = Never
• 2 = Within past year (anytime less than 12 months ago)
• 3 = Within past 2 years (1 year but less than 2 years ago)
• 4 = Within past 5 years (2 years but less than 5 years ago)
• 5 = 5 or more years ago
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

To clean up the CHOLCHK1 data into a new variable called t_chol we’ll - convince R that the 7
and 9 values are in fact best interpreted as NA, - relabel options 1, 2, 3, 4 and 8 while turning
the variable into a factor.

smart_ohio_raw <- smart_ohio_raw |>
mutate(t_chol = fct_recode(factor(CHOLCHK1),

"1_Never" = "1",
"2_In-past-year" = "2",
"3_1-to-2-years" = "3",
"4_2-to-5-years" = "4",
"5_5_plus_years" = "5",
NULL = "7",
NULL = "9"))

smart_ohio_raw |> count(CHOLCHK1, t_chol)

A tibble: 8 x 3
CHOLCHK1 t_chol n

<dbl> <fct> <int>
1 1 1_Never 424
2 2 2_In-past-year 5483
3 3 3_1-to-2-years 559

206

4 4 4_2-to-5-years 289
5 5 5_5_plus_years 272
6 7 <NA> 376
7 9 <NA> 8
8 NA <NA> 1

The next two measures are not gathered from the people who answered “Never” to this ques-
tion.

6.6.7.2 TOLDHI2 and its cleanup to chol_high

TOLDHI2 is asking about awareness of a diagnosis of high cholesterol. It’s the response to the
question: “Have you EVER been told by a doctor, nurse or other health professional that your
blood cholesterol is high?”

The available codes are:

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

To clean up the TOLDHI2 data into a new variable called chol_high we’ll treat it like BPMEDS
and HLTHPLN1 - convince R that the 7 and 9 values are in fact best interpreted as NA, - and
turn it into an indicator variable, e.g., we will leave the variable as numeric, but change the
values to 1 = Yes and 0 = No.

smart_ohio_raw <- smart_ohio_raw |>
mutate(chol_high = TOLDHI2,

chol_high = replace(chol_high, chol_high %in% c(7, 9), NA),
chol_high = replace(chol_high, chol_high == 2, 0))

smart_ohio_raw |> count(TOLDHI2, chol_high)

A tibble: 5 x 3
TOLDHI2 chol_high n

<dbl> <dbl> <int>
1 1 1 2612
2 2 0 4286
3 7 NA 70
4 9 NA 4
5 NA NA 440

207

6.6.7.3 CHOLMED1 and its cleanup to chol_meds

CHOLMED1 is the response to the question “Are you currently taking medicine prescribed by a
doctor or other health professional for your blood cholesterol?”

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

To clean up the CHOLMED1 data into a new variable called chol_meds we’ll treat it just as we
did with HLTHPLN1 and - convince R that the 7 and 9 values are in fact best interpreted as NA,
- and turn it into an indicator variable, e.g., we will leave the variable as numeric, but change
the values to 1 = Yes and 0 = No.

smart_ohio_raw <- smart_ohio_raw |>
mutate(chol_meds = CHOLMED1,

chol_meds = replace(chol_meds, chol_meds %in% c(7, 9), NA),
chol_meds = replace(chol_meds, chol_meds == 2, 0))

smart_ohio_raw |> count(CHOLMED1, chol_meds)

A tibble: 4 x 3
CHOLMED1 chol_meds n

<dbl> <dbl> <int>
1 1 1 1781
2 2 0 826
3 7 NA 5
4 NA NA 4800

6.6.8 Chronic Health Conditions (14 items)

6.6.8.1 Self-reported diagnosis history (11 items)

The next few variables describe whether or not the subject meets a particular standard, and
are all coded in the raw data the same way:

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused

208

• BLANK = Not asked or missing

and we’ll recode them all to 1 = Yes, 0 = No, otherwise NA, as we’ve done previously.

The questions are all started with “Has a doctor, nurse, or other health professional ever told
you that you had any of the following? For each, tell me Yes, No, or you’re Not sure.”

Original Revised Details
CVDINFR4 hx_mi (Ever told) you had a heart attack, also called a myocardial

infarction?
CVDCRHD4 hx_chd (Ever told) you had angina or coronary heart disease?
CVDSTRK3 hx_stroke (Ever told) you had a stroke?
ASTHMA3 hx_asthma (Ever told) you had asthma?
ASTHNOW now_asthma Do you still have asthma? (only asked of those with Yes in

ASTHMA3)
CHCSCNCR hx_skinc (Ever told) you had skin cancer?
CHCOCNCR hx_otherc (Ever told) you had any other types of cancer?
CHCCOPD1 hx_copd (Ever told) you have Chronic Obstructive Pulmonary Disease or

COPD, emphysema or chronic bronchitis?
HAVARTH3 hx_arthr (Ever told) you have some form of arthritis, rheumatoid

arthritis, gout, lupus, or fibromyalgia? (Arthritis diagnoses
include: rheumatism, polymyalgia rheumatica; osteoarthritis
(not osteporosis); tendonitis, bursitis, bunion, tennis elbow;
carpal tunnel syndrome, tarsal tunnel syndrome; joint infection,
etc.)

ADDEPEV2 hx_depress (Ever told) you that you have a depressive disorder, including
depression, major depression, dysthymia, or minor depression?

CHCKIDNY hx_kidney (Ever told) you have kidney disease? Do NOT include kidney
stones, bladder infection or incontinence.

smart_ohio_raw <- smart_ohio_raw |>
mutate(hx_mi = CVDINFR4,

hx_mi = replace(hx_mi, hx_mi %in% c(7, 9), NA),
hx_mi = replace(hx_mi, hx_mi == 2, 0),
hx_chd = CVDCRHD4,
hx_chd = replace(hx_chd, hx_chd %in% c(7, 9), NA),
hx_chd = replace(hx_chd, hx_chd == 2, 0),
hx_stroke = CVDSTRK3,
hx_stroke = replace(hx_stroke, hx_stroke %in% c(7, 9), NA),
hx_stroke = replace(hx_stroke, hx_stroke == 2, 0),
hx_asthma = ASTHMA3,
hx_asthma = replace(hx_asthma, hx_asthma %in% c(7, 9), NA),

209

hx_asthma = replace(hx_asthma, hx_asthma == 2, 0),
now_asthma = ASTHNOW,
now_asthma = replace(now_asthma, now_asthma %in% c(7, 9), NA),
now_asthma = replace(now_asthma, now_asthma == 2, 0),
hx_skinc = CHCSCNCR,
hx_skinc = replace(hx_skinc, hx_skinc %in% c(7, 9), NA),
hx_skinc = replace(hx_skinc, hx_skinc == 2, 0),
hx_otherc = CHCOCNCR,
hx_otherc = replace(hx_otherc, hx_otherc %in% c(7, 9), NA),
hx_otherc = replace(hx_otherc, hx_otherc == 2, 0),
hx_copd = CHCCOPD1,
hx_copd = replace(hx_copd, hx_copd %in% c(7, 9), NA),
hx_copd = replace(hx_copd, hx_copd == 2, 0),
hx_arthr = HAVARTH3,
hx_arthr = replace(hx_arthr, hx_arthr %in% c(7, 9), NA),
hx_arthr = replace(hx_arthr, hx_arthr == 2, 0),
hx_depress = ADDEPEV2,
hx_depress = replace(hx_depress, hx_depress %in% c(7, 9), NA),
hx_depress = replace(hx_depress, hx_depress == 2, 0),
hx_kidney = CHCKIDNY,
hx_kidney = replace(hx_kidney, hx_kidney %in% c(7, 9), NA),
hx_kidney = replace(hx_kidney, hx_kidney == 2, 0))

We definitely should have written a function to do that, of course.

6.6.8.2 _ASTHMS1 and its cleanup to asthma

_ASTHMS1 categorizes subjects by asthma status as:

• 1 = Current
• 2 = Former
• 3 = Never
• 9 = Don’t Know / Not Sure / Refused / Missing

We’ll turn this into a factor with appropriate levels and NA information.

smart_ohio_raw <- smart_ohio_raw |>
mutate(asthma = fct_recode(

factor(`_ASTHMS1`),
"Current" = "1",
"Former" = "2",
"Never" = "3",

210

NULL = "9"))

smart_ohio_raw |> count(`_ASTHMS1`, asthma)

A tibble: 4 x 3
`_ASTHMS1` asthma n

<dbl> <fct> <int>
1 1 Current 734
2 2 Former 248
3 3 Never 6376
4 9 <NA> 54

6.6.8.3 DIABETE3 and its cleanup to hx_diabetes and dm_status

DIABETE3, the (Ever told) you have diabetes variable, is the response to “(Ever told) you have
diabetes (If Yes and respondent is female, ask Was this only when you were pregnant?. If
Respondent says pre-diabetes or borderline diabetes, use response code 4.)”

• 1 = Yes
• 2 = Yes, but female told only during pregnancy
• 3 = No
• 4 = No, pre-diabetes or borderline diabetes
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

I’ll create one variable called hx_diabetes which is 1 if DIABETE3 = 1, and 0 otherwise, with
appropriate NAs, like our other variables. Then I’ll create dm_status to include all of this
information in a factor, but again recode the missing values properly.

smart_ohio_raw <- smart_ohio_raw |>
mutate(hx_diabetes = DIABETE3,

hx_diabetes = replace(hx_diabetes, hx_diabetes %in% c(7, 9), NA),
hx_diabetes = replace(hx_diabetes, hx_diabetes %in% 2:4, 0),
dm_status = fct_recode(factor(DIABETE3),

"Diabetes" = "1",
"Pregnancy-Induced" = "2",
"No-Diabetes" = "3",
"Pre-Diabetes" = "4",
NULL = "7",
NULL = "9"),

211

dm_status = fct_relevel(dm_status,
"No-Diabetes",
"Pre-Diabetes",
"Pregnancy-Induced",
"Diabetes"))

smart_ohio_raw |> count(DIABETE3, hx_diabetes, dm_status)

A tibble: 6 x 4
DIABETE3 hx_diabetes dm_status n

<dbl> <dbl> <fct> <int>
1 1 1 Diabetes 1098
2 2 0 Pregnancy-Induced 67
3 3 0 No-Diabetes 6100
4 4 0 Pre-Diabetes 133
5 7 NA <NA> 12
6 9 NA <NA> 2

6.6.8.4 DIABAGE2 and its cleanup to dm_age

DIABAGE2, the Age When Told Diabetic variable, is the response to “How old were you when
you were told you have diabetes?” It is asked only of people with DIABETE3 = 1 (Yes).

• The response is 1-97, with special values 98 for Don’t Know/Not Sure and 99 for refused,
with BLANK for missing or not asked. People 97 years of age and above were listed as
97.

smart_ohio_raw <- smart_ohio_raw |>
mutate(dm_age = DIABAGE2,

dm_age = replace(dm_age, dm_age > 97, NA))

smart_ohio_raw |> count(DIABAGE2, dm_age) |> tail()

A tibble: 6 x 3
DIABAGE2 dm_age n

<dbl> <dbl> <int>
1 84 84 1
2 85 85 2
3 90 90 1
4 98 NA 61

212

5 99 NA 4
6 NA NA 6314

6.6.9 Arthritis Burden (4 items)

The first two measures are only asked of people with hx_arthr = 1, and are coded as:

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

and we’ll recode them to 1 = Yes, 0 = No, otherwise NA, as we’ve done previously.

6.6.9.1 LMTJOIN3 (Limited because of joint symptoms), and its cleanup to arth_lims

This is the response to “Are you now limited in any way in any of your usual activities because
of arthritis or joint symptoms?”

smart_ohio_raw <- smart_ohio_raw |>
mutate(arth_lims = LMTJOIN3,

arth_lims = replace(arth_lims, arth_lims %in% c(7, 9), NA),
arth_lims = replace(arth_lims, arth_lims == 2, 0))

smart_ohio_raw |> count(hx_arthr, LMTJOIN3, arth_lims)

A tibble: 6 x 4
hx_arthr LMTJOIN3 arth_lims n

<dbl> <dbl> <dbl> <int>
1 0 NA NA 4587
2 1 1 1 1378
3 1 2 0 1388
4 1 7 NA 17
5 1 9 NA 2
6 NA NA NA 40

213

6.6.9.2 ARTHDIS2 (Does Arthritis Affect Whether You Work), and its cleanup to
arth_work

This is the response to “Do arthritis or joint symptoms now affect whether you work, the type
of work you do or the amount of work you do?”

smart_ohio_raw <- smart_ohio_raw |>
mutate(arth_work = ARTHDIS2,

arth_work = replace(arth_work, arth_work %in% c(7, 9), NA),
arth_work = replace(arth_work, arth_work == 2, 0))

smart_ohio_raw |> count(ARTHDIS2, arth_work)

A tibble: 5 x 3
ARTHDIS2 arth_work n

<dbl> <dbl> <int>
1 1 1 925
2 2 0 1808
3 7 NA 42
4 9 NA 10
5 NA NA 4627

6.6.9.3 ARTHSOCL (Social Activities Limited Because of Joint Symptoms) and its cleanup
to arth_soc

This is the response to “During the past 30 days, to what extent has your arthritis or joint
symptoms interfered with your normal social activities, such as going shopping, to the movies,
or to religious or social gatherings?”

The responses are:

• 1 = A lot
• 2 = A little
• 3 = Not at all
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

smart_ohio_raw <- smart_ohio_raw |>
mutate(arth_soc = fct_recode(factor(ARTHSOCL),

"A lot" = "1",
"A little" = "2",

214

"Not at all" = "3",
NULL = "7",
NULL = "9"))

smart_ohio_raw |> count(ARTHSOCL, arth_soc)

A tibble: 6 x 3
ARTHSOCL arth_soc n

<dbl> <fct> <int>
1 1 A lot 606
2 2 A little 734
3 3 Not at all 1427
4 7 <NA> 15
5 9 <NA> 3
6 NA <NA> 4627

6.6.9.4 JOINPAI1 (How Bad Was Joint Pain - scale of 0-10) and its cleanup to
joint_pain

This is the response to the following question: “Please think about the past 30 days, keeping
in mind all of your joint pain or aching and whether or not you have taken medication. On
a scale of 0 to 10 where 0 is no pain or aching and 10 is pain or aching as bad as it can be,
DURING THE PAST 30 DAYS, how bad was your joint pain ON AVERAGE?”

The available values are 0-10, plus codes 77 (Don’t Know / Not Sure), 99 (Refused) and
BLANK.

To clean up JOINPAI1 to a new variable called joint_pain, we’ll need to convince R that the
77 and 99 values are, like BLANK, in fact best interpreted as NA.

smart_ohio_raw <- smart_ohio_raw |>
mutate(joint_pain = JOINPAI1,

joint_pain = replace(joint_pain, joint_pain %in% c(77, 99), NA))

smart_ohio_raw |> count(JOINPAI1, joint_pain) |> tail()

A tibble: 6 x 3
JOINPAI1 joint_pain n

<dbl> <dbl> <int>
1 8 8 277
2 9 9 72

215

3 10 10 158
4 77 NA 28
5 99 NA 5
6 NA NA 4627

6.6.10 Demographics (25 items)

6.6.10.1 _AGEG5YR, which we’ll edit into agegroup

The _AGEG5YR variable is a calculated variable (by CDC) obtained from the subject’s age.
Since the age data are not available, we instead get these groupings, which we’ll rearrange
into the agegroup factor.

_AGEG5YR Age range agegroup

1 18 <= AGE <= 24 18-24
2 25 <= AGE <= 29 25-29
3 30 <= AGE <= 34 30-34
4 35 <= AGE <= 39 35-39
5 40 <= AGE <= 44 40-44
6 45 <= AGE <= 49 45-49
7 50 <= AGE <= 54 50-54
8 55 <= AGE <= 59 55-59
9 60 <= AGE <= 64 60-64

10 65 <= AGE <= 69 65-69
11 70 <= AGE <= 74 70-74
12 75 <= AGE <= 79 75-79
13 AGE >= 80 80plus
14 Don’t Know, Refused or Missing NA

smart_ohio_raw <- smart_ohio_raw |>
mutate(agegroup = fct_recode(factor(`_AGEG5YR`),

"18-24" = "1",
"25-29" = "2",
"30-34" = "3",
"35-39" = "4",
"40-44" = "5",
"45-49" = "6",
"50-54" = "7",
"55-59" = "8",
"60-64" = "9",

216

"65-69" = "10",
"70-74" = "11",
"75-79" = "12",
"80-96" = "13",
NULL = "14"))

smart_ohio_raw |> count(`_AGEG5YR`, agegroup)

A tibble: 14 x 3
`_AGEG5YR` agegroup n

<dbl> <fct> <int>
1 1 18-24 448
2 2 25-29 327
3 3 30-34 375
4 4 35-39 446
5 5 40-44 426
6 6 45-49 509
7 7 50-54 604
8 8 55-59 786
9 9 60-64 837
10 10 65-69 810
11 11 70-74 685
12 12 75-79 499
13 13 80-96 592
14 14 <NA> 68

6.6.10.2 _MRACE1 recoded to race

We’ll create three variables describing race/ethnicity. The first comes from the _MRACE1 vari-
able categorized by CDC, and the available responses are:

• 1 = White only
• 2 = Black or African-American only
• 3 = American Indian or Alaskan Native only
• 4 = Asian only
• 5 = Native Hawaiian or Pacific Islander only
• 6 = Other race only
• 7 = Multiracial
• 77 = Don’t know / Not Sure
• 99 = Refused
• BLANK = Missing

217

We’ll create a factor out of this information, with appropriate level names.

smart_ohio_raw <- smart_ohio_raw |>
mutate(race = fct_recode(factor(`_MRACE1`),

"White" = "1",
"Black or African A" = "2",
"Amer Indian or Alaskan" = "3",
"Asian" = "4",
"Hawaiian or Pac Island" = "5",
"Other Race" = "6",
"Multiracial" = "7",
NULL = "77",
NULL = "99"))

smart_ohio_raw |> count(`_MRACE1`, race)

A tibble: 9 x 3
`_MRACE1` race n

<dbl> <fct> <int>
1 1 White 6177
2 2 Black or African A 739
3 3 Amer Indian or Alaskan 66
4 4 Asian 115
5 5 Hawaiian or Pac Island 5
6 6 Other Race 43
7 7 Multiracial 153
8 77 <NA> 14
9 99 <NA> 100

6.6.10.3 _HISPANC recoded to hispanic

The _HISPANC variable specifies whether or not the respondent is of Hispanic or Latinx origin.
The available responses are:

• 1 = Hispanic, Latinx or Spanish origin
• 2 = Not of Hispanic, Latinx or Spanish origin
• 9 = Don’t Know, Refused, or Missing

We’ll turn the 9s into NA, and create an indicator variable (1 = Hispanic or Latinx, 0 = not)

218

smart_ohio_raw <- smart_ohio_raw |>
mutate(hispanic = 2 - `_HISPANC`,

hispanic = replace(hispanic, hispanic < 0, NA))

smart_ohio_raw |> count(`_HISPANC`, hispanic)

A tibble: 3 x 3
`_HISPANC` hispanic n

<dbl> <dbl> <int>
1 1 1 146
2 2 0 7217
3 9 NA 49

6.6.10.4 _RACEGR3 recoded to race_eth

The _RACEGR3 variable is a five-level combination of race and ethnicity. The responses are:

• 1 = White non-Hispanic
• 2 = Black non-Hispanic
• 3 = Other race non-Hispanic
• 4 = Multiracial non-Hispanic
• 5 = Hispanic
• 9 = Don’t Know / Not Sure / Refused

We’ll create a factor out of this information, with appropriate level names.

smart_ohio_raw <- smart_ohio_raw |>
mutate(race_eth = fct_recode(

factor(`_RACEGR3`),
"White non-Hispanic" = "1",
"Black non-Hispanic" = "2",
"Other race non-Hispanic" = "3",
"Multiracial non-Hispanic" = "4",
"Hispanic" = "5",
NULL = "9"))

smart_ohio_raw |> count(`_RACEGR3`, race_eth)

A tibble: 6 x 3
`_RACEGR3` race_eth n

<dbl> <fct> <int>

219

1 1 White non-Hispanic 6086
2 2 Black non-Hispanic 725
3 3 Other race non-Hispanic 193
4 4 Multiracial non-Hispanic 143
5 5 Hispanic 146
6 9 <NA> 119

6.6.10.5 SEX recoded to female

The available levels of SEX are:

• 1 = Male
• 2 = Female
• 9 = Refused

We’ll recode that to female = 1 for Female, 0 Male, otherwise NA. Note the trick here is to
subtract one from the coded SEX to get the desired female, but this requires that we move 8
to NA, rather than 9.

smart_ohio_raw <- smart_ohio_raw |>
mutate(female = SEX - 1,

female = replace(female, female == 8, NA))

smart_ohio_raw |> count(SEX, female)

A tibble: 2 x 3
SEX female n

<dbl> <dbl> <int>
1 1 0 3136
2 2 1 4276

6.6.10.6 MARITAL status, revised to marital

The available levels of MARITAL are:

• 1 = Married
• 2 = Divorced
• 3 = Widowed
• 4 = Separated
• 5 = Never married
• 6 = A member of an unmarried couple

220

• 9 = Refused
• BLANK = Not asked or missing

We’ll just turn this into a factor, and move 9 to NA.

smart_ohio_raw <- smart_ohio_raw |>
mutate(marital = fct_recode(factor(MARITAL),

"Married" = "1",
"Divorced" = "2",
"Widowed" = "3",
"Separated" = "4",
"Never_Married" = "5",
"Unmarried_Couple" = "6",
NULL = "9"))

smart_ohio_raw |> count(MARITAL, marital)

A tibble: 7 x 3
MARITAL marital n

<dbl> <fct> <int>
1 1 Married 3668
2 2 Divorced 1110
3 3 Widowed 978
4 4 Separated 142
5 5 Never_Married 1248
6 6 Unmarried_Couple 208
7 9 <NA> 58

6.6.10.7 EDUCA recoded to educgroup

The available levels of EDUCA (Education Level) are responses to: “What is the highest grade
or year of school you completed?”

• 1 = Never attended school or only kindergarten
• 2 = Grades 1 through 8 (Elementary)
• 3 = Grades 9 through 11 (Some high school)
• 4 = Grade 12 or GED (High school graduate)
• 5 = College 1 year to 3 years (Some college or technical school)
• 6 = College 4 years or more (College graduate)
• 9 = Refused
• BLANK = Not asked or missing

221

We’ll just turn this into a factor, and move 9 to NA.

smart_ohio_raw <- smart_ohio_raw |>
mutate(educgroup = fct_recode(factor(EDUCA),

"Kindergarten" = "1",
"Elementary" = "2",
"Some_HS" = "3",
"HS_Grad" = "4",
"Some_College" = "5",
"College_Grad" = "6",
NULL = "9"))

smart_ohio_raw |> count(EDUCA, educgroup)

A tibble: 7 x 3
EDUCA educgroup n
<dbl> <fct> <int>

1 1 Kindergarten 3
2 2 Elementary 117
3 3 Some_HS 332
4 4 HS_Grad 2209
5 5 Some_College 2079
6 6 College_Grad 2646
7 9 <NA> 26

6.6.10.8 RENTHOM1 recoded to home_own

The available levels of RENTHOM1 (Own or Rent Home) are responses to: “Do you own or rent
your home? (Home is defined as the place where you live most of the time/the majority of the
year.)”

• 1 = Own
• 2 = Rent
• 3 = Other Arrangement
• 7 = Don’t know/Not Sure
• 9 = Refused
• BLANK = Not asked or missing

We’ll recode as home_own = 1 if they own their home, and 0 otherwise, and dealing with
missingness properly.

222

smart_ohio_raw <- smart_ohio_raw |>
mutate(home_own = RENTHOM1,

home_own = replace(home_own, home_own %in% c(7,9), NA),
home_own = replace(home_own, home_own %in% c(2,3), 0))

smart_ohio_raw |> count(RENTHOM1, home_own)

A tibble: 5 x 3
RENTHOM1 home_own n

<dbl> <dbl> <int>
1 1 1 5216
2 2 0 1793
3 3 0 348
4 7 NA 28
5 9 NA 27

6.6.10.9 CPDEMO1A and its cleanup to cell_own

CPDEMO1A is the response to “Including phones for business and personal use, do you have a
cell phone for personal use?”

Available responses are:

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

and we’ll recode them to 1 = Yes, 0 = No, otherwise NA, as we’ve done previously.

smart_ohio_raw <- smart_ohio_raw |>
mutate(cell_own = 2 - CPDEMO1A,

cell_own = replace(cell_own, cell_own < 0, NA))

smart_ohio_raw |> count(CPDEMO1A, cell_own)

A tibble: 5 x 3
CPDEMO1A cell_own n

<dbl> <dbl> <int>
1 1 1 2930

223

2 2 0 698
3 7 NA 2
4 9 NA 19
5 NA NA 3763

6.6.10.10 VETERAN3 and its cleanup to veteran

VETERAN3, the Are You A Veteran variable, is the response to “Have you ever served on active
duty in the United States Armed Forces, either in the regular military or in a National Guard
or military reserve unit? (Active duty does not include training for the Reserves or National
Guard, but DOES include activation, for example, for the Persian Gulf War.)”

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

smart_ohio_raw <- smart_ohio_raw |>
mutate(veteran = VETERAN3,

veteran = replace(veteran, veteran %in% c(7, 9), NA),
veteran = replace(veteran, veteran == 2, 0))

smart_ohio_raw |> count(VETERAN3, veteran)

A tibble: 3 x 3
VETERAN3 veteran n

<dbl> <dbl> <int>
1 1 1 927
2 2 0 6479
3 9 NA 6

6.6.10.11 EMPLOY1 and its cleanup to employment

EMPLOY1, the Employment Status variable, is the response to “Are you currently … ?”

• 1 = Employed for wages
• 2 = Self-employed
• 3 = Out of work for 1 year or more
• 4 = Out of work for less than 1 year
• 5 = A homemaker

224

• 6 = A student
• 7 = Retired
• 8 = Unable to work
• 9 = Refused
• BLANK = Not asked or missing

We’ll just turn this into a factor, and move 9 to NA.

smart_ohio_raw <- smart_ohio_raw |>
mutate(employment = fct_recode(factor(EMPLOY1),

"Employed_for_wages" = "1",
"Self-employed" = "2",
"Outofwork_1yearormore" = "3",
"Outofwork_lt1year" = "4",
"Homemaker" = "5",
"Student" = "6",
"Retired" = "7",
"Unable_to_work" = "8",
NULL = "9"))

smart_ohio_raw |> count(EMPLOY1, employment)

A tibble: 9 x 3
EMPLOY1 employment n

<dbl> <fct> <int>
1 1 Employed_for_wages 3119
2 2 Self-employed 466
3 3 Outofwork_1yearormore 254
4 4 Outofwork_lt1year 134
5 5 Homemaker 411
6 6 Student 190
7 7 Retired 2202
8 8 Unable_to_work 603
9 9 <NA> 33

6.6.10.12 CHILDREN and its cleanup to kids

CHILDREN, the Number of Children in Household variable, is the response to “How many
children less than 18 years of age live in your household?”

• 1-87 = legitimate responses
• 88 = None

225

• 99 = Refused
• BLANK = Not asked or missing

smart_ohio_raw <- smart_ohio_raw |>
mutate(kids = CHILDREN,

kids = replace(kids, kids == 99, NA),
kids = replace(kids, kids == 88, 0))

smart_ohio_raw |> count(CHILDREN, kids) |> tail()

A tibble: 6 x 3
CHILDREN kids n

<dbl> <dbl> <int>
1 6 6 7
2 7 7 5
3 8 8 2
4 12 12 1
5 88 0 5449
6 99 NA 43

6.6.10.13 INCOME2 to incomegroup

The available levels of INCOME2 (Income Level) are responses to: “Is your annual household
income from all sources …”

• 1 = Less than $10,000
• 2 = $10,000 to less than $15,000
• 3 = $15,000 to less than $20,000
• 4 = $20,000 to less than $25,000
• 5 = $25,000 to less than $35,000
• 6 = $35,000 to less than $50,000
• 7 = $50,000 to less than $75,000
• 8 = $75,000 or more
• 77 = Don’t know/Not sure
• 99 = Refused
• BLANK = Not asked or missing

We’ll just turn this into a factor, and move 77 and 99 to NA.

smart_ohio_raw <- smart_ohio_raw |>
mutate(incomegroup = fct_recode(factor(`INCOME2`),

226

"0-9K" = "1",
"10-14K" = "2",
"15-19K" = "3",
"20-24K" = "4",
"25-34K" = "5",
"35-49K" = "6",
"50-74K" = "7",
"75K+" = "8",
NULL = "77",
NULL = "99"))

smart_ohio_raw |> count(`INCOME2`, incomegroup)

A tibble: 11 x 3
INCOME2 incomegroup n

<dbl> <fct> <int>
1 1 0-9K 285
2 2 10-14K 306
3 3 15-19K 477
4 4 20-24K 589
5 5 25-34K 685
6 6 35-49K 922
7 7 50-74K 928
8 8 75K+ 1910
9 77 <NA> 610
10 99 <NA> 678
11 NA <NA> 22

6.6.10.14 INTERNET and its cleanup to internet30

INTERNET, the Internet use in the past 30 days variable, is the response to “Have you used the
internet in the past 30 days?”

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

227

smart_ohio_raw <- smart_ohio_raw |>
mutate(internet30 = INTERNET,

internet30 = replace(internet30, internet30 %in% c(7, 9), NA),
internet30 = replace(internet30, internet30 == 2, 0))

smart_ohio_raw |> count(INTERNET, internet30)

A tibble: 5 x 3
INTERNET internet30 n

<dbl> <dbl> <int>
1 1 1 6020
2 2 0 1335
3 7 NA 10
4 9 NA 10
5 NA NA 37

6.6.10.15 WTKG3 is weight_kg

WTKG3 is computed by CDC, as the respondent’s weight in kilograms with two implied decimal
places. We calculate the actual weight in kg, with the following:

smart_ohio_raw <- smart_ohio_raw |>
mutate(weight_kg = WTKG3/100)

smart_ohio_raw |> count(WTKG3, weight_kg) |> tail()

A tibble: 6 x 3
WTKG3 weight_kg n
<dbl> <dbl> <int>

1 19051 191. 1
2 19278 193. 1
3 19504 195. 1
4 20412 204. 2
5 20865 209. 1
6 NA NA 462

6.6.10.16 HEIGHT3 is replaced with height_m

HEIGHT3 is strangely gathered to allow people to specify their height in either feet and inches
or in meters and centimeters.

228

• 200-711 indicates height in feet (first digit) and inches (second two digits)
• 9000 - 9998 indicates height in meters (second digit) and centimeters (last two digits)
• 7777 = Don’t know/Not sure
• 9999 = Refused

Note that there is one impossible value of 575 in the data set. We’ll make that an NA, and
we’ll also make NA any heights below 3 feet, or above 2.24 meters. Specifically, we calculate
the actual height in meters, with the following:

smart_ohio_raw <- smart_ohio_raw |>
mutate(height_m = case_when(

HEIGHT3 >= 300 & HEIGHT3 <= 511 ~ round((12*floor(HEIGHT3/100) + (HEIGHT3 - 100*floor(HEIGHT3/100)))*0.0254,2),
HEIGHT3 >= 600 & HEIGHT3 <= 711 ~ round((12*floor(HEIGHT3/100) + (HEIGHT3 - 100*floor(HEIGHT3/100)))*0.0254,2),
HEIGHT3 >= 9000 & HEIGHT3 <= 9224 ~ ((HEIGHT3 - 9000)/100)))

smart_ohio_raw |> count(HEIGHT3, height_m) |> tail()

A tibble: 6 x 3
HEIGHT3 height_m n

<dbl> <dbl> <int>
1 607 2.01 2
2 608 2.03 6
3 609 2.06 1
4 7777 NA 27
5 9999 NA 86
6 NA NA 67

6.6.10.17 bmi is calculated from height_m and weight_kg

We’ll calculate body-mass index from height and weight.

smart_ohio_raw <- smart_ohio_raw |>
mutate(bmi = round(weight_kg/(height_m)^2,2))

smart_ohio_raw |> count(height_m, weight_kg, bmi)# |> tail()

A tibble: 1,806 x 4
height_m weight_kg bmi n

<dbl> <dbl> <dbl> <int>
1 1.35 39.0 21.4 1
2 1.35 52.2 28.6 1

229

3 1.4 89.8 45.8 1
4 1.42 31.8 15.8 1
5 1.42 45.4 22.5 1
6 1.42 55.8 27.7 1
7 1.42 58.5 29.0 1
8 1.42 59.9 29.7 1
9 1.42 60.8 30.1 1
10 1.42 71.2 35.3 1
i 1,796 more rows

6.6.10.18 bmigroup is calculated from bmi

We’ll then divide the respondents into adult BMI categories, in the usual way.

• BMI < 18.5 indicates underweight
• BMI from 18.5 up to 25 indicates normal weight
• BMI from 25 up to 30 indicates overweight
• BMI of 30 and higher indicates obesity

smart_ohio_raw <- smart_ohio_raw |>
mutate(bmigroup = factor(cut2(as.numeric(bmi),

cuts = c(18.5, 25.0, 30.0))))

smart_ohio_raw |> count(bmigroup)

A tibble: 5 x 2
bmigroup n
<fct> <int>

1 [13.3,18.5) 119
2 [18.5,25.0) 2017
3 [25.0,30.0) 2445
4 [30.0,75.5] 2338
5 <NA> 493

6.6.10.19 PREGNANT and its cleanup to pregnant

PREGNANT, the Pregnancy Status variable, is the response to “To your knowledge, are you now
pregnant?”

• 1 = Yes
• 2 = No

230

• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing (includes SEX = male)

smart_ohio_raw <- smart_ohio_raw |>
mutate(pregnant = PREGNANT,

pregnant = replace(pregnant, pregnant %in% c(7, 9), NA),
pregnant = replace(pregnant, pregnant == 2, 0))

smart_ohio_raw |> count(PREGNANT, pregnant)

A tibble: 5 x 3
PREGNANT pregnant n

<dbl> <dbl> <int>
1 1 1 41
2 2 0 1329
3 7 NA 3
4 9 NA 3
5 NA NA 6036

6.6.10.20 DEAF and its cleanup to deaf

DEAF, the Are you deaf or do you have serious difficulty hearing variable, is the response to
“Are you deaf or do you have serious difficulty hearing?”

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

smart_ohio_raw <- smart_ohio_raw |>
mutate(deaf = DEAF,

deaf = replace(deaf, deaf %in% c(7, 9), NA),
deaf = replace(deaf, deaf == 2, 0))

smart_ohio_raw |> count(DEAF, deaf)

A tibble: 5 x 3
DEAF deaf n
<dbl> <dbl> <int>

231

1 1 1 708
2 2 0 6551
3 7 NA 15
4 9 NA 4
5 NA NA 134

6.6.10.21 BLIND and its cleanup to blind

BLIND, the Blind or Difficulty seeing variable, is the response to “Are you blind or do you have
serious difficulty seeing, even when wearing glasses?”

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

smart_ohio_raw <- smart_ohio_raw |>
mutate(blind = BLIND,

blind = replace(blind, blind %in% c(7, 9), NA),
blind = replace(blind, blind == 2, 0))

smart_ohio_raw |> count(BLIND, blind)

A tibble: 5 x 3
BLIND blind n
<dbl> <dbl> <int>

1 1 1 415
2 2 0 6834
3 7 NA 14
4 9 NA 1
5 NA NA 148

6.6.10.22 DECIDE and its cleanup to decide

DECIDE, the Difficulty Concentrating or Remembering variable, is the response to “Because
of a physical, mental, or emotional condition, do you have serious difficulty concentrating,
remembering, or making decisions?”

• 1 = Yes
• 2 = No

232

• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

smart_ohio_raw <- smart_ohio_raw |>
mutate(decide = DECIDE,

decide = replace(decide, decide %in% c(7, 9), NA),
decide = replace(decide, decide == 2, 0))

smart_ohio_raw |> count(DECIDE, decide)

A tibble: 5 x 3
DECIDE decide n
<dbl> <dbl> <int>

1 1 1 870
2 2 0 6348
3 7 NA 30
4 9 NA 2
5 NA NA 162

6.6.10.23 DIFFWALK and its cleanup to diffwalk

DIFFWALK, the Difficulty Walking or Climbing Stairs variable, is the response to “Do you have
serious difficulty walking or climbing stairs?”

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

smart_ohio_raw <- smart_ohio_raw |>
mutate(diffwalk = DIFFWALK,

diffwalk = replace(diffwalk, diffwalk %in% c(7, 9), NA),
diffwalk = replace(diffwalk, diffwalk == 2, 0))

smart_ohio_raw |> count(DIFFWALK, diffwalk)

A tibble: 5 x 3
DIFFWALK diffwalk n

<dbl> <dbl> <int>

233

1 1 1 1482
2 2 0 5738
3 7 NA 19
4 9 NA 2
5 NA NA 171

6.6.10.24 DIFFDRES and its cleanup to diffdress

DIFFDRES, the Difficulty Dressing or Bathing variable, is the response to “Do you have difficulty
dressing or bathing?”

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

smart_ohio_raw <- smart_ohio_raw |>
mutate(diffdress = DIFFDRES,

diffdress = replace(diffdress, diffdress %in% c(7, 9), NA),
diffdress = replace(diffdress, diffdress == 2, 0))

smart_ohio_raw |> count(DIFFDRES, diffdress)

A tibble: 5 x 3
DIFFDRES diffdress n

<dbl> <dbl> <int>
1 1 1 352
2 2 0 6868
3 7 NA 12
4 9 NA 1
5 NA NA 179

6.6.10.25 DIFFALON and its cleanup to diffalone

DIFFALON, the Difficulty Doing Errands Alone variable, is the response to “Because of a physi-
cal, mental, or emotional condition, do you have difficulty doing errands alone such as visiting
a doctor’s office or shopping?”

• 1 = Yes
• 2 = No

234

• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

smart_ohio_raw <- smart_ohio_raw |>
mutate(diffalone = DIFFALON,

diffalone = replace(diffalone, diffalone %in% c(7, 9), NA),
diffalone = replace(diffalone, diffalone == 2, 0))

smart_ohio_raw |> count(DIFFALON, diffalone)

A tibble: 5 x 3
DIFFALON diffalone n

<dbl> <dbl> <int>
1 1 1 636
2 2 0 6560
3 7 NA 15
4 9 NA 4
5 NA NA 197

6.6.11 Tobacco Use (2 items)

6.6.11.1 SMOKE100 and its cleanup to smoke100

SMOKE100, the Smoked at Least 100 Cigarettes variable, is the response to “Have you smoked
at least 100 cigarettes in your entire life? [Note: 5 packs = 100 cigarettes]”

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused

smart_ohio_raw <- smart_ohio_raw |>
mutate(smoke100 = SMOKE100,

smoke100 = replace(smoke100, smoke100 %in% c(7, 9), NA),
smoke100 = replace(smoke100, smoke100 == 2, 0))

smart_ohio_raw |> count(SMOKE100, smoke100)

A tibble: 5 x 3
SMOKE100 smoke100 n

235

<dbl> <dbl> <int>
1 1 1 3294
2 2 0 3881
3 7 NA 31
4 9 NA 4
5 NA NA 202

6.6.11.2 _SMOKER3 and its cleanup to smoker

_SMOKER3, is a calculated variable which categorizes subjects by their smoking status:

• 1 = Current smoker who smokes daily
• 2 = Current smoker but not every day
• 3 = Former smoker
• 4 = Never smoked
• 9 = Don’t Know / Refused / Missing

We’ll reclassify this as a factor with appropriate labels and NAs.

smart_ohio_raw <- smart_ohio_raw |>
mutate(smoker = fct_recode(factor(`_SMOKER3`),

"Current_daily" = "1",
"Current_not_daily" = "2",
"Former" = "3",
"Never" = "4",
NULL = "9"))

smart_ohio_raw |> count(`_SMOKER3`, smoker)

A tibble: 5 x 3
`_SMOKER3` smoker n

<dbl> <fct> <int>
1 1 Current_daily 990
2 2 Current_not_daily 300
3 3 Former 1999
4 4 Never 3881
5 9 <NA> 242

236

6.6.12 E-Cigarettes (2 items)

6.6.12.1 ECIGARET and its cleanup to ecig_ever

ECIGARET, the Ever used an e-cigarette variable, is the response to “Have you ever used an
e-cigarette or other electronic vaping product, even just one time, in your entire life?”

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused

smart_ohio_raw <- smart_ohio_raw |>
mutate(ecig_ever = ECIGARET,

ecig_ever = replace(ecig_ever, ecig_ever %in% c(7, 9), NA),
ecig_ever = replace(ecig_ever, ecig_ever == 2, 0))

smart_ohio_raw |> count(ECIGARET, ecig_ever)

A tibble: 5 x 3
ECIGARET ecig_ever n

<dbl> <dbl> <int>
1 1 1 1354
2 2 0 5799
3 7 NA 9
4 9 NA 3
5 NA NA 247

6.6.12.2 _ECIGSTS and its cleanup to ecigs

_ECIGSTS, is a calculated variable which categorizes subjects by their smoking status:

• 1 = Current and uses daily
• 2 = Current user but not every day
• 3 = Former user
• 4 = Never used e-cigarettes
• 9 = Don’t Know / Refused / Missing

We’ll reclassify this as a factor with appropriate labels and NAs.

237

smart_ohio_raw <- smart_ohio_raw |>
mutate(ecigs = fct_recode(factor(`_ECIGSTS`),

"Current_daily" = "1",
"Current_not_daily" = "2",
"Former" = "3",
"Never" = "4",
NULL = "9"))

smart_ohio_raw |> count(`_ECIGSTS`, ecigs)

A tibble: 5 x 3
`_ECIGSTS` ecigs n

<dbl> <fct> <int>
1 1 Current_daily 102
2 2 Current_not_daily 165
3 3 Former 1085
4 4 Never 5799
5 9 <NA> 261

6.6.13 Alcohol Consumption (6 items)

6.6.13.1 ALCDAY5 and its cleanup to alcdays

ALCDAY5, the Days in past 30 had alcoholic beverage variable, is the response to “During the
past 30 days, how many days per week or per month did you have at least one drink of any
alcoholic beverage such as beer, wine, a malt beverage or liquor?”

• 101-107 = # of days per week (101 = 1 day per week, 107 = 7 days per week)
• 201-230 = # of days in past 30 days (201 = 1 day in last 30, 230 = 30 days in last 30)
• 777 = Don’t know/Not sure
• 888 = No drinks in past 30 days
• 999 = Refused
• BLANK = Not asked or Missing

We’re going to convert this to a single numeric value. Answers in days per week (in the past
7 days) will be converted (after rounding) to days in the past 30. This is a little bit of a mess,
really, but we can do it.

smart_ohio_raw <- smart_ohio_raw |>
mutate(alcdays = as.numeric(ALCDAY5)) |>
mutate(alcdays = replace(alcdays, alcdays == 888, 0),

238

alcdays = replace(alcdays, alcdays %in% c(777, 999), NA)) |>
mutate(alcdays = case_when(ALCDAY5 > 199 & ALCDAY5 < 231 ~ ALCDAY5 - 200,

ALCDAY5 > 100 & ALCDAY5 < 108 ~ round((ALCDAY5 - 100)*30/7,0),
TRUE ~ alcdays))

smart_ohio_raw |> count(ALCDAY5, alcdays)

A tibble: 39 x 3
ALCDAY5 alcdays n

<dbl> <dbl> <int>
1 101 4 263
2 102 9 197
3 103 13 142
4 104 17 76
5 105 21 53
6 106 26 18
7 107 30 114
8 201 1 621
9 202 2 448
10 203 3 233
i 29 more rows

6.6.13.2 AVEDRNK2 and its cleanup to avgdrinks

AVEDRNK2, the Avg alcoholic drinks per day in past 30 variable, is the response to “One drink
is equivalent to a 12-ounce beer, a 5-ounce glass of wine, or a drink with one shot of liquor.
During the past 30 days, on the days when you drank, about how many drinks did you drink
on the average? (A 40 ounce beer would count as 3 drinks, or a cocktail drink with 2 shots
would count as 2 drinks.)”

• 1-76 = # of drinks per day
• 77 = Don’t know/Not sure
• 99 = Refused
• BLANK = Not asked or Missing (always happens when ALCDAY5 = 777, 888 or 999)

smart_ohio_raw <- smart_ohio_raw |>
mutate(avgdrinks = AVEDRNK2,

avgdrinks = replace(avgdrinks, avgdrinks > 76, NA))

smart_ohio_raw |> count(AVEDRNK2, avgdrinks) |> tail()

239

A tibble: 6 x 3
AVEDRNK2 avgdrinks n

<dbl> <dbl> <int>
1 42 42 1
2 60 60 2
3 76 76 1
4 77 NA 46
5 99 NA 5
6 NA NA 3876

6.6.13.3 MAXDRNKS and its cleanup to maxdrinks

MAXDRINKS, the most drinks on a single occasion in the past 30 days variable, is the response
to “During the past 30 days, what is the largest number of drinks you had on any occasion?”

• 1-76 = # of drinks
• 77 = Don’t know/Not sure
• 99 = Refused
• BLANK = Not asked or Missing (always happens when ALCDAY5 = 777, 888 or 999)

smart_ohio_raw <- smart_ohio_raw |>
mutate(maxdrinks = MAXDRNKS,

maxdrinks = replace(maxdrinks, maxdrinks > 76, NA))

smart_ohio_raw |> count(MAXDRNKS, maxdrinks) |> tail()

A tibble: 6 x 3
MAXDRNKS maxdrinks n

<dbl> <dbl> <int>
1 42 42 1
2 48 48 1
3 76 76 2
4 77 NA 94
5 99 NA 11
6 NA NA 3899

6.6.13.4 _RFBING5 and its cleanup to binge

_RFBING5 identifies binge drinkers (males having five or more drinks on one occasion, females
having four or more drinks on one occasion in the past 30 days)

The values are

240

• 1 = No
• 2 = Yes
• 9 = Don’t Know / Refused / Missing

People who reported no alcdays are reported here as “No”, so we’ll adjust this into an indicator
variable, and create the necessary NAs.

smart_ohio_raw <- smart_ohio_raw |>
mutate(binge = `_RFBING5` - 1,

binge = replace(binge, binge > 1, NA))

smart_ohio_raw |> count(`_RFBING5`, binge)

A tibble: 3 x 3
`_RFBING5` binge n

<dbl> <dbl> <int>
1 1 0 6035
2 2 1 1000
3 9 NA 377

6.6.13.5 _DRNKWEK and its cleanup to drinks_wk

_DRNKWEK provides the computed number of alcoholic drinks per week, with two implied deci-
mal places. The code 99900 is used for “Don’t know / Not sure / Refused / Missing” so we’ll
fix that, and also divide by 100 to get an average with a decimal point.

Note: We’re also going to treat all results of 100 or more drinks per week as incorrect, and
thus indicate them as missing data here.

smart_ohio_raw <- smart_ohio_raw |>
mutate(drinks_wk = `_DRNKWEK` / 100,

drinks_wk = replace(drinks_wk, drinks_wk > 99, NA))

smart_ohio_raw |> count(`_DRNKWEK`, drinks_wk) |> tail(12)

A tibble: 12 x 3
`_DRNKWEK` drinks_wk n

<dbl> <dbl> <int>
1 9333 93.3 2
2 10000 NA 1
3 10500 NA 2

241

4 11667 NA 1
5 14000 NA 2
6 16800 NA 2
7 17500 NA 1
8 18200 NA 1
9 28000 NA 1

10 29400 NA 1
11 53200 NA 1
12 99900 NA 379

6.6.13.6 _RFDRHV5 and its cleanup to drink_heavy

_RFDRHV5 identifies heavy drinkers (males having 14 or more drinks per week, females having
7 or more drinks per week)

The values are

• 1 = No
• 2 = Yes
• 9 = Don’t Know / Refused / Missing

People who reported no alcdays are reported here as “No”, so we’ll adjust this into an indicator
variable, and create the necessary NAs.

smart_ohio_raw <- smart_ohio_raw |>
mutate(drink_heavy = `_RFDRHV5` - 1,

drink_heavy = replace(drink_heavy, drink_heavy > 1, NA))

smart_ohio_raw |> count(`_RFDRHV5`, drink_heavy)

A tibble: 3 x 3
`_RFDRHV5` drink_heavy n

<dbl> <dbl> <int>
1 1 0 6607
2 2 1 426
3 9 NA 379

242

6.6.14 Fruits and Vegetables (8 items)

6.6.14.1 _FRUTSU1 and its cleanup to fruit_day

_FRUTSU1 provides the computed number of fruit servings consumed per day, with two implied
decimal places. We’ll divide by 100 to insert the decimal point.

Note: We’re also going to treat all results exceeding 16 servings per day as implausible, and
thus indicate them as missing data here, following some CDC procedures.

smart_ohio_raw <- smart_ohio_raw |>
mutate(fruit_day = `_FRUTSU1` / 100,

fruit_day = replace(fruit_day, fruit_day > 16, NA))

smart_ohio_raw |> count(`_FRUTSU1`, fruit_day) |> tail()

A tibble: 6 x 3
`_FRUTSU1` fruit_day n

<dbl> <dbl> <int>
1 913 9.13 1
2 1000 10 4
3 1400 14 1
4 3000 NA 1
5 7600 NA 1
6 NA NA 555

6.6.14.2 _VEGESU1 and its cleanup to veg_day

_VEGESU1 provides the computed number of vegetable servings consumed per day, with two
implied decimal places. We’ll divide by 100 to insert the decimal point.

Note: We’re also going to treat all results exceeding 23 servings per day as implausible, and
thus indicate them as missing data here, following some CDC procedures.

smart_ohio_raw <- smart_ohio_raw |>
mutate(veg_day = `_VEGESU1` / 100,

veg_day = replace(veg_day, veg_day > 23, NA))

smart_ohio_raw |> count(`_VEGESU1`, veg_day) |> tail()

243

A tibble: 6 x 3
`_VEGESU1` veg_day n

<dbl> <dbl> <int>
1 1414 14.1 1
2 1603 16.0 1
3 1891 18.9 1
4 2167 21.7 1
5 3150 NA 1
6 NA NA 666

6.6.14.3 FTJUDA2_ and its cleanup to eat_juice

FTJUDA2_ provides the servings of fruit juice consumed per day, with two implied decimal
places. We’ll divide by 100 to insert the decimal point.

Note: We’re also going to treat all results exceeding 16 servings per day as implausible, and
thus indicate them as missing data here.

smart_ohio_raw <- smart_ohio_raw |>
mutate(eat_juice = `FTJUDA2_` / 100,

eat_juice = replace(eat_juice, eat_juice > 16, NA))

smart_ohio_raw |> count(`FTJUDA2_`, eat_juice) |> tail()

A tibble: 6 x 3
FTJUDA2_ eat_juice n

<dbl> <dbl> <int>
1 500 5 6
2 600 6 1
3 700 7 1
4 1200 12 1
5 7500 NA 1
6 NA NA 469

6.6.14.4 FRUTDA2_ and its cleanup to eat_fruit

FRUTDA2_ provides the servings of fruit consumed per day, with two implied decimal places.
We’ll divide by 100 to insert the decimal point.

Note: We’re also going to treat all results exceeding 16 servings per day as implausible, and
thus indicate them as missing data here.

244

smart_ohio_raw <- smart_ohio_raw |>
mutate(eat_fruit = `FRUTDA2_` / 100,

eat_fruit = replace(eat_fruit, eat_fruit > 16, NA))

smart_ohio_raw |> count(`FRUTDA2_`, eat_fruit) |> tail()

A tibble: 6 x 3
FRUTDA2_ eat_fruit n

<dbl> <dbl> <int>
1 700 7 5
2 800 8 3
3 900 9 1
4 1000 10 1
5 3000 NA 1
6 NA NA 456

6.6.14.5 GRENDA1_ and its cleanup to eat_greenveg

GRENDA1_ provides the servings of dark green vegetables consumed per day, with two implied
decimal places. We’ll divide by 100 to insert the decimal point.

Note: We’re also going to treat all results exceeding 16 servings per day as implausible, and
thus indicate them as missing data here.

smart_ohio_raw <- smart_ohio_raw |>
mutate(eat_greenveg = `GRENDA1_` / 100,

eat_greenveg = replace(eat_greenveg, eat_greenveg > 16, NA))

smart_ohio_raw |> count(`GRENDA1_`, eat_greenveg) |> tail()

A tibble: 6 x 3
GRENDA1_ eat_greenveg n

<dbl> <dbl> <int>
1 700 7 4
2 786 7.86 1
3 800 8 2
4 2000 NA 1
5 3000 NA 1
6 NA NA 447

245

6.6.14.6 FRNCHDA_ and its cleanup to eat_fries

FRNCHDA_ provides the servings of french fries consumed per day, with two implied decimal
places. We’ll divide by 100 to insert the decimal point.

Note: We’re also going to treat all results exceeding 16 servings per day as implausible, and
thus indicate them as missing data here.

smart_ohio_raw <- smart_ohio_raw |>
mutate(eat_fries = `FRNCHDA_` / 100,

eat_fries = replace(eat_fries, eat_fries > 16, NA))

smart_ohio_raw |> count(`FRNCHDA_`, eat_fries) |> tail()

A tibble: 6 x 3
FRNCHDA_ eat_fries n

<dbl> <dbl> <int>
1 300 3 9
2 314 3.14 1
3 400 4 3
4 500 5 1
5 700 7 1
6 NA NA 453

6.6.14.7 POTADA1_ and its cleanup to eat_potato

POTADA1_ provides the servings of potatoes consumed per day, with two implied decimal places.
We’ll divide by 100 to insert the decimal point.

Note: We’re also going to treat all results exceeding 16 servings per day as implausible, and
thus indicate them as missing data here.

smart_ohio_raw <- smart_ohio_raw |>
mutate(eat_potato = `POTADA1_` / 100,

eat_potato = replace(eat_potato, eat_potato > 16, NA))

smart_ohio_raw |> count(`POTADA1_`, eat_potato) |> tail()

A tibble: 6 x 3
POTADA1_ eat_potato n

<dbl> <dbl> <int>

246

1 314 3.14 1
2 329 3.29 1
3 400 4 3
4 471 4.71 1
5 700 7 1
6 NA NA 501

6.6.14.8 VEGEDA2_ and its cleanup to eat_otherveg

VEGEDA2_ provides the servings of other vegetables consumed per day, with two implied decimal
places. We’ll divide by 100 to insert the decimal point.

Note: We’re also going to treat all results exceeding 16 servings per day as implausible, and
thus indicate them as missing data here.

smart_ohio_raw <- smart_ohio_raw |>
mutate(eat_otherveg = `VEGEDA2_` / 100,

eat_otherveg = replace(eat_otherveg, eat_otherveg > 16, NA))

smart_ohio_raw |> count(`VEGEDA2_`, eat_otherveg) |> tail()

A tibble: 6 x 3
VEGEDA2_ eat_otherveg n

<dbl> <dbl> <int>
1 600 6 3
2 700 7 11
3 800 8 1
4 1000 10 2
5 1100 11 1
6 NA NA 509

6.6.15 Exercise and Physical Activity (8 items)

6.6.15.1 _TOTINDA and its cleanup to exerany

_TOTINDA, the Exercise in Past 30 Days variable, is the response to “During the past month,
other than your regular job, did you participate in any physical activities or exercises such as
running, calisthenics, golf, gardening, or walking for exercise?”

• 1 = Yes
• 2 = No

247

• 7 = Don’t know/Not sure
• 9 = Refused
• BLANK = Not asked or missing

This is just like HLTHPLAN.

smart_ohio_raw <- smart_ohio_raw |>
mutate(exerany = `_TOTINDA`,

exerany = replace(exerany, exerany %in% c(7, 9), NA),
exerany = replace(exerany, exerany == 2, 0))

smart_ohio_raw |> count(`_TOTINDA`, exerany)

A tibble: 3 x 3
`_TOTINDA` exerany n

<dbl> <dbl> <int>
1 1 1 4828
2 2 0 2137
3 9 NA 447

6.6.15.2 _PACAT1 and its cleanup to activity

_PACAT1 contains physical activity categories, estimated from responses to the BRFSS. The
categories are:

• 1 = Highly Active
• 2 = Active
• 3 = Insufficiently Active
• 4 = Inactive
• 9 = Don’t Know / Not Sure / Refused / Missing

So we’ll create a factor.

smart_ohio_raw <- smart_ohio_raw |>
mutate(activity = factor(`_PACAT1`),

activity = fct_recode(activity,
"Highly_Active" = "1",
"Active" = "2",
"Insufficiently_Active" = "3",
"Inactive" = "4",
NULL = "9"))

248

smart_ohio_raw |> count(`_PACAT1`, activity)

A tibble: 5 x 3
`_PACAT1` activity n

<dbl> <fct> <int>
1 1 Highly_Active 2053
2 2 Active 1132
3 3 Insufficiently_Active 1293
4 4 Inactive 2211
5 9 <NA> 723

6.6.15.3 _PAINDX1 and its cleanup to rec_aerobic

_PAINDX1 indicates whether the respondent’s stated levels of physical activity meet recom-
mendations for aerobic activity. The responses are:

• 1 = Yes
• 2 = No
• 9 = Don’t know/Not sure/Refused/Missing

smart_ohio_raw <- smart_ohio_raw |>
mutate(rec_aerobic = 2 - `_PAINDX1`,

rec_aerobic = replace(rec_aerobic, rec_aerobic < 0, NA))

smart_ohio_raw |> count(`_PAINDX1`, rec_aerobic)

A tibble: 3 x 3
`_PAINDX1` rec_aerobic n

<dbl> <dbl> <int>
1 1 1 3228
2 2 0 3504
3 9 NA 680

6.6.15.4 _PASTRNG and its cleanup to rec_strength

_PASTRNG indicates whether the respondent’s stated levels of physical activity meet recom-
mendations for strength-building activity. The responses are:

• 1 = Yes
• 2 = No

249

• 9 = Don’t know/Not sure/Refused/Missing

smart_ohio_raw <- smart_ohio_raw |>
mutate(rec_strength = 2 - `_PASTRNG`,

rec_strength = replace(rec_strength, rec_strength < 0, NA))

smart_ohio_raw |> count(`_PASTRNG`, rec_strength)

A tibble: 3 x 3
`_PASTRNG` rec_strength n

<dbl> <dbl> <int>
1 1 1 1852
2 2 0 5004
3 9 NA 556

6.6.15.5 EXRACT11 and its cleanup to exer1_type

Respondents are asked “What type of physical activity or exercise did you spend the most
time doing during the past month?” and these responses are gathered into a set of 76 named
categories, including an “other” category. Codes 77 (Don’t Know / Not Sure) and 99 (Refused)
are dropped into NA in my code below, and Code 98 (“Other type of activity”) remains. Then I
went through the tedious work of converting the factor levels from numbers to names, following
the value labels provided by BRFSS.

smart_ohio_raw <- smart_ohio_raw |>
mutate(exer1_type = factor(EXRACT11),

exer1_type = fct_recode(
exer1_type,
"Active Gaming Devices" = "1",
"Aerobics video or class" = "2",
"Backpacking" = "3",
"Badminton" = "4",
"Basketball" = "5",
"Bicycling machine" = "6",
"Bicycling" = "7",
"Boating" = "8",
"Bowling" = "9",
"Boxing" = "10",
"Calisthenics" = "11",
"Canoeing" = "12",
"Carpentry" = "13",

250

"Dancing" = "14",
"Elliptical machine" = "15",
"Fishing" = "16",
"Frisbee" = "17",
"Gardening" = "18",
"Golf with cart" = "19",
"Golf without cart" = "20",
"Handball" = "21",
"Hiking" = "22",
"Hockey" = "23",
"Horseback riding" = "24",
"Hunting large game" = "25",
"Hunting small game" = "26",
"Inline skating" = "27",
"Jogging" = "28",
"Lacrosse" = "29",
"Mountain climbing" = "30",
"Mowing lawn" = "31",
"Paddleball" = "32",
"Painting house" = "33",
"Pilates" = "34",
"Racquetball" = "35",
"Raking lawn" = "36",
"Running" = "37",
"Rock climbing" = "38",
"Rope skipping" = "39",
"Rowing machine" = "40",
"Rugby" = "41",
"Scuba diving" = "42",
"Skateboarding" = "43",
"Skating" = "44",
"Sledding" = "45",
"Snorkeling" = "46",
"Snow blowing" = "47",
"Snow shoveling" = "48",
"Snow skiing" = "49",
"Snowshoeing" = "50",
"Soccer" = "51",
"Softball/Baseball" = "52",
"Squash" = "53",
"Stair Climbing" = "54",

251

"Stream fishing" = "55",
"Surfing" = "56",
"Swimming" = "57",
"Swimming in laps" = "58",
"Table tennis" = "59",
"Tai Chi" = "60",
"Tennis" = "61",
"Touch football" = "62",
"Volleyball" = "63",
"Walking" = "64",
"Waterskiing" = "66",
"Weight lifting" = "67",
"Wrestling" = "68",
"Yoga" = "69",
"Child Care" = "71",
"Farm Work" = "72",
"Household Activities" = "73",
"Martial Arts" = "74",
"Upper Body Cycle" = "75",
"Yard Work" = "76",
"Other Activities" = "98",
NULL = "77",
NULL = "99")

)

Warning: There was 1 warning in `mutate()`.
i In argument: `exer1_type = fct_recode(...)`.
Caused by warning:
! Unknown levels in `f`: 3, 17, 21, 32, 36, 41, 42, 45, 47, 53, 55, 56, 59

The warning generated here is caused by the fact that some of the available types of exercise
were not mentioned by people in our sample. Looking at the last few results, we can see how
many people fell into several categories.

smart_ohio_raw |> count(EXRACT11, exer1_type) |> tail()

A tibble: 6 x 3
EXRACT11 exer1_type n

<dbl> <fct> <int>
1 75 Upper Body Cycle 6
2 76 Yard Work 78

252

3 77 <NA> 10
4 98 Other Activities 276
5 99 <NA> 4
6 NA <NA> 2588

The most common activities are:

smart_ohio_raw |> count(exer1_type, sort = TRUE) |> head(10)

A tibble: 10 x 2
exer1_type n
<fct> <int>

1 Walking 2605
2 <NA> 2602
3 Running 324
4 Other Activities 276
5 Gardening 242
6 Weight lifting 189
7 Aerobics video or class 103
8 Bicycling machine 103
9 Bicycling 96
10 Golf with cart 90

6.6.15.6 EXRACT21 and its cleanup to exer2_type

As a follow-up, respondents are asked “What other type of physical activity gave you the
next most exercise during the past month?” and these responses are also gathered into the
same set of 76 named categories, including an “other” category, but now also adding a “No
Other Activity” category (code 88). Codes 77 (Don’t Know / Not Sure) and 99 (Refused) are
dropped into NA in my code below, and Code 98 (“Other type of activity”) remains. Then I
went through the tedious work of converting the factor levels from numbers to names, following
the value labels provided by BRFSS. I’m sure there’s a better way to do this.

smart_ohio_raw <- smart_ohio_raw |>
mutate(exer2_type = factor(EXRACT21),

exer2_type = fct_recode(
exer2_type,
"Active Gaming Devices" = "1",
"Aerobics video or class" = "2",
"Backpacking" = "3",
"Badminton" = "4",

253

"Basketball" = "5",
"Bicycling machine" = "6",
"Bicycling" = "7",
"Boating" = "8",
"Bowling" = "9",
"Boxing" = "10",
"Calisthenics" = "11",
"Canoeing" = "12",
"Carpentry" = "13",
"Dancing" = "14",
"Elliptical machine" = "15",
"Fishing" = "16",
"Frisbee" = "17",
"Gardening" = "18",
"Golf with cart" = "19",
"Golf without cart" = "20",
"Handball" = "21",
"Hiking" = "22",
"Hockey" = "23",
"Horseback riding" = "24",
"Hunting large game" = "25",
"Hunting small game" = "26",
"Inline skating" = "27",
"Jogging" = "28",
"Lacrosse" = "29",
"Mountain climbing" = "30",
"Mowing lawn" = "31",
"Paddleball" = "32",
"Painting house" = "33",
"Pilates" = "34",
"Racquetball" = "35",
"Raking lawn" = "36",
"Running" = "37",
"Rock climbing" = "38",
"Rope skipping" = "39",
"Rowing machine" = "40",
"Rugby" = "41",
"Scuba diving" = "42",
"Skateboarding" = "43",
"Skating" = "44",
"Sledding" = "45",

254

"Snorkeling" = "46",
"Snow blowing" = "47",
"Snow shoveling" = "48",
"Snow skiing" = "49",
"Snowshoeing" = "50",
"Soccer" = "51",
"Softball/Baseball" = "52",
"Squash" = "53",
"Stair Climbing" = "54",
"Stream fishing" = "55",
"Surfing" = "56",
"Swimming" = "57",
"Swimming in laps" = "58",
"Table tennis" = "59",
"Tai Chi" = "60",
"Tennis" = "61",
"Touch football" = "62",
"Volleyball" = "63",
"Walking" = "64",
"Waterskiing" = "66",
"Weight lifting" = "67",
"Wrestling" = "68",
"Yoga" = "69",
"Child Care" = "71",
"Farm Work" = "72",
"Household Activities" = "73",
"Martial Arts" = "74",
"Upper Body Cycle" = "75",
"Yard Work" = "76",
"No Other Activity" = "88",
"Other Activities" = "98",
NULL = "77",
NULL = "99")

)

Warning: There was 1 warning in `mutate()`.
i In argument: `exer2_type = fct_recode(...)`.
Caused by warning:
! Unknown levels in `f`: 3, 21, 30, 39, 41, 46, 50, 62

smart_ohio_raw |> count(EXRACT21, exer2_type) |> tail()

255

A tibble: 6 x 3
EXRACT21 exer2_type n

<dbl> <fct> <int>
1 76 Yard Work 153
2 77 <NA> 26
3 88 No Other Activity 1854
4 98 Other Activities 246
5 99 <NA> 19
6 NA <NA> 2627

The most common activity types in this group are:

smart_ohio_raw |> count(exer2_type, sort = TRUE) |> head(10)

A tibble: 10 x 2
exer2_type n
<fct> <int>

1 <NA> 2672
2 No Other Activity 1854
3 Walking 629
4 Weight lifting 272
5 Other Activities 246
6 Gardening 202
7 Household Activities 169
8 Yard Work 153
9 Running 148
10 Bicycling 118

6.6.15.7 _MINAC11 and its cleanup to exer1_min

_MINAC11 is minutes of physical activity per week for the first activity (listed as exer1_type
above.) Since there are only about 10,080 minutes in a typical week, we’ll treat as implausible
any values larger than 4200 minutes (which would indicate 70 hours per week.)

smart_ohio_raw <- smart_ohio_raw |>
mutate(exer1_min = `_MINAC11`,

exer1_min = replace(exer1_min, exer1_min > 4200, NA))

smart_ohio_raw |> count(`_MINAC11`, exer1_min) |> tail()

256

A tibble: 6 x 3
`_MINAC11` exer1_min n

<dbl> <dbl> <int>
1 3780 3780 8
2 3959 3959 1
3 3960 3960 1
4 4193 4193 6
5 27000 NA 1
6 NA NA 2760

6.6.15.8 _MINAC21 and its cleanup to exer2_min

_MINAC21 is minutes of physical activity per week for the second activity (listed as exer2_type
above.) Again, we’ll treat as implausible any values larger than 4200 minutes (which would
indicate 70 hours per week.)

smart_ohio_raw <- smart_ohio_raw |>
mutate(exer2_min = `_MINAC21`,

exer2_min = replace(exer2_min, exer2_min > 4200, NA))

smart_ohio_raw |> count(`_MINAC21`, exer2_min) |> tail()

A tibble: 6 x 3
`_MINAC21` exer2_min n

<dbl> <dbl> <int>
1 3360 3360 3
2 3780 3780 7
3 4193 4193 3
4 6120 NA 1
5 8400 NA 1
6 NA NA 2770

6.6.16 Seatbelt Use (1 item)

6.6.16.1 SEATBELT and its cleanup to seatbelt

This question asks “How often do you use seat belts when you drive or ride in a car?” Possible
responses are:

• 1 = Always
• 2 = Nearly always

257

• 3 = Sometimes
• 4 = Seldom
• 5 = Never
• 7 = Don’t know / Not sure
• 8 = Never drive or ride in a car
• 9 = Refused

We’ll treat codes 7, 8 and 9 as NA, and turn this into a factor.

smart_ohio_raw <- smart_ohio_raw |>
mutate(seatbelt = fct_recode(factor(SEATBELT),

"Always" = "1",
"Nearly_always" = "2",
"Sometimes" = "3",
"Seldom" = "4",
"Never" = "5",
NULL = "7",
NULL = "8",
NULL = "9"))

smart_ohio_raw |> count(SEATBELT, seatbelt)

A tibble: 9 x 3
SEATBELT seatbelt n

<dbl> <fct> <int>
1 1 Always 6047
2 2 Nearly_always 409
3 3 Sometimes 191
4 4 Seldom 81
5 5 Never 148
6 7 <NA> 7
7 8 <NA> 21
8 9 <NA> 2
9 NA <NA> 506

6.6.17 Immunization (3 items)

6.6.17.1 FLUSHOT6 and its cleanup to vax_flu

FLUSHOT6 gives the response to “During the past 12 months, have you had either a flu shot or
a flu vaccine that was sprayed in your nose?” The responses are:

258

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused

smart_ohio_raw <- smart_ohio_raw |>
mutate(vax_flu = 2 - FLUSHOT6,

vax_flu = replace(vax_flu, vax_flu < 0, NA))

smart_ohio_raw |> count(FLUSHOT6, vax_flu)

A tibble: 5 x 3
FLUSHOT6 vax_flu n

<dbl> <dbl> <int>
1 1 1 3453
2 2 0 3410
3 7 NA 26
4 9 NA 3
5 NA NA 520

6.6.17.2 PNEUVAC3 and its cleanup to vax_pneumo

PNEUVAC3 gives the response to “A pneumonia shot or pneumococcal vaccine is usually given
only once or twice in a person’s lifetime and is different from the flu shot. Have you ever had
a pneumonia shot?” The responses are:

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused

smart_ohio_raw <- smart_ohio_raw |>
mutate(vax_pneumo = 2 - PNEUVAC3,

vax_pneumo = replace(vax_pneumo, vax_pneumo < 0, NA))

smart_ohio_raw |> count(PNEUVAC3, vax_pneumo)

A tibble: 5 x 3
PNEUVAC3 vax_pneumo n

<dbl> <dbl> <int>
1 1 1 3112

259

2 2 0 3262
3 7 NA 509
4 9 NA 3
5 NA NA 526

6.6.17.3 SHINGLE2 and its cleanup to vax_shingles

SHINGLE2 gives the response to “Have you ever had the shingles or zoster vaccine?” The
responses are:

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused

smart_ohio_raw <- smart_ohio_raw |>
mutate(vax_shingles = 2 - SHINGLE2,

vax_shingles = replace(vax_shingles, vax_shingles < 0, NA))

smart_ohio_raw |> count(SHINGLE2, vax_shingles)

A tibble: 4 x 3
SHINGLE2 vax_shingles n

<dbl> <dbl> <int>
1 1 1 1503
2 2 0 2979
3 7 NA 78
4 NA NA 2852

6.6.18 HIV/AIDS (2 items)

6.6.18.1 HIVTST6 and its cleanup to hiv_test

HIVTST6 gives the response to “Have you ever been tested for HIV? Do not count tests you may
have had as part of a blood donation. Include testing fluid from your mouth.” The responses
are:

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused

260

smart_ohio_raw <- smart_ohio_raw |>
mutate(hiv_test = 2 - HIVTST6,

hiv_test = replace(hiv_test, hiv_test < 0, NA))

smart_ohio_raw |> count(HIVTST6, hiv_test)

A tibble: 5 x 3
HIVTST6 hiv_test n

<dbl> <dbl> <int>
1 1 1 2017
2 2 0 4565
3 7 NA 260
4 9 NA 14
5 NA NA 556

6.6.18.2 HIVRISK5 and its cleanup to hiv_risk

HIVRISK5 gives the response to “I am going to read you a list. When I am done, please tell
me if any of the situations apply to you. You do not need to tell me which one. You have
injected any drug other than those prescribed for you in the past year. You have been treated
for a sexually transmitted disease or STD in the past year. You have given or received money
or drugs in exchange for sex in the past year.” The responses are:

• 1 = Yes
• 2 = No
• 7 = Don’t know/Not sure
• 9 = Refused

smart_ohio_raw <- smart_ohio_raw |>
mutate(hiv_risk = 2 - HIVRISK5,

hiv_risk = replace(hiv_risk, hiv_risk < 0, NA))

smart_ohio_raw |> count(HIVRISK5, hiv_risk)

A tibble: 5 x 3
HIVRISK5 hiv_risk n

<dbl> <dbl> <int>
1 1 1 277
2 2 0 6537
3 7 NA 2

261

4 9 NA 17
5 NA NA 579

6.7 Imputing Age and Income as Quantitative from Thin Air

This section is purely for teaching purposes. I would never use the variables created in this
section for research work.

6.7.1 age_imp: Imputing Age Data

I want a quantitative age variable, so I’m going to create an imputed age_imp value for each
subject based on their agegroup. For each age group, I will assume that each of the ages
represented by a value in that age group will be equally likely, and will draw from the relevant
uniform distribution to impute age.

set.seed(2020432002)

smart_ohio_raw <- smart_ohio_raw |>
mutate(age_low = as.numeric(str_sub(as.character(agegroup), 1, 2))) |>
mutate(age_high = as.numeric(str_sub(as.character(agegroup), 4, 5))) |>
rowwise() |>
mutate(age_imp = ifelse(!is.na(agegroup),

round(runif(1, min = age_low, max = age_high),0),
NA))

smart_ohio_raw |> count(agegroup, age_imp) #|> tail()

A tibble: 80 x 3
Rowwise:

agegroup age_imp n
<fct> <dbl> <int>

1 18-24 18 46
2 18-24 19 75
3 18-24 20 76
4 18-24 21 82
5 18-24 22 80
6 18-24 23 54
7 18-24 24 35
8 25-29 25 42
9 25-29 26 93

262

10 25-29 27 77
i 70 more rows

Here is a histogram of the age_imp variable.

ggplot(smart_ohio_raw, aes(x = age_imp)) +
geom_histogram(fill = "navy", col = "white",

binwidth = 1) +
scale_x_continuous(breaks = c(18, 25, 35, 45, 55, 65, 75, 85, 96)) +
labs(x = "Imputed Age in Years",

title = paste0("Imputed Income: ",
sum(is.na(smart_ohio_raw$age_imp)),
" respondents have missing age group"))

0

50

100

150

200

18 25 35 45 55 65 75 85 96
Imputed Age in Years

co
un

t

Imputed Income: 68 respondents have missing age group

6.7.2 inc_imp: Imputing Income Data

I want a quantitative income variable, so I’m going to create an imputed inc_imp value for
each subject based on their incomegroup. For most income groups, I will assume that each of
the incomes represented by a value in that income group will be equally likely, and will draw
from the relevant uniform distribution to impute income. The exception is the highest income
group, where I will impute a value drawn from a distribution that places all values at $75,000
or more, but has a substantial right skew and long tail.

263

set.seed(2020432001)

smart_ohio_raw <- smart_ohio_raw |>
mutate(inc_imp = case_when(

incomegroup == "0-9K" ~ round(runif(1, min = 100, max = 9999)),
incomegroup == "10-14K" ~ round(runif(1, min = 10000, max = 14999)),
incomegroup == "15-19K" ~ round(runif(1, min = 15000, max = 19999)),
incomegroup == "20-24K" ~ round(runif(1, min = 20000, max = 24999)),
incomegroup == "25-34K" ~ round(runif(1, min = 25000, max = 34999)),
incomegroup == "35-49K" ~ round(runif(1, min = 35000, max = 49999)),
incomegroup == "50-74K" ~ round(runif(1, min = 50000, max = 74999)),
incomegroup == "75K+" ~ round((rnorm(n = 1, mean = 0, sd = 300)^2) + 74999)))

smart_ohio_raw |> count(incomegroup, inc_imp) |> tail()

A tibble: 6 x 3
Rowwise:
incomegroup inc_imp n
<fct> <dbl> <int>

1 75K+ 774009 1
2 75K+ 798174 1
3 75K+ 806161 1
4 75K+ 847758 1
5 75K+ 1085111 1
6 <NA> NA 1310

Here are density plots of the inc_imp variable. The top picture shows the results on a linear
scale, and the bottom shows them on a log (base 10) scale.

p1 <- ggplot(smart_ohio_raw, aes(x = inc_imp/1000)) +
geom_density(fill = "darkgreen", col = "white") +
labs(x = "Imputed Income in Thousands of Dollars",

title = "Imputed Income on the Linear scale") +
scale_x_continuous(breaks = c(25, 75, 250, 1000))

p2 <- ggplot(smart_ohio_raw, aes(x = inc_imp/1000)) +
geom_density(fill = "darkgreen", col = "white") +
labs(x = "Imputed Income in Thousands of Dollars",

title = "Imputed Income on the Log (base 10) scale") +
scale_x_log10(breaks = c(0.1, 1, 5, 25, 75, 250, 1000))

264

p1 / p2 +
plot_annotation(title =

paste0("Imputed Income: ", sum(is.na(smart_ohio_raw$inc_imp)), " respondents have missing income group"))

0.000

0.005

0.010

25 75 250 1000
Imputed Income in Thousands of Dollars

de
ns

ity

Imputed Income on the Linear scale

0.0

0.3

0.6

0.9

0.1 1.0 5.0 25.0 75.0 250.0 1000.0
Imputed Income in Thousands of Dollars

de
ns

ity

Imputed Income on the Log (base 10) scale

Imputed Income: 1310 respondents have missing income group

6.8 Clean Data in the State of Ohio

There are six MMSAs associated with the state of Ohio. We’re going to create a smart_ohio
that includes each of them. First, I’ll ungroup the data that I created earlier, so I get a clean
tibble.

smart_ohio_raw <- smart_ohio_raw |> ungroup()

Next, I’ll select the variables I want to retain (they are the ones I created, plus SEQNO.)

smart_ohio <- smart_ohio_raw |>
select(SEQNO, mmsa, mmsa_code, mmsa_name, mmsa_wt, completed,

landline, hhadults,
genhealth, physhealth, menthealth, poorhealth,
agegroup, age_imp, race, hispanic, race_eth,
female, marital, kids, educgroup, home_own,

265

veteran, employment, incomegroup, inc_imp,
cell_own, internet30,
weight_kg, height_m, bmi, bmigroup,
pregnant, deaf, blind, decide,
diffwalk, diffdress, diffalone,
smoke100, smoker, ecig_ever, ecigs,
healthplan, hasdoc, costprob, t_checkup,
bp_high, bp_meds,
t_chol, chol_high, chol_meds,
asthma, hx_asthma, now_asthma,
hx_mi, hx_chd, hx_stroke, hx_skinc, hx_otherc,
hx_copd, hx_depress, hx_kidney,
hx_diabetes, dm_status, dm_age,
hx_arthr, arth_lims, arth_work, arth_soc,
joint_pain, alcdays, avgdrinks, maxdrinks,
binge, drinks_wk, drink_heavy,
fruit_day, veg_day, eat_juice, eat_fruit,
eat_greenveg, eat_fries, eat_potato,
eat_otherveg, exerany, activity, rec_aerobic,
rec_strength, exer1_type, exer2_type,
exer1_min, exer2_min, seatbelt,
vax_flu, vax_pneumo, vax_shingles,
hiv_test, hiv_risk)

saveRDS(smart_ohio, "data/smart_ohio.Rds")

write_csv(smart_ohio, "data/smart_ohio.csv")

The smart_ohio file should contain 99 variables, describing 7412 respondents.

6.9 Clean Cleveland-Elyria Data

6.9.1 Cleveland - Elyria Data

The mmsa_name variable is probably the simplest way for us to filter our data down to the
MMSA we are interested in. Here, I’m using the str_detect function to identify the values
of mmsa_name that contain the text “Cleveland”.

smart_cle <- smart_ohio |>
filter(str_detect(mmsa_name, 'Cleveland'))

266

saveRDS(smart_cle, "data/smart_cle.Rds")

In the Cleveland-Elyria MSA, we have 1133 observations on the same 99 variables.

We’ll build a variety of smaller subsets from these data, eventually.

267

7 Dealing with Missingness: Single Imputation

7.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(ggridges)
library(knitr)
library(naniar)
library(simputation)
library(Hmisc)
library(mosaic)
library(patchwork)
library(visdat)
library(tidyverse)

theme_set(theme_bw())

7.1.1 Data Load

smart_cle <- readRDS("data/smart_cle.Rds")

7.2 Selecting Some Variables from the smart_cle data

smart_cle1 <- smart_cle |>
select(SEQNO, physhealth, genhealth, bmi,

age_imp, female, race_eth, internet30,
smoke100, activity, drinks_wk, veg_day)

268

The smart_cle.Rds data file available on the Data and Code page of our website describes
information on 99 variables for 1133 respondents to the BRFSS 2017, who live in the Cleveland-
Elyria, OH, Metropolitan Statistical Area. The variables in the smart_cle1.csv file are listed
below, along with the items that generate these responses.

Variable Description
SEQNO respondent identification number (all begin with 2016)

physhealth Now thinking about your physical health, which includes physical illness and
injury, for how many days during the past 30 days was your physical health
not good?

genhealth Would you say that in general, your health is … (five categories: Excellent,
Very Good, Good, Fair or Poor)

bmi Body mass index, in kg/m2

age_imp Age, imputed, in years
female Sex, 1 = female, 0 = male

race_eth Race and Ethnicity, in five categories
internet30 Have you used the internet in the past 30 days? (1 = yes, 0 = no)
smoke100 Have you smoked at least 100 cigarettes in your life? (1 = yes, 0 = no)
activity Physical activity (Highly Active, Active, Insufficiently Active, Inactive)
drinks_wk On average, how many drinks of alcohol do you consume in a week?
veg_day How many servings of vegetables do you consume per day, on average?

str(smart_cle1)

tibble [1,133 x 12] (S3: tbl_df/tbl/data.frame)
$ SEQNO : num [1:1133] 2.02e+09 2.02e+09 2.02e+09 2.02e+09 2.02e+09 ...
$ physhealth: num [1:1133] 4 0 0 0 0 2 2 0 0 0 ...
$ genhealth : Factor w/ 5 levels "1_Excellent",..: 1 1 3 3 3 2 3 2 4 1 ...
$ bmi : num [1:1133] NA 23.1 26.9 26.5 24.2 ...
$ age_imp : num [1:1133] 51 28 37 36 88 43 23 34 58 54 ...
$ female : num [1:1133] 1 1 1 1 0 0 0 0 0 1 ...
$ race_eth : Factor w/ 5 levels "White non-Hispanic",..: 1 1 3 1 1 1 1 3 2 1 ...
$ internet30: num [1:1133] 1 1 0 1 1 1 1 1 1 1 ...
$ smoke100 : num [1:1133] 1 0 0 1 1 1 0 0 0 1 ...
$ activity : Factor w/ 4 levels "Highly_Active",..: 4 4 3 1 1 NA 1 1 1 1 ...
$ drinks_wk : num [1:1133] 0.7 0 0 4.67 0.93 0 2 0 0 0.47 ...
$ veg_day : num [1:1133] NA 3 4.06 2.07 1.31 NA 1.57 0.83 0.49 1.72 ...

269

https://github.com/THOMASELOVE/2020-432

7.3 smart_cle1: Seeing our Missing Data

The naniar package provides several useful functions for summarizing missingness in our data
set. Like all tidy data sets, our smart_cle1 tibble contains rows which describe observations,
sometimes called cases, and also contains columns which describe variables.

Overall, there are 1133 cases, and 1133 observations in our smart_cle1 tibble.

• We can obtain a count of the number of missing cells in the entire tibble.

smart_cle1 |> n_miss()

[1] 479

• We can use the miss_var_summary function to get a sorted table of each variable by
number missing.

miss_var_summary(smart_cle1) |> kable()

variable n_miss pct_miss
activity 109 9.62
veg_day 101 8.91
bmi 91 8.03
drinks_wk 66 5.83
smoke100 40 3.53
race_eth 26 2.29
physhealth 24 2.12
age_imp 11 0.971
internet30 7 0.618
genhealth 4 0.353
SEQNO 0 0
female 0 0

• Or we can use the miss_var_table function to tabulate the number of variables that
have each observed level of missingness.

miss_var_table(smart_cle1)

A tibble: 11 x 3
n_miss_in_var n_vars pct_vars

270

<int> <int> <dbl>
1 0 2 16.7
2 4 1 8.33
3 7 1 8.33
4 11 1 8.33
5 24 1 8.33
6 26 1 8.33
7 40 1 8.33
8 66 1 8.33
9 91 1 8.33
10 101 1 8.33
11 109 1 8.33

• Or we can get a count for a specific variable, like activity:

smart_cle1 |> select(activity) |> n_miss()

[1] 109

• We can also use prop_miss_case or pct_miss_case to specify the proportion (or per-
centage) of missing observations across an entire data set, or within a specific variable.

prop_miss_case(smart_cle1)

[1] 0.2127096

smart_cle1 |> select(activity) |> pct_miss_case()

[1] 9.620477

• We can also use prop_miss_var or pct_miss_var to specify the proportion (or percent-
age) of variables with missing observations across an entire data set.

prop_miss_var(smart_cle1)

[1] 0.8333333

pct_miss_var(smart_cle1)

271

[1] 83.33333

• We use miss_case_table to identify the number of missing values for each of the cases
(rows) in our tibble.

miss_case_table(smart_cle1)

A tibble: 7 x 3
n_miss_in_case n_cases pct_cases

<int> <int> <dbl>
1 0 892 78.7
2 1 129 11.4
3 2 51 4.50
4 3 22 1.94
5 4 21 1.85
6 5 10 0.883
7 6 8 0.706

• Use miss_case_summary to specify individual observations and count their missing val-
ues.

miss_case_summary(smart_cle1)

A tibble: 1,133 x 3
case n_miss pct_miss

<int> <int> <dbl>
1 17 6 50
2 42 6 50
3 254 6 50
4 425 6 50
5 521 6 50
6 729 6 50
7 757 6 50
8 1051 6 50
9 89 5 41.7
10 94 5 41.7
i 1,123 more rows

The case numbers identified here are row numbers. Extract the data for case 17, for instance,
with the slice function.

272

smart_cle1 |> slice(17)

A tibble: 1 x 12
SEQNO physhealth genhealth bmi age_imp female race_eth internet30 smoke100
<dbl> <dbl> <fct> <dbl> <dbl> <dbl> <fct> <dbl> <dbl>

1 2.02e9 0 1_Excell~ NA 50 0 White n~ NA NA
i 3 more variables: activity <fct>, drinks_wk <dbl>, veg_day <dbl>

7.3.1 Plotting Missingness

The gg_miss_var function plots the number of missing observations in each variable in our
data set.

gg_miss_var(smart_cle1)

female

SEQNO

genhealth

internet30

age_imp

physhealth

race_eth

smoke100

drinks_wk

bmi

veg_day

activity

0 30 60 90
Missing

V
ar

ia
bl

es

So the most commonly missing variable is activity.

To get a general sense of the missingness in our data, we might use either the vis_dat or the
vis_miss function from the visdat package.

273

vis_miss(smart_cle1)

SEQNO (0
%

)

ph
ys

he
alt

h
(2

%
)

ge
nh

ea
lth

 (0
%

)

bm
i (

8%
)

ag
e_

im
p

(1
%

)

fem
ale

 (0
%

)

ra
ce

_e
th

 (2
%

)

int
er

ne
t3

0
(1

%
)

sm
ok

e1
00

 (4
%

)

ac
tiv

ity
 (1

0%
)

dr
ink

s_
wk (

6%
)

ve
g_

da
y (

9%
)

0

300

600

900

O
bs

er
va

tio
ns

Missing
(3.5%)

Present
(96.5%)

vis_dat(smart_cle1)

274

ge
nh

ea
lth

ra
ce

_e
th

ac
tiv

ity

SEQNO

ph
ys

he
alt

h

bm
i

ag
e_

im
p

fem
ale

int
er

ne
t3

0

sm
ok

e1
00

dr
ink

s_
wk

ve
g_

da
y

0

300

600

900

O
bs

er
va

tio
ns Type

factor

numeric

NA

7.4 Missing-data mechanisms

My source for this description of mechanisms is Chapter 25 of @GelmanHill2007, and that
chapter is available at this link.

1. MCAR = Missingness completely at random. A variable is missing completely at
random if the probability of missingness is the same for all units, for example, if for each
subject, we decide whether to collect the diabetes status by rolling a die and refusing
to answer if a “6” shows up. If data are missing completely at random, then throwing
out cases with missing data does not bias your inferences.

2. Missingness that depends only on observed predictors. A more general assump-
tion, called missing at random or MAR, is that the probability a variable is missing
depends only on available information. Here, we would have to be willing to assume that
the probability of nonresponse to diabetes depends only on the other, fully recorded
variables in the data. It is often reasonable to model this process as a logistic regression,
where the outcome variable equals 1 for observed cases and 0 for missing. When an out-
come variable is missing at random, it is acceptable to exclude the missing cases (that is,
to treat them as NA), as long as the regression controls for all the variables that affect
the probability of missingness.

3. Missingness that depends on unobserved predictors. Missingness is no longer “at
random” if it depends on information that has not been recorded and this information
also predicts the missing values. If a particular treatment causes discomfort, a patient

275

http://www.stat.columbia.edu/~gelman/arm/missing.pdf

is more likely to drop out of the study. This missingness is not at random (unless
“discomfort” is measured and observed for all patients). If missingness is not at random,
it must be explicitly modeled, or else you must accept some bias in your inferences.

4. Missingness that depends on the missing value itself. Finally, a particularly
difficult situation arises when the probability of missingness depends on the (potentially
missing) variable itself. For example, suppose that people with higher earnings are less
likely to reveal them.

Essentially, situations 3 and 4 are referred to collectively as non-random missingness, and
cause more trouble for us than 1 and 2.

7.5 Options for Dealing with Missingness

There are several available methods for dealing with missing data that are MCAR or MAR,
but they basically boil down to:

• Complete Case (or Available Case) analyses
• Single Imputation
• Multiple Imputation

7.6 Complete Case (and Available Case) analyses

In Complete Case analyses, rows containing NA values are omitted from the data before
analyses commence. This is the default approach for many statistical software packages, and
may introduce unpredictable bias and fail to include some useful, often hard-won informa-
tion.

• A complete case analysis can be appropriate when the number of missing observations
is not large, and the missing pattern is either MCAR (missing completely at random) or
MAR (missing at random.)

• Two problems arise with complete-case analysis:

1. If the units with missing values differ systematically from the completely observed
cases, this could bias the complete-case analysis.

2. If many variables are included in a model, there may be very few complete cases, so
that most of the data would be discarded for the sake of a straightforward analysis.

• A related approach is available-case analysis where different aspects of a problem are
studied with different subsets of the data, perhaps identified on the basis of what is
missing in them.

276

7.7 Single Imputation

In single imputation analyses, NA values are estimated/replaced one time with one partic-
ular data value for the purpose of obtaining more complete samples, at the expense of creating
some potential bias in the eventual conclusions or obtaining slightly less accurate estimates
than would be available if there were no missing values in the data.

• A single imputation can be just a replacement with the mean or median (for a quantity)
or the mode (for a categorical variable.) However, such an approach, though easy to
understand, underestimates variance and ignores the relationship of missing values to
other variables.

• Single imputation can also be done using a variety of models to try to capture information
about the NA values that are available in other variables within the data set.

• The simputation package can help us execute single imputations using a wide variety
of techniques, within the pipe approach used by the tidyverse. Another approach I
have used in the past is the mice package, which can also perform single imputations.

7.8 Multiple Imputation

Multiple imputation, where NA values are repeatedly estimated/replaced with multiple
data values, for the purpose of obtaining mode complete samples and capturing details of the
variation inherent in the fact that the data have missingness, so as to obtain more accurate
estimates than are possible with single imputation.

• We’ll postpone the discussion of multiple imputation for a while.

7.9 Approach 1: Building a Complete Case Analysis:
smart_cle1_cc

In the 431 course, we usually dealt with missing data by restricting our analyses to respondents
with complete data on all variables. Let’s start by doing that here. We’ll create a new
tibble called smart_cle1_cc which includes all respondents with complete data on all of these
variables.

smart_cle1_cc <- smart_cle1 |>
drop_na()

dim(smart_cle1_cc)

277

[1] 892 12

Our smart_cle1_cc tibble now has many fewer observations than its predecessors, but all of
the variables in this complete cases tibble have no missing observations.

Data Set Rows Columns Missingness?
smart_cle 1133 99 Quite a bit.

smart_cle1 1133 12 Quite a bit.
smart_cle1_cc 892 12 None.

7.10 Approach 2: Single Imputation to create smart_cle1_sh

Next, we’ll create a data set which has all of the rows in the original smart_cle1 tibble, but
deals with missingness by imputing (estimating / filling in) new values for each of the missing
values. To do this, we’ll make heavy use of the simputation package in R.

The simputation package is designed for single imputation work. Note that we’ll eventually
adopt a multiple imputation strategy in some of our modeling work, and we’ll use some
specialized tools to facilitate that later.

To begin, we’ll create a “shadow” in our tibble to track what we’ll need to impute.

smart_cle1_sh <- bind_shadow(smart_cle1)

names(smart_cle1_sh)

[1] "SEQNO" "physhealth" "genhealth" "bmi"
[5] "age_imp" "female" "race_eth" "internet30"
[9] "smoke100" "activity" "drinks_wk" "veg_day"
[13] "SEQNO_NA" "physhealth_NA" "genhealth_NA" "bmi_NA"
[17] "age_imp_NA" "female_NA" "race_eth_NA" "internet30_NA"
[21] "smoke100_NA" "activity_NA" "drinks_wk_NA" "veg_day_NA"

Note that the bind_shadow() function doubles the number of variables in our tibble, specifi-
cally by creating a new variable for each that takes the value !NA or NA. For example, consider

smart_cle1_sh |> count(activity, activity_NA)

278

A tibble: 5 x 3
activity activity_NA n
<fct> <fct> <int>

1 Highly_Active !NA 338
2 Active !NA 173
3 Insufficiently_Active !NA 201
4 Inactive !NA 312
5 <NA> NA 109

The activity_NA variable takes the value !NA (meaning not missing) when the value of the
activity variable is known, and takes the value NA for observations where the activity
variable is missing. This background tracking will be helpful to us when we try to assess the
impact of imputation on some of our summaries.

7.10.1 What Type of Missingness Do We Have?

There are three types of missingness that we might assume in any given setting: missing com-
pletely at random (MCAR), missing at random (MAR) and missing not at random (MNAR).
Together, MCAR and MAR are sometimes called ignorable non-response, which essentially
means that imputation provides a way to useful estimates. MNAR or missing NOT at random
is sometimes called non-ignorable missingness, implying that even high-quality imputation
may not be sufficient to provide useful information to us.

Missing Completely at Random means that the missing data points are a random subset
of the data. Essentially, there is nothing that makes some data more likely to be missing than
others. If the data truly match the standard for MCAR, then a complete-case analysis will be
about as good as an analysis after single or multiple imputation.

Missing at Random means that there is a systematic relationship between the observed
data and the missingness mechanism. Another way to say this is that the missing value is not
related to the reason why it is missing, but is related to the other variables collected in the
study. The implication is that the missingness can be accounted for by studying the variables
with complete information. Imputation strategies can be very helpful here, incorporating what
we know (or think we know) about the relationships between the results that are missing and
the results that we see.

• Wikipedia provides a nice example. If men are less likely to fill in a depression survey,
but this has nothing to do with their level of depression after accounting for the fact
that they are male, then the missingess can be assumed MAR.

• Determining whether missingness is MAR or MNAR can be tricky. We’ll spend more
time discussing this later.

279

Missing NOT at Random means that the missing value is related to the reason why it is
missing.

• Continuing the Wikipedia example, if men failed to fill in a depression survey because
of their level of depression, then this would be MNAR.

• Single imputation is most helpful in the MAR situation, although it is also appropriate
when we assume MCAR.

• Multiple imputation will, similarly, be more helpful in MCAR and MAR situations than
when data are missing NOT at random.

It’s worth noting that many people are unwilling to impute values for outcomes or key pre-
dictors in a modeling setting, but are happy to impute for less important covariates. For now,
we’ll assume MCAR or MAR for all of the missingness in our smart_cle1 data, which will
allow us to adopt a single imputation strategy.

7.10.2 Single imputation into smart_cle1_sh

Which variables in smart_cle1_sh contain missing data?

miss_var_summary(smart_cle1_sh)

A tibble: 24 x 3
variable n_miss pct_miss
<chr> <int> <num>

1 activity 109 9.62
2 veg_day 101 8.91
3 bmi 91 8.03
4 drinks_wk 66 5.83
5 smoke100 40 3.53
6 race_eth 26 2.29
7 physhealth 24 2.12
8 age_imp 11 0.971
9 internet30 7 0.618
10 genhealth 4 0.353
i 14 more rows

We will impute these variables using several different strategies, all supported nicely by the
simputation package.

These include imputation methods based solely on the distribution of the complete cases of
the variable being imputed.

280

• impute_median: impute the median value of all non-missing observations into the miss-
ing values for the variable

• impute_rhd: random “hot deck” imputation involves drawing at random from the com-
plete cases for that variable

Also available are imputation strategies that impute predicted values from models using other
variables in the data set besides the one being imputed.

• impute_pmm: imputation using predictive mean matching
• impute_rlm: imputation using robust linear models
• impute_cart: imputation using classification and regression trees
• impute_knn: imputation using k-nearest neighbors methods

7.10.3 Imputing Binary Categorical Variables

Here, we’ll arbitrarily impute our 1/0 variables as follows:

• For internet30 we’ll use the impute_rhd approach to draw a random observation from
the existing set of 1s and 0s in the complete internet30 data.

• For smoke100 we’ll use a method called predictive mean matching (impute_pmm) which
takes the result from a model based on the (imputed) internet30 value and whether or
not the subject is female, and converts it to the nearest value in the observed smoke100
data. This is a good approach for imputing discrete variables.

These are completely arbitrary choices, for demonstration purposes.

set.seed(2020001)

smart_cle1_sh <- smart_cle1_sh |> data.frame() |>
impute_rhd(internet30 ~ 1) |>
impute_pmm(smoke100 ~ internet30 + female) |>

as_tibble()

smart_cle1_sh |> count(smoke100, smoke100_NA)

A tibble: 4 x 3
smoke100 smoke100_NA n

<dbl> <fct> <int>
1 0 !NA 579
2 0 NA 21
3 1 !NA 514
4 1 NA 19

281

smart_cle1_sh |> count(internet30, internet30_NA)

A tibble: 4 x 3
internet30 internet30_NA n

<dbl> <fct> <int>
1 0 !NA 207
2 0 NA 1
3 1 !NA 919
4 1 NA 6

Other approaches that may be used with 1/0 variables include impute_knn and impute_pmm.

7.10.4 Imputing Quantitative Variables

We’ll demonstrate a different approach for imputing each of the quantitative variables with
missing observations. Again, we’re making purely arbitrary decisions here about what to
include in each imputation. In practical work, we’d want to be a bit more thoughtful about
this.

Note that I’m choosing to use impute_pmm with the physhealth and age_imp variables. This
is (in part) because I want my imputations to be integers, as the other observations are for
those variables. impute_rhd would also accomplish this.

set.seed(2020001)
smart_cle1_sh <- smart_cle1_sh |> data.frame() |>

impute_rhd(veg_day ~ 1) |>
impute_median(drinks_wk ~ 1) |>
impute_pmm(physhealth ~ drinks_wk + female + smoke100) |>
impute_pmm(age_imp ~ drinks_wk + physhealth) |>
impute_rlm(bmi ~ physhealth + smoke100) |>

as_tibble()

7.10.5 Imputation Results

Let’s plot a few of these results, so we can see what imputation has done to the distribution
of these quantities.

1. veg_day

282

ggplot(smart_cle1_sh, aes(x = veg_day_NA, y = veg_day)) +
geom_count() +
labs(title = "Imputation Results for veg_day")

0

2

4

6

!NA NA
veg_day_NA

ve
g_

da
y

n

5

10

15

20

Imputation Results for veg_day

favstats(veg_day ~ veg_day_NA, data = smart_cle1_sh)

veg_day_NA min Q1 median Q3 max mean sd n missing
1 !NA 0.00 1.2675 1.72 2.42 7.49 1.912548 1.038403 1032 0
2 NA 0.26 1.3400 1.86 2.72 5.97 2.085050 1.062316 101 0

2. drinks_wk for which we imputed the median value…

ggplot(smart_cle1_sh, aes(x = drinks_wk_NA, y = drinks_wk)) +
geom_count() +
labs(title = "Imputation Results for drinks_wk")

283

0

20

40

!NA NA
drinks_wk_NA

dr
in

ks
_w

k

n

100

200

300

400

Imputation Results for drinks_wk

smart_cle1_sh |> filter(drinks_wk_NA == "NA") |>
tabyl(drinks_wk)

drinks_wk n percent
0.23 66 1

3. physhealth, a count between 0 and 30…

ggplot(smart_cle1_sh,
aes(x = physhealth, y = physhealth_NA)) +

geom_density_ridges() +
labs(title = "Imputation Results for physhealth")

Picking joint bandwidth of 0.426

284

!NA

NA

0 10 20 30
physhealth

ph
ys

he
al

th
_N

A

Imputation Results for physhealth

smart_cle1_sh |> filter(physhealth_NA == "NA") |>
tabyl(physhealth)

physhealth n percent
3 1 0.04166667
4 2 0.08333333
5 13 0.54166667
6 8 0.33333333

4. age_imp, in (integer) years

ggplot(smart_cle1_sh,
aes(x = age_imp, color = age_imp_NA)) +

geom_freqpoly(binwidth = 2) +
labs(title = "Imputation Results for age_imp")

285

0

20

40

60

25 50 75 100
age_imp

co
un

t age_imp_NA

!NA

NA

Imputation Results for age_imp

smart_cle1_sh |> filter(age_imp_NA == "NA") |>
tabyl(age_imp)

age_imp n percent
48 1 0.09090909
57 7 0.63636364
58 1 0.09090909
61 1 0.09090909
63 1 0.09090909

5. bmi or body mass index

ggplot(smart_cle1_sh, aes(x = bmi, fill = bmi_NA)) +
geom_histogram(bins = 30) +
labs(title = "Histogram of BMI and imputed BMI")

286

0

50

100

150

200

250

20 40 60
bmi

co
un

t bmi_NA

!NA

NA

Histogram of BMI and imputed BMI

favstats(bmi ~ bmi_NA, data = smart_cle1_sh)

bmi_NA min Q1 median Q3 max mean sd n
1 !NA 13.3000 24.1100 27.30000 31.68000 70.56000 28.40947 6.6289286 1042
2 NA 27.0693 27.0693 27.50229 27.66574 30.75898 27.66057 0.8964101 91
missing

1 0
2 0

7.10.6 Imputing Multi-Categorical Variables

The three multi-categorical variables we have left to impute are activity, race_eth and
genhealth, and each is presented as a factor in R, rather than as a character variable.

We’ll arbitrarily decide to impute

• activity and genhealth with a classification tree using physhealth, bmi and smoke100,
• and then impute race_eth with a random draw from the distribution of complete cases.

set.seed(2020001)
smart_cle1_sh <- smart_cle1_sh |>

287

data.frame() |>
impute_cart(activity + genhealth ~ physhealth + bmi + smoke100) |>
impute_rhd(race_eth ~ 1) |>

as_tibble()

Let’s check our results.

smart_cle1_sh |> count(activity_NA, activity)

A tibble: 6 x 3
activity_NA activity n
<fct> <fct> <int>

1 !NA Highly_Active 338
2 !NA Active 173
3 !NA Insufficiently_Active 201
4 !NA Inactive 312
5 NA Highly_Active 90
6 NA Inactive 19

smart_cle1_sh |> count(race_eth_NA, race_eth)

A tibble: 9 x 3
race_eth_NA race_eth n
<fct> <fct> <int>

1 !NA White non-Hispanic 805
2 !NA Black non-Hispanic 222
3 !NA Other race non-Hispanic 24
4 !NA Multiracial non-Hispanic 22
5 !NA Hispanic 34
6 NA White non-Hispanic 19
7 NA Black non-Hispanic 4
8 NA Multiracial non-Hispanic 2
9 NA Hispanic 1

smart_cle1_sh |> count(genhealth_NA, genhealth)

A tibble: 7 x 3
genhealth_NA genhealth n
<fct> <fct> <int>

288

1 !NA 1_Excellent 164
2 !NA 2_VeryGood 383
3 !NA 3_Good 364
4 !NA 4_Fair 158
5 !NA 5_Poor 60
6 NA 2_VeryGood 3
7 NA 3_Good 1

And now, we should have no missing values in the data, at all.

miss_case_table(smart_cle1_sh)

A tibble: 1 x 3
n_miss_in_case n_cases pct_cases

<int> <int> <dbl>
1 0 1133 100

7.10.7 Saving the new tibbles

saveRDS(smart_cle1_cc, ("data/smart_cle1_cc.Rds"))
saveRDS(smart_cle1_sh, ("data/smart_cle1_sh.Rds"))

289

8 Summarizing smart_cle1

In this chapter, we’ll work with the two data files we built in Chapter 7.

8.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(broom)
library(Hmisc)
library(mosaic)
library(knitr)
library(tidyverse)

theme_set(theme_bw())

8.1.1 Data Load

smart_cle1_sh <- read_rds("data/smart_cle1_sh.Rds")
smart_cle1_cc <- read_rds("data/smart_cle1_cc.Rds")

8.2 What’s in these data?

Those files (_sh contains single imputations, and a shadow set of variables which have _NA at
the end of their names, while _cc contains only the complete cases) describe information on the
following variables from the BRFSS 2017, who live in the Cleveland-Elyria, OH, Metropolitan
Statistical Area.

Variable Description
SEQNO respondent identification number (all begin with 2016)

290

Variable Description
physhealth Now thinking about your physical health, which includes physical illness and

injury, for how many days during the past 30 days was your physical health
not good?

genhealth Would you say that in general, your health is … (five categories: Excellent,
Very Good, Good, Fair or Poor)

bmi Body mass index, in kg/m2

age_imp Age, imputed, in years
female Sex, 1 = female, 0 = male

race_eth Race and Ethnicity, in five categories
internet30 Have you used the internet in the past 30 days? (1 = yes, 0 = no)
smoke100 Have you smoked at least 100 cigarettes in your life? (1 = yes, 0 = no)
activity Physical activity (Highly Active, Active, Insufficiently Active, Inactive)
drinks_wk On average, how many drinks of alcohol do you consume in a week?
veg_day How many servings of vegetables do you consume per day, on average?

8.3 General Approaches to Obtaining Numeric Summaries

8.3.1 summary for a data frame

Of course, we can use the usual summary to get some basic information about the data.

summary(smart_cle1_cc)

SEQNO physhealth genhealth bmi
Min. :2.017e+09 Min. : 0.000 1_Excellent:134 Min. :13.30
1st Qu.:2.017e+09 1st Qu.: 0.000 2_VeryGood :314 1st Qu.:24.23
Median :2.017e+09 Median : 0.000 3_Good :284 Median :27.48
Mean :2.017e+09 Mean : 4.361 4_Fair :114 Mean :28.51
3rd Qu.:2.017e+09 3rd Qu.: 3.000 5_Poor : 46 3rd Qu.:31.82
Max. :2.017e+09 Max. :30.000 Max. :63.00

age_imp female race_eth
Min. :18.00 Min. :0.0000 White non-Hispanic :661
1st Qu.:43.00 1st Qu.:0.0000 Black non-Hispanic :168
Median :58.00 Median :1.0000 Other race non-Hispanic : 20
Mean :56.46 Mean :0.5807 Multiracial non-Hispanic: 17
3rd Qu.:69.00 3rd Qu.:1.0000 Hispanic : 26
Max. :95.00 Max. :1.0000
internet30 smoke100 activity drinks_wk

291

Min. :0.000 Min. :0.0000 Highly_Active :308 Min. : 0.000
1st Qu.:1.000 1st Qu.:0.0000 Active :155 1st Qu.: 0.000
Median :1.000 Median :0.0000 Insufficiently_Active:167 Median : 0.470
Mean :0.833 Mean :0.4787 Inactive :262 Mean : 2.727
3rd Qu.:1.000 3rd Qu.:1.0000 3rd Qu.: 2.850
Max. :1.000 Max. :1.0000 Max. :56.000

veg_day
Min. :0.000
1st Qu.:1.280
Median :1.730
Mean :1.919
3rd Qu.:2.422
Max. :7.300

8.3.2 The inspect function from the mosaic package

inspect(smart_cle1_cc)

categorical variables:
name class levels n missing

1 genhealth factor 5 892 0
2 race_eth factor 5 892 0
3 activity factor 4 892 0

distribution
1 2_VeryGood (35.2%), 3_Good (31.8%) ...
2 White non-Hispanic (74.1%) ...
3 Highly_Active (34.5%) ...

quantitative variables:
name class min Q1 median Q3

1 SEQNO numeric 2.017e+09 2.0170e+09 2.017001e+09 2.017001e+09
2 physhealth numeric 0.000e+00 0.0000e+00 0.000000e+00 3.000000e+00
3 bmi numeric 1.330e+01 2.4235e+01 2.747500e+01 3.181500e+01
4 age_imp numeric 1.800e+01 4.3000e+01 5.800000e+01 6.900000e+01
5 female numeric 0.000e+00 0.0000e+00 1.000000e+00 1.000000e+00
6 internet30 numeric 0.000e+00 1.0000e+00 1.000000e+00 1.000000e+00
7 smoke100 numeric 0.000e+00 0.0000e+00 0.000000e+00 1.000000e+00
8 drinks_wk numeric 0.000e+00 0.0000e+00 4.700000e-01 2.850000e+00
9 veg_day numeric 0.000e+00 1.2800e+00 1.730000e+00 2.422500e+00

max mean sd n missing

292

1 2017001133.0 2.017001e+09 326.8928344 892 0
2 30.0 4.360987e+00 8.8153373 892 0
3 63.0 2.850905e+01 6.5057975 892 0
4 95.0 5.645516e+01 18.0333027 892 0
5 1.0 5.807175e-01 0.4937185 892 0
6 1.0 8.329596e-01 0.3732212 892 0
7 1.0 4.786996e-01 0.4998263 892 0
8 56.0 2.726525e+00 5.7172011 892 0
9 7.3 1.918643e+00 1.0262415 892 0

8.3.3 The describe function in Hmisc

This provides some useful additional summaries, including a list of the lowest and highest
values (which is very helpful when checking data.)

smart_cle1_cc |>
select(bmi, genhealth, female) |>
describe()

select(smart_cle1_cc, bmi, genhealth, female)

3 Variables 892 Observations
--
bmi

n missing distinct Info Mean Gmd .05 .10
892 0 481 1 28.51 6.952 20.09 21.40
.25 .50 .75 .90 .95

24.23 27.48 31.81 36.78 41.09

lowest : 13.3 13.64 15.71 15.75 17.07, highest: 52.74 56.31 57.12 58.98 63
--
genhealth

n missing distinct
892 0 5

Value 1_Excellent 2_VeryGood 3_Good 4_Fair 5_Poor
Frequency 134 314 284 114 46
Proportion 0.150 0.352 0.318 0.128 0.052
--
female

n missing distinct Info Sum Mean Gmd

293

892 0 2 0.73 518 0.5807 0.4875

--

• The Info measure is used for quantitative and binary variables. It is a relative infor-
mation measure that increases towards 1 for variables with no ties, and is smaller for
variables with many ties.

• The Gmd is the Gini mean difference. It is a measure of spread (or dispersion), where
larger values indicate greater spread in the distribution, like the standard deviation or
the interquartile range. It is defined as the mean absolute difference between any pairs
of observations.

See the Help file for describe in the Hmisc package for more details on these measures, and
on the settings for describe.

8.4 Counting as exploratory data analysis

Counting and/or tabulating things can be amazingly useful. Suppose we want to understand
the genhealth values, after our single imputation.

smart_cle1_sh |> count(genhealth) |>
mutate(percent = 100*n / sum(n))

A tibble: 5 x 3
genhealth n percent
<fct> <int> <dbl>

1 1_Excellent 164 14.5
2 2_VeryGood 386 34.1
3 3_Good 365 32.2
4 4_Fair 158 13.9
5 5_Poor 60 5.30

We might use tabyl to do this job…

smart_cle1_sh |>
tabyl(genhealth) |>
adorn_pct_formatting(digits = 1) |>
kable()

294

genhealth n percent
1_Excellent 164 14.5%
2_VeryGood 386 34.1%
3_Good 365 32.2%
4_Fair 158 13.9%
5_Poor 60 5.3%

8.4.1 Did genhealth vary by smoking status?

smart_cle1_sh |>
count(genhealth, smoke100) |>
mutate(percent = 100*n / sum(n))

A tibble: 10 x 4
genhealth smoke100 n percent
<fct> <dbl> <int> <dbl>

1 1_Excellent 0 105 9.27
2 1_Excellent 1 59 5.21
3 2_VeryGood 0 220 19.4
4 2_VeryGood 1 166 14.7
5 3_Good 0 184 16.2
6 3_Good 1 181 16.0
7 4_Fair 0 67 5.91
8 4_Fair 1 91 8.03
9 5_Poor 0 24 2.12
10 5_Poor 1 36 3.18

Suppose we want to find the percentage within each smoking status group. Here’s one ap-
proach…

smart_cle1_sh |>
count(smoke100, genhealth) |>
group_by(smoke100) |>
mutate(prob = 100*n / sum(n))

A tibble: 10 x 4
Groups: smoke100 [2]

smoke100 genhealth n prob

295

<dbl> <fct> <int> <dbl>
1 0 1_Excellent 105 17.5
2 0 2_VeryGood 220 36.7
3 0 3_Good 184 30.7
4 0 4_Fair 67 11.2
5 0 5_Poor 24 4
6 1 1_Excellent 59 11.1
7 1 2_VeryGood 166 31.1
8 1 3_Good 181 34.0
9 1 4_Fair 91 17.1
10 1 5_Poor 36 6.75

And here’s another …

smart_cle1_sh |>
tabyl(smoke100, genhealth) |>
adorn_totals(where = c("row", "col")) |>
adorn_percentages(denominator = "row") |>
adorn_pct_formatting(digits = 1) |>
adorn_ns(position = "front")

smoke100 1_Excellent 2_VeryGood 3_Good 4_Fair 5_Poor
0 105 (17.5%) 220 (36.7%) 184 (30.7%) 67 (11.2%) 24 (4.0%)
1 59 (11.1%) 166 (31.1%) 181 (34.0%) 91 (17.1%) 36 (6.8%)

Total 164 (14.5%) 386 (34.1%) 365 (32.2%) 158 (13.9%) 60 (5.3%)
Total

600 (100.0%)
533 (100.0%)

1,133 (100.0%)

8.4.2 What’s the distribution of physhealth?

We can count quantitative variables with discrete sets of possible values, like physhealth,
which is captured as an integer (that must fall between 0 and 30.)

smart_cle1_sh |> count(physhealth)

A tibble: 21 x 2
physhealth n

<dbl> <int>

296

1 0 690
2 1 49
3 2 61
4 3 39
5 4 17
6 5 43
7 6 13
8 7 18
9 8 5
10 10 32
i 11 more rows

Of course, a natural summary of a quantitative variable like this would be graphical.

ggplot(smart_cle1_sh, aes(physhealth)) +
geom_histogram(binwidth = 1,

fill = "dodgerblue", col = "white") +
labs(title = "Days with Poor Physical Health in the Past 30",

subtitle = "Most subjects are pretty healthy in this regard, but there are some 30s")

0

200

400

600

0 10 20 30
physhealth

co
un

t

Most subjects are pretty healthy in this regard, but there are some 30s

Days with Poor Physical Health in the Past 30

297

8.4.3 What’s the distribution of bmi?

bmi is the body-mass index, an indicator of size (thickness, really.)

ggplot(smart_cle1_sh, aes(bmi)) +
geom_histogram(bins = 30,

fill = "firebrick", col = "white") +
labs(title = paste0("Body-Mass Index for ",

nrow(smart_cle1_sh),
" BRFSS respondents"))

0

50

100

150

200

250

20 40 60
bmi

co
un

t

Body−Mass Index for 1133 BRFSS respondents

8.4.4 How many of the respondents have a BMI below 30?

smart_cle1_sh |> count(bmi < 30) |>
mutate(proportion = n / sum(n))

A tibble: 2 x 3
`bmi < 30` n proportion
<lgl> <int> <dbl>

1 FALSE 330 0.291
2 TRUE 803 0.709

298

8.4.5 How many of the respondents with a BMI < 30 are highly active?

smart_cle1_sh |>
filter(bmi < 30) |>
tabyl(activity) |>
adorn_pct_formatting()

activity n percent
Highly_Active 343 42.7%

Active 133 16.6%
Insufficiently_Active 129 16.1%

Inactive 198 24.7%

8.4.6 Is obesity associated with smoking history?

smart_cle1_sh |> count(smoke100, bmi < 30) |>
group_by(smoke100) |>
mutate(percent = 100*n/sum(n))

A tibble: 4 x 4
Groups: smoke100 [2]
smoke100 `bmi < 30` n percent

<dbl> <lgl> <int> <dbl>
1 0 FALSE 163 27.2
2 0 TRUE 437 72.8
3 1 FALSE 167 31.3
4 1 TRUE 366 68.7

8.4.7 Comparing drinks_wk summaries by obesity status

Can we compare the drinks_wk means, medians and 75th percentiles for respondents whose
BMI is below 30 to the respondents whose BMI is not?

smart_cle1_sh |>
group_by(bmi < 30) |>
summarize(mean(drinks_wk), median(drinks_wk),

q75 = quantile(drinks_wk, 0.75))

299

A tibble: 2 x 4
`bmi < 30` `mean(drinks_wk)` `median(drinks_wk)` q75
<lgl> <dbl> <dbl> <dbl>

1 FALSE 1.67 0.23 1.17
2 TRUE 2.80 0.23 2.8

8.5 Can bmi predict physhealth?

We’ll start with an effort to predict physhealth using bmi. A natural graph would be a
scatterplot.

ggplot(data = smart_cle1_sh, aes(x = bmi, y = physhealth)) +
geom_point()

0

10

20

30

20 40 60
bmi

ph
ys

he
al

th

A good question to ask ourselves here might be: “In what BMI range can we make a reasonable
prediction of physhealth?”

Now, we might take the plot above and add a simple linear model …

300

ggplot(data = smart_cle1_sh, aes(x = bmi, y = physhealth)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, col = "red")

`geom_smooth()` using formula = 'y ~ x'

0

10

20

30

20 40 60
bmi

ph
ys

he
al

th

which shows the same least squares regression model that we can fit with the lm command.

8.5.1 Fitting a Simple Regression Model

model_A <- lm(physhealth ~ bmi, data = smart_cle1_sh)

model_A

Call:
lm(formula = physhealth ~ bmi, data = smart_cle1_sh)

Coefficients:

301

(Intercept) bmi
-2.8121 0.2643

summary(model_A)

Call:
lm(formula = physhealth ~ bmi, data = smart_cle1_sh)

Residuals:
Min 1Q Median 3Q Max

-10.5258 -4.5943 -3.5608 -0.5106 29.2965

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.81208 1.21672 -2.311 0.021 *
bmi 0.26433 0.04188 6.312 3.95e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.968 on 1131 degrees of freedom
Multiple R-squared: 0.03403, Adjusted R-squared: 0.03317
F-statistic: 39.84 on 1 and 1131 DF, p-value: 3.95e-10

confint(model_A, level = 0.95)

2.5 % 97.5 %
(Intercept) -5.1993624 -0.4247909
bmi 0.1821599 0.3464915

The model coefficients can be obtained by printing the model object, and the summary function
provides several useful descriptions of the model’s residuals, its statistical significance, and
quality of fit.

8.5.2 Model Summary for a Simple (One-Predictor) Regression

The fitted model predicts physhealth using a prediction equation we can read off from the
model coefficient estimates. Specifically, we have:

302

coef(model_A)

(Intercept) bmi
-2.8120766 0.2643257

so the equation is physhealth = -2.82 + 0.265 bmi.

Each of the 1133 respondents included in the smart_cle1_sh data makes a contribution to
this model.

8.5.2.1 Residuals

Suppose Harry is one of the people in that group, and Harry’s data is bmi= 20, and physhealth
= 3.

• Harry’s observed value of physhealth is just the value we have in the data for them, in
this case, observed physhealth = 3 for Harry.

• Harry’s fitted or predicted physhealth value is the result of calculating -2.82 + 0.265
bmi for Harry. So, if Harry’s BMI was 20, then Harry’s predicted physhealth value is
-2.82 + 0.265 (20) = 2.48.

• The residual for Harry is then his observed outcome minus his fitted outcome, so Harry
has a residual of 3 - 2.48 = 0.52.

• Graphically, a residual represents vertical distance between the observed point and the
fitted regression line.

• Points above the regression line will have positive residuals, and points below the regres-
sion line will have negative residuals. Points on the line have zero residuals.

The residuals are summarized at the top of the summary output for linear model.

summary(model_A)

Call:
lm(formula = physhealth ~ bmi, data = smart_cle1_sh)

Residuals:
Min 1Q Median 3Q Max

-10.5258 -4.5943 -3.5608 -0.5106 29.2965

Coefficients:
Estimate Std. Error t value Pr(>|t|)

303

(Intercept) -2.81208 1.21672 -2.311 0.021 *
bmi 0.26433 0.04188 6.312 3.95e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.968 on 1131 degrees of freedom
Multiple R-squared: 0.03403, Adjusted R-squared: 0.03317
F-statistic: 39.84 on 1 and 1131 DF, p-value: 3.95e-10

• The mean residual will always be zero in an ordinary least squares model, but a five
number summary of the residuals is provided by the summary, as is an estimated standard
deviation of the residuals (called here the Residual standard error.)

• In the smart_cle1_sh data, the minimum residual was -10.53, so for one subject, the
observed value was 10.53 days smaller than the predicted value. This means that the
prediction was 10.53 days too large for that subject.

• Similarly, the maximum residual was 29.30 days, so for one subject the prediction was
29.30 days too small. Not a strong performance.

• In a least squares model, the residuals are assumed to follow a Normal distribution, with
mean zero, and standard deviation (for the smart_cle1_sh data) of about 9.0 days. We
know this because the residual standard error is specified as 8.968 later in the linear
model output. Thus, by the definition of a Normal distribution, we’d expect

• about 68% of the residuals to be between -9 and +9 days,
• about 95% of the residuals to be between -18 and +18 days,
• about all (99.7%) of the residuals to be between -27 and +27 days.

8.5.2.2 Coefficients section

The summary for a linear model shows Estimates, Standard Errors, t values and p values for
each coefficient fit.

summary(model_A)

Call:
lm(formula = physhealth ~ bmi, data = smart_cle1_sh)

Residuals:
Min 1Q Median 3Q Max

-10.5258 -4.5943 -3.5608 -0.5106 29.2965

Coefficients:

304

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.81208 1.21672 -2.311 0.021 *
bmi 0.26433 0.04188 6.312 3.95e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.968 on 1131 degrees of freedom
Multiple R-squared: 0.03403, Adjusted R-squared: 0.03317
F-statistic: 39.84 on 1 and 1131 DF, p-value: 3.95e-10

• The Estimates are the point estimates of the intercept and slope of bmi in our model.
• In this case, our estimated slope is 0.265, which implies that if Harry’s BMI is 20 and

Sally’s BMI is 21, we predict that Sally’s physhealth will be 0.265 days larger than
Harry’s.

• The Standard Errors are also provided for each estimate. We can create rough 95% uncer-
tainty intervals for these estimated coefficients by adding and subtracting two standard
errors from each coefficient, or we can get a slightly more accurate answer with the
confint function.

• Here, the 95% uncertainty interval for the slope of bmi is estimated to be (0.18, 0.35).
This is a good measure of the uncertainty in the slope that is captured by our model. We
are 95% confident in the process of building this interval, but this doesn’t mean we’re
95% sure that the true slope is actually in that interval.

Also available are a t value (just the Estimate divided by the Standard Error) and the appro-
priate p value for testing the null hypothesis that the true value of the coefficient is 0 against
a two-tailed alternative.

• If a slope coefficient is statistically detectably different from 0, this implies that 0 will
not be part of the uncertainty interval obtained through confint.

• If the slope was zero, it would suggest that bmi would add no predictive value to the
model. But that’s unlikely here.

If the bmi slope coefficient is associated with a small p value, as in the case of our model_A,
it suggests that the model including bmi is statistically detectably better at predicting
physhealth than the model without bmi.

• Without bmi our model_A would become an intercept-only model, in this case, which
would predict the mean physhealth for everyone, regardless of any other information.

305

8.5.2.3 Model Fit Summaries

summary(model_A)

Call:
lm(formula = physhealth ~ bmi, data = smart_cle1_sh)

Residuals:
Min 1Q Median 3Q Max

-10.5258 -4.5943 -3.5608 -0.5106 29.2965

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.81208 1.21672 -2.311 0.021 *
bmi 0.26433 0.04188 6.312 3.95e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.968 on 1131 degrees of freedom
Multiple R-squared: 0.03403, Adjusted R-squared: 0.03317
F-statistic: 39.84 on 1 and 1131 DF, p-value: 3.95e-10

The summary of a linear model also displays:

• The residual standard error and associated degrees of freedom for the residuals.
• For a simple (one-predictor) least regression like this, the residual degrees of freedom

will be the sample size minus 2.
• The multiple R-squared (or coefficient of determination)
• This is interpreted as the proportion of variation in the outcome (physhealth) accounted

for by the model, and will always fall between 0 and 1 as a result.
• Our model_A accounts for a mere 3.4% of the variation in physhealth.
• The Adjusted R-squared value “adjusts” for the size of our model in terms of the number

of coefficients included in the model.
• The adjusted R-squared will always be smaller than the Multiple R-squared.
• We still hope to find models with relatively large adjusted 𝑅2 values.
• In particular, we hope to find models where the adjusted 𝑅2 isn’t substantially less than

the Multiple R-squared.
• The adjusted R-squared is usually a better estimate of likely performance of our model

in new data than is the Multiple R-squared.
• The adjusted R-squared result is no longer interpretable as a proportion of anything -

in fact, it can fall below 0.

306

• We can obtain the adjusted 𝑅2 from the raw 𝑅2, the number of observations N and the
number of predictors p included in the model, as follows:

𝑅2
𝑎𝑑𝑗 = 1 − (1 − 𝑅2)(𝑁 − 1)

𝑁 − 𝑝 − 1 ,

• The F statistic and p value from a global ANOVA test of the model.

– Obtaining a statistically significant result here is usually pretty straightforward,
since the comparison is between our model, and a model which simply predicts the
mean value of the outcome for everyone.

– In a simple (one-predictor) linear regression like this, the t statistic for the slope is
just the square root of the F statistic, and the resulting p values for the slope’s t
test and for the global F test will be identical.

• To see the complete ANOVA F test for this model, we can run anova(model_A).

anova(model_A)

Analysis of Variance Table

Response: physhealth
Df Sum Sq Mean Sq F value Pr(>F)

bmi 1 3204 3204.4 39.84 3.95e-10 ***
Residuals 1131 90968 80.4

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8.5.3 Using the broom package

The broom package has three functions of particular use in a linear regression model:

8.5.3.1 The tidy function

tidy builds a data frame/tibble containing information about the coefficients in the model,
their standard errors, t statistics and p values.

tidy(model_A)

307

A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -2.81 1.22 -2.31 2.10e- 2
2 bmi 0.264 0.0419 6.31 3.95e-10

It’s often useful to include other summaries in this tidying, for instance:

tidy(model_A, conf.int = TRUE, conf.level = 0.9) |>
select(term, estimate, conf.low, conf.high)

A tibble: 2 x 4
term estimate conf.low conf.high
<chr> <dbl> <dbl> <dbl>

1 (Intercept) -2.81 -4.82 -0.809
2 bmi 0.264 0.195 0.333

8.5.3.2 The glance function

glance‘ builds a data frame/tibble containing summary statistics about the model, including

• the (raw) multiple 𝑅2 and adjusted R^2
• sigma which is the residual standard error
• the F statistic, p.value model df and df.residual associated with the global

ANOVA test, plus
• several statistics that will be useful in comparing models down the line:
• the model’s log likelihood function value, logLik
• the model’s Akaike’s Information Criterion value, AIC
• the model’s Bayesian Information Criterion value, BIC
• and the model’s deviance statistic

glance(model_A)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.0340 0.0332 8.97 39.8 3.95e-10 1 -4092. 8190. 8205.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

308

8.5.3.3 The augment function

augment builds a data frame/tibble which adds fitted values, residuals and other diagnostic
summaries that describe each observation to the original data used to fit the model, and this
includes

• .fitted and .resid, the fitted and residual values, in addition to
• .hat, the leverage value for this observation
• .cooksd, the Cook’s distance measure of influence for this observation
• .stdresid, the standardized residual (think of this as a z-score - a measure of the residual

divided by its associated standard deviation .sigma)
• and se.fit which will help us generate prediction intervals for the model downstream

Note that each of the new columns begins with . to avoid overwriting any data.

head(augment(model_A))

A tibble: 6 x 8
physhealth bmi .fitted .resid .hat .sigma .cooksd .std.resid

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 4 27.9 4.57 -0.572 0.000886 8.97 0.00000181 -0.0638
2 0 23.0 3.28 -3.28 0.00149 8.97 0.000100 -0.366
3 0 26.9 4.31 -4.31 0.000927 8.97 0.000107 -0.480
4 0 26.5 4.20 -4.20 0.000956 8.97 0.000105 -0.468
5 0 24.2 3.60 -3.60 0.00125 8.97 0.000101 -0.401
6 2 27.7 4.51 -2.51 0.000891 8.97 0.0000351 -0.281

For more on the broom package, you may want to look at this vignette.

8.5.4 How does the model do? (Residuals vs. Fitted Values)

• Remember that the 𝑅2 value was about 3.4%.

plot(model_A, which = 1)

309

https://cran.r-project.org/web/packages/broom/vignettes/broom.html

5 10 15

−
10

0
10

20
30

Fitted values

R
es

id
ua

ls

lm(physhealth ~ bmi)

Residuals vs Fitted

227488419

This is a plot of residuals vs. fitted values. The goal here is for this plot to look like a random
scatter of points, perhaps like a “fuzzy football”, and that’s not what we have. Why?

If you prefer, here’s a ggplot2 version of a similar plot, now looking at standardized residuals
instead of raw residuals, and adding a loess smooth and a linear fit to the result.

ggplot(augment(model_A), aes(x = .fitted, y = .std.resid)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, col = "red", linetype = "dashed") +
geom_smooth(method = "loess", se = FALSE, col = "navy") +
theme_bw()

`geom_smooth()` using formula = 'y ~ x'
`geom_smooth()` using formula = 'y ~ x'

310

−1

0

1

2

3

0 4 8 12 16
.fitted

.s
td

.r
es

id

The problem we’re having here becomes, I think, a little more obvious if we look at what we’re
predicting. Does physhealth look like a good candidate for a linear model?

ggplot(smart_cle1_sh, aes(x = physhealth)) +
geom_histogram(bins = 30, fill = "dodgerblue",

color = "royalblue")

311

0

200

400

600

0 10 20 30
physhealth

co
un

t

smart_cle1_sh |> count(physhealth == 0, physhealth == 30)

A tibble: 3 x 3
`physhealth == 0` `physhealth == 30` n
<lgl> <lgl> <int>

1 FALSE FALSE 343
2 FALSE TRUE 100
3 TRUE FALSE 690

No matter what model we fit, if we are predicting physhealth, and most of the data are
values of 0 and 30, we have limited variation in our outcome, and so our linear model will be
somewhat questionable just on that basis.

A normal Q-Q plot of the standardized residuals for our model_A shows this problem, too.

plot(model_A, which = 2)

312

−3 −2 −1 0 1 2 3

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(physhealth ~ bmi)

Q−Q Residuals

227488419

We’re going to need a method to deal with this sort of outcome, that has both a floor and a
ceiling. We’ll get there eventually, but linear regression alone doesn’t look promising.

All right, so that didn’t go anywhere great. We’ll try again, with a new outcome, in the next
chapter.

313

9 Analysis of Variance with SMART

In this chapter, we’ll work with the smart_cle1_sh data file again.

9.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(broom)
library(knitr)
library(mosaic)
library(tidyverse)

theme_set(theme_bw())

9.1.1 Data Load

smart_cle1_sh <- read_rds("data/smart_cle1_sh.Rds")

The variables we’ll look at in this chapter are as follows.

Variable Description
SEQNO respondent identification number (all begin with 2016)
bmi Body mass index, in kg/m2

female Sex, 1 = female, 0 = male
smoke100 Have you smoked at least 100 cigarettes in your life? (1 = yes, 0 = no)
activity Physical activity (Highly Active, Active, Insufficiently Active, Inactive)
drinks_wk On average, how many drinks of alcohol do you consume in a week?
physhealth Now thinking about your physical health, which includes physical illness and

injury, for how many days during the past 30 days was your physical health
not good?

314

9.2 A One-Factor Analysis of Variance

We’ll be predicting body mass index, at first using a single factor as a predictor: the activity
level.

9.2.1 Can activity be used to predict bmi?

ggplot(smart_cle1_sh, aes(x = activity, y = bmi,
fill = activity)) +

geom_violin(alpha = 0.3) +
geom_boxplot(width = 0.3, notch = TRUE) +
guides(fill = "none") +
coord_flip() +
labs(title = "BMI as a function of Activity Level",

subtitle = "Subjects in the SMART CLE data",
x = "", y = "Body Mass Index")

Highly_Active

Active

Insufficiently_Active

Inactive

20 40 60
Body Mass Index

Subjects in the SMART CLE data

BMI as a function of Activity Level

Here’s a numerical summary of the distributions of bmi within each activity group.

favstats(bmi ~ activity, data = smart_cle1_sh)

315

activity min Q1 median Q3 max mean sd
1 Highly_Active 13.30 23.6275 26.99000 28.930 50.46 27.02253 5.217496
2 Active 17.07 24.2400 27.06930 29.520 44.67 27.36157 5.151796
3 Insufficiently_Active 17.49 25.0500 27.93776 32.180 49.98 29.04328 6.051823
4 Inactive 13.64 25.2150 28.34000 33.775 70.56 30.15978 7.832675

n missing
1 428 0
2 173 0
3 201 0
4 331 0

9.2.2 Should we transform bmi?

The analysis of variance is something of a misnomer. What we’re doing is using the variance to
say something about population means. In light of the apparent right skew of the bmi results
in each activity group, might it be a better choice to use a logarithmic transformation? We’ll
use the natural logarithm here, which in R, is symbolized by log.

ggplot(smart_cle1_sh, aes(x = activity, y = log(bmi),
fill = activity)) +

geom_violin(alpha = 0.3) +
geom_boxplot(width = 0.3, notch = TRUE) +
guides(fill = "none") +
coord_flip() +
labs(title = "log(BMI) as a function of Activity Level",

subtitle = "Subjects in the SMART CLE data",
x = "", y = "log(Body Mass Index)")

316

Highly_Active

Active

Insufficiently_Active

Inactive

3.0 3.5 4.0
log(Body Mass Index)

Subjects in the SMART CLE data

log(BMI) as a function of Activity Level

The logarithmic transformation yields distributions that look much more symmetric in each
activity group, so we’ll proceed to build our regression model predicting log(bmi) using
activity. Here’s the numerical summary of these logged results:

favstats(log(bmi) ~ activity, data = smart_cle1_sh)

activity min Q1 median Q3 max mean
1 Highly_Active 2.587764 3.162411 3.295466 3.364879 3.921181 3.279246
2 Active 2.837323 3.188004 3.298400 3.385068 3.799302 3.292032
3 Insufficiently_Active 2.861629 3.220874 3.329979 3.471345 3.911623 3.348383
4 Inactive 2.613007 3.227439 3.344274 3.519721 4.256463 3.376468

sd n missing
1 0.1851478 428 0
2 0.1850568 173 0
3 0.2007241 201 0
4 0.2411196 331 0

317

9.2.3 Building the ANOVA model

model_5a <- lm(log(bmi) ~ activity, data = smart_cle1_sh)

model_5a

Call:
lm(formula = log(bmi) ~ activity, data = smart_cle1_sh)

Coefficients:
(Intercept) activityActive

3.27925 0.01279
activityInsufficiently_Active activityInactive

0.06914 0.09722

The activity data is categorical and there are four levels. The model equation is:

log(bmi) = 3.279 + 0.013 (activity = Active)
+ 0.069 (activity = Insufficiently Active)
+ 0.097 (activity = Inactive)

where, for example, (activity = Active) is 1 if activity is Active, and 0 otherwise. The
fourth level (Highly Active) is not shown here and is used as a baseline. Thus the model above
can be interpreted as follows.

activity Predicted log(bmi) Predicted bmi

Highly Active 3.279 exp(3.279) = 26.55
Active 3.279 + 0.013 = 3.292 exp(3.292) = 26.90

Insufficiently Active 3.279 + 0.069 = 3.348 exp(3.348) = 28.45
Inactive 3.279 + 0.097 = 3.376 exp(3.376) = 29.25

Those predicted log(bmi) values should look familiar. They are just the means of log(bmi)
in each group, but I’m sure you’ll also notice that the predicted bmi values are not exact
matches for the observed means of bmi.

smart_cle1_sh |> group_by(activity) |>
summarise(mean(log(bmi)), mean(bmi))

318

A tibble: 4 x 3
activity `mean(log(bmi))` `mean(bmi)`
<fct> <dbl> <dbl>

1 Highly_Active 3.28 27.0
2 Active 3.29 27.4
3 Insufficiently_Active 3.35 29.0
4 Inactive 3.38 30.2

9.2.4 The ANOVA table

Now, let’s press on to look at the ANOVA results for this model.

anova(model_5a)

Analysis of Variance Table

Response: log(bmi)
Df Sum Sq Mean Sq F value Pr(>F)

activity 3 2.060 0.68652 16.225 2.496e-10 ***
Residuals 1129 47.772 0.04231

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• The total variation in log(bmi), our outcome, is captured by the sums of squares here.
SS(Total) = 2.058 + 47.770 = 49.828

• Here, the activity variable (with 4 levels, so 4-1 = 3 degrees of freedom) accounts for
4.13% (2.058 / 49.828) of the variation in log(bmi). Another way of saying this is that
the model 𝑅2 or 𝜂2 is 0.0413.

• The variation accounted for by the activity categories meets the standard for a sta-
tistically detectable result, according to the ANOVA F test, although that’s not really
important.

• The square root of the Mean Square(Residuals) is the residual standard error, 𝜎, we’ve
seen in the past. MS(Residual) estimates the variance (0.0423), so the residual standard
error is

√
0.0423 ≈ 0.206.

9.2.5 The Model Coefficients

To address the question of effect size for the various levels of activity on log(bmi), we
could look directly at the regression model coefficients. For that, we might look at the model
summary.

319

summary(model_5a)

Call:
lm(formula = log(bmi) ~ activity, data = smart_cle1_sh)

Residuals:
Min 1Q Median 3Q Max

-0.76346 -0.12609 -0.00286 0.11055 0.88000

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.279246 0.009943 329.806 < 2e-16 ***
activityActive 0.012785 0.018532 0.690 0.49
activityInsufficiently_Active 0.069137 0.017589 3.931 8.99e-05 ***
activityInactive 0.097221 0.015056 6.457 1.58e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2057 on 1129 degrees of freedom
Multiple R-squared: 0.04133, Adjusted R-squared: 0.03878
F-statistic: 16.22 on 3 and 1129 DF, p-value: 2.496e-10

If we want to see the confidence intervals around these estimates, we could use

confint(model_5a, conf.level = 0.95)

2.5 % 97.5 %
(Intercept) 3.25973769 3.29875522
activityActive -0.02357630 0.04914707
activityInsufficiently_Active 0.03462572 0.10364764
activityInactive 0.06767944 0.12676300

The model suggests, based on these 1133 subjects, that (remember that the baseline category
is Highly Active)

• a 95% confidence (uncertainty) interval for the difference between Active and Highly
Active subjects in log(BMI) ranges from -0.024 to 0.049

• a 95% confidence (uncertainty) interval for the difference between Insufficiently Active
and Highly Active subjects in log(BMI) ranges from 0.035 to 0.104

320

• a 95% confidence (uncertainty) interval for the difference between Inactive and Highly
Active subjects in log(BMI) ranges from 0.068 to 0.127

• the model accounts for 4.13% of the variation in log(BMI), so that knowing the respon-
dent’s activity level somewhat reduces the size of the prediction errors as compared to
an intercept only model that would predict the overall mean log(BMI), regardless of
activity level, for all subjects.

• from the summary of residuals, we see that one subject had a residual of 0.88 - that
means they were predicted to have a log(BMI) 0.88 lower than their actual log(BMI)
and one subject had a log(BMI) that is 0.76 larger than their actual log(BMI), at the
extremes.

9.2.6 Using tidy to explore the coefficients

A better strategy for displaying the coefficients in any regression model is to use the tidy
function from the broom package.

tidy(model_5a, conf.int = TRUE, conf.level = 0.95) |>
kable(digits = 3)

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 3.279 0.010 329.806 0.00 3.260 3.299
activityActive 0.013 0.019 0.690 0.49 -0.024 0.049
activityInsufficiently_Active 0.069 0.018 3.931 0.00 0.035 0.104
activityInactive 0.097 0.015 6.457 0.00 0.068 0.127

9.2.7 Using glance to summarize the model’s fit

glance(model_5a) |> select(1:3) |>
kable(digits = c(4, 4, 3))

r.squared adj.r.squared sigma
0.0413 0.0388 0.206

• The r.squared or 𝑅2 value is interpreted for a linear model as the percentage of variation
in the outcome (here, log(bmi)) that is accounted for by the model.

• The adj.r.squared or adjusted 𝑅2 value incorporates a small penalty for the number of
predictors included in the model. Adjusted 𝑅2 is useful for models with more than one
predictor, not simple regression models like this one. Like 𝑅2 and most of these other

321

summaries, its primary value comes when making comparisons between models for the
same outcome.

• The sigma or 𝜎 is the residual standard error. Doubling this value gives us a good idea
of the range of errors made by the model (approximately 95% of the time if the normal
distribution assumption for the residuals holds perfectly.)

glance(model_5a) |> select(4:7) |>
kable(digits = c(2, 3, 0, 2))

statistic p.value df logLik
16.22 0 3 185.99

• The statistic and p.value shown here refer to the ANOVA F test and p value. They
test the null hypothesis that the activity information is of no use in separating out the
bmi data, or, equivalently, that the true 𝑅2 is 0.

• The df indicates the model degrees of freedom, and in this case simply specifies the
number of parameters fitted attributed to the model. Models that require more df for
estimation require larger sample sizes.

• The logLik is the log likelihood for the model. This is a function of the sample size,
but we can compare the fit of multiple models by comparing this value across different
models for the same outcome. You want to maximize the log-likelihood.

glance(model_5a) |> select(8:9) |>
kable(digits = 2)

AIC BIC
-361.98 -336.82

• The AIC (or Akaike information criterion) and BIC (Bayes information criterion) are also
used only to compare models. You want to minimize AIC and BIC in selecting a model.
AIC and BIC are unique only up to a constant, so different packages or routines in R
may give differing values, but in comparing two models - the difference in AIC (or BIC)
should be consistent.

9.2.8 Using augment to make predictions

We can obtain residuals and predicted (fitted) values for the points used to fit the model with
augment from the broom package.

322

augment(model_5a, se_fit = TRUE) |>
select(1:5) |> slice(1:4) |>
kable(digits = 3)

log(bmi) activity .fitted .se.fit .resid
3.330 Inactive 3.376 0.011 -0.047
3.138 Inactive 3.376 0.011 -0.239
3.293 Insufficiently_Active 3.348 0.015 -0.055
3.278 Highly_Active 3.279 0.010 -0.002

• The .fitted value is the predicted value of log(bmi) for this subject.
• The .se.fit value shows the standard error associated with the fitted value.
• The .resid is the residual value (observed - fitted log(bmi))

augment(model_5a, se_fit = TRUE) |>
select(1:2, 6:9) |> slice(1:4) |>
kable(digits = 3)

log(bmi) activity .hat .sigma .cooksd .std.resid
3.330 Inactive 0.003 0.206 0.000 -0.227
3.138 Inactive 0.003 0.206 0.001 -1.163
3.293 Insufficiently_Active 0.005 0.206 0.000 -0.269
3.278 Highly_Active 0.002 0.206 0.000 -0.008

• The .hat value shows the leverage index associated with the observation (this is a func-
tion of the predictors - higher leveraged points have more unusual predictor values)

• The .sigma value shows the estimate of the residual standard deviation if this observation
were to be dropped from the model, and thus indexes how much of an outlier this
observation’s residual is.

• The .cooksd or Cook’s distance value shows the influence that the observation has on
the model - it is one of a class of leave-one-out diagnostic measures. Larger values of
Cook’s distance indicate more influential points.

• The .std.resid shows the standardized residual (which is designed to have mean 0 and
standard deviation 1, facilitating comparisons across models for differing outcomes)

9.3 A Two-Factor ANOVA (without Interaction)

Let’s add race_eth to the predictor set for log(BMI).

323

model_5b <- lm(log(bmi) ~ activity + race_eth, data = smart_cle1_sh)

anova(model_5b)

Analysis of Variance Table

Response: log(bmi)
Df Sum Sq Mean Sq F value Pr(>F)

activity 3 2.060 0.68652 16.5090 1.676e-10 ***
race_eth 4 0.989 0.24716 5.9435 9.843e-05 ***
Residuals 1125 46.783 0.04158

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that the ANOVA model assesses these variables sequentially, so the SS(activity) =
2.058 is accounted for before we consider the SS(race_eth) = 0.990. Thus, in total, the model
accounts for 2.058 + 0.990 = 3.048 of the sums of squares in log(bmi) in these data.

If we flip the order in the model, like this:

lm(log(bmi) ~ race_eth + activity, data = smart_cle1_sh) |>
anova()

Analysis of Variance Table

Response: log(bmi)
Df Sum Sq Mean Sq F value Pr(>F)

race_eth 4 1.119 0.27981 6.7287 2.371e-05 ***
activity 3 1.929 0.64299 15.4620 7.332e-10 ***
Residuals 1125 46.783 0.04158

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• After flipping the order of the predictors, race_eth accounts for a larger Sum of Squares
than it did previously, but activity accounts for a smaller amount, and the total be-
tween race_eth and activity remains the same, as 1.121 + 1.927 is still 3.048.

9.3.1 Model Coefficients

The model coefficients are unchanged regardless of the order of the variables in our two-factor
ANOVA model.

324

tidy(model_5b, conf.int = TRUE, conf.level = 0.95) |>
select(term, estimate, std.error, conf.low, conf.high) |>
kable(digits = 3)

term estimate std.error conf.low conf.high
(Intercept) 3.268 0.010 3.247 3.288
activityActive 0.012 0.018 -0.024 0.048
activityInsufficiently_Active 0.073 0.018 0.039 0.108
activityInactive 0.092 0.015 0.063 0.122
race_ethBlack non-Hispanic 0.066 0.015 0.036 0.096
race_ethOther race non-Hispanic -0.086 0.042 -0.169 -0.002
race_ethMultiracial non-Hispanic 0.020 0.042 -0.063 0.103
race_ethHispanic 0.012 0.035 -0.057 0.082

The model_5b equation is:

log(BMI) = 3.268
+ 0.012 (activity = Active)
+ 0.073 (activity = Insufficiently Active)
+ 0.092 (activity = Inactive)
+ 0.066 (race_eth = Black non-Hispanic)
- 0.086 (race_eth = Other race non-Hispanic)
+ 0.020 (race_eth = Multiracial non-Hispanic)
+ 0.012 (race_eth = Hispanic)

and we can make predictions by filling in appropriate 1s and 0s for the indicator variables in
parentheses.

For example, the predicted log(BMI) for a White Highly Active person is 3.268, as White and
Highly Active are the baseline categories in our two factors.

For all other combinations, we can make predictions as follows:

new_dat = tibble(
race_eth = rep(c("White non-Hispanic",

"Black non-Hispanic",
"Other race non-Hispanic",
"Multiracial non-Hispanic",
"Hispanic"), 4),

activity = c(rep("Highly_Active", 5),
rep("Active", 5),

325

rep("Insufficiently_Active", 5),
rep("Inactive", 5))

)

augment(model_5b, newdata = new_dat)

A tibble: 20 x 3
race_eth activity .fitted
<chr> <chr> <dbl>

1 White non-Hispanic Highly_Active 3.27
2 Black non-Hispanic Highly_Active 3.33
3 Other race non-Hispanic Highly_Active 3.18
4 Multiracial non-Hispanic Highly_Active 3.29
5 Hispanic Highly_Active 3.28
6 White non-Hispanic Active 3.28
7 Black non-Hispanic Active 3.35
8 Other race non-Hispanic Active 3.19
9 Multiracial non-Hispanic Active 3.30
10 Hispanic Active 3.29
11 White non-Hispanic Insufficiently_Active 3.34
12 Black non-Hispanic Insufficiently_Active 3.41
13 Other race non-Hispanic Insufficiently_Active 3.26
14 Multiracial non-Hispanic Insufficiently_Active 3.36
15 Hispanic Insufficiently_Active 3.35
16 White non-Hispanic Inactive 3.36
17 Black non-Hispanic Inactive 3.43
18 Other race non-Hispanic Inactive 3.27
19 Multiracial non-Hispanic Inactive 3.38
20 Hispanic Inactive 3.37

augment(model_5b, newdata = new_dat) |>
mutate(race_eth = fct_relevel(factor(race_eth),

"White non-Hispanic",
"Black non-Hispanic",
"Other race non-Hispanic",
"Multiracial non-Hispanic",
"Hispanic"),

activity = fct_relevel(factor(activity),
"Highly_Active",
"Active",
"Insufficiently_Active",

326

"Inactive")) %>%
ggplot(., aes(x = activity, y = .fitted,

col = race_eth, group = race_eth)) +
geom_point(size = 2) +
geom_line() +
labs(title = "Model 5b predictions for log(BMI)",

subtitle = "race_eth and activity, no interaction so lines are parallel",
y = "Model Predicted log(BMI)",
x = "")

3.20

3.25

3.30

3.35

3.40

Highly_Active ActiveInsufficiently_ActiveInactive

M
od

el
 P

re
di

ct
ed

 lo
g(

B
M

I)

race_eth

White non−Hispanic

Black non−Hispanic

Other race non−Hispanic

Multiracial non−Hispanic

Hispanic

race_eth and activity, no interaction so lines are parallel

Model 5b predictions for log(BMI)

The lines joining the points for each race_eth category are parallel to each other. The groups
always hold the same position relative to each other, regardless of their activity levels, and vice
versa. There is no interaction in this model allowing the predicted effects of, say, activity
on log(BMI) values to differ for the various race_eth groups. To do that, we’d have to fit the
two-factor ANOVA model incorporating an interaction term.

9.4 A Two-Factor ANOVA (with Interaction)

Let’s add the interaction of activity and race_eth (symbolized in R by activity *
race_eth) to the model for log(BMI).

327

model_5c <-
lm(log(bmi) ~ activity * race_eth, data = smart_cle1_sh)

anova(model_5c)

Analysis of Variance Table

Response: log(bmi)
Df Sum Sq Mean Sq F value Pr(>F)

activity 3 2.060 0.68652 16.4468 1.839e-10 ***
race_eth 4 0.989 0.24716 5.9211 0.0001026 ***
activity:race_eth 12 0.324 0.02700 0.6469 0.8028368
Residuals 1113 46.459 0.04174

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA model shows that the SS(interaction) = SS(activity:race_eth) is 0.324, and uses
12 degrees of freedom. The model including the interaction term now accounts for 2.058 +
0.990 + 0.324 = 3.372, which is 6.8% of the variation in log(BMI) overall (which is calculated
as SS(Total) = 2.058 + 0.990 + 0.324 + 46.456 = 49.828.)

9.4.1 Model Coefficients

The model coefficients now include additional product terms that incorporate indicator vari-
ables for both activity and race_eth. For each of the product terms to take effect, both their
activity and race_eth status must yield a 1 in the indicator variables.

tidy(model_5c, conf.int = TRUE, conf.level = 0.95) |>
select(term, estimate, std.error, conf.low, conf.high) |>
kable(digits = 3)

term estimate std.error conf.low conf.high
(Intercept) 3.264 0.011 3.242 3.287
activityActive 0.021 0.021 -0.021 0.062
activityInsufficiently_Active 0.079 0.020 0.039 0.118
activityInactive 0.097 0.018 0.063 0.132
race_ethBlack non-Hispanic 0.062 0.026 0.011 0.113
race_ethOther race non-Hispanic -0.070 0.078 -0.223 0.083
race_ethMultiracial non-Hispanic 0.067 0.060 -0.051 0.185

328

term estimate std.error conf.low conf.high
race_ethHispanic 0.110 0.060 -0.008 0.228
activityActive:race_ethBlack non-Hispanic -0.001 0.048 -0.096 0.094
activityInsufficiently_Active:race_ethBlack
non-Hispanic

0.005 0.046 -0.086 0.096

activityInactive:race_ethBlack non-Hispanic 0.008 0.037 -0.065 0.080
activityActive:race_ethOther race non-Hispanic -0.065 0.165 -0.389 0.259
activityInsufficiently_Active:race_ethOther race
non-Hispanic

-0.035 0.101 -0.233 0.163

activityInactive:race_ethOther race non-Hispanic 0.033 0.129 -0.221 0.287
activityActive:race_ethMultiracial non-Hispanic -0.208 0.134 -0.470 0.054
activityInsufficiently_Active:race_ethMultiracial
non-Hispanic

-0.050 0.120 -0.285 0.184

activityInactive:race_ethMultiracial non-Hispanic -0.056 0.110 -0.272 0.160
activityActive:race_ethHispanic -0.104 0.096 -0.291 0.084
activityInsufficiently_Active:race_ethHispanic -0.240 0.214 -0.660 0.179
activityInactive:race_ethHispanic -0.169 0.082 -0.331 -0.008

The model_5c equation is:

log(BMI) = 3.264
+ 0.021 (activity = Active)
+ 0.079 (activity = Insufficiently Active)
+ 0.097 (activity = Inactive)
+ 0.062 (race_eth = Black non-Hispanic)
- 0.070 (race_eth = Other race non-Hispanic)
+ 0.067 (race_eth = Multiracial non-Hispanic)
+ 0.110 (race_eth = Hispanic)
- 0.002 (activity = Active)(race_eth = Black non-Hispanic)
+ 0.005 (Insufficiently Active)(Black non-Hispanic)
+ 0.008 (Inactive)(Black non-Hispanic)
- 0.065 (Active)(Other race non-Hispanic)
- 0.035 (Insufficiently Active)(Other race non-Hispanic)
+ 0.033 (Inactive)(Other race non-Hispanic)
- 0.208 (Active)(Multiracial non-Hispanic)
- 0.050 (Insufficiently Active)(Multiracial non-Hispanic)
- 0.056 (Inactive)(Multiracial non-Hispanic)
- 0.104 (Active)(Hispanic)
- 0.240 (Insufficiently Active)(Hispanic)
- 0.169 (Inactive)(Hispanic)

329

and again, we can make predictions by filling in appropriate 1s and 0s for the indicator variables
in parentheses.

For example, the predicted log(BMI) for a White Highly Active person is 3.264, as White and
Highly Active are the baseline categories in our two factors.

But the predicted log(BMI) for a Hispanic Inactive person would be 3.264 + 0.097 + 0.110 -
0.169 = 3.302.

Again, we’ll plot the predicted log(BMI) predictions for each possible combination.

new_dat = tibble(
race_eth = rep(c("White non-Hispanic",

"Black non-Hispanic",
"Other race non-Hispanic",
"Multiracial non-Hispanic",
"Hispanic"), 4),

activity = c(rep("Highly_Active", 5),
rep("Active", 5),
rep("Insufficiently_Active", 5),
rep("Inactive", 5))

)

augment(model_5c, newdata = new_dat) |>
mutate(race_eth = fct_relevel(factor(race_eth),

"White non-Hispanic",
"Black non-Hispanic",
"Other race non-Hispanic",
"Multiracial non-Hispanic",
"Hispanic"),

activity = fct_relevel(factor(activity),
"Highly_Active",
"Active",
"Insufficiently_Active",
"Inactive")) %>%

ggplot(., aes(x = activity, y = .fitted,
col = race_eth, group = race_eth)) +

geom_point(size = 2) +
geom_line() +
labs(title = "Model 5c predictions for log(BMI)",

subtitle = "race_eth and activity, with interaction",
y = "Model Predicted log(BMI)",
x = "")

330

3.2

3.3

3.4

Highly_Active ActiveInsufficiently_ActiveInactive

M
od

el
 P

re
di

ct
ed

 lo
g(

B
M

I)

race_eth

White non−Hispanic

Black non−Hispanic

Other race non−Hispanic

Multiracial non−Hispanic

Hispanic

race_eth and activity, with interaction

Model 5c predictions for log(BMI)

Note that the lines joining the points for each race_eth category are no longer parallel to each
other. The race-ethnicity group relative positions on log(BMI) is now changing depending on
the activity status.

9.4.2 Is the interaction term necessary?

We can assess this in three ways, in order of importance:

1. With an interaction plot
2. By assessing the fraction of the variation in the outcome accounted for by the interaction
3. By assessing whether the interaction accounts for statistically detectable outcome vari-

ation

9.4.2.1 The Interaction Plot

A simple interaction plot is just a plot of the unadjusted outcome means, stratified by the
two factors. For example, consider this plot for our two-factor ANOVA model. To obtain this
plot, we first summarize the means within each group.

summaries_5 <- smart_cle1_sh |>
group_by(activity, race_eth) |>

331

summarize(n = n(), mean = mean(log(bmi)),
sd = sd(log(bmi)))

`summarise()` has grouped output by 'activity'. You can override using the
`.groups` argument.

summaries_5

A tibble: 20 x 5
Groups: activity [4]

activity race_eth n mean sd
<fct> <fct> <int> <dbl> <dbl>

1 Highly_Active White non-Hispanic 320 3.26 0.176
2 Highly_Active Black non-Hispanic 77 3.33 0.190
3 Highly_Active Other race non-Hispanic 7 3.19 0.198
4 Highly_Active Multiracial non-Hispanic 12 3.33 0.187
5 Highly_Active Hispanic 12 3.37 0.296
6 Active White non-Hispanic 129 3.28 0.173
7 Active Black non-Hispanic 31 3.35 0.224
8 Active Other race non-Hispanic 2 3.15 0.0845
9 Active Multiracial non-Hispanic 3 3.14 0.121
10 Active Hispanic 8 3.29 0.213
11 Insufficiently_Active White non-Hispanic 150 3.34 0.194
12 Insufficiently_Active Black non-Hispanic 35 3.41 0.213
13 Insufficiently_Active Other race non-Hispanic 11 3.24 0.137
14 Insufficiently_Active Multiracial non-Hispanic 4 3.36 0.374
15 Insufficiently_Active Hispanic 1 3.21 NA
16 Inactive White non-Hispanic 225 3.36 0.238
17 Inactive Black non-Hispanic 83 3.43 0.247
18 Inactive Other race non-Hispanic 4 3.32 0.238
19 Inactive Multiracial non-Hispanic 5 3.37 0.129
20 Inactive Hispanic 14 3.30 0.264

ggplot(summaries_5, aes(x = activity, y = mean,
color = race_eth,
group = race_eth)) +

geom_point(size = 3) +
geom_line() +
labs(title = "Simple Interaction Plot for log(BMI)",

332

subtitle = "SMART CLE means by activity and race_eth",
x = "", y = "Mean of log(BMI)")

3.2

3.3

3.4

Highly_Active ActiveInsufficiently_ActiveInactive

M
ea

n
of

 lo
g(

B
M

I)

race_eth

White non−Hispanic

Black non−Hispanic

Other race non−Hispanic

Multiracial non−Hispanic

Hispanic

SMART CLE means by activity and race_eth

Simple Interaction Plot for log(BMI)

The interaction plot suggests that there is a modest interaction here. The White non-Hispanic
and Black non-Hispanic groups appear pretty parallel (and they are the two largest groups)
and Other race non-Hispanic has a fairly similar pattern, but the other two groups (Hispanic
and Multiracial non-Hispanic) bounce around quite a bit based on activity level.

An alternative would be to include a small “dodge” for each point and include error bars
(means ± standard deviation) for each combination.

pd = position_dodge(0.2)
ggplot(summaries_5, aes(x = activity, y = mean,

color = race_eth,
group = race_eth)) +

geom_errorbar(aes(ymin = mean - sd,
ymax = mean + sd),

width = 0.2, position = pd) +
geom_point(size = 3, position = pd) +
geom_line(position = pd) +
labs(title = "Interaction Plot for log(BMI) with Error Bars",

333

subtitle = "SMART CLE means by activity and race_eth",
x = "", y = "Mean of log(BMI)")

3.0

3.2

3.4

3.6

Highly_Active ActiveInsufficiently_ActiveInactive

M
ea

n
of

 lo
g(

B
M

I)

race_eth

White non−Hispanic

Black non−Hispanic

Other race non−Hispanic

Multiracial non−Hispanic

Hispanic

SMART CLE means by activity and race_eth

Interaction Plot for log(BMI) with Error Bars

Here, we see a warning flag because we have one combination (which turns out to be Insuffi-
ciently Active and Hispanic) with only one observation in it, so a standard deviation cannot
be calculated. In general, I’ll stick with the simpler means plot most of the time.

9.4.2.2 Does the interaction account for substantial variation?

In this case, we can look at the fraction of the overall sums of squares accounted for by the
interaction.

anova(model_5c)

Analysis of Variance Table

Response: log(bmi)
Df Sum Sq Mean Sq F value Pr(>F)

activity 3 2.060 0.68652 16.4468 1.839e-10 ***
race_eth 4 0.989 0.24716 5.9211 0.0001026 ***

334

activity:race_eth 12 0.324 0.02700 0.6469 0.8028368
Residuals 1113 46.459 0.04174

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here we have

𝜂2(𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛) = 0.324
2.058 + 0.990 + 0.324 + 46.456 = 0.0065

so the interaction accounts for 0.65% of the variation in bmi. That looks pretty modest.

9.4.2.3 Does the interaction account for statistically detectable variation?

We can test this directly with the p value from the ANOVA table, which shows p = 0.803,
which is far above any of our usual standards for a statistically detectable effect.

On the whole, I don’t think the interaction term is especially helpful in improving this model.

In the next chapter, we’ll look at two different examples of ANOVA models, now in more
designed experiments. We’ll also add some additional details on how the analyses might
proceed.

We’ll return to the SMART CLE data later in these Notes.

335

10 Two-Way ANOVA and Interaction

10.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(broom)
library(ggridges)
library(glue)
library(gt)
library(mosaic)
library(patchwork)
library(tidyverse)

theme_set(theme_bw())

10.1.1 Data Load

bonding <- read_csv("data/bonding.csv", show_col_types = FALSE)
cortisol <- read_csv("data/cortisol.csv", show_col_types = FALSE)

10.2 The bonding data: A Designed Dental Experiment

The bonding data describe a designed experiment into the properties of four different resin
types (resin = A, B, C, D) and two different curing light sources (light = Halogen, LED)
as they relate to the resulting bonding strength (measured in MPa1) on the surface of teeth.
The source is @Kim2014.

1The MPa is defined as the failure load (in Newtons) divided by the entire bonded area, in mm2.

336

The experiment involved making measurements of bonding strength under a total of 80 exper-
imental setups, or runs, with 10 runs completed at each of the eight combinations of a light
source and a resin type. The data are gathered in the bonding.csv file.

bonding

A tibble: 80 x 4
runID light resin strength
<chr> <chr> <chr> <dbl>

1 R101 LED B 12.8
2 R102 Halogen B 22.2
3 R103 Halogen B 24.6
4 R104 LED A 17
5 R105 LED C 32.2
6 R106 Halogen B 27.1
7 R107 LED A 23.4
8 R108 Halogen A 23.5
9 R109 Halogen D 37.3
10 R110 Halogen A 19.7
i 70 more rows

10.3 A One-Factor Analysis of Variance

Suppose we are interested in the distribution of the strength values for the four different
types of resin.

bonding |> group_by(resin) |>
summarise(n = n(), mean(strength), median(strength))

A tibble: 4 x 4
resin n `mean(strength)` `median(strength)`
<chr> <int> <dbl> <dbl>

1 A 20 18.4 18.0
2 B 20 22.2 22.7
3 C 20 25.2 25.7
4 D 20 32.1 35.3

I’d begin serious work with a plot.

337

10.3.1 Look at the Data!

ggplot(bonding, aes(x = resin, y = strength)) +
geom_violin(aes(fill = resin)) +
geom_boxplot(width = 0.2)

10

20

30

40

A B C D
resin

st
re

ng
th

resin

A

B

C

D

Another good plot for this purpose is a ridgeline plot.

ggplot(bonding, aes(x = strength, y = resin, fill = resin)) +
geom_density_ridges2() +
guides(fill = "none")

Picking joint bandwidth of 3.09

338

A

B

C

D

0 20 40
strength

re
si

n

10.3.2 Table of Summary Statistics

With the small size of this experiment (n = 20 for each resin type), graphical summaries may
not perform as well as they often do. We’ll also produce a quick table of summary statistics
for strength within each resin type.

favstats(strength ~ resin, data = bonding)

resin min Q1 median Q3 max mean sd n missing
1 A 9.3 15.725 17.95 20.40 28.0 18.415 4.805948 20 0
2 B 11.8 18.450 22.70 25.75 35.2 22.230 6.748263 20 0
3 C 14.5 20.650 25.70 30.70 34.5 25.155 6.326425 20 0
4 D 17.3 21.825 35.30 40.15 47.2 32.075 9.735063 20 0

Since the means and medians within each group are fairly close, and the distributions (with
the possible exception of resin D) are reasonably well approximated by the Normal, I’ll fit
an ANOVA model2.

anova(lm(strength ~ resin, data = bonding))

2If the data weren’t approximately Normally distributed, we might instead consider a rank-based alternative
to ANOVA, like the Kruskal-Wallis test.

339

Analysis of Variance Table

Response: strength
Df Sum Sq Mean Sq F value Pr(>F)

resin 3 1999.7 666.57 13.107 5.52e-07 ***
Residuals 76 3865.2 50.86

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It appears that the resin types have a significant association with mean strength of the
bonds. Can we identify which resin types have generally higher or lower strength?

t_bond <- TukeyHSD(aov(strength ~ resin, data = bonding),
ordered = TRUE, conf.level = 0.90)

tidy(t_bond) |>
select(-c(term, null.value)) |>
mutate(across(.cols = -contrast, num, digits = 3)) |>
arrange(desc(estimate)) |>
gt() |>
tab_header(title = "Comparing Mean Bond Strength across pairs of resin types",

subtitle = "90% Tukey HSD Confidence Intervals") |>
tab_footnote(footnote = glue(nrow(bonding), " teeth in bonding data"))

Warning: There was 1 warning in `mutate()`.
i In argument: `across(.cols = -contrast, num, digits = 3)`.
Caused by warning:
! The `...` argument of `across()` is deprecated as of dplyr 1.1.0.
Supply arguments directly to `.fns` through an anonymous function instead.

Previously
across(a:b, mean, na.rm = TRUE)

Now
across(a:b, \(x) mean(x, na.rm = TRUE))

Comparing Mean Bond Strength across pairs of resin types
90% Tukey HSD Confidence Intervals

contrast estimate conf.low conf.high adj.p.value

340

D-A 13.660 8.403 18.917 0.000
D-B 9.845 4.588 15.102 0.000
D-C 6.920 1.663 12.177 0.015
C-A 6.740 1.483 11.997 0.019
B-A 3.815 -1.442 9.072 0.335
C-B 2.925 -2.332 8.182 0.568

80 teeth in bonding data

tidy(t_bond) |>
mutate(contrast = fct_reorder(contrast, estimate, .desc = TRUE)) %>%
ggplot(., aes(x = contrast, y = estimate, ymin = conf.low, ymax = conf.high)) +
geom_pointrange() +
geom_hline(yintercept = 0, col = "red", linetype = "dashed") +
geom_label(aes(label = round_half_up(estimate, 2))) +
labs(title = "Comparing Mean Bond Strength across pairs of resin types",

subtitle = "90% Tukey HSD Confidence intervals",
caption = glue(nrow(bonding), " teeth in bonding data"),
x = "Pairwise Difference between resin types",
y = "Difference in Mean Bond Strength")

3.82

6.74

13.66

2.93

9.85

6.92

0

5

10

15

D−A D−B D−C C−A B−A C−B
Pairwise Difference between resin types

D
iff

er
en

ce
 in

 M
ea

n
B

on
d

S
tr

en
gt

h

90% Tukey HSD Confidence intervals

Comparing Mean Bond Strength across pairs of resin types

80 teeth in bonding data

Based on these confidence intervals (which have a family-wise 90% confidence level), we see

341

that D shows arger mean strength than A or B or C, and that C is also associated with larger
mean strength than A.

10.4 A Two-Way ANOVA: Looking at Two Factors

Now, we’ll now add consideration of the light source into our study. We can look at the
distribution of the strength values at the combinations of both light and resin, with a plot
like this one.

ggplot(bonding, aes(x = resin, y = strength, color = light)) +
geom_point(size = 2, alpha = 0.5) +
facet_wrap(~ light) +
guides(color = "none") +
scale_color_manual(values = c("purple", "darkorange")) +
theme_bw()

Halogen LED

A B C D A B C D

10

20

30

40

resin

st
re

ng
th

342

10.5 A Means Plot (with standard deviations) to check for
interaction

Sometimes, we’ll instead look at a plot simply of the means (and, often, the standard devi-
ations) of strength at each combination of light and resin. We’ll start by building up a
data set with the summaries we want to plot.

bond.sum <- bonding |>
group_by(resin, light) |>
summarize(mean.str = mean(strength), sd.str = sd(strength))

`summarise()` has grouped output by 'resin'. You can override using the
`.groups` argument.

bond.sum

A tibble: 8 x 4
Groups: resin [4]
resin light mean.str sd.str
<chr> <chr> <dbl> <dbl>

1 A Halogen 17.8 4.02
2 A LED 19.1 5.63
3 B Halogen 19.9 5.62
4 B LED 24.6 7.25
5 C Halogen 22.5 6.19
6 C LED 27.8 5.56
7 D Halogen 40.3 4.15
8 D LED 23.8 5.70

Now, we’ll use this new data set to plot the means and standard deviations of strength at
each combination of resin and light.

The error bars will overlap unless we adjust the position.
pd <- position_dodge(0.2) # move them .1 to the left and right

ggplot(bond.sum, aes(x = resin, y = mean.str, col = light)) +
geom_errorbar(aes(ymin = mean.str - sd.str,

ymax = mean.str + sd.str),
width = 0.2, position = pd) +

343

geom_point(size = 2, position = pd) +
geom_line(aes(group = light), position = pd) +
scale_color_manual(values = c("purple", "darkorange")) +
theme_bw() +
labs(y = "Bonding Strength (MPa)", x = "Resin Type",

title = "Observed Means (+/- SD) of Bonding Strength")

20

30

40

A B C D
Resin Type

B
on

di
ng

 S
tr

en
gt

h
(M

P
a)

light

Halogen

LED

Observed Means (+/− SD) of Bonding Strength

Is there evidence of a meaningful interaction between the resin type and the light source on
the bonding strength in this plot?

• Sure. A meaningful interaction just means that the strength associated with different
resin types depends on the light source.

– With LED light, it appears that resin C leads to the strongest bonding strength.
– With Halogen light, though, it seems that resin D is substantially stronger.

• Note that the lines we see here connecting the light sources aren’t in parallel (as they
would be if we had zero interaction between resin and light), but rather, they cross.

10.5.1 Summarizing the data after grouping by resin and light

We might want to look at a numerical summary of the strengths within these groups, too.

344

favstats(strength ~ resin + light, data = bonding) |>
select(resin.light, median, mean, sd, n, missing)

resin.light median mean sd n missing
1 A.Halogen 18.35 17.77 4.024108 10 0
2 B.Halogen 21.75 19.90 5.617631 10 0
3 C.Halogen 21.30 22.54 6.191069 10 0
4 D.Halogen 40.40 40.30 4.147556 10 0
5 A.LED 17.80 19.06 5.625181 10 0
6 B.LED 24.45 24.56 7.246792 10 0
7 C.LED 28.45 27.77 5.564980 10 0
8 D.LED 21.45 23.85 5.704043 10 0

10.6 Fitting the Two-Way ANOVA model with Interaction

c3_m1 <- lm(strength ~ resin * light, data = bonding)

summary(c3_m1)

Call:
lm(formula = strength ~ resin * light, data = bonding)

Residuals:
Min 1Q Median 3Q Max

-11.760 -3.663 -0.320 3.697 11.250

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.770 1.771 10.033 2.57e-15 ***
resinB 2.130 2.505 0.850 0.3979
resinC 4.770 2.505 1.904 0.0609 .
resinD 22.530 2.505 8.995 2.13e-13 ***
lightLED 1.290 2.505 0.515 0.6081
resinB:lightLED 3.370 3.542 0.951 0.3446
resinC:lightLED 3.940 3.542 1.112 0.2697
resinD:lightLED -17.740 3.542 -5.008 3.78e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

345

Residual standard error: 5.601 on 72 degrees of freedom
Multiple R-squared: 0.6149, Adjusted R-squared: 0.5775
F-statistic: 16.42 on 7 and 72 DF, p-value: 9.801e-13

10.6.1 The ANOVA table for our model

In a two-way ANOVA model, we begin by assessing the interaction term. If it’s important,
then our best model is the model including the interaction. If it’s not important, we will often
move on to consider a new model, fit without an interaction.

The ANOVA table is especially helpful in this case, because it lets us look specifically at the
interaction effect.

anova(c3_m1)

Analysis of Variance Table

Response: strength
Df Sum Sq Mean Sq F value Pr(>F)

resin 3 1999.72 666.57 21.2499 5.792e-10 ***
light 1 34.72 34.72 1.1067 0.2963
resin:light 3 1571.96 523.99 16.7043 2.457e-08 ***
Residuals 72 2258.52 31.37

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

10.6.2 Is the interaction important?

In this case, the interaction:

• is evident in the means plot, and
• is highly statistically significant, and
• accounts for a sizable fraction (27%) of the overall variation

𝜂2
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = SS(resin:light)

𝑆𝑆(𝑇 𝑜𝑡𝑎𝑙) = 1571.96
1999.72 + 34.72 + 1571.96 + 2258.52 = 0.268

If the interaction were either large or significant we would be inclined to keep it in the model.
In this case, it’s both, so there’s no real reason to remove it.

346

10.6.3 Interpreting the Interaction

Recall the model equation, which is:

c3_m1

Call:
lm(formula = strength ~ resin * light, data = bonding)

Coefficients:
(Intercept) resinB resinC resinD

17.77 2.13 4.77 22.53
lightLED resinB:lightLED resinC:lightLED resinD:lightLED

1.29 3.37 3.94 -17.74

So, if light = Halogen, our equation is:

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 17.77 + 2.13𝑟𝑒𝑠𝑖𝑛𝐵 + 4.77𝑟𝑒𝑠𝑖𝑛𝐶 + 22.53𝑟𝑒𝑠𝑖𝑛𝐷

And if light = LED, our equation is:

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 19.06 + 5.50𝑟𝑒𝑠𝑖𝑛𝐵 + 8.71𝑟𝑒𝑠𝑖𝑛𝐶 + 4.79𝑟𝑒𝑠𝑖𝑛𝐷

Note that both the intercept and the slopes change as a result of the interaction. The model
yields a different prediction for every possible combination of a resin type and a light
source.

10.7 Comparing Individual Combinations of resin and light

To make comparisons between individual combinations of a resin type and a light source,
using something like Tukey’s HSD approach for multiple comparisons, we first refit the model
using the aov structure, rather than lm.

c3m1_aov <- aov(strength ~ resin * light, data = bonding)

summary(c3m1_aov)

347

Df Sum Sq Mean Sq F value Pr(>F)
resin 3 1999.7 666.6 21.250 5.79e-10 ***
light 1 34.7 34.7 1.107 0.296
resin:light 3 1572.0 524.0 16.704 2.46e-08 ***
Residuals 72 2258.5 31.4

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

And now, we can obtain Tukey HSD comparisons (which will maintain an overall 90% family-
wise confidence level) across the resin types, the light sources, and the combinations, with
the TukeyHSD command. This approach is only completely appropriate if these comparisons
are pre-planned, and if the design is balanced (as this is, with the same sample size for each
combination of a light source and resin type.)

TukeyHSD(c3m1_aov, conf.level = 0.9)

Tukey multiple comparisons of means
90% family-wise confidence level

Fit: aov(formula = strength ~ resin * light, data = bonding)

$resin
diff lwr upr p adj

B-A 3.815 -0.3176052 7.947605 0.1461960
C-A 6.740 2.6073948 10.872605 0.0016436
D-A 13.660 9.5273948 17.792605 0.0000000
C-B 2.925 -1.2076052 7.057605 0.3568373
D-B 9.845 5.7123948 13.977605 0.0000026
D-C 6.920 2.7873948 11.052605 0.0011731

$light
diff lwr upr p adj

LED-Halogen -1.3175 -3.404306 0.7693065 0.2963128

$`resin:light`
diff lwr upr p adj

B:Halogen-A:Halogen 2.13 -4.9961962 9.256196 0.9893515
C:Halogen-A:Halogen 4.77 -2.3561962 11.896196 0.5525230
D:Halogen-A:Halogen 22.53 15.4038038 29.656196 0.0000000
A:LED-A:Halogen 1.29 -5.8361962 8.416196 0.9995485
B:LED-A:Halogen 6.79 -0.3361962 13.916196 0.1361092
C:LED-A:Halogen 10.00 2.8738038 17.126196 0.0037074

348

D:LED-A:Halogen 6.08 -1.0461962 13.206196 0.2443200
C:Halogen-B:Halogen 2.64 -4.4861962 9.766196 0.9640100
D:Halogen-B:Halogen 20.40 13.2738038 27.526196 0.0000000
A:LED-B:Halogen -0.84 -7.9661962 6.286196 0.9999747
B:LED-B:Halogen 4.66 -2.4661962 11.786196 0.5818695
C:LED-B:Halogen 7.87 0.7438038 14.996196 0.0473914
D:LED-B:Halogen 3.95 -3.1761962 11.076196 0.7621860
D:Halogen-C:Halogen 17.76 10.6338038 24.886196 0.0000000
A:LED-C:Halogen -3.48 -10.6061962 3.646196 0.8591455
B:LED-C:Halogen 2.02 -5.1061962 9.146196 0.9922412
C:LED-C:Halogen 5.23 -1.8961962 12.356196 0.4323859
D:LED-C:Halogen 1.31 -5.8161962 8.436196 0.9995004
A:LED-D:Halogen -21.24 -28.3661962 -14.113804 0.0000000
B:LED-D:Halogen -15.74 -22.8661962 -8.613804 0.0000006
C:LED-D:Halogen -12.53 -19.6561962 -5.403804 0.0001014
D:LED-D:Halogen -16.45 -23.5761962 -9.323804 0.0000002
B:LED-A:LED 5.50 -1.6261962 12.626196 0.3665620
C:LED-A:LED 8.71 1.5838038 15.836196 0.0185285
D:LED-A:LED 4.79 -2.3361962 11.916196 0.5471915
C:LED-B:LED 3.21 -3.9161962 10.336196 0.9027236
D:LED-B:LED -0.71 -7.8361962 6.416196 0.9999920
D:LED-C:LED -3.92 -11.0461962 3.206196 0.7690762

One conclusion from this is that the combination of D and Halogen appears stronger than
each of the other seven combinations.

10.8 The bonding model without Interaction

It seems incorrect in this situation to fit a model without the interaction term, but we’ll do so
just so you can see what’s involved.

c3_m2 <- lm(strength ~ resin + light, data = bonding)

summary(c3_m2)

Call:
lm(formula = strength ~ resin + light, data = bonding)

Residuals:

349

Min 1Q Median 3Q Max
-14.1162 -4.9531 0.1187 4.4612 14.4663

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.074 1.787 10.676 < 2e-16 ***
resinB 3.815 2.260 1.688 0.09555 .
resinC 6.740 2.260 2.982 0.00386 **
resinD 13.660 2.260 6.044 5.39e-08 ***
lightLED -1.317 1.598 -0.824 0.41229

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.147 on 75 degrees of freedom
Multiple R-squared: 0.3469, Adjusted R-squared: 0.312
F-statistic: 9.958 on 4 and 75 DF, p-value: 1.616e-06

In the no-interaction model, if light = Halogen, our equation is:

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 19.07 + 3.82𝑟𝑒𝑠𝑖𝑛𝐵 + 6.74𝑟𝑒𝑠𝑖𝑛𝐶 + 13.66𝑟𝑒𝑠𝑖𝑛𝐷

And if light = LED, our equation is:

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 17.75 + 3.82𝑟𝑒𝑠𝑖𝑛𝐵 + 6.74𝑟𝑒𝑠𝑖𝑛𝐶 + 13.66𝑟𝑒𝑠𝑖𝑛𝐷

So, in the no-interaction model, only the intercept changes.

anova(c3_m2)

Analysis of Variance Table

Response: strength
Df Sum Sq Mean Sq F value Pr(>F)

resin 3 1999.7 666.57 13.0514 6.036e-07 ***
light 1 34.7 34.72 0.6797 0.4123
Residuals 75 3830.5 51.07

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

350

And, it appears, if we ignore the interaction, then resin type has a large impact on strength
but light source doesn’t. This is clearer when we look at boxplots of the separated light
and resin groups.

p1 <- ggplot(bonding, aes(x = light, y = strength)) +
geom_boxplot()

p2 <- ggplot(bonding, aes(x = resin, y = strength)) +
geom_boxplot()

p1 + p2

10

20

30

40

Halogen LED
light

st
re

ng
th

10

20

30

40

A B C D
resin

st
re

ng
th

10.9 cortisol: A Hypothetical Clinical Trial

156 adults who complained of problems with a high-stress lifestyle were enrolled in a hypo-
thetical clinical trial of the effectiveness of a behavioral intervention designed to help reduce
stress levels, as measured by salivary cortisol.

The subjects were randomly assigned to one of three intervention groups (usual care, low dose,
and high dose.) The “low dose” subjects received a one-week intervention with a follow-up
at week 5. The “high dose” subjects received a more intensive three-week intervention, with
follow up at week 5.

351

Since cortisol levels rise and fall with circadian rhythms, the cortisol measurements were taken
just after rising for all subjects. These measurements were taken at baseline, and again at five
weeks. The difference (baseline - week 5) in cortisol level (in micrograms / l) serves as the
primary outcome.

10.9.1 Codebook and Raw Data for cortisol

The data are gathered in the cortisol data set. Included are:

Variable Description
subject subject identification code
interv intervention group (UC = usual care, Low, High)
waist waist circumference at baseline (in inches)
sex male or female

cort.1 salivary cortisol level (microg/l) week 1
cort.5 salivary cortisol level (microg/l) week 5

cortisol

A tibble: 156 x 6
subject interv waist sex cort.1 cort.5
<chr> <chr> <dbl> <chr> <dbl> <dbl>

1 S1001 UC 48.3 M 13.4 13.3
2 S1002 Low 58.3 M 17.8 16.6
3 S1003 High 43 M 14.4 12.7
4 S1004 Low 44.9 M 9 9.8
5 S1005 High 46.1 M 14.2 14.2
6 S1006 UC 41.3 M 14.8 15.1
7 S1007 Low 51 F 13.7 16
8 S1008 UC 42 F 17.3 18.7
9 S1009 Low 24.7 F 15.3 15.8
10 S1010 Low 59.4 M 12.4 11.7
i 146 more rows

10.10 Creating a factor combining sex and waist

Next, we’ll put the waist and sex data in the cortisol example together. We want to build a
second categorical variable (called fat_est) combining this information, to indicate “healthy”
vs. “unhealthy” levels of fat around the waist.

352

• Male subjects whose waist circumference is 40 inches or more, and
• Female subjects whose waist circumference is 35 inches or more, will fall in the “un-

healthy” group.

cortisol <- cortisol |>
mutate(

fat_est = factor(case_when(
sex == "M" & waist >= 40 ~ "unhealthy",
sex == "F" & waist >= 35 ~ "unhealthy",
TRUE ~ "healthy")),

cort_diff = cort.1 - cort.5)

summary(cortisol)

subject interv waist sex
Length:156 Length:156 Min. :20.80 Length:156
Class :character Class :character 1st Qu.:33.27 Class :character
Mode :character Mode :character Median :40.35 Mode :character

Mean :40.42
3rd Qu.:47.77
Max. :59.90

cort.1 cort.5 fat_est cort_diff
Min. : 6.000 Min. : 4.2 healthy : 56 Min. :-2.3000
1st Qu.: 9.675 1st Qu.: 9.6 unhealthy:100 1st Qu.:-0.5000
Median :12.400 Median :12.6 Median : 0.2000
Mean :12.686 Mean :12.4 Mean : 0.2821
3rd Qu.:16.025 3rd Qu.:15.7 3rd Qu.: 1.2000
Max. :19.000 Max. :19.7 Max. : 2.0000

10.11 A Means Plot for the cortisol trial (with standard errors)

Again, we’ll start by building up a data set with the summaries we want to plot.

cort.sum <- cortisol |>
group_by(interv, fat_est) |>
summarize(mean.cort = mean(cort_diff),

se.cort = sd(cort_diff)/sqrt(n()))

`summarise()` has grouped output by 'interv'. You can override using the
`.groups` argument.

353

cort.sum

A tibble: 6 x 4
Groups: interv [3]
interv fat_est mean.cort se.cort
<chr> <fct> <dbl> <dbl>

1 High healthy 0.695 0.217
2 High unhealthy 0.352 0.150
3 Low healthy 0.5 0.182
4 Low unhealthy 0.327 0.190
5 UC healthy 0.347 0.225
6 UC unhealthy -0.226 0.155

Now, we’ll use this new data set to plot the means and standard errors.

The error bars will overlap unless we adjust the position.
pd <- position_dodge(0.2) # move them .1 to the left and right

ggplot(cort.sum, aes(x = interv, y = mean.cort, col = fat_est)) +
geom_errorbar(aes(ymin = mean.cort - se.cort,

ymax = mean.cort + se.cort),
width = 0.2, position = pd) +

geom_point(size = 2, position = pd) +
geom_line(aes(group = fat_est), position = pd) +
scale_color_manual(values = c("royalblue", "darkred")) +
theme_bw() +
labs(y = "Salivary Cortisol Level", x = "Intervention Group",

title = "Observed Means (+/- SE) of Salivary Cortisol")

354

0.0

0.5

High Low UC
Intervention Group

S
al

iv
ar

y
C

or
tis

ol
 L

ev
el

fat_est

healthy

unhealthy

Observed Means (+/− SE) of Salivary Cortisol

10.12 A Two-Way ANOVA model for cortisol with Interaction

c3_m3 <- lm(cort_diff ~ interv * fat_est, data = cortisol)

anova(c3_m3)

Analysis of Variance Table

Response: cort_diff
Df Sum Sq Mean Sq F value Pr(>F)

interv 2 7.847 3.9235 4.4698 0.01301 *
fat_est 1 4.614 4.6139 5.2564 0.02326 *
interv:fat_est 2 0.943 0.4715 0.5371 0.58554
Residuals 150 131.666 0.8778

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Does it seem like we need the interaction term in this case?

summary(c3_m3)

355

Call:
lm(formula = cort_diff ~ interv * fat_est, data = cortisol)

Residuals:
Min 1Q Median 3Q Max

-2.62727 -0.75702 0.08636 0.84848 2.12647

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.6950 0.2095 3.317 0.00114 **
intervLow -0.1950 0.3001 -0.650 0.51689
intervUC -0.3479 0.3091 -1.126 0.26206
fat_estunhealthy -0.3435 0.2655 -1.294 0.19774
intervLow:fat_estunhealthy 0.1708 0.3785 0.451 0.65256
intervUC:fat_estunhealthy -0.2300 0.3846 -0.598 0.55068

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9369 on 150 degrees of freedom
Multiple R-squared: 0.0924, Adjusted R-squared: 0.06214
F-statistic: 3.054 on 5 and 150 DF, p-value: 0.01179

10.12.1 Notes on this Question

When we’re evaluating a two-factor ANOVA model with an interaction, we are choosing be-
tween models with either:

1. just one factor
2. both factors, but only as main effects
3. both factors and an interaction between them

But we don’t get to pick models that include any other combination of terms. For this two-way
ANOVA, then, our choices are:

• a model with ‘interv only
• a model with ‘fat_est only
• a model with both interv and fat_est but not their interaction
• a model with interv and fat_est and their interaction

Those are the only modeling options available to us.

First, consider the ANOVA table, repeated below…

356

anova(c3_m3)

Analysis of Variance Table

Response: cort_diff
Df Sum Sq Mean Sq F value Pr(>F)

interv 2 7.847 3.9235 4.4698 0.01301 *
fat_est 1 4.614 4.6139 5.2564 0.02326 *
interv:fat_est 2 0.943 0.4715 0.5371 0.58554
Residuals 150 131.666 0.8778

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The conclusions here are as follows:

1. The interaction effect (interv:fat_est) has a large p value (0.58554) and assesses
whether the two interaction terms (product terms) included in the model add detectable
predictive value to the main effects model that includes only interv and fat_est alone.
You are right to say that this ANOVA is sequential, which means that the p value for
the interaction effect is looking at the additional effect of the interaction once we already
have the main effects interv and fat_est included.

2. The interv and fat_est terms aren’t usually evaluated with hypothesis tests or inter-
preted in the ANOVA for this setting, since if we intend to include the interaction term
(as this model does) we also need these main effects. If we wanted to look at those
terms individually in a model without the interaction, then we’d want to fit that model
(without the interaction term) to do so.

Next, let’s look at the summary of the c3_m3 model, specifically the coefficients…

summary(c3_m3)

Call:
lm(formula = cort_diff ~ interv * fat_est, data = cortisol)

Residuals:
Min 1Q Median 3Q Max

-2.62727 -0.75702 0.08636 0.84848 2.12647

Coefficients:

357

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.6950 0.2095 3.317 0.00114 **
intervLow -0.1950 0.3001 -0.650 0.51689
intervUC -0.3479 0.3091 -1.126 0.26206
fat_estunhealthy -0.3435 0.2655 -1.294 0.19774
intervLow:fat_estunhealthy 0.1708 0.3785 0.451 0.65256
intervUC:fat_estunhealthy -0.2300 0.3846 -0.598 0.55068

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9369 on 150 degrees of freedom
Multiple R-squared: 0.0924, Adjusted R-squared: 0.06214
F-statistic: 3.054 on 5 and 150 DF, p-value: 0.01179

So here, we see two p values associated with the interaction terms (the two product terms at
the bottom of the regression) but these aren’t especially helpful, because we’re either going to
include the interaction (in which case both of these terms will be in the model) or we’re not
going to include the interaction (in which case neither of these terms will be in the model.)

So the p values provided here aren’t very helpful - like all such p values for t tests, they are
looking at the value of the term in their row as the last predictor in to the model, essentially
comparing the full model to the model without that specific component, but none of those
tests enable us to decide which of the 4 available model choices is our best fit.

Now, let’s consider the reason why, for example, the p value for fat_est in the summary()
which is looking at comparing the following models …

• a model including interv (which has 2 coefficients to account for its 3 categories), fat_est
(which has 1 coefficient to account for its 2 categories), and the interv*fat_est inter-
action terms (which are 2 terms)

• a model including interv and the interv*fat_est interaction (but somehow not the
main effect of fat_est, which actually makes no sense: if we include the interaction we
always include the main effect)

to the p value for fat_est in the ANOVA which is looking at comparing

• the model with interv alone to
• the model with interv and fat_est as main effects, but no interaction

Only the ANOVA p value is therefore in any way useful, and it suggests that once you have
the main effect of interv, adding fat_est’s main effect adds statistically detectable value (p
= 0.023)

358

10.13 A Two-Way ANOVA model for cortisol without Interaction

10.13.1 The Graph

p1 <- ggplot(cortisol, aes(x = interv, y = cort_diff)) +
geom_boxplot()

p2 <- ggplot(cortisol, aes(x = fat_est, y = cort_diff)) +
geom_boxplot()

p1 + p2

−2

−1

0

1

2

High Low UC
interv

co
rt

_d
iff

−2

−1

0

1

2

healthy unhealthy
fat_est

co
rt

_d
iff

10.13.2 The ANOVA Model

c3_m4 <- lm(cort_diff ~ interv + fat_est, data = cortisol)

anova(c3_m4)

Analysis of Variance Table

Response: cort_diff

359

Df Sum Sq Mean Sq F value Pr(>F)
interv 2 7.847 3.9235 4.4972 0.01266 *
fat_est 1 4.614 4.6139 5.2886 0.02283 *
Residuals 152 132.609 0.8724

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

How do these results compare to those we saw in the model with interaction?

10.13.3 The Regression Summary

summary(c3_m4)

Call:
lm(formula = cort_diff ~ interv + fat_est, data = cortisol)

Residuals:
Min 1Q Median 3Q Max

-2.55929 -0.74527 0.05457 0.86456 2.05489

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.70452 0.16093 4.378 2.22e-05 ***
intervLow -0.08645 0.18232 -0.474 0.63606
intervUC -0.50063 0.18334 -2.731 0.00707 **
fat_estunhealthy -0.35878 0.15601 -2.300 0.02283 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.934 on 152 degrees of freedom
Multiple R-squared: 0.0859, Adjusted R-squared: 0.06785
F-statistic: 4.761 on 3 and 152 DF, p-value: 0.00335

10.13.4 Tukey HSD Comparisons

Without the interaction term, we can make direct comparisons between levels of the interven-
tion, and between levels of the fat_est variable. This is probably best done here in a Tukey
HSD comparison.

360

TukeyHSD(aov(cort_diff ~ interv + fat_est, data = cortisol), conf.level = 0.9)

Tukey multiple comparisons of means
90% family-wise confidence level

Fit: aov(formula = cort_diff ~ interv + fat_est, data = cortisol)

$interv
diff lwr upr p adj

Low-High -0.09074746 -0.4677566 0.28626166 0.8724916
UC-High -0.51642619 -0.8952964 -0.13755598 0.0150150
UC-Low -0.42567873 -0.8063312 -0.04502625 0.0570728

$fat_est
diff lwr upr p adj

unhealthy-healthy -0.3582443 -0.6162415 -0.100247 0.0229266

What conclusions can we draw here?

361

11 Analysis of Covariance

11.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(broom)
library(mosaic)
library(tidyverse)

theme_set(theme_bw())

11.1.1 Data Load

emphysema <- read_csv("data/emphysema.csv", show_col_types = FALSE)

11.2 An Emphysema Study

My source for this example is @Riffenburgh2006, section 18.4. Serum theophylline levels (in
mg/dl) were measured in 16 patients with emphysema at baseline, then 5 days later (at the
end of a course of antibiotics) and then at 10 days after baseline. Clinicians anticipate that
the antibiotic will increase the theophylline level. The data are stored in the emphysema.csv
data file, and note that the age for patient 5 is not available.

11.2.1 Codebook

Variable Description
patient ID code

age patient’s age in years
sex patient’s sex (F or M)

362

Variable Description
st_base patient’s serum theophylline at baseline (mg/dl)
st_day5 patient’s serum theophylline at day 5 (mg/dl)
st_day10 patient’s serum theophylline at day 10 (mg/dl)

We’re going to look at the change from baseline to day 5 as our outcome of interest, since the
clinical expectation is that the antibiotic (azithromycin) will increase theophylline levels.

emphysema <- emphysema |>
mutate(st_delta = st_day5 - st_base)

emphysema

A tibble: 16 x 7
patient age sex st_base st_day5 st_day10 st_delta

<dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
1 1 61 F 14.1 2.3 10.3 -11.8
2 2 70 F 7.2 5.4 7.3 -1.8
3 3 65 M 14.2 11.9 11.3 -2.3
4 4 65 M 10.3 10.7 13.8 0.400
5 5 NA M 9.9 10.7 11.7 0.800
6 6 76 M 5.2 6.8 4.2 1.6
7 7 72 M 10.4 14.6 14.1 4.2
8 8 69 F 10.5 7.2 5.4 -3.3
9 9 66 M 5 5 5.1 0
10 10 62 M 8.6 8.1 7.4 -0.5
11 11 65 F 16.6 14.9 13 -1.70
12 12 71 M 16.4 18.6 17.1 2.20
13 13 51 F 12.2 11 12.3 -1.2
14 14 71 M 6.6 3.7 4.5 -2.9
15 15 64 F 15.4 15.2 13.6 -0.200
16 16 50 M 10.2 10.8 11.2 0.600

11.3 Does sex affect the mean change in theophylline?

favstats(~ st_delta, data = emphysema)

min Q1 median Q3 max mean sd n missing
-11.8 -1.925 -0.35 0.65 4.2 -0.99375 3.484149 16 0

363

favstats(st_delta ~ sex, data = emphysema)

sex min Q1 median Q3 max mean sd n missing
1 F -11.8 -2.925 -1.75 -1.325 -0.2 -3.333333 4.267864 6 0
2 M -2.9 -0.375 0.50 1.400 4.2 0.410000 2.067446 10 0

Overall, the mean change in theophylline during the course of the antibiotic is -0.99, but this
is -3.33 for female patients and 0.41 for male patients.

A one-way ANOVA model looks like this:

anova(lm(st_delta ~ sex, data = emphysema))

Analysis of Variance Table

Response: st_delta
Df Sum Sq Mean Sq F value Pr(>F)

sex 1 52.547 52.547 5.6789 0.03189 *
Residuals 14 129.542 9.253

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA F test finds a fairly large difference between the mean st_delta among males
and the mean st_delta among females. But is there more to the story?

11.4 Is there an association between age and sex in this study?

favstats(age ~ sex, data = emphysema)

sex min Q1 median Q3 max mean sd n missing
1 F 51 61.75 64.5 68 70 63.33333 6.889606 6 0
2 M 50 65.00 66.0 71 76 66.44444 7.568208 9 1

But we note that the male patients are also older than the female patients, on average (mean
age for males is 66.4, for females 63.3)

• Does the fact that male patients are older affect change in theophylline level?
• And how should we deal with the one missing age value (in a male patient)?

364

11.5 Adding a quantitative covariate, age, to the model

We could fit an ANOVA model to predict st_delta using sex and age directly, but only if we
categorized age into two or more groups. Because age is not categorical, we cannot include
it in an ANOVA. But if age is an influence, and we don’t adjust for it, it may well bias the
outcome of our initial ANOVA. With a quantitative variable like age, we will need a method
called ANCOVA, for analysis of covariance.

11.5.1 The ANCOVA model

ANCOVA in this case is just an ANOVA model with our outcome (st_delta) adjusted for a
continuous covariate, called age. For the moment, we’ll ignore the one subject with missing
age and simply fit the regression model with sex and age.

summary(lm(st_delta ~ sex + age, data = emphysema))

Call:
lm(formula = st_delta ~ sex + age, data = emphysema)

Residuals:
Min 1Q Median 3Q Max

-8.3352 -0.4789 0.6948 1.5580 3.5202

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.90266 7.92948 -0.871 0.4011
sexM 3.52466 1.75815 2.005 0.0681 .
age 0.05636 0.12343 0.457 0.6561

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.255 on 12 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.2882, Adjusted R-squared: 0.1696
F-statistic: 2.43 on 2 and 12 DF, p-value: 0.13

This model assumes that the slope of the regression line between st_delta and age is the
same for both sexes.

Note that the model yields st_delta = -6.9 + 3.52 (sex = male) + 0.056 age, or

365

• st_delta = -6.9 + 0.056 age for female patients, and
• st_delta = (-6.9 + 3.52) + 0.056 age = -3.38 + 0.056 age for male patients.

Note that we can test this assumption of equal slopes by fitting an alternative model (with a
product term between sex and age) that doesn’t require the assumption, and we’ll do that
later.

11.5.2 The ANCOVA Table

First, though, we’ll look at the ANCOVA table.

anova(lm(st_delta ~ sex + age, data = emphysema))

Analysis of Variance Table

Response: st_delta
Df Sum Sq Mean Sq F value Pr(>F)

sex 1 49.284 49.284 4.6507 0.05203 .
age 1 2.209 2.209 0.2085 0.65612
Residuals 12 127.164 10.597

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When we tested sex without accounting for age, we found a p value of 0.032, which is less
than our usual cutpoint of 0.05. But when we adjusted for age, we find that sex’s p value
rises, even though age doesn’t seem to have a particularly strong influence on st_delta by
itself, according to the ANCOVA table.

11.6 Rerunning the ANCOVA model after simple imputation

We could have imputed the missing age value for patient 5, rather than just deleting that
patient. Suppose we do the simplest potentially reasonable thing to do: insert the mean age
in where the NA value currently exists.

emph_imp <- replace_na(emphysema, list(age = mean(emphysema$age, na.rm = TRUE)))

emph_imp

366

A tibble: 16 x 7
patient age sex st_base st_day5 st_day10 st_delta

<dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
1 1 61 F 14.1 2.3 10.3 -11.8
2 2 70 F 7.2 5.4 7.3 -1.8
3 3 65 M 14.2 11.9 11.3 -2.3
4 4 65 M 10.3 10.7 13.8 0.400
5 5 65.2 M 9.9 10.7 11.7 0.800
6 6 76 M 5.2 6.8 4.2 1.6
7 7 72 M 10.4 14.6 14.1 4.2
8 8 69 F 10.5 7.2 5.4 -3.3
9 9 66 M 5 5 5.1 0
10 10 62 M 8.6 8.1 7.4 -0.5
11 11 65 F 16.6 14.9 13 -1.70
12 12 71 M 16.4 18.6 17.1 2.20
13 13 51 F 12.2 11 12.3 -1.2
14 14 71 M 6.6 3.7 4.5 -2.9
15 15 64 F 15.4 15.2 13.6 -0.200
16 16 50 M 10.2 10.8 11.2 0.600

More on simple imputation and missing data is coming soon.

For now, we can rerun the ANCOVA model on this new data set, after imputation…

anova(lm(st_delta ~ sex + age, data = emph_imp))

Analysis of Variance Table

Response: st_delta
Df Sum Sq Mean Sq F value Pr(>F)

sex 1 52.547 52.547 5.3623 0.03755 *
age 1 2.151 2.151 0.2195 0.64721
Residuals 13 127.392 9.799

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When we do this, we see that now the sex variable returns to a p value below 0.05. Our
complete case analysis (which omitted patient 5) gives us a different result than the ANCOVA
based on the data after mean imputation.

367

11.7 Looking at a factor-covariate interaction

Let’s run a model including the interaction (product) term between age and sex, which implies
that the slope of age on our outcome (st_delta) depends on the patient’s sex. We’ll use the
imputed data again. Here is the new ANCOVA table, which suggests that the interaction of
age and sex is small (because it accounts for only a small amount of the total Sum of Squares)
with a p value of 0.91.

anova(lm(st_delta ~ sex * age, data = emph_imp))

Analysis of Variance Table

Response: st_delta
Df Sum Sq Mean Sq F value Pr(>F)

sex 1 52.547 52.547 4.9549 0.04594 *
age 1 2.151 2.151 0.2028 0.66051
sex:age 1 0.130 0.130 0.0123 0.91355
Residuals 12 127.261 10.605

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Since the interaction term isn’t accounting for much variation, we probably don’t need it
here. But let’s look at its interpretation anyway, just to fix ideas. To do that, we’ll need the
coefficients from the underlying regression model.

tidy(lm(st_delta ~ sex * age, data = emph_imp))

A tibble: 4 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -5.65 13.5 -0.420 0.682
2 sexM 1.72 16.8 0.102 0.920
3 age 0.0365 0.211 0.173 0.866
4 sexM:age 0.0289 0.260 0.111 0.914

Our ANCOVA model for st_delta incorporating the age x sex product term is -5.65 + 1.72
(sex = M) + 0.037 age + 0.029 (sex = M)(age). So that means:

• our model for females is st_delta = -5.65 + 0.037 age
• our model for males is st_delta = (-5.65 + 1.72) + (0.037 + 0.029) age, or -3.93 +

0.066 age

368

but, again, our conclusion from the ANCOVA table is that this increase in complexity (letting
both the slope and intercept vary by sex) doesn’t add much in the way of predictive value for
our st_delta outcome.

11.8 Centering the Covariate to Facilitate ANCOVA Interpretation

When developing an ANCOVA model, we will often center or even center and rescale the
covariate to facilitate interpretation of the product term. In this case, let’s center age and
rescale it by dividing by two standard deviations.

favstats(~ age, data = emph_imp)

min Q1 median Q3 max mean sd n missing
50 63.5 65.1 70.25 76 65.2 6.978061 16 0

Note that in our imputed data, the mean age is 65.2 and the standard deviation of age is 7
years.

So we build the rescaled age variable that I’ll call age_z, and then use it to refit our model.

emph_imp <- emph_imp |>
mutate(age_z = (age - mean(age))/ (2 * sd(age)))

anova(lm(st_delta ~ sex * age_z, data = emph_imp))

Analysis of Variance Table

Response: st_delta
Df Sum Sq Mean Sq F value Pr(>F)

sex 1 52.547 52.547 4.9549 0.04594 *
age_z 1 2.151 2.151 0.2028 0.66051
sex:age_z 1 0.130 0.130 0.0123 0.91355
Residuals 12 127.261 10.605

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

tidy(lm(st_delta ~ sex * age_z, data = emph_imp))

369

A tibble: 4 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -3.27 1.39 -2.35 0.0364
2 sexM 3.60 1.74 2.08 0.0601
3 age_z 0.510 2.95 0.173 0.866
4 sexM:age_z 0.403 3.63 0.111 0.914

Comparing the two models, we have:

• (unscaled): st_delta = -5.65 + 1.72 (sex = M) + 0.037 age + 0.029 (sex = M) x (age)
• (rescaled): st_delta = -3.27 + 3.60 (sex = M) + 0.510 rescaled age_z + 0.402 (sex =

M) x (rescaled age_z)

In essence, the rescaled model on age_z is:

• st_delta = -3.27 + 0.510 age_z for female subjects, and
• st_delta = (-3.27 + 3.60) + (0.510 + 0.402) age_z = 0.33 + 0.912 age_z for male

subjects

Interpreting the centered, rescaled model, we have:

• no change in the ANOVA results or R-squared or residual standard deviation compared
to the uncentered, unscaled model, but

• the intercept (-3.27) now represents the st_delta for a female of average age,
• the sex slope (3.60) represents the (male - female) difference in predicted st_delta for

a person of average age,
• the age_z slope (0.510) represents the difference in predicted st_delta for a female

one standard deviation older than the mean age as compared to a female one standard
deviation younger than the mean age, and

• the product term’s slope (0.402) represents the male - female difference in the slope of
age_z, so that if you add the age_z slope (0.510) and the interaction slope (0.402) you
see the difference in predicted st_delta for a male one standard deviation older than
the mean age as compared to a male one standard deviation younger than the mean age.

370

12 Analysis of Covariance with the SMART
data

In this chapter, we’ll work with the smart_cle1_sh data file that we developed in Chapter 7.

12.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(broom)
library(mosaic)
library(tidyverse)

theme_set(theme_bw())

12.1.1 Data Load

smart_cle1_sh <- readRDS("data/smart_cle1_sh.Rds")

12.2 A New Small Study: Predicting BMI

We’ll begin by investigating the problem of predicting bmi, at first with just three regression
inputs: smoke100, female and physhealth, in our smart_cle1_sh data set.

• The outcome of interest is bmi.
• Inputs to the regression model are:

– smoke100 = 1 if the subject has smoked 100 cigarettes in their lifetime
– female = 1 if the subject is female, and 0 if they are male
– physhealth = number of poor physical health days in past 30 (treated as quanti-

tative)

371

12.2.1 Does smoke100 predict bmi well?

12.2.1.1 Graphical Assessment

ggplot(smart_cle1_sh, aes(x = smoke100, y = bmi)) +
geom_point()

20

40

60

0.00 0.25 0.50 0.75 1.00
smoke100

bm
i

Not so helpful. We should probably specify that smoke100 is a factor, and try another plotting
approach.

ggplot(smart_cle1_sh, aes(x = factor(smoke100), y = bmi)) +
geom_boxplot()

372

20

40

60

0 1
factor(smoke100)

bm
i

The median BMI looks a little higher for those who have smoked 100 cigarettes. Let’s see if a
model reflects that.

12.3 mod1: A simple t-test model

mod1 <- lm(bmi ~ smoke100, data = smart_cle1_sh)
mod1

Call:
lm(formula = bmi ~ smoke100, data = smart_cle1_sh)

Coefficients:
(Intercept) smoke100

27.9390 0.8722

summary(mod1)

373

Call:
lm(formula = bmi ~ smoke100, data = smart_cle1_sh)

Residuals:
Min 1Q Median 3Q Max

-15.511 -4.019 -0.870 2.841 41.749

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.9390 0.2594 107.722 <2e-16 ***
smoke100 0.8722 0.3781 2.307 0.0213 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.353 on 1131 degrees of freedom
Multiple R-squared: 0.004682, Adjusted R-squared: 0.003802
F-statistic: 5.321 on 1 and 1131 DF, p-value: 0.02125

confint(mod1)

2.5 % 97.5 %
(Intercept) 27.4301016 28.447875
smoke100 0.1303021 1.614195

tidy(mod1, conf.int = TRUE, conf.level = 0.95)

A tibble: 2 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 27.9 0.259 108. 0 27.4 28.4
2 smoke100 0.872 0.378 2.31 0.0213 0.130 1.61

glance(mod1)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.00468 0.00380 6.35 5.32 0.0213 1 -3702. 7409. 7424.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

374

The model suggests, based on these 1133 subjects, that

• our best prediction for non-smokers is BMI = 27.94 kg/m2, and
• our best prediction for those who have smoked 100 cigarettes is BMI = 27.94 + 0.87 =

28.81 kg/m2.
• the mean difference between smokers and non-smokers is +0.87 kg/m2 in BMI
• a 95% confidence (uncertainty) interval for that mean smoker - non-smoker difference in

BMI ranges from 0.13 to 1.61
• the model accounts for 0.47% of the variation in BMI, so that knowing the respondent’s

tobacco status does very little to reduce the size of the prediction errors as compared
to an intercept only model that would predict the overall mean BMI for each of our
subjects.

• the model makes some enormous errors, with one subject being predicted to have a BMI
42 points lower than his/her actual BMI.

Note that this simple regression model just gives us the t-test.

t.test(bmi ~ smoke100, var.equal = TRUE, data = smart_cle1_sh)

Two Sample t-test

data: bmi by smoke100
t = -2.3066, df = 1131, p-value = 0.02125
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
95 percent confidence interval:
-1.6141946 -0.1303021
sample estimates:
mean in group 0 mean in group 1

27.93899 28.81124

12.4 mod2: Adding another predictor (two-way ANOVA without
interaction)

When we add in the information about female (sex) to our original model, we might first
picture the data. We could look at separate histograms,

ggplot(smart_cle1_sh, aes(x = bmi)) +
geom_histogram(bins = 30) +
facet_grid(female ~ smoke100, labeller = label_both)

375

smoke100: 0 smoke100: 1

fem
ale: 0

fem
ale: 1

20 40 60 20 40 60

0

25

50

75

100

0

25

50

75

100

bmi

co
un

t

or maybe boxplots?

ggplot(smart_cle1_sh, aes(x = factor(female), y = bmi)) +
geom_boxplot() +
facet_wrap(~ smoke100, labeller = label_both)

376

smoke100: 0 smoke100: 1

0 1 0 1

20

40

60

factor(female)

bm
i

ggplot(smart_cle1_sh, aes(x = female, y = bmi))+
geom_point(size = 3, alpha = 0.2) +
theme_bw() +
facet_wrap(~ smoke100, labeller = label_both)

377

smoke100: 0 smoke100: 1

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

20

40

60

female

bm
i

OK. Let’s try fitting a model.

mod2 <- lm(bmi ~ female + smoke100, data = smart_cle1_sh)
mod2

Call:
lm(formula = bmi ~ female + smoke100, data = smart_cle1_sh)

Coefficients:
(Intercept) female smoke100

28.0265 -0.1342 0.8555

This new model predicts only four predicted values:

• bmi = 28.0265 if the subject is male and has not smoked 100 cigarettes (so female = 0
and smoke100 = 0)

• bmi = 28.0265 - 0.1342 = 27.8923 if the subject is female and has not smoked 100
cigarettes (female = 1 and smoke100 = 0)

• bmi = 28.0265 + 0.8555 = 28.8820 if the subject is male and has smoked 100 cigarettes
(so female = 0 and smoke100 = 1), and, finally

378

• bmi = 28.0265 - 0.1342 + 0.8555 = 28.7478 if the subject is female and has smoked 100
cigarettes (so both female and smoke100 = 1).

Another way to put this is that for those who have not smoked 100 cigarettes, the model is:

• bmi = 28.0265 - 0.1342 female

and for those who have smoked 100 cigarettes, the model is:

• bmi = 28.8820 - 0.1342 female

Only the intercept of the bmi-female model changes depending on smoke100.

summary(mod2)

Call:
lm(formula = bmi ~ female + smoke100, data = smart_cle1_sh)

Residuals:
Min 1Q Median 3Q Max

-15.448 -3.972 -0.823 2.774 41.678

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.0265 0.3620 77.411 <2e-16 ***
female -0.1342 0.3875 -0.346 0.7291
smoke100 0.8555 0.3814 2.243 0.0251 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.356 on 1130 degrees of freedom
Multiple R-squared: 0.004788, Adjusted R-squared: 0.003027
F-statistic: 2.718 on 2 and 1130 DF, p-value: 0.06642

confint(mod2)

2.5 % 97.5 %
(Intercept) 27.3161140 28.7368281
female -0.8944773 0.6259881
smoke100 0.1072974 1.6037825

379

The slopes of both female and smoke100 have confidence intervals that are completely below
zero, indicating that both female sex and smoke100 appear to be associated with reductions
in bmi.

The 𝑅2 value suggests that 0.4788% of the variation in bmi is accounted for by this ANOVA
model.

In fact, this regression (on two binary indicator variables) is simply a two-way ANOVA model
without an interaction term.

anova(mod2)

Analysis of Variance Table

Response: bmi
Df Sum Sq Mean Sq F value Pr(>F)

female 1 16 16.301 0.4036 0.52538
smoke100 1 203 203.296 5.0330 0.02506 *
Residuals 1130 45644 40.393

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

12.5 mod3: Adding the interaction term (Two-way ANOVA with
interaction)

Suppose we want to let the effect of female vary depending on the smoke100 status. Then we
need to incorporate an interaction term in our model.

mod3 <- lm(bmi ~ female * smoke100, data = smart_cle1_sh)
mod3

Call:
lm(formula = bmi ~ female * smoke100, data = smart_cle1_sh)

Coefficients:
(Intercept) female smoke100 female:smoke100

28.2690 -0.5064 0.4119 0.7536

So, for example, for a male who has smoked 100 cigarettes, this model predicts

380

• bmi = 28.269 - 0.506 (0) + 0.412 (1) + 0.754 (0)(1) = 28.269 + 0.412 = 28.681

And for a female who has smoked 100 cigarettes, the model predicts

• bmi = 28.269 - 0.506 (1) + 0.412 (1) + 0.754 (1)(1) = 28.269 - 0.506 + 0.412 + 0.754 =
28.929

For those who have not smoked 100 cigarettes, the model is:

• bmi = 28.269 - 0.506 female

But for those who have smoked 100 cigarettes, the model is:

• bmi = (28.269 + 0.412) + (-0.506 + 0.754) female, or „,
• bmi = 28.681 - 0.248 female

Now, both the slope and the intercept of the bmi-female model change depending on
smoke100.

summary(mod3)

Call:
lm(formula = bmi ~ female * smoke100, data = smart_cle1_sh)

Residuals:
Min 1Q Median 3Q Max

-15.628 -3.938 -0.829 2.759 41.879

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.2690 0.4396 64.301 <2e-16 ***
female -0.5064 0.5446 -0.930 0.353
smoke100 0.4119 0.5946 0.693 0.489
female:smoke100 0.7536 0.7750 0.972 0.331

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.356 on 1129 degrees of freedom
Multiple R-squared: 0.005621, Adjusted R-squared: 0.002979
F-statistic: 2.127 on 3 and 1129 DF, p-value: 0.09507

confint(mod3)

381

2.5 % 97.5 %
(Intercept) 27.4063783 29.1315563
female -1.5749026 0.5621793
smoke100 -0.7547605 1.5786121
female:smoke100 -0.7670239 2.2742178

In fact, this regression (on two binary indicator variables and a product term) is simply a
two-way ANOVA model with an interaction term.

anova(mod3)

Analysis of Variance Table

Response: bmi
Df Sum Sq Mean Sq F value Pr(>F)

female 1 16 16.301 0.4035 0.52539
smoke100 1 203 203.296 5.0327 0.02507 *
female:smoke100 1 38 38.194 0.9455 0.33107
Residuals 1129 45606 40.395

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The interaction term doesn’t change very much here. Its uncertainty interval includes zero,
and the overall model still accounts for less than 1% of the variation in bmi.

12.6 mod4: Using smoke100 and physhealth in a model for bmi

ggplot(smart_cle1_sh, aes(x = physhealth, y = bmi, color = factor(smoke100))) +
geom_point() +
guides(col = "none") +
geom_smooth(method = "lm", se = FALSE) +
facet_wrap(~ smoke100, labeller = label_both)

`geom_smooth()` using formula = 'y ~ x'

382

smoke100: 0 smoke100: 1

0 10 20 30 0 10 20 30

20

40

60

physhealth

bm
i

Does the difference in slopes of bmi and physhealth for those who have and haven’t smoked
at least 100 cigarettes appear to be substantial and important?

mod4 <- lm(bmi ~ smoke100 * physhealth, data = smart_cle1_sh)

summary(mod4)

Call:
lm(formula = bmi ~ smoke100 * physhealth, data = smart_cle1_sh)

Residuals:
Min 1Q Median 3Q Max

-19.011 -3.811 -0.559 2.609 38.249

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.49077 0.28369 96.904 < 2e-16 ***
smoke100 0.57017 0.41911 1.360 0.173965
physhealth 0.10840 0.02995 3.619 0.000308 ***
smoke100:physhealth 0.03326 0.04093 0.813 0.416561

383

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.252 on 1129 degrees of freedom
Multiple R-squared: 0.03782, Adjusted R-squared: 0.03526
F-statistic: 14.79 on 3 and 1129 DF, p-value: 1.886e-09

Does it seem as though the addition of physhealth has improved our model substantially over
a model with smoke100 alone (which, you recall, was mod1)?

Since the mod4 model contains the mod1 model’s predictors as a subset and the outcome is the
same for each model, we consider the models nested and have some extra tools available to
compare them.

• I might start by looking at the basic summaries for each model.

glance(mod4)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.0378 0.0353 6.25 14.8 0.00000000189 3 -3682. 7375. 7400.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

glance(mod1)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.00468 0.00380 6.35 5.32 0.0213 1 -3702. 7409. 7424.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

• The 𝑅2 is much larger for the model with physhealth, but still very tiny.
• Smaller AIC and smaller BIC statistics are more desirable. Here, there’s little to choose

from, so mod4 looks better, too.
• We might also consider a significance test by looking at an ANOVA model comparison.

This is only appropriate because mod1 is nested in mod4.

anova(mod4, mod1)

384

Analysis of Variance Table

Model 1: bmi ~ smoke100 * physhealth
Model 2: bmi ~ smoke100
Res.Df RSS Df Sum of Sq F Pr(>F)

1 1129 44129
2 1131 45649 -2 -1519.7 19.44 5.005e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The addition of the physhealth term appears to be an improvement, not that that means
very much.

12.7 Making Predictions with a Linear Regression Model

Recall model 4, which yields predictions for body mass index on the basis of the main ef-
fects of having smoked (smoke100) and days of poor physical health (physhealth) and their
interaction.

mod4

Call:
lm(formula = bmi ~ smoke100 * physhealth, data = smart_cle1_sh)

Coefficients:
(Intercept) smoke100 physhealth

27.49077 0.57017 0.10840
smoke100:physhealth

0.03326

12.7.1 Fitting an Individual Prediction and 95% Prediction Interval

What do we predict for the bmi of a subject who has smoked at least 100 cigarettes in their
life and had 8 poor physical health days in the past 30?

new1 <- tibble(smoke100 = 1, physhealth = 8)
predict(mod4, newdata = new1, interval = "prediction", level = 0.95)

385

fit lwr upr
1 29.19423 16.91508 41.47338

The predicted bmi for this new subject is shown above. The prediction interval shows the
bounds of a 95% uncertainty interval for a predicted bmi for an individual smoker1 who has 8
days of poor physical health out of the past 30. From the predict function applied to a linear
model, we can get the prediction intervals for any new data points in this manner.

12.7.2 Confidence Interval for an Average Prediction

• What do we predict for the average body mass index of a population of subjects
who are smokers and have physhealth = 8?

predict(mod4, newdata = new1, interval = "confidence", level = 0.95)

fit lwr upr
1 29.19423 28.64267 29.74579

• How does this result compare to the prediction interval?

12.7.3 Fitting Multiple Individual Predictions to New Data

• How does our prediction change for a respondent if they instead have 7, or 9 poor physical
health days? What if they have or don’t have a history of smoking?

c8_new2 <- tibble(subjectid = 1001:1006, smoke100 = c(1, 1, 1, 0, 0, 0), physhealth = c(7, 8, 9, 7, 8, 9))
pred2 <- predict(mod4, newdata = c8_new2, interval = "prediction", level = 0.95) |> as_tibble()

result2 <- bind_cols(c8_new2, pred2)
result2

A tibble: 6 x 6
subjectid smoke100 physhealth fit lwr upr

<int> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1001 1 7 29.1 16.8 41.3
2 1002 1 8 29.2 16.9 41.5
3 1003 1 9 29.3 17.1 41.6

1I’ll now refer to those who have smoked at least 100 cigarettes in their life as smokers, and those who have
not as non-smokers to save some space.

386

4 1004 0 7 28.2 16.0 40.5
5 1005 0 8 28.4 16.1 40.6
6 1006 0 9 28.5 16.2 40.7

The result2 tibble contains predictions for each scenario.

• Which has a bigger impact on these predictions and prediction intervals? A one category
change in smoke100 or a one hour change in physhealth?

12.8 Centering the model

Our model mod4 has four predictors (the constant, physhealth, smoke100 and their interac-
tion) but just two inputs (smoke100 and physhealth.) If we center the quantitative input
physhealth before building the model, we get a more interpretable interaction term.

smart_cle1_sh_c <- smart_cle1_sh |>
mutate(physhealth_c = physhealth - mean(physhealth))

mod4_c <- lm(bmi ~ smoke100 * physhealth_c, data = smart_cle1_sh_c)

summary(mod4_c)

Call:
lm(formula = bmi ~ smoke100 * physhealth_c, data = smart_cle1_sh_c)

Residuals:
Min 1Q Median 3Q Max

-19.011 -3.811 -0.559 2.609 38.249

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.99821 0.25576 109.471 < 2e-16 ***
smoke100 0.72589 0.37288 1.947 0.051818 .
physhealth_c 0.10840 0.02995 3.619 0.000308 ***
smoke100:physhealth_c 0.03326 0.04093 0.813 0.416561

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.252 on 1129 degrees of freedom

387

Multiple R-squared: 0.03782, Adjusted R-squared: 0.03526
F-statistic: 14.79 on 3 and 1129 DF, p-value: 1.886e-09

What has changed as compared to the original mod4?

• Our original model was bmi = 27.5 + 0.57 smoke100 + 0.11 physhealth - 0.03 smoke100
x physhealth

• Our new model is bmi = 28.0 + 0.73 smoke100 + 0.11 centered physhealth + 0.03
smoke100 x centered physhealth.

So our new model on centered data is:

• 28.0 + 0.11 centered physhealth_c for non-smokers, and
• (28.0 + 0.73) + (0.11 - 0.03) centered physhealth_c, or 28.73 + 0.08 centered

physhealth_c for smokers.

In our new (centered physhealth_c) model,

• the main effect of smoke100 now corresponds to a predictive difference (smoker - non-
smoker) in bmi with physhealth at its mean value, 4.68 days,

• the intercept term is now the predicted bmi for a non-smoker with an average
physhealth, and

• the product term corresponds to the change in the slope of centered physhealth_c on
bmi for a smoker rather than a non-smoker, while

• the residual standard deviation and the R-squared values remain unchanged from the
model before centering.

12.8.1 Plot of Model 4 on Centered physhealth: mod4_c

ggplot(smart_cle1_sh_c, aes(x = physhealth_c, y = bmi, group = smoke100, col = factor(smoke100))) +
geom_point(alpha = 0.5, size = 2) +
geom_smooth(method = "lm", se = FALSE, formula = y ~ x) +
guides(color = "none") +
labs(x = "Poor Physical Health Days, centered", y = "Body Mass Index",

title = "Model `mod4` on centered data") +
facet_wrap(~ smoke100, labeller = label_both)

388

smoke100: 0 smoke100: 1

0 10 20 0 10 20

20

40

60

Poor Physical Health Days, centered

B
od

y
M

as
s

In
de

x

Model `mod4` on centered data

12.9 Rescaling an input by subtracting the mean and dividing by 2
standard deviations

Centering helped us interpret the main effects in the regression, but it still leaves a scaling
problem.

• The smoke100 coefficient estimate is much larger than that of physhealth, but this
is misleading, considering that we are comparing the complete change in one variable
(smoking or not) to a 1-day change in physhealth.

• @GelmanHill2007 recommend all continuous predictors be scaled by dividing by 2 stan-
dard deviations, so that:

– a 1-unit change in the rescaled predictor corresponds to a change from 1 standard
deviation below the mean, to 1 standard deviation above.

– an unscaled binary (1/0) predictor with 50% probability of occurring will be exactly
comparable to a rescaled continuous predictor done in this way.

smart_cle1_sh_rescale <- smart_cle1_sh |>
mutate(physhealth_z = (physhealth - mean(physhealth))/(2*sd(physhealth)))

389

12.9.1 Refitting model mod4 to the rescaled data

mod4_z <- lm(bmi ~ smoke100 * physhealth_z, data = smart_cle1_sh_rescale)

summary(mod4_z)

Call:
lm(formula = bmi ~ smoke100 * physhealth_z, data = smart_cle1_sh_rescale)

Residuals:
Min 1Q Median 3Q Max

-19.011 -3.811 -0.559 2.609 38.249

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.9982 0.2558 109.471 < 2e-16 ***
smoke100 0.7259 0.3729 1.947 0.051818 .
physhealth_z 1.9774 0.5463 3.619 0.000308 ***
smoke100:physhealth_z 0.6068 0.7467 0.813 0.416561

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.252 on 1129 degrees of freedom
Multiple R-squared: 0.03782, Adjusted R-squared: 0.03526
F-statistic: 14.79 on 3 and 1129 DF, p-value: 1.886e-09

12.9.2 Interpreting the model on rescaled data

What has changed as compared to the original mod4?

• Our original model was bmi = 27.5 + 0.57 smoke100 + 0.11 physhealth + 0.03 smoke100
x physhealth

• Our model on centered physhealth was bmi = 28.0 + 0.73 smoke100 + 0.11 centered
physhealth + 0.03 smoke100 x centered physhealth.

• Our new model on rescaled physhealth is bmi = 28.0 + 0.73 smoke100 + 1.98 rescaled
physhealth + 0.61 smoke100 x rescaled physhealth

So our rescaled model is:

• 28.0 + 1.98 rescaled physhealth_z for non-smokers, and

390

• (28.0 + 0.73) + (1.98 + 0.61) rescaled physhealth_z, or 28.73 + 2.59 rescaled
physhealth_z for smokers.

In this new rescaled (physhealth_z) model, then,

• the main effect of smoke100, 0.73, still corresponds to a predictive difference (smoker -
non-smoker) in bmi with physhealth at its mean value, 4.68 days,

• the intercept term is still the predicted bmi for a non-smoker with an average physhealth
count, and

• the residual standard deviation and the R-squared values remain unchanged,

as before, but now we also have that:

• the coefficient of physhealth_z indicates the predictive difference in bmi associated with
a change in physhealth of 2 standard deviations (from one standard deviation below
the mean of 4.68 to one standard deviation above 4.68.)

– Since the standard deviation of physhealth is 9.12 (see below), this covers a massive
range of potential values of physhealth from 0 all the way up to 4.68 + 2(9.12) =
22.92 days.

favstats(~ physhealth, data = smart_cle1_sh)

min Q1 median Q3 max mean sd n missing
0 0 0 4 30 4.681377 9.120899 1133 0

• the coefficient of the product term (0.61) corresponds to the change in the coefficient of
physhealth_z for smokers as compared to non-smokers.

12.9.3 Plot of model on rescaled data

ggplot(smart_cle1_sh_rescale, aes(x = physhealth_z, y = bmi,
group = smoke100, col = factor(smoke100))) +

geom_point(alpha = 0.5) +
geom_smooth(method = "lm", se = FALSE, size = 1.5) +
scale_color_discrete(name = "Is subject a smoker?") +
labs(x = "Poor Physical Health Days, standardized (2 sd)", y = "Body Mass Index",

title = "Model `mod4_z` on rescaled data")

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.

391

`geom_smooth()` using formula = 'y ~ x'

20

40

60

0.0 0.5 1.0
Poor Physical Health Days, standardized (2 sd)

B
od

y
M

as
s

In
de

x

Is subject a smoker?

0

1

Model `mod4_z` on rescaled data

There’s very little difference here.

12.10 mod5: What if we add more variables?

We can boost our 𝑅2 a bit, to nearly 5%, by adding in two new variables, related to whether
or not the subject (in the past 30 days) used the internet, and the average number of alcoholic
drinks per week consumed by ths subject.

mod5 <- lm(bmi ~ smoke100 + female +physhealth + internet30 + drinks_wk,
data = smart_cle1_sh)

summary(mod5)

Call:
lm(formula = bmi ~ smoke100 + female + physhealth + internet30 +

drinks_wk, data = smart_cle1_sh)

Residuals:

392

Min 1Q Median 3Q Max
-18.358 -3.846 -0.657 2.534 38.049

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.52400 0.56076 49.083 < 2e-16 ***
smoke100 0.82654 0.37739 2.190 0.02872 *
female -0.43272 0.38510 -1.124 0.26140
physhealth 0.12469 0.02074 6.012 2.47e-09 ***
internet30 0.44287 0.48830 0.907 0.36462
drinks_wk -0.10193 0.03352 -3.041 0.00241 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.231 on 1127 degrees of freedom
Multiple R-squared: 0.04582, Adjusted R-squared: 0.04159
F-statistic: 10.82 on 5 and 1127 DF, p-value: 3.48e-10

1. Here’s the ANOVA for this model. What can we study with this?

anova(mod5)

Analysis of Variance Table

Response: bmi
Df Sum Sq Mean Sq F value Pr(>F)

smoke100 1 215 214.75 5.5304 0.018861 *
female 1 5 4.85 0.1249 0.723878
physhealth 1 1508 1508.08 38.8372 6.497e-10 ***
internet30 1 15 14.69 0.3783 0.538650
drinks_wk 1 359 359.05 9.2466 0.002414 **
Residuals 1127 43762 38.83

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2. Consider the revised output below. Now what can we study?

anova(lm(bmi ~ smoke100 + internet30 + drinks_wk + female + physhealth,
data = smart_cle1_sh))

Analysis of Variance Table

393

Response: bmi
Df Sum Sq Mean Sq F value Pr(>F)

smoke100 1 215 214.75 5.5304 0.0188606 *
internet30 1 8 7.81 0.2010 0.6539723
drinks_wk 1 444 443.79 11.4288 0.0007479 ***
female 1 32 31.58 0.8132 0.3673566
physhealth 1 1403 1403.49 36.1438 2.472e-09 ***
Residuals 1127 43762 38.83

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3. What does the output below let us conclude?

anova(lm(bmi ~ smoke100 + internet30 + drinks_wk + female + physhealth,
data = smart_cle1_sh),

lm(bmi ~ smoke100 + female + drinks_wk,
data = smart_cle1_sh))

Analysis of Variance Table

Model 1: bmi ~ smoke100 + internet30 + drinks_wk + female + physhealth
Model 2: bmi ~ smoke100 + female + drinks_wk
Res.Df RSS Df Sum of Sq F Pr(>F)

1 1127 43762
2 1129 45166 -2 -1403.7 18.075 1.877e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4. What does it mean for the models to be “nested”?

12.11 mod6: Would adding self-reported health help?

And we can do even a bit better than that by adding in a multi-categorical measure: self-
reported general health.

mod6 <- lm(bmi ~ female + smoke100 + physhealth + internet30 + drinks_wk + genhealth,
data = smart_cle1_sh)

summary(mod6)

394

Call:
lm(formula = bmi ~ female + smoke100 + physhealth + internet30 +

drinks_wk + genhealth, data = smart_cle1_sh)

Residuals:
Min 1Q Median 3Q Max

-19.216 -3.659 -0.736 2.669 36.810

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.20736 0.71106 35.450 < 2e-16 ***
female -0.31949 0.37667 -0.848 0.3965
smoke100 0.45866 0.37214 1.232 0.2180
physhealth 0.04353 0.02506 1.737 0.0827 .
internet30 0.93270 0.48273 1.932 0.0536 .
drinks_wk -0.07712 0.03294 -2.341 0.0194 *
genhealth2_VeryGood 1.21169 0.56838 2.132 0.0332 *
genhealth3_Good 3.22783 0.58009 5.564 3.29e-08 ***
genhealth4_Fair 4.14497 0.73284 5.656 1.96e-08 ***
genhealth5_Poor 5.86335 1.09253 5.367 9.73e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.089 on 1123 degrees of freedom
Multiple R-squared: 0.09206, Adjusted R-squared: 0.08478
F-statistic: 12.65 on 9 and 1123 DF, p-value: < 2.2e-16

1. If Harry and Marty have the same values of female, smoke100, physhealth, internet30
and drinks_wk, but Harry rates his health as Good, and Marty rates his as Fair, then
what is the difference in the predictions? Who is predicted to have a larger BMI, and
by how much?

2. What does this normal probability plot of the residuals suggest?

plot(mod6, which = 2)

395

−3 −2 −1 0 1 2 3

−
2

0
2

4
6

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(bmi ~ female + smoke100 + physhealth + internet30 + drinks_wk + genhealt ...

Q−Q Residuals

961
320

959

12.12 Key Regression Assumptions for Building Effective
Prediction Models

1. Validity - the data you are analyzing should map to the research question you are trying
to answer.

• The outcome should accurately reflect the phenomenon of interest.
• The model should include all relevant predictors. (It can be difficult to decide which

predictors are necessary, and what to do with predictors that have large standard
errors.)

• The model should generalize to all of the cases to which it will be applied.
• Can the available data answer our question reliably?

2. Additivity and linearity - most important assumption of a regression model is that its
deterministic component is a linear function of the predictors. We often think about
transformations in this setting.

3. Independence of errors - errors from the prediction line are independent of each other
4. Equal variance of errors - if this is violated, we can more efficiently estimate param-

eters using weighted least squares approaches, where each point is weighted inversely
proportional to its variance, but this doesn’t affect the coefficients much, if at all.

5. Normality of errors - not generally important for estimating the regression line

396

12.12.1 Checking Assumptions in model mod6

1. How does the assumption of linearity behind this model look?

plot(mod6, which = 1)

24 26 28 30 32 34

−
20

0
20

40

Fitted values

R
es

id
ua

ls

lm(bmi ~ female + smoke100 + physhealth + internet30 + drinks_wk + genhealt ...

Residuals vs Fitted

961
320

959

We see no strong signs of serious non-linearity here. There’s no obvious curve in the plot, for
example. We may have a problem with increasing variance as we move to the right.

2. What can we conclude from the plot below?

plot(mod6, which = 5)

397

0.00 0.02 0.04 0.06 0.08

−
4

0
2

4
6

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(bmi ~ female + smoke100 + physhealth + internet30 + drinks_wk + genhealt ...

Cook's distance

Residuals vs Leverage

961
320

405

This plot can help us identify points with large standardized residuals, large leverage values,
and large influence on the model (as indicated by large values of Cook’s distance.) In this
case, I see no signs of any points used in the model with especially large influence, although
there are some poorly fitted points (with especially large standardized residuals.)

We might want to identify the point listed here as 961, which appears to have an enormous
standardized residual. To do so, we can use the slice function from dplyr.

smart_cle1_sh |> slice(961) |> select(SEQNO)

A tibble: 1 x 1
SEQNO
<dbl>

1 2017000961

Now we know exactly which subject we’re talking about.

3. What other residual plots are available with plot and how do we interpret them?

plot(mod6, which = 2)

398

−3 −2 −1 0 1 2 3

−
2

0
2

4
6

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(bmi ~ female + smoke100 + physhealth + internet30 + drinks_wk + genhealt ...

Q−Q Residuals

961
320

959

This plot is simply a Normal Q-Q plot of the standardized residuals from our model. We’re
looking here for serious problems with the assumption of Normality.

plot(mod6, which = 3)

399

24 26 28 30 32 34

0.
0

1.
0

2.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(bmi ~ female + smoke100 + physhealth + internet30 + drinks_wk + genhealt ...

Scale−Location
961

320
959

This is a scale-location plot, designed to help us see non-constant variance in the residuals as
we move across the fitted values as a linear trend, rather than as a fan shape, by plotting the
square root of the residuals on the vertical axis.

plot(mod6, which = 4)

400

0 200 400 600 800 1000

0.
00

0.
04

0.
08

Obs. number

C
oo

k'
s

di
st

an
ce

lm(bmi ~ female + smoke100 + physhealth + internet30 + drinks_wk + genhealt ...

Cook's distance
961

320

405

Finally, this is an index plot of the Cook’s distance values, allowing us to identify points that
are particularly large. Remember that a value of 0.5 (or perhaps even 1.0) is a reasonable
boundary for a substantially influential point.

401

13 Adding Non-linear Terms to a Linear
Regression

13.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(broom)
library(car)
library(Hmisc)
library(mosaic)
library(rms)
library(patchwork)
library(tidyverse)

theme_set(theme_bw())

13.1.1 Data Load

pollution <- read_csv("data/pollution.csv", show_col_types = FALSE)

13.2 The pollution data

Consider the pollution data set, which contain 15 independent variables and a measure of
mortality, describing 60 US metropolitan areas in 1959-1961. The data come from @McDon-
ald1973, and are available at http://www4.stat.ncsu.edu/~boos/var.select/pollution.html and
our web site.

pollution

402

A tibble: 60 x 16
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 13 49 68 7 3.36 12.2 90.7 2702 3 51.9 9.7 105 32
2 28 32 81 7 3.27 12.1 81 3665 7.5 51.6 13.2 4 2
3 10 55 70 7.3 3.11 12.1 88.9 3033 5.9 51 14 144 66
4 43 32 74 10.1 3.38 9.5 79.2 3214 2.9 43.7 12 11 7
5 25 12 73 9.2 3.28 12.1 83.1 2095 2 51.9 9.8 20 11
6 35 46 85 7.1 3.22 11.8 79.9 1441 14.8 51.2 16.1 1 1
7 60 67 82 10 2.98 11.5 88.6 4657 13.5 47.3 22.4 3 1
8 11 53 68 9.2 2.99 12.1 90.6 4700 7.8 48.9 12.3 648 319
9 31 24 72 9 3.37 10.9 82.8 3226 5.1 45.2 12.3 5 3
10 15 30 73 8.2 3.15 12.2 84.2 4824 4.7 53.1 12.7 17 8
i 50 more rows
i 3 more variables: x14 <dbl>, x15 <dbl>, y <dbl>

Here’s a codebook:

Variable Description
y Total Age Adjusted Mortality Rate
x1 Mean annual precipitation in inches
x2 Mean January temperature in degrees Fahrenheit
x3 Mean July temperature in degrees Fahrenheit
x4 Percent of 1960 SMSA population that is 65 years of age or over
x5 Population per household, 1960 SMSA
x6 Median school years completed for those over 25 in 1960 SMSA
x7 Percent of housing units that are found with facilities
x8 Population per square mile in urbanized area in 1960
x9 Percent of 1960 urbanized area population that is non-white

x10 Percent employment in white-collar occupations in 1960 urbanized area
x11 Percent of families with income under $30,000 in 1960 urbanized area
x12 Relative population potential of hydrocarbons, HC
x13 Relative pollution potential of oxides of nitrogen, NOx
x14 Relative pollution potential of sulfur dioxide, SO2
x15 Percent relative humidity, annual average at 1 p.m.

13.3 Fitting a straight line model to predict y from x2

Consider the relationship between y, the age-adjusted mortality rate, and x2, the mean January
temperature, across these 60 areas. I’ll include both a linear model (in blue) and a loess smooth
(in red.) Does the relationship appear to be linear?

403

ggplot(pollution, aes(x = x2, y = y)) +
geom_point() +
geom_smooth(method = "lm", col = "blue", se = F) +
geom_smooth(method = "loess", col = "red", se = F)

`geom_smooth()` using formula = 'y ~ x'
`geom_smooth()` using formula = 'y ~ x'

800

900

1000

1100

10 20 30 40 50 60
x2

y

Suppose we plot the residuals that emerge from the linear model shown in blue, above. Do we
see a curve in a plot of residuals against fitted values?

plot(lm(y ~ x2, data = pollution), which = 1)

404

934 936 938 940 942 944

−
10

0
0

10
0

Fitted values

R
es

id
ua

ls

lm(y ~ x2)

Residuals vs Fitted

60

1

59

13.4 Quadratic polynomial model to predict y using x2

A polynomial in the variable x of degree D is a linear combination of the powers of x up to
D.

For example:

• Linear: 𝑦 = 𝛽0 + 𝛽1𝑥
• Quadratic: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2

• Cubic: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3

• Quartic: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4

• Quintic: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5

Fitting such a model creates a polynomial regression.

13.4.1 The raw quadratic model

Let’s look at a quadratic model which predicts y using x2 and the square of x2, so that our
model is of the form:

𝑦 = 𝛽0 + 𝛽1𝑥2 + 𝛽2𝑥2
2 + 𝑒𝑟𝑟𝑜𝑟

405

There are several ways to fit this exact model.

• One approach is to calculate the square of x2 within our pollution data set, and then
feed both x2 and x2squared to lm.

• Another approach uses the I function within our lm to specify the use of both x2 and its
square.

• Yet another approach uses the poly function within our lm, which can be used to specify
raw models including x2 and x2squared.

pollution <- pollution |>
mutate(x2squared = x2^2)

mod2a <- lm(y ~ x2 + x2squared, data = pollution)
mod2b <- lm(y ~ x2 + I(x2^2), data = pollution)
mod2c <- lm(y ~ poly(x2, degree = 2, raw = TRUE), data = pollution)

Each of these approaches produces the same model, as they are just different ways of expressing
the same idea.

summary(mod2a)

Call:
lm(formula = y ~ x2 + x2squared, data = pollution)

Residuals:
Min 1Q Median 3Q Max

-148.977 -38.651 6.889 35.312 189.346

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 785.77449 79.54086 9.879 5.87e-14 ***
x2 8.87640 4.27394 2.077 0.0423 *
x2squared -0.11704 0.05429 -2.156 0.0353 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.83 on 57 degrees of freedom
Multiple R-squared: 0.07623, Adjusted R-squared: 0.04382
F-statistic: 2.352 on 2 and 57 DF, p-value: 0.1044

406

And if we plot the fitted values for this mod2 using whatever approach you like, we get exactly
the same result.

mod2a_aug <- augment(mod2a, pollution)

ggplot(mod2a_aug, aes(x = x2, y = y)) +
geom_point() +
geom_line(aes(x = x2, y = .fitted), col = "red") +
labs(title = "Model 2a: Quadratic fit using x2 and x2^2")

800

900

1000

1100

10 20 30 40 50 60
x2

y

Model 2a: Quadratic fit using x2 and x2^2

mod2b_aug <- augment(mod2b, pollution)

mod2c_aug <- augment(mod2c, pollution)

p1 <- ggplot(mod2b_aug, aes(x = x2, y = y)) +
geom_point() +
geom_line(aes(x = x2, y = .fitted), col = "red") +
labs(title = "Model 2b: Quadratic fit")

p2 <- ggplot(mod2c_aug, aes(x = x2, y = y)) +
geom_point() +

407

geom_line(aes(x = x2, y = .fitted), col = "blue") +
labs(title = "Model 2c: Quadratic fit")

p1 + p2

800

900

1000

1100

10 20 30 40 50 60
x2

y

Model 2b: Quadratic fit

800

900

1000

1100

10 20 30 40 50 60
x2

y

Model 2c: Quadratic fit

13.4.2 Raw quadratic fit after centering x2

Sometimes, we’ll center (and perhaps rescale, too) the x2 variable before including it in a
quadratic fit like this.

pollution <- pollution |>
mutate(x2_c = x2 - mean(x2))

mod2d <- lm(y ~ x2_c + I(x2_c^2), data = pollution)

summary(mod2d)

Call:
lm(formula = y ~ x2_c + I(x2_c^2), data = pollution)

408

Residuals:
Min 1Q Median 3Q Max

-148.977 -38.651 6.889 35.312 189.346

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 952.25941 9.59896 99.204 <2e-16 ***
x2_c 0.92163 0.93237 0.988 0.3271
I(x2_c^2) -0.11704 0.05429 -2.156 0.0353 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.83 on 57 degrees of freedom
Multiple R-squared: 0.07623, Adjusted R-squared: 0.04382
F-statistic: 2.352 on 2 and 57 DF, p-value: 0.1044

Note that this model looks very different, with the exception of the second order quadratic
term. But, it produces the same fitted values as the models we fit previously.

mod2d_aug <- augment(mod2d, pollution)

ggplot(mod2d_aug, aes(x = x2, y = y)) +
geom_point() +
geom_line(aes(x = x2, y = .fitted), col = "red") +
labs(title = "Model 2d: Quadratic fit using centered x2 and x2^2")

409

800

900

1000

1100

10 20 30 40 50 60
x2

y

Model 2d: Quadratic fit using centered x2 and x2^2

Or, if you don’t believe me yet, look at the four sets of fitted values another way.

favstats(~ .fitted, data = mod2a_aug)

min Q1 median Q3 max mean sd n missing
855.1041 936.7155 945.597 950.2883 954.073 940.3585 17.17507 60 0

favstats(~ .fitted, data = mod2b_aug)

min Q1 median Q3 max mean sd n missing
855.1041 936.7155 945.597 950.2883 954.073 940.3585 17.17507 60 0

favstats(~ .fitted, data = mod2c_aug)

min Q1 median Q3 max mean sd n missing
855.1041 936.7155 945.597 950.2883 954.073 940.3585 17.17507 60 0

favstats(~ .fitted, data = mod2d_aug)

410

min Q1 median Q3 max mean sd n missing
855.1041 936.7155 945.597 950.2883 954.073 940.3585 17.17507 60 0

13.5 Orthogonal Polynomials

Now, let’s fit an orthogonal polynomial of degree 2 to predict y using x2.

mod2_orth <- lm(y ~ poly(x2, 2), data = pollution)

summary(mod2_orth)

Call:
lm(formula = y ~ poly(x2, 2), data = pollution)

Residuals:
Min 1Q Median 3Q Max

-148.977 -38.651 6.889 35.312 189.346

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 940.358 7.853 119.746 <2e-16 ***
poly(x2, 2)1 -14.345 60.829 -0.236 0.8144
poly(x2, 2)2 -131.142 60.829 -2.156 0.0353 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.83 on 57 degrees of freedom
Multiple R-squared: 0.07623, Adjusted R-squared: 0.04382
F-statistic: 2.352 on 2 and 57 DF, p-value: 0.1044

Now this looks very different in the equation, but, again, we can see that this produces exactly
the same fitted values as our previous models, and the same model fit summaries. Is it, in
fact, the same model? Here, we’ll plot the fitted Model 2a in a red line, and this new Model
2 with Orthogonal Polynomials as blue points.

mod2orth_aug <- augment(mod2_orth, pollution)

ggplot(mod2orth_aug, aes(x = x2, y = y)) +
geom_point() +

411

geom_point(aes(x = x2, y = .fitted),
col = "blue", size = 2) +

geom_line(data = mod2a_aug, aes(x = x2, y = .fitted),
col = "red") +

labs(title = "Model 2 with Orthogonal Polynomial, degree 2")

800

900

1000

1100

10 20 30 40 50 60
x2

y

Model 2 with Orthogonal Polynomial, degree 2

Yes, it is again the same model in terms of the predictions it makes for y.

By default, with raw = FALSE, the poly() function within a linear model computes what
is called an orthogonal polynomial. An orthogonal polynomial sets up a model design
matrix using the coding we’ve seen previously: x2 and x2^2 in our case, and then scales
those columns so that each column is orthogonal to the previous ones. This eliminates the
collinearity (correlation between predictors) and lets our t tests tell us whether the addition
of any particular polynomial term improves the fit of the model over the lower orders.

Would the addition of a cubic term help us much in predicting y from x2?

mod3 <- lm(y ~ poly(x2, 3), data = pollution)
summary(mod3)

Call:

412

lm(formula = y ~ poly(x2, 3), data = pollution)

Residuals:
Min 1Q Median 3Q Max

-146.262 -39.679 5.569 35.984 191.536

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 940.358 7.917 118.772 <2e-16 ***
poly(x2, 3)1 -14.345 61.328 -0.234 0.8159
poly(x2, 3)2 -131.142 61.328 -2.138 0.0369 *
poly(x2, 3)3 16.918 61.328 0.276 0.7837

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 61.33 on 56 degrees of freedom
Multiple R-squared: 0.07748, Adjusted R-squared: 0.02806
F-statistic: 1.568 on 3 and 56 DF, p-value: 0.2073

It doesn’t appear that the cubic term adds much here, if anything. The p value is not significant
for the third degree polynomial, the summaries of fit quality aren’t much improved, and as we
can see from the plot below, the predictions don’t actually change all that much.

mod3_aug <- augment(mod3, pollution)

ggplot(mod3_aug, aes(x = x2, y = y)) +
geom_point() +
geom_line(aes(x = x2, y = .fitted),

col = "blue") +
geom_line(data = mod2orth_aug, aes(x = x2, y = .fitted),

col = "red") +
labs(title = "Quadratic (red) vs. Cubic (blue) Polynomial Fits")

413

800

900

1000

1100

10 20 30 40 50 60
x2

y

Quadratic (red) vs. Cubic (blue) Polynomial Fits

13.6 Fit a cubic polynomial to predict y from x3

What if we consider another predictor instead? Let’s look at x3, the Mean July temperature
in degrees Fahrenheit. Here is the loess smooth.

ggplot(pollution, aes(x = x3, y = y)) +
geom_point() +
geom_smooth(method = "loess")

`geom_smooth()` using formula = 'y ~ x'

414

800

900

1000

1100

65 70 75 80 85
x3

y

That looks pretty curvy - perhaps we need a more complex polynomial. We’ll consider a linear
model (mod4_L), a quadratic fit (mod4_Q) and a polynomial of degree 3: a cubic fit (mod_4C)

mod4_L <- lm(y ~ x3, data = pollution)
summary(mod4_L)

Call:
lm(formula = y ~ x3, data = pollution)

Residuals:
Min 1Q Median 3Q Max

-139.813 -34.341 4.271 38.197 149.587

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 670.529 123.140 5.445 1.1e-06 ***
x3 3.618 1.648 2.196 0.0321 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.29 on 58 degrees of freedom

415

Multiple R-squared: 0.07674, Adjusted R-squared: 0.06082
F-statistic: 4.821 on 1 and 58 DF, p-value: 0.03213

mod4_Q <- lm(y ~ poly(x3, 2), data = pollution)
summary(mod4_Q)

Call:
lm(formula = y ~ poly(x3, 2), data = pollution)

Residuals:
Min 1Q Median 3Q Max

-132.004 -42.184 4.069 47.126 157.396

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 940.358 7.553 124.503 <2e-16 ***
poly(x3, 2)1 132.364 58.504 2.262 0.0275 *
poly(x3, 2)2 -125.270 58.504 -2.141 0.0365 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 58.5 on 57 degrees of freedom
Multiple R-squared: 0.1455, Adjusted R-squared: 0.1155
F-statistic: 4.852 on 2 and 57 DF, p-value: 0.01133

mod4_C <- lm(y ~ poly(x3, 3), data = pollution)
summary(mod4_C)

Call:
lm(formula = y ~ poly(x3, 3), data = pollution)

Residuals:
Min 1Q Median 3Q Max

-148.004 -29.998 1.441 34.579 141.396

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 940.358 7.065 133.095 < 2e-16 ***

416

poly(x3, 3)1 132.364 54.728 2.419 0.01886 *
poly(x3, 3)2 -125.270 54.728 -2.289 0.02588 *
poly(x3, 3)3 -165.439 54.728 -3.023 0.00377 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 54.73 on 56 degrees of freedom
Multiple R-squared: 0.2654, Adjusted R-squared: 0.226
F-statistic: 6.742 on 3 and 56 DF, p-value: 0.0005799

It looks like the cubic polynomial term is of some real importance here. Do the linear, quadratic
and cubic model fitted values look different?

mod4_L_aug <- augment(mod4_L, pollution)

mod4_Q_aug <- augment(mod4_Q, pollution)

mod4_C_aug <- augment(mod4_C, pollution)

ggplot(pollution, aes(x = x3, y = y)) +
geom_point() +
geom_line(data = mod4_L_aug, aes(x = x3, y = .fitted),

col = "blue", size = 1.25) +
geom_line(data = mod4_Q_aug, aes(x = x3, y = .fitted),

col = "black", size = 1.25) +
geom_line(data = mod4_C_aug, aes(x = x3, y = .fitted),

col = "red", size = 1.25) +
geom_text(x = 66, y = 930, label = "Linear Fit", col = "blue") +
geom_text(x = 64, y = 820, label = "Quadratic Fit", col = "black") +
geom_text(x = 83, y = 900, label = "Cubic Fit", col = "red") +
labs(title = "Linear, Quadratic and Cubic Fits predicting y with x3") +
theme_bw()

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.

417

Linear Fit

Quadratic Fit

Cubic Fit

800

900

1000

1100

65 70 75 80 85
x3

y

Linear, Quadratic and Cubic Fits predicting y with x3

13.7 Fitting a restricted cubic spline in a linear regression

• A linear spline is a continuous function formed by connecting points (called knots of
the spline) by line segments.

• A restricted cubic spline is a way to build highly complicated curves into a regression
equation in a fairly easily structured way.

• A restricted cubic spline is a series of polynomial functions joined together at the knots.

– Such a spline gives us a way to flexibly account for non-linearity without over-fitting
the model.

– Restricted cubic splines can fit many different types of non-linearities.
– Specifying the number of knots is all you need to do in R to get a reasonable result

from a restricted cubic spline.

The most common choices are 3, 4, or 5 knots. Each additional knot adds to the non-linearity,
and spends an additional degree of freedom:

• 3 Knots, 2 degrees of freedom, allows the curve to “bend” once.
• 4 Knots, 3 degrees of freedom, lets the curve “bend” twice.
• 5 Knots, 4 degrees of freedom, lets the curve “bend” three times.

418

For most applications, three to five knots strike a nice balance between complicating the model
needlessly and fitting data pleasingly. Let’s consider a restricted cubic spline model for our y
based on x3 again, but now with:

• in mod5a, 3 knots,
• in mod5b, 4 knots, and
• in mod5c, 5 knots

mod5a_rcs <- lm(y ~ rcs(x3, 3), data = pollution)
mod5b_rcs <- lm(y ~ rcs(x3, 4), data = pollution)
mod5c_rcs <- lm(y ~ rcs(x3, 5), data = pollution)

Here, for instance, is the summary of the 5-knot model:

summary(mod5c_rcs)

Call:
lm(formula = y ~ rcs(x3, 5), data = pollution)

Residuals:
Min 1Q Median 3Q Max

-141.522 -32.009 1.674 31.971 147.878

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 468.113 396.319 1.181 0.243
rcs(x3, 5)x3 6.447 5.749 1.121 0.267
rcs(x3, 5)x3' -25.633 46.810 -0.548 0.586
rcs(x3, 5)x3'' 323.137 293.065 1.103 0.275
rcs(x3, 5)x3''' -612.578 396.270 -1.546 0.128

Residual standard error: 54.35 on 55 degrees of freedom
Multiple R-squared: 0.2883, Adjusted R-squared: 0.2366
F-statistic: 5.571 on 4 and 55 DF, p-value: 0.0007734

We’ll begin by storing the fitted values from these three models and other summaries, for
plotting.

mod5a_aug <- augment(mod5a_rcs, pollution)

mod5b_aug <- augment(mod5b_rcs, pollution)

419

mod5c_aug <- augment(mod5c_rcs, pollution)

p2 <- ggplot(pollution, aes(x = x3, y = y)) +
geom_point() +
geom_smooth(method = "loess", col = "purple", se = F) +
labs(title = "Loess Smooth") +
theme_bw()

p3 <- ggplot(mod5a_aug, aes(x = x3, y = y)) +
geom_point() +
geom_line(aes(x = x3, y = .fitted),

col = "blue", size = 1.25) +
labs(title = "RCS, 3 knots") +
theme_bw()

p4 <- ggplot(mod5b_aug, aes(x = x3, y = y)) +
geom_point() +
geom_line(aes(x = x3, y = .fitted),

col = "black", size = 1.25) +
labs(title = "RCS, 4 knots") +
theme_bw()

p5 <- ggplot(mod5c_aug, aes(x = x3, y = y)) +
geom_point() +
geom_line(aes(x = x3, y = .fitted),

col = "red", size = 1.25) +
labs(title = "RCS, 5 knots") +
theme_bw()

(p2 + p3) / (p4 + p5)

`geom_smooth()` using formula = 'y ~ x'

420

800

900

1000

1100

65 70 75 80 85
x3

y

Loess Smooth

800

900

1000

1100

65 70 75 80 85
x3

y

RCS, 3 knots

800

900

1000

1100

65 70 75 80 85
x3

y

RCS, 4 knots

800

900

1000

1100

65 70 75 80 85
x3

y

RCS, 5 knots

Does it seem like the fit improves markedly (perhaps approaching the loess smooth result) as
we increase the number of knots?

anova(mod5a_rcs, mod5b_rcs, mod5c_rcs)

Analysis of Variance Table

Model 1: y ~ rcs(x3, 3)
Model 2: y ~ rcs(x3, 4)
Model 3: y ~ rcs(x3, 5)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 57 194935
2 56 171448 1 23486.9 7.9503 0.006672 **
3 55 162481 1 8967.2 3.0354 0.087057 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Based on an ANOVA comparison, the fourth knot adds significant predictive value (p =
0.0067), but the fifth knot is borderline (p = 0.0871). From the glance function in the broom
package, we can also look at some key summaries.

421

glance(mod5a_rcs)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.146 0.116 58.5 4.88 0.0111 2 -328. 663. 672.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

glance(mod5b_rcs)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.249 0.209 55.3 6.19 0.00104 3 -324. 658. 668.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

glance(mod5c_rcs)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.288 0.237 54.4 5.57 0.000773 4 -322. 657. 669.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

Model Knots 𝑅2 Adj. 𝑅2 AIC BIC
5a 3 0.146 0.116 663.4 671.8
5b 4 0.249 0.209 657.7 668.2
5c 5 0.288 0.237 656.5 669.1

Within our sample, the five-knot RCS outperforms the 3- and 4-knot versions on adjusted 𝑅2

and AIC (barely) and does a little worse than the 4-knot RCS on BIC.

Of course, we could also use the cross-validation methods we’ve developed for other linear
regressions to assess predictive capacity of these models. I’ll skip that for now.

To see the values of x3 where the splines place their knots, we can use the attributes
function.

422

attributes(rcs(pollution$x3, 5))

$dim
[1] 60 4

$dimnames
$dimnames[[1]]
NULL

$dimnames[[2]]
[1] "pollution" "pollution'" "pollution''" "pollution'''"

$class
[1] "rms"

$name
[1] "pollution"

$label
[1] "pollution"

$assume
[1] "rcspline"

$assume.code
[1] 4

$parms
[1] 68 72 74 77 82

$nonlinear
[1] FALSE TRUE TRUE TRUE

$colnames
[1] "pollution" "pollution'" "pollution''" "pollution'''"

The knots in this particular 5-knot spline are placed by the computer at 68, 72, 74, 77 and 82,
it seems.

There are two kinds of Multivariate Regression Models

423

1. [Prediction] Those that are built so that we can make accurate predictions.
2. [Explanatory] Those that are built to help understand underlying phenomena.

While those two notions overlap considerably, they do imply different things about how we
strategize about model-building and model assessment. Harrell’s primary concern is effective
use of the available data for prediction - this implies some things that will be different from
what we’ve seen in the past.

Harrell refers to multivariable regression modeling strategy as the process of spending de-
grees of freedom. The main job in strategizing about multivariate modeling is to

1. Decide the number of degrees of freedom that can be spent
2. Decide where to spend them
3. Spend them, wisely.

What this means is essentially linked to making decisions about predictor complexity, both in
terms of how many predictors will be included in the regression model, and about how we’ll
include those predictors.

13.8 “Spending” Degrees of Freedom

• “Spending” df includes

– fitting parameter estimates in models, or
– examining figures built using the outcome variable Y that tell you how to model

the predictors.

If you use a scatterplot of Y vs. X or the residuals of the Y-X regression model vs. X to decide
whether a linear model is appropriate, then how many degrees of freedom have you actually
spent?

Grambsch and O’Brien conclude that if you wish to preserve the key statistical properties of
the various estimation and fitting procedures used in building a model, you can’t retrieve these
degrees of freedom once they have been spent.

13.8.1 Overfitting and Limits on the # of Predictors

Suppose you have a total sample size of 𝑛 observations, then you really shouldn’t be thinking
about estimating more than 𝑛/15 regression coefficients, at the most.

• If 𝑘 is the number of parameters in a full model containing all candidate predictors for
a stepwise analysis, then 𝑘 should be no greater than 𝑛/15.

• 𝑘 should include all variables screened for association with the response, including inter-
action terms.

424

• Sometimes I hold myself to a tougher standard, or 𝑛/50 predictors, at maximum.

So if you have 97 observations in your data, then you can probably just barely justify the use
of a stepwise analysis using the main effects alone of 5 candidate variables (with one additional
DF for the intercept term) using the 𝑛/15 limit.

@Harrell2001 also mentions that if you have a narrowly distributed predictor, without a
lot of variation to work with, then an even larger sample size 𝑛 should be required. See
@Vittinghoff2012, Section 10.3 for more details.

13.8.2 The Importance of Collinearity

Collinearity denotes correlation between predictors high enough to degrade the
precision of the regression coefficient estimates substantially for some or all of the
correlated predictors

• @Vittinghoff2012, section 10.4.1

• Can one predictor in a model be predicted well using the other predictors in the model?

– Strong correlations (for instance, 𝑟 ≥ 0.8) are especially troublesome.

• Effects of collinearity

– decreases precision, in the sense of increasing the standard errors of the parameter
estimates

– decreases power
– increases the difficulty of interpreting individual predictor effects
– overall F test is significant, but individual t tests may not be

Suppose we want to assess whether variable 𝑋𝑗 is collinear with the other predictors in a
model. We run a regression predicting 𝑋𝑗 using the other predictors, and obtain the 𝑅2. The
VIF is defined as 1 / (1 - this 𝑅2), and we usually interpret VIFs above 5 as indicating a
serious multicollinearity problem (i.e. 𝑅2 values for this predictor of 0.8 and above would thus
concern us.)

vif(lm(y ~ x1 + x2 + x3 + x4 + x5 + x6, data = pollution))

x1 x2 x3 x4 x5 x6
2.238862 2.058731 2.153044 4.174448 3.447399 1.792996

Occasionally, you’ll see the inverse of VIF reported, and this is called tolerance.

• tolerance = 1 / VIF

425

13.8.3 Collinearity in an Explanatory Model

• When we are attempting to identify multiple independent predictors (the explana-
tory model approach), then we will need to choose between collinear variables

– options suggested by @Vittinghoff2012, p. 422, include choosing on the basis of
plausibility as a causal factor,

– choosing the variable that has higher data quality (is measured more accurately or
has fewer missing values.)

– Often, we choose to include a variable that is statistically significant as a predictor,
and drop others, should we be so lucky.

• Larger effects, especially if they are associated with predictors that have minimal cor-
relation with the other predictors under study, cause less trouble in terms of potential
violation of the 𝑛/15 rule for what constitutes a reasonable number of predictors.

13.8.4 Collinearity in a Prediction Model

• If we are primarily building a prediction model for which inference on the individual
predictors is not of interest, then it is totally reasonable to use both predictors in the
model, if doing so reduces prediction error.

– Collinearity doesn’t affect predictions in our model development sample.
– Collinearity doesn’t affect predictions on new data so long as the new data have

similar relationships between predictors.
– If our key predictor is correlated strongly with a confounder and if the predictor

remains an important part of the model after adjustment for the confounder, then
this suggests a meaningful independent effect.
∗ If the effects of the predictor are clearly confounded by the adjustment variable,
we again have a clear result.

∗ If neither appears to add meaningful predictive value after adjustment, the data
may be inadequate.

– If the collinearity is between adjustment variables, but doesn’t involve the key
predictor, then inclusion of the collinear variables is unlikely to cause substantial
problems.

13.9 Spending DF on Non-Linearity: The Spearman Plot

We need a flexible approach to assessing non-linearity and fitting models with non-linear pre-
dictors. This will lead us to a measure of what @Harrell2001 calls potential predictive
punch which hides the true form of the regression from the analyst so as to preserve statis-
tical properties, but that lets us make sensible decisions about whether a predictor should be

426

included in a model, and the number of parameters (degrees of freedom, essentially) we are
willing to devote to it.

What if we want to consider where best to spend our degrees of freedom on non-linear predictor
terms, like interactions, polynomial functions or curved splines to represent our input data?
The approach we’ll find useful in the largest variety of settings is a combination of

1. a rank correlation assessment of potential predictive punch (using a Spearman 𝜌2 plot,
available in the Hmisc package), followed by

2. the application of restricted cubic splines to fit and assess models.

Let’s try such a plot for our fifteen predictors:

sp2 <- spearman2(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 +
x8 + x9 + x10 + x11 + x12 + x13 +
x14 + x15, data = pollution)

plot(sp2)

x9
x6

x14
x1

x13
x5

x11
x7

x10
x3

x12
x8
x4

x15
x2

N df

60 1
60 1
60 1
60 1
60 1
60 1
60 1
60 1

0.0 0.1 0.2 0.3

Spearman ρ2 Response : y

Adjusted ρ2

The variable with the largest adjusted squared Spearman 𝜌 statistic in this setting is x9,
followed by x6 and x14. With only 60 observations, we might well want to restrict ourselves to
a very small model. What the Spearman plot suggests is that we focus any non-linear terms

427

on x9 first, and then perhaps x6 and x14 as they have some potential predictive power. It
may or may not work out that the non-linear terms are productive.

13.9.1 Fitting a Big Model to the pollution data

So, one possible model built in reaction this plot might be to fit:

• a restricted cubic spline with 5 knots on x9,
• a restricted cubic spline with 3 knots on x6,
• a quadratic polynomial on x14, and
• a linear fit to x1 and x13

That’s way more degrees of freedom (4 for x9, 2 for x6, 2 for x14 and 1 each for x1 and x13
makes a total of 10 without the intercept term) than we can really justify with a sample of 60
observations. But let’s see what happens.

mod_big <- lm(y ~ rcs(x9, 5) + rcs(x6, 3) + poly(x14, 2) +
x1 + x13, data = pollution)

anova(mod_big)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

rcs(x9, 5) 4 100164 25040.9 17.8482 4.229e-09 ***
rcs(x6, 3) 2 38306 19152.8 13.6513 1.939e-05 ***
poly(x14, 2) 2 15595 7797.7 5.5579 0.006677 **
x1 1 4787 4787.3 3.4122 0.070759 .
x13 1 712 711.9 0.5074 0.479635
Residuals 49 68747 1403.0

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This anova suggests that we have at least some predictive value in each spline (x9 and x6)
and some additional value in x14, although it’s not as clear that the linear terms (x1 and x13)
did much good.

428

13.9.2 Limitations of lm for fitting complex linear regression models

We can certainly assess this big, complex model using lm in comparison to other models:

• with in-sample summary statistics like adjusted 𝑅2, AIC and BIC,
• we can assess its assumptions with residual plots, and
• we can also compare out-of-sample predictive quality through cross-validation,

But to really delve into the details of how well this complex model works, and to help plot
what is actually being fit, we’ll probably want to fit the model using an alternative method
for fitting linear models, called ols, from the rms package developed by Frank Harrell and
colleagues. That’s where we’re heading, in Chapter 14.

429

14 Using ols to fit linear models

Back at the end of Chapter 13, we fit a model to the pollution data that predicted an outcome
y = Age-Adjusted Mortality Rate, using:

• a restricted cubic spline with 5 knots on x9
• a restricted cubic spline with 3 knots on x6
• a polynomial in 2 degrees on x14
• linear terms for x1 and x13

but this model was hard to evaluate in some ways. Now, instead of using lm to fit this model,
we’ll use a new function called ols from the rms package developed by Frank Harrell and
colleagues, in part to support ideas developed in @Harrell2001 for clinical prediction models.

14.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(Hmisc)
library(rms)
library(tidyverse)

theme_set(theme_bw())

14.1.1 Data Load

pollution <- read_csv("data/pollution.csv", show_col_types = FALSE)

430

14.2 Fitting a model with ols

We will use the datadist approach when fitting a linear model with ols from the rms package,
so as to store additional important elements of the model fit.

d <- datadist(pollution)
options(datadist = "d")

Next, we’ll fit the model using ols and place its results in newmod.

newmod <- ols(y ~ rcs(x9, 5) + rcs(x6, 3) + pol(x14, 2) +
x1 + x13,

data = pollution, x = TRUE, y = TRUE)
newmod

Linear Regression Model

ols(formula = y ~ rcs(x9, 5) + rcs(x6, 3) + pol(x14, 2) + x1 +
x13, data = pollution, x = TRUE, y = TRUE)

Model Likelihood Discrimination
Ratio Test Indexes

Obs 60 LR chi2 72.02 R2 0.699
sigma37.4566 d.f. 10 R2 adj 0.637
d.f. 49 Pr(> chi2) 0.0000 g 58.961

Residuals

Min 1Q Median 3Q Max
-86.189 -18.554 -1.799 18.645 104.307

Coef S.E. t Pr(>|t|)
Intercept 796.2658 162.3269 4.91 <0.0001
x9 -2.6328 6.3504 -0.41 0.6803
x9' 121.4651 124.4827 0.98 0.3340
x9'' -219.8025 227.6775 -0.97 0.3391
x9''' 151.5700 171.3867 0.88 0.3808
x6 7.6817 15.5230 0.49 0.6229
x6' -29.4388 18.0531 -1.63 0.1094
x14 0.5652 0.2547 2.22 0.0311
x14^2 -0.0010 0.0010 -0.96 0.3407
x1 1.0717 0.7317 1.46 0.1494

431

x13 -0.1028 0.1443 -0.71 0.4796

Some of the advantages and disadvantages of fitting linear regression models with ols or lm
will reveal themselves over time. For now, one advantage for ols is that the entire variance-
covariance matrix is saved. Most of the time, there will be some value to considering both ols
and lm approaches.

Most of this output should be familiar, but a few pieces are different.

14.2.1 The Model Likelihood Ratio Test

The Model Likelihood Ratio Test compares newmod to the null model with only an intercept
term. It is a goodness-of-fit test that we’ll use in several types of model settings this semester.

• In many settings, the logarithm of the likelihood ratio, multiplied by -2, yields a value
which can be compared to a 𝜒2 distribution. So here, the value 72.02 is -2(log likelihood),
and is compared to a 𝜒2 distribution with 10 degrees of freedom. We reject the null
hypothesis that newmod is no better than the null model, and conclude instead that at
least one of these predictors adds some value.

– For ols, interpret the model likelihood ratio test like the global (ANOVA) F test
in lm.

– The likelihood function is the probability of observing our data under the specified
model.

– We can compare two nested models by evaluating the difference in their likelihood
ratios and degrees of freedom, then comparing the result to a 𝜒2 distribution.

14.2.2 The g statistic

The g statistic is new and is referred to as the g-index. it’s based on Gini’s mean difference
and is purported to be a robust and highly efficient measure of variation.

• Here, g = 58.961, which implies that if you randomly select two of the 60 areas included
in the model, the average difference in predicted y (Age-Adjusted Mortality Rate) using
this model will be 58.961.

– Technically, g is Gini’s mean difference of the predicted values.

432

14.3 ANOVA for an ols model

One advantage of the ols approach is that when you apply an anova to it, it separates out
the linear and non-linear components of restricted cubic splines and polynomial terms (as well
as product terms, if your model includes them.)

anova(newmod)

Analysis of Variance Response: y

Factor d.f. Partial SS MS F P
x9 4 35219.7647 8804.9412 6.28 0.0004
Nonlinear 3 1339.3081 446.4360 0.32 0.8121
x6 2 9367.6008 4683.8004 3.34 0.0437
Nonlinear 1 3730.7388 3730.7388 2.66 0.1094
x14 2 18679.6957 9339.8478 6.66 0.0028
Nonlinear 1 1298.7625 1298.7625 0.93 0.3407
x1 1 3009.1829 3009.1829 2.14 0.1494
x13 1 711.9108 711.9108 0.51 0.4796
TOTAL NONLINEAR 5 6656.1824 1331.2365 0.95 0.4582
REGRESSION 10 159563.8285 15956.3829 11.37 <.0001
ERROR 49 68746.8004 1402.9959

Unlike the anova approach in lm, in ols ANOVA, partial F tests are presented - each predictor
is assessed as “last predictor in” much like the usual t tests in lm. In essence, the partial sums
of squares and F tests here describe the marginal impact of removing each covariate from
newmod.

We conclude that the non-linear parts of x9 and x6 and x14 combined don’t seem to add much
value, but that overall, x9, x6 and x14 seem to be valuable. So it must be the linear parts of
those variables within our model that are doing most of the predictive work.

14.4 Effect Estimates

A particularly useful thing to get out of the ols approach that is not as easily available in lm
(without recoding or standardizing our predictors) is a summary of the effects of each predictor
in an interesting scale.

summary(newmod)

433

Effects Response : y

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
x9 4.95 15.65 10.70 40.4060 14.0790 12.1120 68.6990
x6 10.40 11.50 1.10 -18.2930 8.1499 -34.6710 -1.9153
x14 11.00 69.00 58.00 28.3480 10.6480 6.9503 49.7460
x1 32.75 43.25 10.50 11.2520 7.6833 -4.1878 26.6930
x13 4.00 23.75 19.75 -2.0303 2.8502 -7.7579 3.6973

This “effects summary” shows the effect on y of moving from the 25th to the 75th percentile
of each variable (along with a standard error and 95% confidence interval) while holding the
other variable at the level specified at the bottom of the output.

The most useful way to look at this sort of analysis is often a plot.

plot(summary(newmod))

y

−30 −10 10 30 50 70

x9 − 15.65 : 4.95

x6 − 11.5 : 10.4

x14 − 69 : 11

x1 − 43.25 : 32.75

x13 − 23.75 : 4

For x9 note from the summary above that the 25th percentile is 4.95 and the 75th is 15.65.
Our conclusion is that the estimated effect of moving x9 from 4.95 to 15.65 is an increase of
40.4 on y, with a 95% CI of (12.1, 68.7).

For a categorical variable, the low level is shown first and then the high level.

434

The plot shows the point estimate (arrow head) and then the 90% (narrowest bar), 95%
(middle bar) and 99% (widest bar in lightest color) confidence intervals for each predictor’s
effect.

• It’s easier to distinguish this in the x9 plot than the one for x13.
• Remember that what is being compared is the first value to the second value’s impact

on the outcome, with other predictors held constant.

14.4.1 Simultaneous Confidence Intervals

These confidence intervals make no effort to deal with the multiple comparisons problem, but
just fit individual 95% (or whatever level you choose) confidence intervals for each predictor.
The natural alternative is to make an adjustment for multiple comparisons in fitting the
confidence intervals, so that the set of (in this case, five - one for each predictor) confidence
intervals for effect sizes has a family-wise 95% confidence level. You’ll note that the effect
estimates and standard errors are unchanged from those shown above, but the confidence
limits are a bit wider.

summary(newmod, conf.type=c('simultaneous'))

Effects Response : y

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
x9 4.95 15.65 10.70 40.4060 14.0790 3.11570 77.6960
x6 10.40 11.50 1.10 -18.2930 8.1499 -39.87900 3.2923
x14 11.00 69.00 58.00 28.3480 10.6480 0.14653 56.5500
x1 32.75 43.25 10.50 11.2520 7.6833 -9.09720 31.6020
x13 4.00 23.75 19.75 -2.0303 2.8502 -9.57910 5.5185

Remember that if you’re looking for the usual lm summary for an ols object, use
summary.lm.

14.5 The Predict function for an ols model

The Predict function is very flexible, and can be used to produce individual or simultaneous
confidence limits.

Predict(newmod, x9 = 12, x6 = 12, x14 = 40, x1 = 40, x13 = 20)

435

x9 x6 x14 x1 x13 yhat lower upper
1 12 12 40 40 20 923.0982 893.0984 953.098

Response variable (y): y

Limits are 0.95 confidence limits

individual limits

Predict(newmod, x9 = 5:15) # individual limits

x9 x6 x14 x1 x13 yhat lower upper
1 5 11.05 30 38 9 913.7392 889.4802 937.9983
2 6 11.05 30 38 9 916.3490 892.0082 940.6897
3 7 11.05 30 38 9 921.3093 898.9657 943.6529
4 8 11.05 30 38 9 927.6464 907.0355 948.2574
5 9 11.05 30 38 9 934.3853 913.3761 955.3946
6 10 11.05 30 38 9 940.5510 917.8371 963.2648
7 11 11.05 30 38 9 945.2225 921.9971 968.4479
8 12 11.05 30 38 9 948.2885 926.4576 970.1194
9 13 11.05 30 38 9 950.2608 930.3003 970.2213
10 14 11.05 30 38 9 951.6671 932.2370 971.0971
11 15 11.05 30 38 9 953.0342 932.1662 973.9021

Response variable (y): y

Adjust to: x6=11.05 x14=30 x1=38 x13=9

Limits are 0.95 confidence limits

Predict(newmod, x9 = 5:15, conf.type = 'simult')

x9 x6 x14 x1 x13 yhat lower upper
1 5 11.05 30 38 9 913.7392 882.4255 945.0530
2 6 11.05 30 38 9 916.3490 884.9298 947.7682
3 7 11.05 30 38 9 921.3093 892.4681 950.1506
4 8 11.05 30 38 9 927.6464 901.0417 954.2512
5 9 11.05 30 38 9 934.3853 907.2664 961.5042
6 10 11.05 30 38 9 940.5510 911.2318 969.8702
7 11 11.05 30 38 9 945.2225 915.2430 975.2020

436

8 12 11.05 30 38 9 948.2885 920.1091 976.4680
9 13 11.05 30 38 9 950.2608 924.4957 976.0259
10 14 11.05 30 38 9 951.6671 926.5866 976.7475
11 15 11.05 30 38 9 953.0342 926.0976 979.9707

Response variable (y): y

Adjust to: x6=11.05 x14=30 x1=38 x13=9

Limits are 0.95 confidence limits

The plot below shows the individual effects in newmod in five subpanels, using the default
approach of displaying the same range of values as are seen in the data. Note that each panel
shows point and interval estimates of the effects, and spot the straight lines in x1 and x13, the
single bends in x14 and x6 and the wiggles in x9, corresponding to the amount of non-linearity
specified in the model.

ggplot(Predict(newmod))

850

900

950

1000

1050

20 30 40 50
x1

y

850

900

950

1000

1050

0 20 40 60
x13

y

850

900

950

1000

1050

0 50 100 150 200
x14

y

850

900

950

1000

1050

9.5 10.010.511.011.512.0
x6

y

850

900

950

1000

1050

10 20 30
x9

y

437

14.6 Checking Influence via dfbeta

For an ols object, we have several tools for looking at residuals. The most interesting to me
is which.influence which is reliant on the notion of dfbeta.

• DFBETA is estimated for each observation in the data, and each coefficient in the model.
• The DFBETA is the difference in the estimated coefficient caused by deleting the obser-

vation, scaled by the coefficient’s standard error estimated with the observation deleted.
• The which.influence command applied to an ols model produces a list of all of the

predictors estimated by the model, including the intercept.

– For each predictor, the command lists all observations (by row number) that, if
removed from the model, would cause the estimated coefficient (the “beta”) for
that predictor to change by at least some particular cutoff.

– The default is that the DFBETA for that predictor is 0.2 or more.

which.influence(newmod)

$Intercept
[1] "1" "4" "7" "20" "50" "55" "60"

$x9
[1] "1" "15" "38" "39" "50" "51" "52" "53" "58"

$x6
[1] "2" "4" "7" "16" "20" "36" "50" "55" "60"

$x14
[1] "6" "7" "27" "42" "50" "56" "58" "60"

$x1
[1] "1" "7" "10" "27" "52" "60"

$x13
[1] "7" "8" "60"

The implication here, for instance, is that if we drop row 15 from our data frame, and refit
the model, this will have a meaningful impact on the estimate of x9 but not on the other
coefficients. But if we drop, say, row 60, we will affect the estimates of the intercept, x6, x14,
x1, and x13.

438

14.6.1 Using the residuals command for dfbetas

To see the dfbeta values, standardized according to the approach I used above, you can use
the following code (I’ll use head to just show the first few rows of results) to get a matrix of
the results.

head(residuals(newmod, type = "dfbetas"))

Intercept x9 x9' x9'' x9'''
1 -0.2142788779 0.2464314961 -0.1638633763 0.1420748132 -0.0837601846
2 -0.1609522082 -0.1651907163 0.0813708161 -0.0571478560 -0.0104199085
3 0.0002978421 0.0003616715 -0.0003743893 0.0003648207 -0.0003104531
4 -0.6689504955 0.1060165855 -0.0582613403 0.0567350766 -0.0514665792
5 -0.0185374830 0.0941987899 -0.0712140473 0.0651961744 -0.0473578767
6 -0.0733189060 0.0441321361 -0.0775996337 0.0686460863 -0.0310662575

x6 x6' x14 x14^2 x1
1 0.0885057227 -0.1236601786 0.1976364429 -0.1948087617 0.4602900927
2 0.1761716451 -0.2487893025 0.1331560976 -0.1425694930 0.0532802632
3 -0.0001793501 0.0001379045 -0.0002413065 0.0001584916 -0.0008536018
4 0.6480133104 -0.4398587906 0.1281557908 -0.0762194326 -0.1230959028
5 -0.0027596047 -0.0242159160 -0.0125205909 0.0030015343 0.0456581256
6 0.0598043946 -0.1228968480 0.2222504825 -0.1842672286 0.0425024727

x13
1 1.476010e-01
2 1.561944e-01
3 -8.851148e-05
4 -9.553782e-02
5 4.318623e-02
6 5.491929e-02

14.6.2 Using the residuals command for other summaries

The residuals command will also let you get ordinary residuals, leverage values and dffits
values, which are the normalized differences in predicted values when observations are omitted.
See ?residuals.ols for more details.

temp <- data.frame(area = 1:60)
temp$residual <- residuals(newmod, type = "ordinary")
temp$leverage <- residuals(newmod, type = "hat")
temp$dffits <- residuals(newmod, type = "dffits")
temp <- as_tibble(temp)

439

ggplot(temp, aes(x = area, y = dffits)) +
geom_point() +
geom_line()

−1

0

1

2

0 20 40 60
area

df
fit

s

It appears that point 60 has the largest (positive) dffits value. Recall that point 60 seemed
influential on several predictors and the intercept term. Point 7 has the smallest (or largest
negative) dffits, and also appears to have been influential on several predictors and the
intercept.

which.max(temp$dffits)

[1] 60

which.min(temp$dffits)

[1] 7

440

14.7 Model Validation and Correcting for Optimism

In 431, we learned about splitting our regression models into training samples and test
samples, performing variable selection work on the training sample to identify two or three
candidate models (perhaps via a stepwise approach), and then comparing the predictions made
by those models in a test sample.

At the final project presentations, I mentioned (to many folks) that there was a way to auto-
mate this process a bit in 432, that would provide some ways to get the machine to split the
data for you multiple times, and then average over the results, using a bootstrap approach.
This is it.

The validate function allows us to perform cross-validation of our models for some sum-
mary statistics (and then correct those statistics for optimism in describing likely predictive
accuracy) in an easy way.

validate develops:

• Resampling validation with or without backward elimination of variables
• Estimates of the optimism in measures of predictive accuracy
• Estimates of the intercept and slope of a calibration model

(observed y) = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑆𝑙𝑜𝑝𝑒(predicted y)

with the following code…

set.seed(432002); validate(newmod, method = "boot", B = 40)

index.orig training test optimism index.corrected n
R-square 0.6989 0.7589 0.6176 0.1413 0.5576 40
MSE 1145.7800 899.5893 1454.9828 -555.3935 1701.1735 40
g 58.9614 60.5120 56.0360 4.4759 54.4855 40
Intercept 0.0000 0.0000 72.3650 -72.3650 72.3650 40
Slope 1.0000 1.0000 0.9217 0.0783 0.9217 40

So, for R-square we see that our original estimate was 0.6989

• Our estimated R-square across n = 40 training samples was 0.7589, but in the resulting
tests, the average R-square was only 0.6176

• This suggests an optimism of 0.7589 - 0.6176 = 0.1413.

441

• We then apply that optimism to obtain a new estimate of 𝑅2 corrected for overfitting,
at 0.5576, which is probably a better estimate of what our results might look like in new
data that were similar to (but not the same as) the data we used in building newmod
than our initial estimate of 0.6989

We also obtain optimism-corrected estimates of the mean squared error (square of the residual
standard deviation), the g index, and the intercept and slope of the calibration model. The
“corrected” slope is a shrinkage factor that takes overfitting into account.

14.8 Building a Nomogram for Our Model

Another nice feature of an ols model object is that we can picture the model with a nomo-
gram easily. Here is model newmod.

plot(nomogram(newmod))

Points
0 10 20 30 40 50 60 70 80 90 100

x9
5 0

10 15 20 25 30 35 40

x6
9

12.5 12 11.5 11

x14
0 20 40 80 120 180x1

10 20 30 40 50 60x13
350 200 50Total Points

0 20 60 100 140 180 220 260Linear Predictor
820 860 900 940 980 1020 1080

For this model, we can use this plot to predict y as follows:

1. find our values of x9 on the appropriate line
2. draw a vertical line up to the points line to count the points associated with our subject

442

3. repeat the process to obtain the points associated with x6, x14, x1, and x13. Sum the
points.

4. draw a vertical line down from that number in the Total Points line to estimate y (the
Linear Predictor) = Age-Adjusted Mortality Rate.

The impact of the non-linearity is seen in the x6 results, for example, which turn around from
9-10 to 11-12. We also see non-linearity’s effects in the scales of the non-linear terms in terms
of points awarded.

An area with a combination of predictor values leading to a total of 100 points, for instance,
would lead to a prediction of a Mortality Rate near 905. An area with a total of 140 points
would have a predicted Mortality Rate of 955, roughly.

443

15 A Model for Prostate Cancer

15.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(rms)
library(tidyverse)

theme_set(theme_bw())

15.1.1 Data Load

prost <- read_csv("data/prost.csv", show_col_types = FALSE)

15.2 Data Load and Background

The data in prost.csv is derived from @Stamey1989 who examined the relationship between
the level of prostate-specific antigen and a number of clinical measures in 97 men who were
about to receive a radical prostatectomy. The prost data, as I’ll name it in R, contains 97
rows and 11 columns.

prost

A tibble: 97 x 10
subject lpsa lcavol lweight age bph svi lcp gleason pgg45
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <chr> <dbl>

1 1 -0.431 -0.580 2.77 50 Low 0 -1.39 6 0
2 2 -0.163 -0.994 3.32 58 Low 0 -1.39 6 0
3 3 -0.163 -0.511 2.69 74 Low 0 -1.39 7 20
4 4 -0.163 -1.20 3.28 58 Low 0 -1.39 6 0

444

5 5 0.372 0.751 3.43 62 Low 0 -1.39 6 0
6 6 0.765 -1.05 3.23 50 Low 0 -1.39 6 0
7 7 0.765 0.737 3.47 64 Medium 0 -1.39 6 0
8 8 0.854 0.693 3.54 58 High 0 -1.39 6 0
9 9 1.05 -0.777 3.54 47 Low 0 -1.39 6 0
10 10 1.05 0.223 3.24 63 Low 0 -1.39 6 0
i 87 more rows

Note that a related prost data frame is also available as part of several R packages, including
the faraway package, but there is an error in the lweight data for subject 32 in those presen-
tations. The value of lweight for subject 32 should not be 6.1, corresponding to a prostate
that is 449 grams in size, but instead the lweight value should be 3.804438, corresponding to
a 44.9 gram prostate1.

I’ve also changed the gleason and bph variables from their presentation in other settings, to
let me teach some additional details.

15.3 Code Book

Variable Description
subject subject number (1 to 97)

lpsa log(prostate specific antigen in ng/ml), our outcome
lcavol log(cancer volume in cm3)

lweight log(prostate weight, in g)
age age
bph benign prostatic hyperplasia amount (Low, Medium, or High)
svi seminal vesicle invasion (1 = yes, 0 = no)
lcp log(capsular penetration, in cm)

gleason combined Gleason score (6, 7, or > 7 here)
pgg45 percentage Gleason scores 4 or 5

Notes:

• in general, higher levels of PSA are stronger indicators of prostate cancer. An old stan-
dard (established almost exclusively with testing in white males, and definitely flawed)
suggested that values below 4 were normal, and above 4 needed further testing. A PSA
of 4 corresponds to an lpsa of 1.39.

• all logarithms are natural (base e) logarithms, obtained in R with the function log()
• all variables other than subject and lpsa are candidate predictors

1https://statweb.stanford.edu/~tibs/ElemStatLearn/ attributes the correction to Professor Stephen W. Link.

445

• the gleason variable captures the highest combined Gleason score[^Scores range (in
these data) from 6 (a well-differentiated, or low-grade cancer) to 9 (a high-grade cancer),
although the maximum possible score is 10. 6 is the lowest score used for cancerous
prostates. As this combination value increases, the rate at which the cancer grows and
spreads should increase. This score refers to the combined Gleason grade, which is based
on the sum of two areas (each scored 1-5) that make up most of the cancer.] in a biopsy,
and higher scores indicate more aggressive cancer cells. It’s stored here as 6, 7, or > 7.

• the pgg45 variable captures the percentage of individual Gleason scores[^The 1-5 scale
for individual biopsies are defined so that 1 indicates something that looks like normal
prostate tissue, and 5 indicates that the cells and their growth patterns look very abnor-
mal. In this study, the percentage of 4s and 5s shown in the data appears to be based
on 5-20 individual scores in most subjects.] that are 4 or 5, on a 1-5 scale, where higher
scores indicate more abnormal cells.

15.4 Additions for Later Use

The code below adds to the prost tibble:

• a factor version of the svi variable, called svi_f, with levels No and Yes,
• a factor version of gleason called gleason_f, with the levels ordered > 7, 7, and finally

6,
• a factor version of bph called bph_f, with levels ordered Low, Medium, High,
• a centered version of lcavol called lcavol_c,
• exponentiated cavol and psa results derived from the natural logarithms lcavol and

lpsa.

prost <- prost |>
mutate(svi_f = fct_recode(factor(svi), "No" = "0", "Yes" = "1"),

gleason_f = fct_relevel(gleason, c("> 7", "7", "6")),
bph_f = fct_relevel(bph, c("Low", "Medium", "High")),
lcavol_c = lcavol - mean(lcavol),
cavol = exp(lcavol),
psa = exp(lpsa))

glimpse(prost)

Rows: 97
Columns: 16
$ subject <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1~
$ lpsa <dbl> -0.4307829, -0.1625189, -0.1625189, -0.1625189, 0.3715636, 0~
$ lcavol <dbl> -0.5798185, -0.9942523, -0.5108256, -1.2039728, 0.7514161, -~

446

$ lweight <dbl> 2.769459, 3.319626, 2.691243, 3.282789, 3.432373, 3.228826, ~
$ age <dbl> 50, 58, 74, 58, 62, 50, 64, 58, 47, 63, 65, 63, 63, 67, 57, ~
$ bph <chr> "Low", "Low", "Low", "Low", "Low", "Low", "Medium", "High", ~
$ svi <dbl> 0, ~
$ lcp <dbl> -1.3862944, -1.3862944, -1.3862944, -1.3862944, -1.3862944, ~
$ gleason <chr> "6", "6", "7", "6", "6", "6", "6", "6", "6", "6", "6", "6", ~
$ pgg45 <dbl> 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 5, 5, 0, 30, 0, 0, ~
$ svi_f <fct> No, No, No, No, No, No, No, No, No, No, No, No, No, No, No, ~
$ gleason_f <fct> 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 7, 6, 6, 6, ~
$ bph_f <fct> Low, Low, Low, Low, Low, Low, Medium, High, Low, Low, Low, M~
$ lcavol_c <dbl> -1.9298281, -2.3442619, -1.8608352, -2.5539824, -0.5985935, ~
$ cavol <dbl> 0.56, 0.37, 0.60, 0.30, 2.12, 0.35, 2.09, 2.00, 0.46, 1.25, ~
$ psa <dbl> 0.65, 0.85, 0.85, 0.85, 1.45, 2.15, 2.15, 2.35, 2.85, 2.85, ~

15.5 Fitting and Evaluating a Two-Predictor Model

To begin, let’s use two predictors (lcavol and svi) and their interaction in a linear regression
model that predicts lpsa. I’ll call this model prost_A

Earlier, we centered the lcavol values to facilitate interpretation of the terms. I’ll use that
centered version (called lcavol_c) of the quantitative predictor, and the 1/0 version of the
svi variable[^We could certainly use the factor version of svi here, but it won’t change the
model in any meaningful way. There’s no distinction in model fitting via lm between a 0/1
numeric variable and a No/Yes factor variable. The factor version of this information will be
useful elsewhere, for instance in plotting the model.].

prost_A <- lm(lpsa ~ lcavol_c * svi, data = prost)
summary(prost_A)

Call:
lm(formula = lpsa ~ lcavol_c * svi, data = prost)

Residuals:
Min 1Q Median 3Q Max

-1.6305 -0.5007 0.1266 0.4886 1.6847

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.33134 0.09128 25.540 < 2e-16 ***
lcavol_c 0.58640 0.08207 7.145 1.98e-10 ***

447

svi 0.60132 0.35833 1.678 0.0967 .
lcavol_c:svi 0.06479 0.26614 0.243 0.8082

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7595 on 93 degrees of freedom
Multiple R-squared: 0.5806, Adjusted R-squared: 0.5671
F-statistic: 42.92 on 3 and 93 DF, p-value: < 2.2e-16

15.5.1 Using tidy

It can be very useful to build a data frame of the model’s results. We can use the tidy function
in the broom package to do so.

tidy(prost_A)

A tibble: 4 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 2.33 0.0913 25.5 8.25e-44
2 lcavol_c 0.586 0.0821 7.15 1.98e-10
3 svi 0.601 0.358 1.68 9.67e- 2
4 lcavol_c:svi 0.0648 0.266 0.243 8.08e- 1

This makes it much easier to pull out individual elements of the model fit.

For example, to specify the coefficient for svi, rounded to three decimal places, I could use

tidy(prost_A) |> filter(term == "svi") |> select(estimate) |> round(3)

• The result is 0.601.
• If you look at the Markdown file, you’ll see that the number shown in the bullet point

above this one was generated using inline R code, and the function specified above.

15.5.2 Interpretation

1. The intercept, 2.33, for the model is the predicted value of lpsa when lcavol is at its
average and there is no seminal vesicle invasion (e.g. svi = 0).

2. The coefficient for lcavol_c, 0.59, is the predicted change in lpsa associated with a one
unit increase in lcavol (or lcavol_c) when there is no seminal vesicle invasion.

448

3. The coefficient for svi, 0.6, is the predicted change in lpsa associated with having no
svi to having an svi while the lcavol remains at its average.

4. The coefficient for lcavol_c:svi, the product term, which is 0.06, is the difference in
the slope of lcavol_c for a subject with svi as compared to one with no svi.

15.6 Exploring Model prost_A

The glance function from the broom package builds a nice one-row summary for the model.

glance(prost_A)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.581 0.567 0.759 42.9 1.68e-17 3 -109. 228. 241.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

This summary includes, in order,

• the model 𝑅2, adjusted 𝑅2 and �̂�, the residual standard deviation,
• the ANOVA F statistic and associated p value,
• the number of degrees of freedom used by the model, and its log-likelihood ratio
• the model’s AIC (Akaike Information Criterion) and BIC (Bayesian Information Crite-

rion)
• the model’s deviance statistic and residual degrees of freedom

15.6.1 summary for Model prost_A

If necessary, we can also run summary on this prost_A object to pick up some additional
summaries. Since the svi variable is binary, the interaction term is, too, so the t test here
and the F test in the ANOVA yield the same result.

summary(prost_A)

Call:
lm(formula = lpsa ~ lcavol_c * svi, data = prost)

Residuals:

449

Min 1Q Median 3Q Max
-1.6305 -0.5007 0.1266 0.4886 1.6847

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.33134 0.09128 25.540 < 2e-16 ***
lcavol_c 0.58640 0.08207 7.145 1.98e-10 ***
svi 0.60132 0.35833 1.678 0.0967 .
lcavol_c:svi 0.06479 0.26614 0.243 0.8082

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7595 on 93 degrees of freedom
Multiple R-squared: 0.5806, Adjusted R-squared: 0.5671
F-statistic: 42.92 on 3 and 93 DF, p-value: < 2.2e-16

If you’ve forgotten the details of the pieces of this summary, review the Part C Notes from
431.

15.6.2 Adjusted 𝑅2

𝑅2 is greedy.

• 𝑅2 will always suggest that we make our models as big as possible, often including
variables of dubious predictive value.

• As a result, there are various methods for penalizing 𝑅2 so that we wind up with smaller
models.

• The adjusted 𝑅2 is often a useful way to compare multiple models for the same response.

– 𝑅2
𝑎𝑑𝑗 = 1 − (1−𝑅2)(𝑛−1)

𝑛−𝑘 , where 𝑛 = the number of observations and 𝑘 is the number
of coefficients estimated by the regression (including the intercept and any slopes).

– So, in this case, 𝑅2
𝑎𝑑𝑗 = 1 − (1−0.5806)(97−1)

97−4 = 0.5671
– The adjusted 𝑅2 value is not, technically, a proportion of anything, but it is com-

parable across models for the same outcome.
– The adjusted 𝑅2 will always be less than the (unadjusted) 𝑅2.

15.6.3 Coefficient Confidence Intervals

Here are the 90% confidence intervals for the coefficients in Model A. Adjust the level to get
different intervals.

450

confint(prost_A, level = 0.90)

5 % 95 %
(Intercept) 2.17968697 2.4830012
lcavol_c 0.45004577 0.7227462
svi 0.00599401 1.1966454
lcavol_c:svi -0.37737623 0.5069622

What can we conclude from this about the utility of the interaction term?

15.6.4 ANOVA for Model prost_A

The interaction term appears unnecessary. We might wind up fitting the model without it. A
complete ANOVA test is available, including a p value, if you want it.

anova(prost_A)

Analysis of Variance Table

Response: lpsa
Df Sum Sq Mean Sq F value Pr(>F)

lcavol_c 1 69.003 69.003 119.6289 < 2.2e-16 ***
svi 1 5.237 5.237 9.0801 0.003329 **
lcavol_c:svi 1 0.034 0.034 0.0593 0.808191
Residuals 93 53.643 0.577

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the anova approach for a lm object is sequential. The first row shows the impact
of lcavol_c as compared to a model with no predictors (just an intercept). The second row
shows the impact of adding svi to a model that already contains lcavol_c. The third row
shows the impact of adding the interaction (product) term to the model with the two main
effects. So the order in which the variables are added to the regression model matters for this
ANOVA. The F tests here describe the incremental impact of each covariate in turn.

15.6.5 Residuals, Fitted Values and Standard Errors with augment

The augment function in the broom package builds a data frame including the data used in
the model, along with predictions (fitted values), residuals and other useful information.

451

prost_A_aug <- augment(prost_A)
summary(prost_A_aug)

lpsa lcavol_c svi .fitted
Min. :-0.4308 Min. :-2.69708 Min. :0.0000 Min. :0.7498
1st Qu.: 1.7317 1st Qu.:-0.83719 1st Qu.:0.0000 1st Qu.:1.8404
Median : 2.5915 Median : 0.09691 Median :0.0000 Median :2.3950
Mean : 2.4784 Mean : 0.00000 Mean :0.2165 Mean :2.4784
3rd Qu.: 3.0564 3rd Qu.: 0.77703 3rd Qu.:0.0000 3rd Qu.:3.0709
Max. : 5.5829 Max. : 2.47099 Max. :1.0000 Max. :4.5417

.resid .hat .sigma .cooksd
Min. :-1.6305 Min. :0.01316 Min. :0.7423 Min. :0.0000069
1st Qu.:-0.5007 1st Qu.:0.01562 1st Qu.:0.7569 1st Qu.:0.0007837
Median : 0.1266 Median :0.02498 Median :0.7617 Median :0.0034699
Mean : 0.0000 Mean :0.04124 Mean :0.7595 Mean :0.0111314
3rd Qu.: 0.4886 3rd Qu.:0.04939 3rd Qu.:0.7631 3rd Qu.:0.0103533
Max. : 1.6847 Max. :0.24627 Max. :0.7636 Max. :0.1341093
.std.resid

Min. :-2.194508
1st Qu.:-0.687945
Median : 0.168917
Mean : 0.001249
3rd Qu.: 0.653612
Max. : 2.261830

Elements shown here include:

• .fitted Fitted values of model (or predicted values)
• .se.fit Standard errors of fitted values
• .resid Residuals (observed - fitted values)
• .hat Diagonal of the hat matrix (these indicate leverage - points with high leverage indi-

cate unusual combinations of predictors - values more than 2-3 times the mean leverage
are worth some study - leverage is always between 0 and 1, and measures the amount
by which the predicted value would change if the observation’s y value was increased by
one unit - a point with leverage 1 would cause the line to follow that point perfectly)

• .sigma Estimate of residual standard deviation when corresponding observation is
dropped from model

• .cooksd Cook’s distance, which helps identify influential points (values of Cook’s d >
0.5 may be influential, values > 1.0 almost certainly are - an influential point changes
the fit substantially when it is removed from the data)

• .std.resid Standardized residuals (values above 2 in absolute value are worth some
study - treat these as normal deviates [Z scores], essentially)

452

See ?augment.lm in R for more details.

15.6.6 Making Predictions with prost_A

Suppose we want to predict the lpsa for a patient with cancer volume equal to this group’s
mean, for both a patient with and without seminal vesicle invasion, and in each case, we want
to use a 90% prediction interval?

newdata <- data.frame(lcavol_c = c(0,0), svi = c(0,1))
predict(prost_A, newdata, interval = "prediction", level = 0.90)

fit lwr upr
1 2.331344 1.060462 3.602226
2 2.932664 1.545742 4.319586

Since the predicted value in fit refers to the natural logarithm of PSA, to make the predictions
in terms of PSA, we would need to exponentiate. The code below will accomplish that task.

pred <- predict(prost_A, newdata, interval = "prediction", level = 0.90)
exp(pred)

fit lwr upr
1 10.29177 2.887706 36.67978
2 18.77758 4.691450 75.15750

15.7 Plotting Model prost_A

15.7.0.1 Plot logs conventionally

Here, we’ll use ggplot2 to plot the logarithms of the variables as they came to us, on a
conventional coordinate scale. Note that the lines are nearly parallel. What does this suggest
about our Model A?

ggplot(prost, aes(x = lcavol, y = lpsa, group = svi_f, color = svi_f)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, se = FALSE) +
scale_color_discrete(name = "Seminal Vesicle Invasion?") +
theme_bw() +
labs(x = "Log (cancer volume, cc)",

453

y = "Log (Prostate Specific Antigen, ng/ml)",
title = "Two Predictor Model prost_A, including Interaction")

0

2

4

0 2 4
Log (cancer volume, cc)

Lo
g

(P
ro

st
at

e
S

pe
ci

fic
 A

nt
ig

en
, n

g/
m

l)

Seminal Vesicle Invasion?

No

Yes

Two Predictor Model prost_A, including Interaction

15.7.0.2 Plot on log-log scale

Another approach (which might be easier in some settings) would be to plot the raw values of
Cancer Volume and PSA, but use logarithmic axes, again using the natural (base e) logarithm,
as follows. If we use the default choice with ‘trans = “log”, we’ll find a need to select some
useful break points for the grid, as I’ve done in what follows.

ggplot(prost, aes(x = cavol, y = psa, group = svi_f, color = svi_f)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, se = FALSE) +
scale_color_discrete(name = "Seminal Vesicle Invasion?") +
scale_x_continuous(trans = "log",

breaks = c(0.5, 1, 2, 5, 10, 25, 50)) +
scale_y_continuous(trans = "log",

breaks = c(1, 2, 4, 10, 25, 50, 100, 200)) +
theme_bw() +
labs(x = "Cancer volume, in cubic centimeters",

y = "Prostate Specific Antigen, in ng/ml",

454

title = "Two Predictor Model prost_A, including Interaction")

1

2

4

10

25

50

100

200

0.5 1.0 2.0 5.0 10.0 25.0 50.0
Cancer volume, in cubic centimeters

P
ro

st
at

e
S

pe
ci

fic
 A

nt
ig

en
, i

n
ng

/m
l

Seminal Vesicle Invasion?

No

Yes

Two Predictor Model prost_A, including Interaction

I’ve used the break point of 4 on the Y axis because of the old rule suggesting further testing
for asymptomatic men with PSA of 4 or higher, but the other break points are arbitrary -
they seemed to work for me, and used round numbers.

15.7.1 Residual Plots of prost_A

plot(prost_A, which = 1)

455

1 2 3 4

−
2

−
1

0
1

2

Fitted values

R
es

id
ua

ls

lm(lpsa ~ lcavol_c * svi)

Residuals vs Fitted

69

1 5

plot(prost_A, which = 5)

0.00 0.05 0.10 0.15 0.20 0.25

−
2

0
1

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(lpsa ~ lcavol_c * svi)

Cook's distance 0.5

0.5

Residuals vs Leverage

97
90

96

456

In our next Chapter, we’ll see how well this model can be validated.

457

16 Validating our Prostate Cancer Model

16.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(rsample)
library(yardstick)
library(caret)
library(tidyverse)

theme_set(theme_bw())

16.1.1 Data Load

prost <- read_csv("data/prost.csv", show_col_types = FALSE)

We’ll repeat the data cleaning and model-fitting from our previous chapter.

16.2 Data Cleaning

prost <- prost |>
mutate(svi_f = fct_recode(factor(svi), "No" = "0", "Yes" = "1"),

gleason_f = fct_relevel(gleason, c("> 7", "7", "6")),
bph_f = fct_relevel(bph, c("Low", "Medium", "High")),
lcavol_c = lcavol - mean(lcavol),
cavol = exp(lcavol),
psa = exp(lpsa))

458

16.3 Fitting the prostA model

prost_A <- lm(lpsa ~ lcavol_c * svi, data = prost)

16.4 Split Validation of Model prost_A

Suppose we want to evaluate whether our model prost_A predicts effectively in new data.

We’ll first demonstrate a validation split approach (used, for instance, in 431) which splits our
sample into a separate training (perhaps 70% of the data) and test (perhaps 30% of the data)
samples, and then:

• fit the model in the training sample,
• use the resulting model to make predictions for lpsa in the test sample, and
• evaluate the quality of those predictions, perhaps by comparing the results to what we’d

get using a different model.

Our goal will be to cross-validate model prost_A, which, you’ll recall, uses lcavol_c, svi and
their interaction, to predict lpsa in the prost data.

We’ll start by identifying a random sample of 70% of our prost data in a training sample
(which we’ll call prost_train, and leave the rest as our test sample, called prost_test. To
do this, we’ll use functions from the rsample package.

set.seed(432432)

prost_split <- initial_split(prost, prop = 0.7)

prost_train <- training(prost_split)
prost_test <- testing(prost_split)

• Don’t forget to pre-specify the random seed, for replicability, as I’ve done here.

Let’s verify that we now have the samples we expect…

dim(prost_train)

[1] 67 16

dim(prost_test)

459

[1] 30 16

OK. Next, we’ll run the prost_A model in the training sample.

prost_A_train <- lm(lpsa ~ lcavol_c * svi, data = prost_train)

prost_A_train

Call:
lm(formula = lpsa ~ lcavol_c * svi, data = prost_train)

Coefficients:
(Intercept) lcavol_c svi lcavol_c:svi

2.2900 0.6922 1.1317 -0.4269

Then we’ll use the coefficients from this model to obtain predicted lpsa values in the test
sample.

prost_A_test_aug <- augment(prost_A, newdata = prost_test)

Now, we can use the functions from the yardstick package to obtain several key summaries
of fit quality for our model. These summary statistics are:

• the RMSE or root mean squared error, which measures the average difference (i.e. pre-
diction error) between the observed known outcome values and the values predicted by
the model by first squaring all of the errors, averaging them, and then taking the square
root of the result. The lower the RMSE, the better the model.

• the Rsquared or 𝑅2, which is just the square of the Pearson correlation coefficient relating
the predicted and observed values, so we’d like this to be as large as possible, and

• the MAE or mean absolute error, which is a bit less sensitive to outliers than the RMSE,
because it measures the average prediction error by taking the absolute value of each
error, and then grabbing the average of those values. The lower the MAE, the better
the model.

These statistics are more helpful, generally, for comparing multiple models to each other, than
for making final decisions on their own. The yardstick package provides individual functions
to summarize performance, as follows.

rmse(data = prost_A_test_aug, truth = lpsa, estimate = .fitted)

460

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 0.813

rsq(data = prost_A_test_aug, truth = lpsa, estimate = .fitted)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rsq standard 0.515

mae(data = prost_A_test_aug, truth = lpsa, estimate = .fitted)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 mae standard 0.672

16.5 V-fold Cross-Validation Approach for model prostA

V-fold cross-validation (also known as k-fold cross-validation) randomly splits the
data into V groups of roughly equal size (called “folds”). A resample of the analysis
data consists of V-1 of the folds while the assessment set contains the final fold. In
basic V-fold cross-validation (i.e. no repeats), the number of resamples is equal to
V.

• https://rsample.tidymodels.org/reference/vfold_cv.html

The idea of, for instance, 5-fold cross-validation in this case is to create five different subgroups
(or folds) of the data, and then select 4 of the folds to be used as a model training sample,
leaving the remaining fold as the model testing sample. We then repeat this over each of the five
possible selections of testing sample, and summarize the results. This is very straightforward
using the caret package, so we’ll demonstrate that approach here.

First, we use the trainControl() function from caret to set up five-fold cross-validation.

set.seed(432432)
ctrl <- trainControl(method = "cv", number = 5)

461

https://rsample.tidymodels.org/reference/vfold_cv.html

Next, we train our model on these five folds:

pros_model <- train(lpsa ~ lcavol_c * svi, data = prost,
method = "lm", trControl = ctrl)

Now, we can view a summary of the k-fold cross-validation

pros_model

Linear Regression

97 samples
2 predictor

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 79, 78, 77, 77, 77
Resampling results:

RMSE Rsquared MAE
0.7777655 0.5946201 0.6411997

Tuning parameter 'intercept' was held constant at a value of TRUE

• No pre-processing means we didn’t scale the data before fitting models.
• We used 5-fold cross-validation
• The sample size for these training sets was between 77 and 79 for each pass.
• The validated root mean squared error (averaged across the five resamplings) was 0.7778
• The cross-validated R-squared is 0.595
• The cross-validated mean absolute error is 0.641

To examine the final fitted model, we have:

pros_model$finalModel

Call:
lm(formula = .outcome ~ ., data = dat)

Coefficients:
(Intercept) lcavol_c svi `lcavol_c:svi`

2.33134 0.58640 0.60132 0.06479

462

This model can be presented using all of our usual tools from the broom package.

tidy(pros_model$finalModel)

A tibble: 4 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 2.33 0.0913 25.5 8.25e-44
2 lcavol_c 0.586 0.0821 7.15 1.98e-10
3 svi 0.601 0.358 1.68 9.67e- 2
4 `lcavol_c:svi` 0.0648 0.266 0.243 8.08e- 1

glance(pros_model$finalModel)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.581 0.567 0.759 42.9 1.68e-17 3 -109. 228. 241.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

We can also review the model predictions made within each fold:

pros_model$resample

RMSE Rsquared MAE Resample
1 0.7447413 0.7030717 0.6124787 Fold1
2 0.8208461 0.3071658 0.6699472 Fold2
3 0.6510721 0.7944721 0.5589196 Fold3
4 0.8514246 0.4731454 0.6885641 Fold4
5 0.8207437 0.6952452 0.6760887 Fold5

463

17 Multiple Imputation and Linear Regression

17.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(broom)
library(car)
library(knitr)
library(mosaic)
library(mice)
library(rms)
library(naniar)
library(tidyverse)

theme_set(theme_bw())

17.2 Data Load

In this chapter, we’ll return to the smart_ohio file based on data from BRFSS 2017 that we
built and cleaned back in Chapter 6.

smart_ohio <- readRDS("data/smart_ohio.Rds")

17.3 Developing a smart_16 data set

We’re going to look at a selection of variables from this tibble, among subjects who have been
told they have diabetes, and who also provided a response to our physhealth (Number of Days
Physical Health Not Good) variable, which asks “Now thinking about your physical health,
which includes physical illness and injury, for how many days during the past 30 days was
your physical health not good?” We’ll build two models. In this chapter, we’ll look at a linear

464

model for physhealth and in the next chapter, we’ll look at a logistic regression describing
whether or not the subject’s physhealth response was at least 1.

smart_16 <- smart_ohio |>
filter(dm_status == "Diabetes") |>
filter(complete.cases(physhealth)) |>
mutate(bad_phys = ifelse(physhealth > 0, 1, 0),

comor = hx_mi + hx_chd + hx_stroke + hx_asthma +
hx_skinc + hx_otherc + hx_copd + hx_arthr) |>

select(SEQNO, mmsa, physhealth, bad_phys, age_imp, smoke100,
comor, hx_depress, bmi, activity)

The variables included in this smart_16 tibble are:

Variable Description
SEQNO respondent identification number (all begin with 2016)
mmsa

physhealth Now thinking about your physical health, which includes physical illness and
injury, for how many days during the past 30 days was your physical health
not good?

bad_phys Is physhealth 1 or more?
age_imp Age in years (imputed from age categories)

smoke100 Have you smoked at least 100 cigarettes in your life? (1 = yes, 0 = no)
hx_depress Has a doctor, nurse, or other health professional ever told you that you have

a depressive disorder, including depression, major depression, dysthymia, or
minor depression?

bmi Body mass index, in kg/m2

activity Physical activity (Highly Active, Active, Insufficiently Active, Inactive)
comor Sum of 8 potential groups of comorbidities (see below)

The comor variable is the sum of the following 8 variables, each of which is measured on a 1
= Yes, 0 = No scale, and begin with “Has a doctor, nurse, or other health professional ever
told you that you had …”

• hx_mi: a heart attack, also called a myocardial infarction?
• hx_chd: angina or coronary heart disease?
• hx_stroke: a stroke?
• hx_asthma: asthma?
• hx_skinc: skin cancer?
• hx_otherc: any other types of cancer?
• hx_copd: Chronic Obstructive Pulmonary Disease or COPD, emphysema or chronic

bronchitis?
• hx_arthr: some form of arthritis, rheumatoid arthritis, gout, lupus, or fibromyalgia?

465

smart_16 |> tabyl(comor)

comor n percent valid_percent
0 224 0.211920530 0.221782178
1 315 0.298013245 0.311881188
2 228 0.215704825 0.225742574
3 130 0.122989593 0.128712871
4 72 0.068117313 0.071287129
5 29 0.027436140 0.028712871
6 9 0.008514664 0.008910891
7 3 0.002838221 0.002970297
NA 47 0.044465468 NA

17.3.1 Any missing values?

We have 1057 observations (rows) in the smart_16 data set, of whom 860 have complete data
on all variables.

dim(smart_16)

[1] 1057 10

n_case_complete(smart_16)

[1] 860

Which variables are missing?

miss_var_summary(smart_16)

A tibble: 10 x 3
variable n_miss pct_miss
<chr> <int> <num>

1 activity 85 8.04
2 bmi 84 7.95
3 comor 47 4.45
4 smoke100 24 2.27

466

5 age_imp 12 1.14
6 hx_depress 3 0.284
7 SEQNO 0 0
8 mmsa 0 0
9 physhealth 0 0
10 bad_phys 0 0

Note that our outcomes (physhealth and the derived bad_phys) have no missing values here,
by design. We will be performing multiple imputation to account appropriately for missingness
in the predictors with missing values.

17.4 Obtaining a Simple Imputation with mice

The mice package provides several approaches we can use for imputation in building models
of all kinds. Here, we’ll use it just to obtain a single set of imputed results that we can apply
to “complete” our data for the purposes of thinking about (a) transforming our outcome and
(b) considering the addition of non-linear predictor terms.

requires library(mice)

set.seed(432)

create small data set including only variables to
be used in building the imputation model

sm16 <- smart_16 |>
select(physhealth, activity, age_imp, bmi, comor,

hx_depress, smoke100)

smart_16_mice1 <- mice(sm16, m = 1)

iter imp variable
1 1 activity age_imp bmi comor hx_depress smoke100
2 1 activity age_imp bmi comor hx_depress smoke100
3 1 activity age_imp bmi comor hx_depress smoke100
4 1 activity age_imp bmi comor hx_depress smoke100
5 1 activity age_imp bmi comor hx_depress smoke100

467

smart_16_imp1 <- mice::complete(smart_16_mice1)

n_case_miss(smart_16_imp1)

[1] 0

And now we’ll use this completed smart_16_imp1 data set (the product of just a single impu-
tation) to help us address the next two issues.

17.5 Linear Regression: Considering a Transformation of the
Outcome

A plausible strategy here would be to try to identify an outcome transformation only after
some accounting for missing predictor values, perhaps through a simple imputation approach.
However, to keep things simple here, I’ll just use the complete cases in this section.

Recall that our outcome here, physhealth can take the value 0, and is thus not strictly
positive.

favstats(~ physhealth, data = smart_16_imp1)

min Q1 median Q3 max mean sd n missing
0 0 2 20 30 9.227058 11.92676 1057 0

So, if we want to investigate a potential transformation with a Box-Cox plot, we’ll have to add
a small value to each physhealth value. We’ll add 1, so that the range of potential values is
now from 1-31.

smart_16_imp1 <- smart_16_imp1 |>
mutate(phplus1 = physhealth + 1)

test_model <- lm(phplus1 ~ age_imp + comor + smoke100 +
hx_depress + bmi + activity, data = smart_16_imp1)

boxCox(test_model)

468

−2 −1 0 1 2

−
75

00
−

65
00

−
55

00

Profile Log−likelihood

λ

lo
g−

lik
el

ih
oo

d
 95%

It looks like the logarithm is a reasonable transformation in this setting. So we’ll create a
new outcome, that is the natural logarithm of (physhealth + 1), which we’ll call phys_tr to
remind us that a transformation is involved that we’ll eventually need to back out of to make
predictions. We’ll build this new variable in both our original smart_16 data set and in the
simply imputed data set we’re using for just these early stages.

smart_16_imp1 <- smart_16_imp1 |>
mutate(phys_tr = log(physhealth + 1))

smart_16 <- smart_16 |>
mutate(phys_tr = log(physhealth + 1))

So we have phys_tr = log(physhealth + 1)

• where we are referring above to the natural (base 𝑒 logarithm).

We can also specify our back-transformation to the original physhealth values from our new
phys_tr as physhealth = exp(phys_tr) - 1.

17.6 Linear Regression: Considering Non-Linearity in the Predictors

Consider the following Spearman 𝜌2 plot.

469

plot(spearman2(phys_tr ~ age_imp + comor + smoke100 +
hx_depress + bmi + activity, data = smart_16_imp1))

comor

hx_depress

activity

bmi

age_imp

smoke100

N df

1057 1

1057 1

1057 1

1057 3

1057 1

1057 1

0.02 0.04 0.06 0.08 0.10

Spearman ρ2 Response : phys_tr

Adjusted ρ2

After our single imputation, we have the same N value in all rows of this plot, which is what we
want to see. It appears that in considering potential non-linear terms, comor and hx_depress
and perhaps activity are worthy of increased attention. I’ll make a couple of arbitrary
choices, to add a raw cubic polynomial to represent the comor information, and we’ll add an
interaction term between hx_depress and activity.

17.7 “Main Effects” Linear Regression with lm on the Complete
Cases

Recall that we have 860 complete cases in our smart_16 data, out of a total of 1057 observations
in total. A model using only the complete cases should thus drop the remaining 197 subjects.
Let’s see if a main effects only model for our newly transformed phys_tr outcome does in fact
do this.

m_1cc <-
lm(phys_tr ~ age_imp + comor + smoke100 +

470

hx_depress + bmi + activity, data = smart_16)

summary(m_1cc)

Call:
lm(formula = phys_tr ~ age_imp + comor + smoke100 + hx_depress +

bmi + activity, data = smart_16)

Residuals:
Min 1Q Median 3Q Max

-3.0801 -1.0389 -0.2918 1.1029 2.8478

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.581959 0.370847 1.569 0.11696
age_imp -0.007043 0.003813 -1.847 0.06511 .
comor 0.301773 0.033105 9.116 < 2e-16 ***
smoke100 0.099038 0.090280 1.097 0.27295
hx_depress 0.471949 0.104232 4.528 6.81e-06 ***
bmi 0.016375 0.006295 2.601 0.00945 **
activityActive -0.229927 0.154912 -1.484 0.13812
activityInsufficiently_Active -0.116998 0.139440 -0.839 0.40168
activityInactive 0.256118 0.115266 2.222 0.02655 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.303 on 851 degrees of freedom
(197 observations deleted due to missingness)

Multiple R-squared: 0.1806, Adjusted R-squared: 0.1729
F-statistic: 23.45 on 8 and 851 DF, p-value: < 2.2e-16

Note that the appropriate number of observations are listed as “deleted due to missingness.”

17.7.1 Quality of Fit Statistics

glance(m_1cc) |>
select(r.squared, adj.r.squared, sigma, AIC, BIC) |>
kable(digits = c(3, 3, 2, 1, 1))

471

r.squared adj.r.squared sigma AIC BIC
0.181 0.173 1.3 2906.3 2953.8

17.7.2 Interpreting Effect Sizes

tidy(m_1cc, conf.int = TRUE) |>
select(term, estimate, std.error, conf.low, conf.high) |>
kable(digits = 3)

term estimate std.error conf.low conf.high
(Intercept) 0.582 0.371 -0.146 1.310
age_imp -0.007 0.004 -0.015 0.000
comor 0.302 0.033 0.237 0.367
smoke100 0.099 0.090 -0.078 0.276
hx_depress 0.472 0.104 0.267 0.677
bmi 0.016 0.006 0.004 0.029
activityActive -0.230 0.155 -0.534 0.074
activityInsufficiently_Active -0.117 0.139 -0.391 0.157
activityInactive 0.256 0.115 0.030 0.482

We’ll interpret three of the predictors here to demonstrate ideas: comor, hx_depress and
activity.

• If we have two subjects with the same values of age_imp, smoke100, hx_depress, bmi,
and activity, but Harry has a comor score that is one point higher than Sally’s, then
the model predicts that Harry’s transformed outcome (specifically the natural logarithm
of (his physhealth days + 1)) will be 0.302 higher than Sally’s, with a 95% confidence
interval around that estimate ranging from (0.237, 0.367).

• If we have two subjects with the same values of age_imp, comor, smoke100, bmi, and
activity, but Harry has a history of depression (hx_depress = 1) while Sally does not
have such a history (so Sally’s hx_depress = 0), then the model predicts that Harry’s
transformed outcome (specifically the natural logarithm of (his physhealth days + 1))
will be 0.472 higher than Sally’s, with a 95% confidence interval around that estimate
ranging from (0.267, 0.677).

• The activity variable has four categories as indicated in the table below. The model
uses the “Highly_Active” category as the reference group.

smart_16_imp1 |> tabyl(activity)

472

activity n percent
Highly_Active 252 0.2384106

Active 135 0.1277200
Insufficiently_Active 193 0.1825922

Inactive 477 0.4512772

• From the tidied set of coefficients, we can describe the activity effects as follows.

– If Sally is “Highly Active” and Harry is “Active” but they otherwise have the same
values of all predictors, then our prediction is that Harry’s transformed outcome
(specifically the natural logarithm of (his physhealth days + 1)) will be 0.230
lower than Sally’s, with a 95% confidence interval around that estimate ranging
from (0.534 lower than Sally’s to 0.074 higher than Sally’s).

– If instead Harry is “Insufficiently Active” but nothing else changes, then our pre-
diction is that Harry’s transformed outcome will be 0.117 lower than Sally’s, with
a 95% confidence interval around that estimate ranging from (0.391 lower to 0.157
higher than Sally’s.)

– If instead Harry is “Inactive” but nothing else changes, then our prediction is that
Harry’s transformed outcome will be 0.256 higher than Sally’s, with a 95% con-
fidence interval around that estimate ranging from (0.030 to 0.482 higher than
Sally’s.)

17.7.3 Making Predictions with the Model

Let’s describe two subjects, and use this model (and the ones that follow) to predict their
physhealth values.

• Sheena is age 50, has 2 comorbidities, has smoked 100 cigarettes in her life, has no history
of depression, a BMI of 25, and is Highly Active.

• Jacob is age 65, has 4 comorbidities, has never smoked, has a history of depression, a
BMI of 32 and is Inactive.

We’ll first build predictions for Sheena and Jacob (with 95% prediction intervals) for
phys_tr.

new2 <- tibble(
name = c("Sheena", "Jacob"),
age_imp = c(50, 65),
comor = c(2, 4),
smoke100 = c(1, 0),
hx_depress = c(0, 1),
bmi = c(25, 32),
activity = c("Highly_Active", "Inactive")

473

)

preds_m_1cc <- predict(m_1cc, newdata = new2,
interval = "prediction")

preds_m_1cc

fit lwr upr
1 1.341778 -1.22937 3.912925
2 2.583336 0.01399 5.152681

The model makes predictions for our transformed outcome, phys_tr. Now, we need to back-
transform the predictions and the confidence intervals to build predictions for physhealth.

preds_m_1cc <- preds_m_1cc |>
tbl_df() |>
mutate(names = c("Sheena", "Jacob"),

pred_physhealth = exp(fit) - 1,
conf_low = exp(lwr) - 1,
conf_high = exp(upr) - 1) |>

select(names, pred_physhealth, conf_low, conf_high,
everything())

Warning: `tbl_df()` was deprecated in dplyr 1.0.0.
i Please use `tibble::as_tibble()` instead.

preds_m_1cc |> kable(digits = 3)

names pred_physhealth conf_low conf_high fit lwr upr
Sheena 2.826 -0.708 49.045 1.342 -1.229 3.913
Jacob 12.241 0.014 171.894 2.583 0.014 5.153

17.8 “Augmented” Linear Regression with lm on the Complete
Cases

Now, we’ll add the non-linear terms we discussed earlier. We’ll add a (raw) cubic polynomial
to represent the comor information, and we’ll add an interaction term between hx_depress
and activity.

474

m_2cc <-
lm(phys_tr ~ age_imp + pol(comor, 3) + smoke100 +

bmi + hx_depress*activity, data = smart_16)

summary(m_2cc)

Call:
lm(formula = phys_tr ~ age_imp + pol(comor, 3) + smoke100 + bmi +

hx_depress * activity, data = smart_16)

Residuals:
Min 1Q Median 3Q Max

-2.907 -1.063 -0.267 1.143 2.924

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.514823 0.376203 1.368 0.17153
age_imp -0.008100 0.003865 -2.096 0.03640
pol(comor, 3)comor 0.634274 0.160630 3.949 8.51e-05
pol(comor, 3)comor^2 -0.130626 0.073525 -1.777 0.07599
pol(comor, 3)comor^3 0.012508 0.008977 1.393 0.16386
smoke100 0.089345 0.090336 0.989 0.32294
bmi 0.015203 0.006315 2.408 0.01627
hx_depress 0.647054 0.229696 2.817 0.00496
activityActive -0.202196 0.172300 -1.174 0.24092
activityInsufficiently_Active -0.005815 0.166221 -0.035 0.97210
activityInactive 0.290380 0.132198 2.197 0.02832
hx_depress:activityActive -0.124836 0.395415 -0.316 0.75230
hx_depress:activityInsufficiently_Active -0.376355 0.310160 -1.213 0.22531
hx_depress:activityInactive -0.172952 0.267427 -0.647 0.51798

(Intercept)
age_imp *
pol(comor, 3)comor ***
pol(comor, 3)comor^2 .
pol(comor, 3)comor^3
smoke100
bmi *
hx_depress **
activityActive
activityInsufficiently_Active

475

activityInactive *
hx_depress:activityActive
hx_depress:activityInsufficiently_Active
hx_depress:activityInactive

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.301 on 846 degrees of freedom
(197 observations deleted due to missingness)

Multiple R-squared: 0.187, Adjusted R-squared: 0.1745
F-statistic: 14.97 on 13 and 846 DF, p-value: < 2.2e-16

Note again that the appropriate number of observations are listed as “deleted due to missing-
ness.”

17.8.1 Quality of Fit Statistics

glance(m_2cc) |>
select(r.squared, adj.r.squared, sigma, AIC, BIC) |>
kable(digits = c(3, 3, 2, 1, 1))

r.squared adj.r.squared sigma AIC BIC
0.187 0.175 1.3 2909.5 2980.9

17.8.2 ANOVA assessing the impact of the non-linear terms

anova(m_1cc, m_2cc)

Analysis of Variance Table

Model 1: phys_tr ~ age_imp + comor + smoke100 + hx_depress + bmi + activity
Model 2: phys_tr ~ age_imp + pol(comor, 3) + smoke100 + bmi + hx_depress *

activity
Res.Df RSS Df Sum of Sq F Pr(>F)

1 851 1444.0
2 846 1432.8 5 11.265 1.3303 0.249

The difference between the models doesn’t meet the standard for statistical detectabilty at
our usual 𝛼 levels.

476

17.8.3 Interpreting Effect Sizes

tidy(m_2cc, conf.int = TRUE) |>
select(term, estimate, std.error, conf.low, conf.high) |>
kable(digits = 3)

term estimate std.error conf.low conf.high
(Intercept) 0.515 0.376 -0.224 1.253
age_imp -0.008 0.004 -0.016 -0.001
pol(comor, 3)comor 0.634 0.161 0.319 0.950
pol(comor, 3)comor^2 -0.131 0.074 -0.275 0.014
pol(comor, 3)comor^3 0.013 0.009 -0.005 0.030
smoke100 0.089 0.090 -0.088 0.267
bmi 0.015 0.006 0.003 0.028
hx_depress 0.647 0.230 0.196 1.098
activityActive -0.202 0.172 -0.540 0.136
activityInsufficiently_Active -0.006 0.166 -0.332 0.320
activityInactive 0.290 0.132 0.031 0.550
hx_depress:activityActive -0.125 0.395 -0.901 0.651
hx_depress:activityInsufficiently_Active -0.376 0.310 -0.985 0.232
hx_depress:activityInactive -0.173 0.267 -0.698 0.352

Let’s focus first on interpreting the interaction terms between hx_depress and activity.

Assume first that we have a set of subjects with the same values of age_imp, smoke100, bmi,
and comor.

• Arnold has hx_depress = 1 and is Inactive
• Betty has hx_depress = 1 and is Insufficiently Active
• Carlos has hx_depress = 1 and is Active
• Debbie has hx_depress = 1 and is Highly Active
• Eamon has hx_depress = 0 and is Inactive
• Florence has hx_depress = 0 and is Insufficiently Active
• Garry has hx_depress = 0 and is Active
• Harry has hx_depress = 0 and is Highly Active

So the model, essentially can be used to compare each of the first seven people on that list
to Harry (who has the reference levels of both hx_depress and activity.) Let’s compare
Arnold to Harry.

For instance, as compared to Harry, Arnold is expected to have a transformed outcome (specif-
ically the natural logarithm of (his physhealth days + 1)) that is:

477

• 0.647 higher because Arnold’s hx_depress = 1, and
• 0.29 higher still because Arnold’s activity is “Inactive”, and
• 0.173 lower because of the combination (see the ‘hx_depress:activityInactive” row)

So, in total, we expect Arnold’s transformed outcome to be 0.647 + 0.29 + (-0.173), or 0.764
higher than Harry’s.

If we want to compare Arnold to, for instance, Betty, we first calculate Betty’s difference from
Harry, and then compare the two differences.

As compared to Harry, Betty is expected to have a transformed outcome (specifically the
natural logarithm of (her physhealth days + 1)) that is:

• 0.647 higher because Betty’s hx_depress = 1, and
• 0.006 lower still because Betty’s activity is “Insufficiently Active”, and
• 0.376 lower because of the combination (see the ‘hx_depress:activityInsufficiently_Active”

row)

So, in total, we expect Betty’s transformed outcome to be 0.647 + (-0.006) + (-0.376), or 0.265
higher than Harry’s.

And thus we can compare Betty and Arnold directly.

• Arnold is predicted to have an outcome that is 0.764 higher than Harry’s.
• Betty is predicted to have an outcome that is 0.265 higher than Harry’s.
• And so Arnold’s predicted outcome (phys_tr) is 0.499 larger than Betty’s.

Now, suppose we want to look at our cubic polynomial in comor.

• Suppose Harry and Sally have the same values for all other predictors in the model,
but Harry has 1 comorbidity where Sally has none. Then the three terms in the model
related to comor will be 1 for Harry and 0 for Sally, and the interpretation becomes
pretty straightforward.

• But suppose instead that nothing has changed except Harry has 2 comorbidities and
Sally has just 1. The size of the impact of this Harry - Sally difference is far larger in
this situation, because the comor variable enters the model in a non-linear way. This
is an area where fitting the model using ols can be helpful because of the ability to
generate plots (of effects, nomograms, etc.) that can show this non-linearity in a clear
way.

Suppose for instance, that Harry and Sally share the following values for the other predictors:
each is age 40, has never smoked, has no history of depression, a BMI of 30 and is Highly
Active.

• Now, if Harry has 1 comorbidity and Sally has none, the predicted phys_tr values for
Harry and Sally are as indicated below.

478

hands1 <- tibble(
name = c("Harry", "Sally"),
age_imp = c(40, 40),
comor = c(1, 0),
smoke100 = c(0, 0),
hx_depress = c(0, 0),
bmi = c(30, 30),
activity = c("Highly_Active", "Highly_Active")

)

predict(m_2cc, newdata = hands1)

1 2
1.1630840 0.6469282

But if Harry has 2 comorbidities and Sally 1, the predictions are:

hands2 <- tibble(
name = c("Harry", "Sally"),
age_imp = c(40, 40),
comor = c(2, 1), # only thing that changes
smoke100 = c(0, 0),
hx_depress = c(0, 0),
bmi = c(30, 30),
activity = c("Highly_Active", "Highly_Active")

)

predict(m_2cc, newdata = hands2)

1 2
1.493035 1.163084

Note that the difference in predictions between Harry and Sally is much smaller now than it
was previously.

17.8.4 Making Predictions with the Model

As before, we’ll use the new model to predict physhealth values for Sheena and Jacob.

479

• Sheena is age 50, has 2 comorbidities, has smoked 100 cigarettes in her life, has no history
of depression, a BMI of 25, and is Highly Active.

• Jacob is age 65, has 4 comorbidities, has never smoked, has a history of depression, a
BMI of 32 and is Inactive.

We’ll first build predictions for Sheena and Jacob (with 95% prediction intervals) for
phys_tr.

new2 <- tibble(
name = c("Sheena", "Jacob"),
age_imp = c(50, 65),
comor = c(2, 4),
smoke100 = c(1, 0),
hx_depress = c(0, 1),
bmi = c(25, 32),
activity = c("Highly_Active", "Inactive")

)

preds_m_2cc <- predict(m_2cc, newdata = new2,
interval = "prediction")

preds_m_2cc

fit lwr upr
1 1.425362 -1.14707613 3.997801
2 2.486907 -0.08635658 5.060171

Now, we need to back-transform the predictions and the confidence intervals that describe
phys_tr to build predictions for physhealth.

preds_m_2cc <- preds_m_2cc |>
tbl_df() |>
mutate(names = c("Sheena", "Jacob"),

pred_physhealth = exp(fit) - 1,
conf_low = exp(lwr) - 1,
conf_high = exp(upr) - 1) |>

select(names, pred_physhealth, conf_low, conf_high,
everything())

Warning: `tbl_df()` was deprecated in dplyr 1.0.0.
i Please use `tibble::as_tibble()` instead.

480

preds_m_2cc |> kable(digits = 3)

names pred_physhealth conf_low conf_high fit lwr upr
Sheena 3.159 -0.682 53.478 1.425 -1.147 3.998
Jacob 11.024 -0.083 156.617 2.487 -0.086 5.060

17.9 Using mice to perform Multiple Imputation

Let’s focus on the main effects model, and look at the impact of performing multiple imputation
to account for the missing data. Recall that in our smart_16 data, the most “missingness” is
shown in the activity variable, which is still missing less than 10% of the time. So we’ll try
a set of 10 imputations, using the default settings in the mice package.

requires library(mice)

set.seed(432)

create small data set including only variables to
be used in building the imputation model

sm16 <- smart_16 |>
select(physhealth, phys_tr, activity, age_imp, bmi, comor,

hx_depress, smoke100)

smart_16_mice10 <- mice(sm16, m = 10)

iter imp variable
1 1 activity age_imp bmi comor hx_depress smoke100
1 2 activity age_imp bmi comor hx_depress smoke100
1 3 activity age_imp bmi comor hx_depress smoke100
1 4 activity age_imp bmi comor hx_depress smoke100
1 5 activity age_imp bmi comor hx_depress smoke100
1 6 activity age_imp bmi comor hx_depress smoke100
1 7 activity age_imp bmi comor hx_depress smoke100
1 8 activity age_imp bmi comor hx_depress smoke100
1 9 activity age_imp bmi comor hx_depress smoke100
1 10 activity age_imp bmi comor hx_depress smoke100
2 1 activity age_imp bmi comor hx_depress smoke100

481

2 2 activity age_imp bmi comor hx_depress smoke100
2 3 activity age_imp bmi comor hx_depress smoke100
2 4 activity age_imp bmi comor hx_depress smoke100
2 5 activity age_imp bmi comor hx_depress smoke100
2 6 activity age_imp bmi comor hx_depress smoke100
2 7 activity age_imp bmi comor hx_depress smoke100
2 8 activity age_imp bmi comor hx_depress smoke100
2 9 activity age_imp bmi comor hx_depress smoke100
2 10 activity age_imp bmi comor hx_depress smoke100
3 1 activity age_imp bmi comor hx_depress smoke100
3 2 activity age_imp bmi comor hx_depress smoke100
3 3 activity age_imp bmi comor hx_depress smoke100
3 4 activity age_imp bmi comor hx_depress smoke100
3 5 activity age_imp bmi comor hx_depress smoke100
3 6 activity age_imp bmi comor hx_depress smoke100
3 7 activity age_imp bmi comor hx_depress smoke100
3 8 activity age_imp bmi comor hx_depress smoke100
3 9 activity age_imp bmi comor hx_depress smoke100
3 10 activity age_imp bmi comor hx_depress smoke100
4 1 activity age_imp bmi comor hx_depress smoke100
4 2 activity age_imp bmi comor hx_depress smoke100
4 3 activity age_imp bmi comor hx_depress smoke100
4 4 activity age_imp bmi comor hx_depress smoke100
4 5 activity age_imp bmi comor hx_depress smoke100
4 6 activity age_imp bmi comor hx_depress smoke100
4 7 activity age_imp bmi comor hx_depress smoke100
4 8 activity age_imp bmi comor hx_depress smoke100
4 9 activity age_imp bmi comor hx_depress smoke100
4 10 activity age_imp bmi comor hx_depress smoke100
5 1 activity age_imp bmi comor hx_depress smoke100
5 2 activity age_imp bmi comor hx_depress smoke100
5 3 activity age_imp bmi comor hx_depress smoke100
5 4 activity age_imp bmi comor hx_depress smoke100
5 5 activity age_imp bmi comor hx_depress smoke100
5 6 activity age_imp bmi comor hx_depress smoke100
5 7 activity age_imp bmi comor hx_depress smoke100
5 8 activity age_imp bmi comor hx_depress smoke100
5 9 activity age_imp bmi comor hx_depress smoke100
5 10 activity age_imp bmi comor hx_depress smoke100

summary(smart_16_mice10)

482

Class: mids
Number of multiple imputations: 10
Imputation methods:
physhealth phys_tr activity age_imp bmi comor hx_depress

"" "" "polyreg" "pmm" "pmm" "pmm" "pmm"
smoke100

"pmm"
PredictorMatrix:

physhealth phys_tr activity age_imp bmi comor hx_depress smoke100
physhealth 0 1 1 1 1 1 1 1
phys_tr 1 0 1 1 1 1 1 1
activity 1 1 0 1 1 1 1 1
age_imp 1 1 1 0 1 1 1 1
bmi 1 1 1 1 0 1 1 1
comor 1 1 1 1 1 0 1 1

17.10 Running the Linear Regression in lm with Multiple
Imputation

Next, we’ll run the linear model (main effects) on each of the 10 imputed data sets.

m10_mods <-
with(smart_16_mice10, lm(phys_tr ~ age_imp + comor +

smoke100 + hx_depress +
bmi + activity))

summary(m10_mods)

A tibble: 90 x 6
term estimate std.error statistic p.value nobs
<chr> <dbl> <dbl> <dbl> <dbl> <int>

1 (Intercept) 0.317 0.326 0.971 3.32e- 1 1057
2 age_imp -0.00489 0.00334 -1.47 1.43e- 1 1057
3 comor 0.313 0.0295 10.6 4.72e-25 1057
4 smoke100 0.135 0.0799 1.69 9.22e- 2 1057
5 hx_depress 0.500 0.0929 5.38 9.14e- 8 1057
6 bmi 0.0187 0.00564 3.31 9.64e- 4 1057
7 activityActive -0.202 0.138 -1.46 1.44e- 1 1057
8 activityInsufficiently_Active -0.0695 0.124 -0.561 5.75e- 1 1057
9 activityInactive 0.262 0.103 2.54 1.11e- 2 1057

483

10 (Intercept) 0.363 0.332 1.10 2.74e- 1 1057
i 80 more rows

Then, we’ll pool results across the 10 imputations

m10_pool <- pool(m10_mods)
summary(m10_pool, conf.int = TRUE) |>

select(-statistic, -df) |>
kable(digits = 3)

term estimate std.error p.value 2.5 % 97.5 %
(Intercept) 0.444 0.342 0.194 -0.227 1.114
age_imp -0.005 0.003 0.128 -0.012 0.002
comor 0.309 0.031 0.000 0.249 0.369
smoke100 0.114 0.083 0.171 -0.049 0.278
hx_depress 0.512 0.094 0.000 0.327 0.696
bmi 0.016 0.006 0.009 0.004 0.027
activityActive -0.204 0.140 0.146 -0.479 0.071
activityInsufficiently_Active -0.044 0.129 0.735 -0.298 0.210
activityInactive 0.260 0.106 0.014 0.052 0.469

And we can compare these results to the complete case analysis we completed earlier.

tidy(m_1cc, conf.int = TRUE) |>
select(term, estimate, std.error, p.value, conf.low, conf.high) |>
kable(digits = 3)

term estimate std.error p.value conf.low conf.high
(Intercept) 0.582 0.371 0.117 -0.146 1.310
age_imp -0.007 0.004 0.065 -0.015 0.000
comor 0.302 0.033 0.000 0.237 0.367
smoke100 0.099 0.090 0.273 -0.078 0.276
hx_depress 0.472 0.104 0.000 0.267 0.677
bmi 0.016 0.006 0.009 0.004 0.029
activityActive -0.230 0.155 0.138 -0.534 0.074
activityInsufficiently_Active -0.117 0.139 0.402 -0.391 0.157
activityInactive 0.256 0.115 0.027 0.030 0.482

Note that there are some sizeable differences here, although nothing enormous.

484

If we want the pooled 𝑅2 or pooled adjusted 𝑅2 after imputation, R will provide it (and a
95% confidence interval around the estimate) with …

pool.r.squared(m10_mods)

est lo 95 hi 95 fmi
R^2 0.1912561 0.1482819 0.2369623 0.08061427

pool.r.squared(m10_mods, adjusted = TRUE)

est lo 95 hi 95 fmi
adj R^2 0.1850807 0.1425132 0.2305277 0.08312639

We can see the fraction of missing information about each coefficient due to non-response
(fmi) and other details with the following code…

m10_pool

Class: mipo m = 10
term m estimate ubar b

1 (Intercept) 10 0.44377168 1.078194e-01 8.002900e-03
2 age_imp 10 -0.00522810 1.123668e-05 4.824290e-07
3 comor 10 0.30871888 8.801039e-04 5.466082e-05
4 smoke100 10 0.11415718 6.474388e-03 4.130673e-04
5 hx_depress 10 0.51155722 8.669413e-03 1.582684e-04
6 bmi 10 0.01576150 3.182381e-05 3.425191e-06
7 activityActive 10 -0.20412627 1.914250e-02 4.851040e-04
8 activityInsufficiently_Active 10 -0.04383739 1.565925e-02 9.855183e-04
9 activityInactive 10 0.26046070 1.069627e-02 5.023887e-04

t dfcom df riv lambda fmi
1 1.166226e-01 1048 599.8172 0.08164758 0.07548446 0.07855177
2 1.176735e-05 1048 814.9042 0.04722675 0.04509697 0.04743197
3 9.402308e-04 1048 677.6361 0.06831796 0.06394909 0.06669961
4 6.928762e-03 1048 666.2487 0.07018023 0.06557795 0.06837041
5 8.843508e-03 1048 982.0512 0.02008154 0.01968621 0.02167660
6 3.559152e-05 1048 432.0874 0.11839279 0.10585976 0.10996992
7 1.967611e-02 1048 939.5064 0.02787591 0.02711992 0.02918437
8 1.674332e-02 1048 672.0473 0.06922874 0.06474643 0.06751736
9 1.124890e-02 1048 785.1905 0.05166545 0.04912727 0.05154007

485

17.11 Fit the Multiple Imputation Model with aregImpute

Here, we’ll use aregImpute to deal with missing values through multiple imputation, and use
the ols function in the rms package to fit the model.

The first step is to fit the multiple imputation model. We’ll use n.impute = 10 imputations,
with B = 10 bootstrap samples for the preditive mean matching, and fit both linear models and
models with restricted cubic splines with 3 knots (nk = c(0, 3)) allowing the target variable
to have a non-linear transformation when nk is 3, via tlinear = FALSE.

set.seed(43201602)
dd <- datadist(smart_16)
options(datadist = "dd")

fit16_imp <-
aregImpute(~ phys_tr + age_imp + comor + smoke100 +

hx_depress + bmi + activity,
nk = c(0, 3), tlinear = FALSE,
data = smart_16, B = 10, n.impute = 10)

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Iteration 7
Iteration 8
Iteration 9
Iteration 10
Iteration 11
Iteration 12
Iteration 13

Here are the results of that imputation model.

fit16_imp

Multiple Imputation using Bootstrap and PMM

486

aregImpute(formula = ~phys_tr + age_imp + comor + smoke100 +
hx_depress + bmi + activity, data = smart_16, n.impute = 10,
nk = c(0, 3), tlinear = FALSE, B = 10)

n: 1057 p: 7 Imputations: 10 nk: 0

Number of NAs:
phys_tr age_imp comor smoke100 hx_depress bmi activity

0 12 47 24 3 84 85

type d.f.
phys_tr s 1
age_imp s 1
comor s 1
smoke100 l 1
hx_depress l 1
bmi s 1
activity c 3

R-squares for Predicting Non-Missing Values for Each Variable
Using Last Imputations of Predictors

age_imp comor smoke100 hx_depress bmi activity
0.224 0.206 0.059 0.167 0.169 0.057

Resampling results for determining the complexity of imputation models

Variable being imputed: age_imp
nk=0 nk=3

Bootstrap bias-corrected R^2 0.186 0.215
10-fold cross-validated R^2 0.211 0.215
Bootstrap bias-corrected mean |error| 9.108 10.894
10-fold cross-validated mean |error| 65.169 10.919
Bootstrap bias-corrected median |error| 7.290 8.784
10-fold cross-validated median |error| 66.006 8.613

Variable being imputed: comor
nk=0 nk=3

Bootstrap bias-corrected R^2 0.183 0.182
10-fold cross-validated R^2 0.184 0.193
Bootstrap bias-corrected mean |error| 0.987 1.184
10-fold cross-validated mean |error| 1.759 1.171
Bootstrap bias-corrected median |error| 0.828 0.910
10-fold cross-validated median |error| 1.574 0.892

487

Variable being imputed: smoke100
nk=0 nk=3

Bootstrap bias-corrected R^2 0.0224 0.0187
10-fold cross-validated R^2 0.0358 0.0217
Bootstrap bias-corrected mean |error| 0.4853 0.4866
10-fold cross-validated mean |error| 0.9462 0.9561
Bootstrap bias-corrected median |error| 0.4788 0.4772
10-fold cross-validated median |error| 0.8479 0.8706

Variable being imputed: hx_depress
nk=0 nk=3

Bootstrap bias-corrected R^2 0.157 0.138
10-fold cross-validated R^2 0.147 0.148
Bootstrap bias-corrected mean |error| 0.355 0.360
10-fold cross-validated mean |error| 0.801 0.783
Bootstrap bias-corrected median |error| 0.333 0.337
10-fold cross-validated median |error| 0.711 0.673

Variable being imputed: bmi
nk=0 nk=3

Bootstrap bias-corrected R^2 0.125 0.122
10-fold cross-validated R^2 0.134 0.133
Bootstrap bias-corrected mean |error| 5.221 6.822
10-fold cross-validated mean |error| 32.458 6.884
Bootstrap bias-corrected median |error| 4.178 5.782
10-fold cross-validated median |error| 31.330 5.932

Variable being imputed: activity
nk=0 nk=3

Bootstrap bias-corrected R^2 0.0312 0.0275
10-fold cross-validated R^2 0.0450 0.0402
Bootstrap bias-corrected mean |error| 1.8774 1.8884
10-fold cross-validated mean |error| 1.1121 1.1043
Bootstrap bias-corrected median |error| 2.0000 2.0000
10-fold cross-validated median |error| 1.0000 1.0000

par(mfrow = c(3,2))
plot(fit16_imp)

488

20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Imputed age_imp

P
ro

po
rt

io
n

<
=

 x

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Imputed comor

P
ro

po
rt

io
n

<
=

 x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Imputed smoke100

P
ro

po
rt

io
n

<
=

 x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Imputed hx_depress

P
ro

po
rt

io
n

<
=

 x

20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Imputed bmi

P
ro

po
rt

io
n

<
=

 x

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Imputed activity

P
ro

po
rt

io
n

<
=

 x

489

par(mfrow = c(1,1))

The plot helps us see where the imputations are happening.

17.12 Fit Linear Regression using ols and fit.mult.impute

m16_imp <-
fit.mult.impute(phys_tr ~ age_imp + comor + smoke100 +

hx_depress + bmi + activity,
fitter = ols, xtrans = fit16_imp,
data = smart_16, fitargs=list(x=TRUE,y=TRUE))

Wald Statistic Information

Variance Inflation Factors Due to Imputation:

Intercept age_imp
1.03 1.01

comor smoke100
1.03 1.06

hx_depress bmi
1.02 1.06

activity=Active activity=Insufficiently_Active
1.19 1.14

activity=Inactive
1.23

Fraction of Missing Information:

Intercept age_imp
0.03 0.01

comor smoke100
0.03 0.06

hx_depress bmi
0.02 0.06

activity=Active activity=Insufficiently_Active
0.16 0.13

activity=Inactive
0.19

490

d.f. for t-distribution for Tests of Single Coefficients:

Intercept age_imp
8176.67 45410.80
comor smoke100

13030.27 2670.64
hx_depress bmi

28199.30 2935.89
activity=Active activity=Insufficiently_Active

354.62 571.56
activity=Inactive

258.42

The following fit components were averaged over the 10 model fits:

fitted.values stats linear.predictors

17.12.1 Summaries and Coefficients

Here are the results:

m16_imp

Linear Regression Model

fit.mult.impute(formula = phys_tr ~ age_imp + comor + smoke100 +
hx_depress + bmi + activity, fitter = ols, xtrans = fit16_imp,
data = smart_16, fitargs = list(x = TRUE, y = TRUE))

Model Likelihood Discrimination
Ratio Test Indexes

Obs 1057 LR chi2 219.94 R2 0.188
sigma1.2881 d.f. 8 R2 adj 0.182
d.f. 1048 Pr(> chi2) 0.0000 g 0.687

Residuals

Min 1Q Median 3Q Max
-3.0621 -1.0327 -0.2878 1.1104 2.8018

491

Coef S.E. t Pr(>|t|)
Intercept 0.4052 0.3352 1.21 0.2271
age_imp -0.0049 0.0034 -1.46 0.1437
comor 0.3078 0.0302 10.20 <0.0001
smoke100 0.1259 0.0830 1.52 0.1296
hx_depress 0.5120 0.0940 5.45 <0.0001
bmi 0.0164 0.0058 2.83 0.0048
activity=Active -0.1773 0.1513 -1.17 0.2416
activity=Insufficiently_Active -0.0396 0.1342 -0.30 0.7680
activity=Inactive 0.2401 0.1144 2.10 0.0360

17.12.2 Effect Sizes

We can plot and summarize the effect sizes using the usual ols tools:

summary(m16_imp)

Effects Response : phys_tr

Factor Low High Diff. Effect S.E.
age_imp 57.00 73.00 16.00 -0.079163 0.054107
comor 1.00 2.00 1.00 0.307790 0.030171
smoke100 0.00 1.00 1.00 0.125890 0.083000
hx_depress 0.00 1.00 1.00 0.511980 0.094007
bmi 27.29 36.65 9.36 0.153530 0.054322
activity - Highly_Active:Inactive 4.00 1.00 NA -0.240070 0.114350
activity - Active:Inactive 4.00 2.00 NA -0.417320 0.137640
activity - Insufficiently_Active:Inactive 4.00 3.00 NA -0.279650 0.115000
Lower 0.95 Upper 0.95
-0.185330 0.027008
0.248590 0.366990
-0.036973 0.288760
0.327520 0.696450
0.046932 0.260120
-0.464450 -0.015686
-0.687400 -0.147250
-0.505310 -0.054002

plot(summary(m16_imp))

492

phys_tr

−0.6 −0.2 0.2 0.6

age_imp − 73 : 57
comor − 2 : 1

smoke100 − 1 : 0
hx_depress − 1 : 0

bmi − 36.65 : 27.29
activity − Highly_Active:Inactive

activity − Active:Inactive
activity − Insufficiently_Active:Inactive

17.12.3 Making Predictions with this Model

Once again, let’s make predictions for our two subjects, and use this model (and the ones that
follow) to predict their physhealth values.

• Sheena is age 50, has 2 comorbidities, has smoked 100 cigarettes in her life, has no history
of depression, a BMI of 25, and is Highly Active.

• Jacob is age 65, has 4 comorbidities, has never smoked, has a history of depression, a
BMI of 32 and is Inactive.

new2 <- tibble(
name = c("Sheena", "Jacob"),
age_imp = c(50, 65),
comor = c(2, 4),
smoke100 = c(1, 0),
hx_depress = c(0, 1),
bmi = c(25, 32),
activity = c("Highly_Active", "Inactive")

)

preds_m_16imp <- predict(m16_imp,
newdata = data.frame(new2))

493

preds_m_16imp

1 2
1.309306 2.591649

preds_m_16imp <- preds_m_16imp |>
tbl_df() |>
mutate(names = c("Sheena", "Jacob"),

pred_physhealth = exp(value) - 1) |>
select(names, pred_physhealth)

Warning: `tbl_df()` was deprecated in dplyr 1.0.0.
i Please use `tibble::as_tibble()` instead.

preds_m_16imp |> kable(digits = 3)

names pred_physhealth
Sheena 2.704
Jacob 12.352

17.12.4 Nomogram

We can also develop a nomogram, if we like. As a special touch, we’ll add a prediction at the
bottom which back-transforms out of the predicted phys_tr back to the physhealth days.

plot(nomogram(m16_imp,
fun = list(function(x) exp(x) - 1),
funlabel = "Predicted physhealth days",
fun.at = seq(0, 30, 3)))

494

Points
0 10 20 30 40 50 60 70 80 90 100

age_imp
100 50 10

comor
0 2 4 6

1 3 5 7

smoke100
0

1

hx_depress
0

1

bmi
15 30 45 60 75

activity
Active

Insufficiently_Active

Total Points
0 20 40 60 80 100 140 180

Linear Predictor
0 0.5 1 1.5 2 2.5 3 3.5 4

Predicted physhealth days
0 3 6 9 12151821242730

We can see the big role of comor and hx_depress in this model.

495

17.12.5 Validating Summary Statistics

We can cross-validate summary measures, like 𝑅2…

validate(m16_imp)

index.orig training test optimism index.corrected n
R-square 0.1867 0.1984 0.1793 0.0192 0.1676 40
MSE 1.6472 1.6168 1.6623 -0.0455 1.6927 40
g 0.6876 0.7031 0.6749 0.0282 0.6594 40
Intercept 0.0000 0.0000 0.0677 -0.0677 0.0677 40
Slope 1.0000 1.0000 0.9636 0.0364 0.9636 40

496

18 Building Table 1

18.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(tableone)
library(knitr)
library(tidyverse)

theme_set(theme_bw())

Many scientific articles involve direct comparison of results from various exposures, perhaps
treatments. In 431, we studied numerous methods, including various sorts of hypothesis tests,
confidence intervals, and descriptive summaries, which can help us to understand and compare
outcomes in such a setting. One common approach is to present what’s often called Table 1.
Table 1 provides a summary of the characteristics of a sample, or of groups of samples, which
is most commonly used to help understand the nature of the data being compared.

18.2 Data Load

fakestroke <- read_csv("data/fakestroke.csv", show_col_types = FALSE)
bloodbrain <- read_csv("data/bloodbrain.csv", show_col_types = FALSE)

18.3 Two examples from the New England Journal of Medicine

18.3.1 A simple Table 1

Table 1 is especially common in the context of clinical research. Consider the excerpt below,
from a January 2015 article in the New England Journal of Medicine [@Tolaney2015].

497

This (partial) table reports baseline characteristics on age group, sex and race, describing 406
patients with HER2-positive1 invasive breast cancer that began the protocol therapy. Age,
sex and race (along with severity of illness) are the most commonly identified characteristics
in a Table 1.

In addition to the measures shown in this excerpt, the full Table also includes detailed infor-
mation on the primary tumor for each patient, including its size, nodal status and histologic
grade. Footnotes tell us that the percentages shown are subject to rounding, and may not
total 100, and that the race information was self-reported.

18.3.2 A group comparison

A more typical Table 1 involves a group comparison, for example in this excerpt from
@Roy2008. This Table 1 describes a multi-center randomized clinical trial comparing two
different approaches to caring for patients with heart failure and atrial fibrillation2.

1HER2 = human epidermal growth factor receptor type 2. Over-expression of this occurs in 15-20% of invasive
breast cancers, and has been associated with poor outcomes.

2The complete Table 1 appears on pages 2668-2669 of @Roy2008, but I have only reproduced the first page
and the footnote in this excerpt.

498

The article provides percentages, means and standard deviations across groups, but note that
it does not provide p values for the comparison of baseline characteristics. This is a common
feature of NEJM reports on randomized clinical trials, where we anticipate that the two groups
will be well matched at baseline. Note that the patients in this study were randomly assigned
to either the rhythm-control group or to the rate-control group, using blocked randomization
stratified by study center.

18.4 The MR CLEAN trial

@Berkhemer2015 reported on the MR CLEAN trial, involving 500 patients with acute is-
chemic stroke caused by a proximal intracranial arterial occlusion. The trial was conducted at
16 medical centers in the Netherlands, where 233 were randomly assigned to the intervention
(intraarterial treatment plus usual care) and 267 to control (usual care alone.) The primary
outcome was the modified Rankin scale score at 90 days; this categorical scale measures func-
tional outcome, with scores ranging from 0 (no symptoms) to 6 (death). The fundamental
conclusion of @Berkhemer2015 was that in patients with acute ischemic stroke caused by a
proximal intracranial occlusion of the anterior circulation, intraarterial treatment administered
within 6 hours after stroke onset was effective and safe.

Here’s the Table 1 from @Berkhemer2015.

499

The Table was accompanied by the following notes.

500

18.5 Simulated fakestroke data

Consider the simulated data, available on our Data and Code website in the fakestroke.csv
file, which I built to let us mirror the Table 1 for MR CLEAN [@Berkhemer2015]. The
fakestroke.csv file contains the following 18 variables for 500 patients.

Variable Description
studyid Study ID # (z001 through z500)

trt Treatment group (Intervention or Control)
age Age in years
sex Male or Female

nihss NIH Stroke Scale Score (can range from 0-42; higher scores indicate
more severe neurological deficits)

location Stroke Location - Left or Right Hemisphere
hx.isch History of Ischemic Stroke (Yes/No)

afib Atrial Fibrillation (1 = Yes, 0 = No)
dm Diabetes Mellitus (1 = Yes, 0 = No)

mrankin Pre-stroke modified Rankin scale score (0, 1, 2 or > 2) indicating
functional disability - complete range is 0 (no symptoms) to 6 (death)

sbp Systolic blood pressure, in mm Hg
iv.altep Treatment with IV alteplase (Yes/No)
time.iv Time from stroke onset to start of IV alteplase (minutes) if

iv.altep=Yes
aspects Alberta Stroke Program Early Computed Tomography score, which

measures extent of stroke from 0 - 10; higher scores indicate fewer early
ischemic changes

501

https://github.com/THOMASELOVE/432-data

Variable Description
ia.occlus Intracranial arterial occlusion, based on vessel imaging - five categories3

extra.ica Extracranial ICA occlusion (1 = Yes, 0 = No)
time.rand Time from stroke onset to study randomization, in minutes
time.punc Time from stroke onset to groin puncture, in minutes (only if

Intervention)

Here’s a quick look at the simulated data in fakestroke.

fakestroke

A tibble: 500 x 18
studyid trt age sex nihss location hx.isch afib dm mrankin sbp
<chr> <chr> <dbl> <chr> <dbl> <chr> <chr> <dbl> <dbl> <chr> <dbl>

1 z001 Control 53 Male 21 Right No 0 0 2 127
2 z002 Interve~ 51 Male 23 Left No 1 0 0 137
3 z003 Control 68 Fema~ 11 Right No 0 0 0 138
4 z004 Control 28 Male 22 Left No 0 0 0 122
5 z005 Control 91 Male 24 Right No 0 0 0 162
6 z006 Control 34 Fema~ 18 Left No 0 0 2 166
7 z007 Interve~ 75 Male 25 Right No 0 0 0 140
8 z008 Control 89 Fema~ 18 Right No 0 0 0 157
9 z009 Control 75 Male 25 Left No 1 0 2 129

10 z010 Interve~ 26 Fema~ 27 Right No 0 0 0 143
i 490 more rows
i 7 more variables: iv.altep <chr>, time.iv <dbl>, aspects <dbl>,
ia.occlus <chr>, extra.ica <dbl>, time.rand <dbl>, time.punc <dbl>

18.6 Building Table 1 for fakestroke: Attempt 1

Our goal, then, is to take the data in fakestroke.csv and use it to generate a Table 1 for
the study that compares the 233 patients in the Intervention group to the 267 patients in
the Control group, on all of the other variables (except study ID #) available. I’ll use the
tableone package of functions available in R to help me complete this task. We’ll make a first
attempt, using the CreateTableOne function in the tableone package. To use the function,
we’ll need to specify:

3The five categories are Intracranial ICA, ICA with involvement of the M1 middle cerebral artery segment,
M1 middle cerebral artery segment, M2 middle cerebral artery segment, A1 or A2 anterior cerebral artery
segment

502

• the vars or variables we want to place in the rows of our Table 1 (which will include just
about everything in the fakestroke data except the studyid code and the trt variable
for which we have other plans, and the time.punc which applies only to subjects in the
Intervention group.)

– A useful trick here is to use the dput function, specifically something like
dput(names(fakestroke)) can be used to generate a list of all of the variables
included in the fakestroke tibble, and then this can be copied and pasted into
the vars specification, saving some typing.

• the strata which indicates the levels want to use in the columns of our Table 1 (for us,
that’s trt)

fs.vars <- c("age", "sex", "nihss", "location",
"hx.isch", "afib", "dm", "mrankin", "sbp",
"iv.altep", "time.iv", "aspects",
"ia.occlus", "extra.ica", "time.rand")

fs.trt <- c("trt")

att1 <- CreateTableOne(data = fakestroke,
vars = fs.vars,
strata = fs.trt)

print(att1)

Stratified by trt
Control Intervention p test

n 267 233
age (mean (SD)) 65.38 (16.10) 63.93 (18.09) 0.343
sex = Male (%) 157 (58.8) 135 (57.9) 0.917
nihss (mean (SD)) 18.08 (4.32) 17.97 (5.04) 0.787
location = Right (%) 114 (42.7) 117 (50.2) 0.111
hx.isch = Yes (%) 25 (9.4) 29 (12.4) 0.335
afib (mean (SD)) 0.26 (0.44) 0.28 (0.45) 0.534
dm (mean (SD)) 0.13 (0.33) 0.12 (0.33) 0.923
mrankin (%) 0.922

> 2 11 (4.1) 10 (4.3)
0 214 (80.1) 190 (81.5)
1 29 (10.9) 21 (9.0)
2 13 (4.9) 12 (5.2)

sbp (mean (SD)) 145.00 (24.40) 146.03 (26.00) 0.647
iv.altep = Yes (%) 242 (90.6) 203 (87.1) 0.267
time.iv (mean (SD)) 87.96 (26.01) 98.22 (45.48) 0.003

503

aspects (mean (SD)) 8.65 (1.47) 8.35 (1.64) 0.033
ia.occlus (%) 0.795

A1 or A2 2 (0.8) 1 (0.4)
ICA with M1 75 (28.2) 59 (25.3)
Intracranial ICA 3 (1.1) 1 (0.4)
M1 165 (62.0) 154 (66.1)
M2 21 (7.9) 18 (7.7)

extra.ica (mean (SD)) 0.26 (0.44) 0.32 (0.47) 0.150
time.rand (mean (SD)) 213.88 (70.29) 202.51 (57.33) 0.051

18.6.1 Some of this is very useful, and other parts need to be fixed.

1. The 1/0 variables (afib, dm, extra.ica) might be better if they were treated as the
factors they are, and reported as the Yes/No variables are reported, with counts and
percentages rather than with means and standard deviations.

2. In some cases, we may prefer to re-order the levels of the categorical (factor) variables,
particularly the mrankin variable, but also the ia.occlus variable. It would also be
more typical to put the Intervention group to the left and the Control group to the right,
so we may need to adjust our trt variable’s levels accordingly.

3. For each of the quantitative variables (age, nihss, sbp, time.iv, aspects, extra.ica,
time.rand and time.punc) we should make a decision whether a summary with mean
and standard deviation is appropriate, or whether we should instead summarize with,
say, the median and quartiles. A mean and standard deviation really only yields an
appropriate summary when the data are least approximately Normally distributed. This
will make the p values a bit more reasonable, too. The test column in the first attempt
will soon have something useful to tell us.

4. If we’d left in the time.punc variable, we’d get some warnings, having to do with the
fact that time.punc is only relevant to patients in the Intervention group.

18.6.2 fakestroke Cleaning Up Categorical Variables

Let’s specify each of the categorical variables as categorical explicitly. This helps the
CreateTableOne function treat them appropriately, and display them with counts and
percentages. This includes all of the 1/0, Yes/No and multi-categorical variables.

fs.factorvars <- c("sex", "location", "hx.isch", "afib", "dm",
"mrankin", "iv.altep", "ia.occlus", "extra.ica")

Then we simply add a factorVars = fs.factorvars call to the CreateTableOne function.

We also want to re-order some of those categorical variables, so that the levels are more useful
to us. Specifically, we want to:

504

• place Intervention before Control in the trt variable,
• reorder the mrankin scale as 0, 1, 2, > 2, and
• rearrange the ia.occlus variable to the order4 presented in @Berkhemer2015.

To accomplish this, we’ll use the fct_relevel function from the forcats package (loaded
with the rest of the core tidyverse packages) to reorder our levels manually.

fakestroke <- fakestroke %>%
mutate(trt = fct_relevel(trt, "Intervention", "Control"),

mrankin = fct_relevel(mrankin, "0", "1", "2", "> 2"),
ia.occlus = fct_relevel(ia.occlus, "Intracranial ICA",

"ICA with M1", "M1", "M2",
"A1 or A2")

)

18.7 fakestroke Table 1: Attempt 2

att2 <- CreateTableOne(data = fakestroke,
vars = fs.vars,
factorVars = fs.factorvars,
strata = fs.trt)

print(att2)

Stratified by trt
Intervention Control p test

n 233 267
age (mean (SD)) 63.93 (18.09) 65.38 (16.10) 0.343
sex = Male (%) 135 (57.9) 157 (58.8) 0.917
nihss (mean (SD)) 17.97 (5.04) 18.08 (4.32) 0.787
location = Right (%) 117 (50.2) 114 (42.7) 0.111
hx.isch = Yes (%) 29 (12.4) 25 (9.4) 0.335
afib = 1 (%) 66 (28.3) 69 (25.8) 0.601
dm = 1 (%) 29 (12.4) 34 (12.7) 1.000
mrankin (%) 0.922

0 190 (81.5) 214 (80.1)
1 21 (9.0) 29 (10.9)
2 12 (5.2) 13 (4.9)
> 2 10 (4.3) 11 (4.1)

4We might also have considered reordering the ia.occlus factor by its frequency, using the fct_infreq
function

505

sbp (mean (SD)) 146.03 (26.00) 145.00 (24.40) 0.647
iv.altep = Yes (%) 203 (87.1) 242 (90.6) 0.267
time.iv (mean (SD)) 98.22 (45.48) 87.96 (26.01) 0.003
aspects (mean (SD)) 8.35 (1.64) 8.65 (1.47) 0.033
ia.occlus (%) 0.795

Intracranial ICA 1 (0.4) 3 (1.1)
ICA with M1 59 (25.3) 75 (28.2)
M1 154 (66.1) 165 (62.0)
M2 18 (7.7) 21 (7.9)
A1 or A2 1 (0.4) 2 (0.8)

extra.ica = 1 (%) 75 (32.2) 70 (26.3) 0.179
time.rand (mean (SD)) 202.51 (57.33) 213.88 (70.29) 0.051

The categorical data presentation looks much improved.

18.7.1 What summaries should we show?

Now, we’ll move on to the issue of making a decision about what type of summary to show
for the quantitative variables. Since the fakestroke data are just simulated and only match
the summary statistics of the original results, not the details, we’ll adopt the decisions made
by @Berkhemer2015, which were to use medians and interquartile ranges to summarize the
distributions of all of the continuous variables except systolic blood pressure.

• Specifying certain quantitative variables as non-normal causes R to show them with
medians and the 25th and 75th percentiles, rather than means and standard deviations,
and also causes those variables to be tested using non-parametric tests, like the Wilcoxon
signed rank test, rather than the t test. The test column indicates this with the word
nonnorm.

– In real data situations, what should we do? The answer is to look at the data. I
would not make the decision as to which approach to take without first plotting
(perhaps in a histogram or a Normal Q-Q plot) the observed distributions in each
of the two samples, so that I could make a sound decision about whether Normality
was a reasonable assumption. If the means and medians are meaningfully different
from each other, this is especially important.

– To be honest, though, if the variable in question is a relatively unimportant covariate
and the p values for the two approaches are nearly the same, I’d say that further
investigation is rarely important,

• Specifying exact tests for certain categorical variables (we’ll try this for the location
and mrankin variables) can be done, and these changes will be noted in the test column,
as well.

506

– In real data situations, I would rarely be concerned about this issue, and often
choose Pearson (approximate) options across the board. This is reasonable so long
as the number of subjects falling in each category is reasonably large, say above 10.
If not, then an exact test may be a tiny improvement.

– Paraphrasing @Rosenbaum2017, having an exact rather than an approximate test
result is about as valuable as having a nice crease in your trousers.

To finish our Table 1, then, we need to specify which variables should be treated as non-
Normal in the print statement - notice that we don’t need to redo the CreateTableOne for
this change.

print(att2,
nonnormal = c("age", "nihss", "time.iv", "aspects", "time.rand"),
exact = c("location", "mrankin"))

Stratified by trt
Intervention Control

n 233 267
age (median [IQR]) 65.80 [54.50, 76.00] 65.70 [55.75, 76.20]
sex = Male (%) 135 (57.9) 157 (58.8)
nihss (median [IQR]) 17.00 [14.00, 21.00] 18.00 [14.00, 22.00]
location = Right (%) 117 (50.2) 114 (42.7)
hx.isch = Yes (%) 29 (12.4) 25 (9.4)
afib = 1 (%) 66 (28.3) 69 (25.8)
dm = 1 (%) 29 (12.4) 34 (12.7)
mrankin (%)

0 190 (81.5) 214 (80.1)
1 21 (9.0) 29 (10.9)
2 12 (5.2) 13 (4.9)
> 2 10 (4.3) 11 (4.1)

sbp (mean (SD)) 146.03 (26.00) 145.00 (24.40)
iv.altep = Yes (%) 203 (87.1) 242 (90.6)
time.iv (median [IQR]) 85.00 [67.00, 110.00] 87.00 [65.00, 116.00]
aspects (median [IQR]) 9.00 [7.00, 10.00] 9.00 [8.00, 10.00]
ia.occlus (%)

Intracranial ICA 1 (0.4) 3 (1.1)
ICA with M1 59 (25.3) 75 (28.2)
M1 154 (66.1) 165 (62.0)
M2 18 (7.7) 21 (7.9)
A1 or A2 1 (0.4) 2 (0.8)

extra.ica = 1 (%) 75 (32.2) 70 (26.3)
time.rand (median [IQR]) 204.00 [152.00, 249.50] 196.00 [149.00, 266.00]

507

Stratified by trt
p test

n
age (median [IQR]) 0.579 nonnorm
sex = Male (%) 0.917
nihss (median [IQR]) 0.453 nonnorm
location = Right (%) 0.106 exact
hx.isch = Yes (%) 0.335
afib = 1 (%) 0.601
dm = 1 (%) 1.000
mrankin (%) 0.917 exact

0
1
2
> 2

sbp (mean (SD)) 0.647
iv.altep = Yes (%) 0.267
time.iv (median [IQR]) 0.596 nonnorm
aspects (median [IQR]) 0.075 nonnorm
ia.occlus (%) 0.795

Intracranial ICA
ICA with M1
M1
M2
A1 or A2

extra.ica = 1 (%) 0.179
time.rand (median [IQR]) 0.251 nonnorm

18.8 Obtaining a more detailed Summary

If this was a real data set, we’d want to get a more detailed description of the data to make
decisions about things like potentially collapsing categories of a variable, or whether or not
a normal distribution was useful for a particular continuous variable, etc. You can do this
with the summary command applied to a created Table 1, which shows, among other things,
the effect of changing from normal to non-normal p values for continuous variables, and from
approximate to “exact” p values for categorical factors.

Again, as noted above, in a real data situation, we’d want to plot the quantitative variables
(within each group) to make a smart decision about whether a t test or Wilcoxon approach is
more appropriate.

508

Note in the summary below that we have some missing values here. Often, we’ll present this
information within the Table 1, as well.

summary(att2)

Summary of continuous variables

trt: Intervention
n miss p.miss mean sd median p25 p75 min max skew kurt

age 233 0 0.0 64 18 66 54 76 23 96 -0.34 -0.52
nihss 233 0 0.0 18 5 17 14 21 10 28 0.48 -0.74
sbp 233 0 0.0 146 26 146 129 164 78 214 -0.07 -0.22
time.iv 233 30 12.9 98 45 85 67 110 42 218 1.03 0.08
aspects 233 0 0.0 8 2 9 7 10 5 10 -0.56 -0.98
time.rand 233 2 0.9 203 57 204 152 250 100 300 0.01 -1.16
--
trt: Control

n miss p.miss mean sd median p25 p75 min max skew kurt
age 267 0 0.0 65 16 66 56 76 24 94 -0.296 -0.28
nihss 267 0 0.0 18 4 18 14 22 11 25 0.017 -1.24
sbp 267 1 0.4 145 24 145 128 161 82 231 0.156 0.08
time.iv 267 25 9.4 88 26 87 65 116 44 130 0.001 -1.32
aspects 267 4 1.5 9 1 9 8 10 5 10 -1.071 0.36
time.rand 267 0 0.0 214 70 196 149 266 120 360 0.508 -0.93

p-values
pNormal pNonNormal

age 0.342813660 0.57856976
nihss 0.787487252 0.45311695
sbp 0.647157646 0.51346132
time.iv 0.003073372 0.59641104
aspects 0.032662901 0.07464683
time.rand 0.050803672 0.25134327

Standardize mean differences
1 vs 2

age 0.08478764
nihss 0.02405390
sbp 0.04100833
time.iv 0.27691223
aspects 0.19210662

509

time.rand 0.17720957

===

Summary of categorical variables

trt: Intervention
var n miss p.miss level freq percent cum.percent
sex 233 0 0.0 Female 98 42.1 42.1

Male 135 57.9 100.0

location 233 0 0.0 Left 116 49.8 49.8
Right 117 50.2 100.0

hx.isch 233 0 0.0 No 204 87.6 87.6
Yes 29 12.4 100.0

afib 233 0 0.0 0 167 71.7 71.7
1 66 28.3 100.0

dm 233 0 0.0 0 204 87.6 87.6
1 29 12.4 100.0

mrankin 233 0 0.0 0 190 81.5 81.5
1 21 9.0 90.6
2 12 5.2 95.7

> 2 10 4.3 100.0

iv.altep 233 0 0.0 No 30 12.9 12.9
Yes 203 87.1 100.0

ia.occlus 233 0 0.0 Intracranial ICA 1 0.4 0.4
ICA with M1 59 25.3 25.8

M1 154 66.1 91.8
M2 18 7.7 99.6

A1 or A2 1 0.4 100.0

extra.ica 233 0 0.0 0 158 67.8 67.8
1 75 32.2 100.0

--
trt: Control

var n miss p.miss level freq percent cum.percent

510

sex 267 0 0.0 Female 110 41.2 41.2
Male 157 58.8 100.0

location 267 0 0.0 Left 153 57.3 57.3
Right 114 42.7 100.0

hx.isch 267 0 0.0 No 242 90.6 90.6
Yes 25 9.4 100.0

afib 267 0 0.0 0 198 74.2 74.2
1 69 25.8 100.0

dm 267 0 0.0 0 233 87.3 87.3
1 34 12.7 100.0

mrankin 267 0 0.0 0 214 80.1 80.1
1 29 10.9 91.0
2 13 4.9 95.9

> 2 11 4.1 100.0

iv.altep 267 0 0.0 No 25 9.4 9.4
Yes 242 90.6 100.0

ia.occlus 267 1 0.4 Intracranial ICA 3 1.1 1.1
ICA with M1 75 28.2 29.3

M1 165 62.0 91.4
M2 21 7.9 99.2

A1 or A2 2 0.8 100.0

extra.ica 267 1 0.4 0 196 73.7 73.7
1 70 26.3 100.0

p-values
pApprox pExact

sex 0.9171387 0.8561188
location 0.1113553 0.1056020
hx.isch 0.3352617 0.3124683
afib 0.6009691 0.5460206
dm 1.0000000 1.0000000
mrankin 0.9224798 0.9173657
iv.altep 0.2674968 0.2518374
ia.occlus 0.7945580 0.8189090

511

extra.ica 0.1793385 0.1667574

Standardize mean differences
1 vs 2

sex 0.017479025
location 0.151168444
hx.isch 0.099032275
afib 0.055906317
dm 0.008673478
mrankin 0.062543164
iv.altep 0.111897009
ia.occlus 0.117394890
extra.ica 0.129370206

In this case, I have simulated the data to mirror the results in the published Table 1 for this
study. In no way have I captured the full range of the real data, or any of the relationships in
that data, so it’s more important here to see what’s available in the analysis, rather than to
interpret it closely in the clinical context.

18.9 Exporting the Completed Table 1 from R to Excel or Word

Once you’ve built the table and are generally satisfied with it, you’ll probably want to be able
to drop it into Excel or Word for final cleanup.

18.9.1 Approach A: Save and open in Excel

One option is to save the Table 1 to a .csv file within our data subfolder (note that the data
folder must already exist), which you can then open directly in Excel. This is the approach I
generally use. Note the addition of some quote, noSpaces and printToggle selections here.

fs.table1save <- print(att2,
nonnormal = c("age", "nihss", "time.iv", "aspects", "time.rand"),
exact = c("location", "mrankin"),
quote = FALSE, noSpaces = TRUE, printToggle = FALSE)

write.csv(fs.table1save, file = "data/fs-table1.csv")

When I then open the fs-table1.csv file in Excel, it looks like this:

512

And from here, I can either drop it directly into Word, or present it as is, or start tweaking it
to meet formatting needs.

18.9.2 Approach B: Produce the Table so you can cut and paste it

print(att2,
nonnormal = c("age", "nihss", "time.iv", "aspects", "time.rand"),
exact = c("location", "mrankin"),
quote = TRUE, noSpaces = TRUE)

This will look like a mess by itself, but if you:

513

1. copy and paste that mess into Excel
2. select Text to Columns from the Data menu
3. select Delimited, then Space and select Treat consecutive delimiters as one

you should get something usable again.

Or, in Word,

1. insert the text
2. select the text with your mouse
3. select Insert … Table … Convert Text to Table
4. place a quotation mark in the “Other” area under Separate text at …

After dropping blank columns, the result looks pretty good.

18.10 A Controlled Biological Experiment - The Blood-Brain
Barrier

My source for the data and the following explanatory paragraph is page 307 from @Ram-
seySchafer2002. The original data come from @Barnett1995.

The human brain (and that of rats, coincidentally) is protected from the bacteria
and toxins that course through the bloodstream by something called the blood-
brain barrier. After a method of disrupting the barrier was developed, researchers
tested this new mechanism, as follows. A series of 34 rats were inoculated with
human lung cancer cells to induce brain tumors. After 9-11 days they were infused
with either the barrier disruption (BD) solution or, as a control, a normal saline
(NS) solution. Fifteen minutes later, the rats received a standard dose of a par-
ticular therapeutic antibody (L6-F(ab’)2. The key measure of the effectiveness of
transmission across the brain-blood barrier is the ratio of the antibody concentra-
tion in the brain tumor to the antibody concentration in normal tissue outside the
brain. The rats were then sacrificed, and the amounts of antibody in the brain
tumor and in normal tissue from the liver were measured. The study’s primary ob-
jective is to determine whether the antibody concentration in the tumor increased
when the blood-barrier disruption infusion was given, and if so, by how much?

18.11 The bloodbrain.csv file

Consider the data, available on our Data and Code website in the bloodbrain.csv file, which
includes the following variables:

514

https://github.com/THOMASELOVE/432-data

Variable Description
case identification number for the rat (1 - 34)
brain an outcome: Brain tumor antibody count (per gram)
liver an outcome: Liver antibody count (per gram)

tlratio an outcome: tumor / liver concentration ratio
solution the treatment: BD (barrier disruption) or NS (normal saline)
sactime a design variable: Sacrifice time (hours; either 0.5, 3, 24 or 72)
postin covariate: Days post-inoculation of lung cancer cells (9, 10 or 11)

sex covariate: M or F
wt.init covariate: Initial weight (grams)
wt.loss covariate: Weight loss (grams)
wt.tumor covariate: Tumor weight (10-4 grams)

And here’s what the data look like in R.

bloodbrain

A tibble: 34 x 11
case brain liver tlratio solution sactime postin sex wt.init wt.loss

<dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <chr> <dbl> <dbl>
1 1 41081 1456164 0.0282 BD 0.5 10 F 239 5.9
2 2 44286 1602171 0.0276 BD 0.5 10 F 225 4
3 3 102926 1601936 0.0642 BD 0.5 10 F 224 -4.9
4 4 25927 1776411 0.0146 BD 0.5 10 F 184 9.8
5 5 42643 1351184 0.0316 BD 0.5 10 F 250 6
6 6 31342 1790863 0.0175 NS 0.5 10 F 196 7.7
7 7 22815 1633386 0.0140 NS 0.5 10 F 200 0.5
8 8 16629 1618757 0.0103 NS 0.5 10 F 273 4
9 9 22315 1567602 0.0142 NS 0.5 10 F 216 2.8

10 10 77961 1060057 0.0735 BD 3 10 F 267 2.6
i 24 more rows
i 1 more variable: wt.tumor <dbl>

18.12 A Table 1 for bloodbrain

@Barnett1995 did not provide a Table 1 for these data, so let’s build one to compare the
two solutions (BD vs. NS) on the covariates and outcomes, plus the natural logarithm of the
tumor/liver concentration ratio (tlratio). We’ll opt to treat the sacrifice time (sactime) and
the days post-inoculation of lung cancer cells (postin) as categorical rather than quantitative
variables.

515

bloodbrain <- bloodbrain %>%
mutate(logTL = log(tlratio))

dput(names(bloodbrain))

c("case", "brain", "liver", "tlratio", "solution", "sactime",
"postin", "sex", "wt.init", "wt.loss", "wt.tumor", "logTL")

OK - there’s the list of variables we’ll need. I’ll put the outcomes at the bottom of the table.

bb.vars <- c("sactime", "postin", "sex", "wt.init", "wt.loss",
"wt.tumor", "brain", "liver", "tlratio", "logTL")

bb.factors <- c("sactime", "sex", "postin")

bb.att1 <- CreateTableOne(data = bloodbrain,
vars = bb.vars,
factorVars = bb.factors,
strata = c("solution"))

summary(bb.att1)

Summary of continuous variables

solution: BD
n miss p.miss mean sd median p25 p75 min max skew

wt.init 17 0 0 243 3e+01 2e+02 2e+02 3e+02 2e+02 3e+02 -0.39
wt.loss 17 0 0 3 5e+00 4e+00 1e+00 6e+00 -5e+00 1e+01 -0.10
wt.tumor 17 0 0 157 8e+01 2e+02 1e+02 2e+02 2e+01 4e+02 0.53
brain 17 0 0 56043 3e+04 5e+04 4e+04 8e+04 6e+03 1e+05 0.29
liver 17 0 0 672577 7e+05 6e+05 2e+04 1e+06 2e+03 2e+06 0.35
tlratio 17 0 0 2 3e+00 1e-01 6e-02 3e+00 1e-02 9e+00 1.58
logTL 17 0 0 -1 2e+00 -2e+00 -3e+00 1e+00 -4e+00 2e+00 0.08

kurt
wt.init 0.7
wt.loss 0.2
wt.tumor 1.0
brain -0.6
liver -1.7
tlratio 1.7

516

logTL -1.7
--
solution: NS

n miss p.miss mean sd median p25 p75 min max skew
wt.init 17 0 0 240 3e+01 2e+02 2e+02 3e+02 2e+02 3e+02 0.33
wt.loss 17 0 0 4 4e+00 3e+00 2e+00 7e+00 -4e+00 1e+01 -0.09
wt.tumor 17 0 0 209 1e+02 2e+02 2e+02 3e+02 3e+01 5e+02 0.63
brain 17 0 0 23887 1e+04 2e+04 1e+04 3e+04 1e+03 5e+04 0.30
liver 17 0 0 664975 7e+05 7e+05 2e+04 1e+06 9e+02 2e+06 0.40
tlratio 17 0 0 1 2e+00 5e-02 3e-02 9e-01 1e-02 7e+00 2.27
logTL 17 0 0 -2 2e+00 -3e+00 -3e+00 -7e-02 -5e+00 2e+00 0.27

kurt
wt.init -0.48
wt.loss 0.08
wt.tumor 0.77
brain -0.35
liver -1.56
tlratio 4.84
logTL -1.61

p-values
pNormal pNonNormal

wt.init 0.807308940 0.641940278
wt.loss 0.683756156 0.876749808
wt.tumor 0.151510151 0.190482094
brain 0.001027678 0.002579901
liver 0.974853609 0.904045603
tlratio 0.320501715 0.221425879
logTL 0.351633525 0.221425879

Standardize mean differences
1 vs 2

wt.init 0.08435244
wt.loss 0.14099823
wt.tumor 0.50397184
brain 1.23884159
liver 0.01089667
tlratio 0.34611465
logTL 0.32420504

===

Summary of categorical variables

517

solution: BD
var n miss p.miss level freq percent cum.percent

sactime 17 0 0.0 0.5 5 29.4 29.4
3 4 23.5 52.9
24 4 23.5 76.5
72 4 23.5 100.0

postin 17 0 0.0 9 1 5.9 5.9
10 14 82.4 88.2
11 2 11.8 100.0

sex 17 0 0.0 F 13 76.5 76.5
M 4 23.5 100.0

--
solution: NS

var n miss p.miss level freq percent cum.percent
sactime 17 0 0.0 0.5 4 23.5 23.5

3 5 29.4 52.9
24 4 23.5 76.5
72 4 23.5 100.0

postin 17 0 0.0 9 2 11.8 11.8
10 13 76.5 88.2
11 2 11.8 100.0

sex 17 0 0.0 F 13 76.5 76.5
M 4 23.5 100.0

p-values
pApprox pExact

sactime 0.9739246 1
postin 0.8309504 1
sex 1.0000000 1

Standardize mean differences
1 vs 2

sactime 0.1622214
postin 0.2098877
sex 0.0000000

518

Note that, in this particular case, the decisions we make about normality vs. non-normality
(for quantitative variables) and the decisions we make about approximate vs. exact testing (for
categorical variables) won’t actually change the implications of the p values. Each approach
gives similar results for each variable. Of course, that’s not always true.

18.12.1 Generate final Table 1 for bloodbrain

I’ll choose to treat tlratio and its logarithm as non-Normal, but otherwise, use t tests, but
admittedly, that’s an arbitrary decision, really.

print(bb.att1, nonnormal = c("tlratio", "logTL"))

Stratified by solution
BD NS

n 17 17
sactime (%)

0.5 5 (29.4) 4 (23.5)
3 4 (23.5) 5 (29.4)
24 4 (23.5) 4 (23.5)
72 4 (23.5) 4 (23.5)

postin (%)
9 1 (5.9) 2 (11.8)
10 14 (82.4) 13 (76.5)
11 2 (11.8) 2 (11.8)

sex = M (%) 4 (23.5) 4 (23.5)
wt.init (mean (SD)) 242.82 (27.23) 240.47 (28.54)
wt.loss (mean (SD)) 3.34 (4.68) 3.94 (3.88)
wt.tumor (mean (SD)) 157.29 (84.00) 208.53 (116.68)
brain (mean (SD)) 56043.41 (33675.40) 23887.18 (14610.53)
liver (mean (SD)) 672577.35 (694479.58) 664975.47 (700773.13)
tlratio (median [IQR]) 0.12 [0.06, 2.84] 0.05 [0.03, 0.94]
logTL (median [IQR]) -2.10 [-2.74, 1.04] -2.95 [-3.41, -0.07]

Stratified by solution
p test

n
sactime (%) 0.974

0.5
3
24
72

postin (%) 0.831

519

9
10
11

sex = M (%) 1.000
wt.init (mean (SD)) 0.807
wt.loss (mean (SD)) 0.684
wt.tumor (mean (SD)) 0.152
brain (mean (SD)) 0.001
liver (mean (SD)) 0.975
tlratio (median [IQR]) 0.221 nonnorm
logTL (median [IQR]) 0.221 nonnorm

Or, we can get an Excel-readable version placed in a data subfolder, using

bb.t1 <- print(bb.att1, nonnormal = c("tlratio", "logTL"), quote = FALSE,
noSpaces = TRUE, printToggle = FALSE)

write.csv(bb.t1, file = "data/bb-table1.csv")

which, when dropped into Excel, will look like this:

520

One thing I would definitely clean up here, in practice, is to change the presentation of the
p value for sex from 1 to > 0.99, or just omit it altogether. I’d also drop the computer-ese
where possible, add units for the measures, round a lot, identify the outcomes carefully, and
use notes to indicate deviations from the main approach.

521

18.12.2 A More Finished Version (after Cleanup in Word)

522

19 Logistic Regression: The Foundations

Sources for this material include @Harrell2001, @HarrellRMSnotes, @RamseySchafer2002
(chapters 20-21), @Vittinghoff2012 (chapter 5) and @Faraway2006 (chapter 2).

19.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(tidyverse)

theme_set(theme_bw())

19.2 A First Attempt: A Linear Probability Model

Suppose we want to predict a binary outcome which takes on the value 1 or 0, based on a
single quantitative predictor. Let y be a 1/0 outcome, and x be a quantitative predictor in
the following simulation.

set.seed(432)
sim12 <- tibble(x = rnorm(100, 10, 3),

err = rnorm(100, 0, 2),
y = ifelse(x + err > 10, 1, 0))

sim12 <- select(sim12, x, y)

ggplot(sim12, aes(x = x, y = y)) + geom_point()

523

0.00

0.25

0.50

0.75

1.00

6 9 12 15
x

y

Now, we want to use our variable x here to predict our variable y (which takes on the values
0 and 1).

One approach to doing this would be a linear probability model, as follows:

mod12a <- lm(y ~ x, data = sim12)

summary(mod12a)

Call:
lm(formula = y ~ x, data = sim12)

Residuals:
Min 1Q Median 3Q Max

-0.74104 -0.23411 -0.02894 0.23117 0.83153

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.72761 0.12272 -5.929 4.57e-08 ***
x 0.12620 0.01219 10.349 < 2e-16 ***

524

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3491 on 98 degrees of freedom
Multiple R-squared: 0.5222, Adjusted R-squared: 0.5173
F-statistic: 107.1 on 1 and 98 DF, p-value: < 2.2e-16

Here’s a picture of this model. What’s wrong here?

ggplot(sim12, aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, se = TRUE) +
labs(title = "Linear Probability Model")

0.0

0.5

1.0

1.5

6 9 12 15
x

y

Linear Probability Model

If y can only take the values 0 and 1 (or, more precisely, if we’re trying to predict the value 𝜋
= Pr(y = 1)) then what do we do with the predictions that are outside the range of (0, 1)?

19.3 Logistic Regression

Logistic regression is the most common model used when the outcome is binary. Our response
variable is assumed to take on two values, zero or one, and we then describe the probability of

525

a “one” response, given a linear function of explanatory predictors. We use logistic regression
rather than linear regression for predicting binary outcomes. Linear regression approaches to
the problem of predicting probabilities are problematic for several reasons - not least of which
being that they predict probabilities greater than one and less than zero. There are several
available alternatives, including probit regression and binomial regression, for the problem of
predicting a binary outcome.

Logistic regression is part of a class called generalized linear models which extend the
linear regression model in a variety of ways. There are also several extensions to the logistic
regression model, including multinomial logistic regression (which is used for nominal cate-
gorical outcomes with more than two levels) and ordered logistic regression (used for ordered
multi-categorical outcomes.) The methods involved in binary logistic regression may also be
extended to the case where the outcomes are proportions based on counts, often through
grouped binary responses (the proportion of cells with chromosomal aberrations, or the pro-
portion of subjects who develop a particular condition.)

Although the models are different in some crucial ways, the practical use of logistic regression
tracks well with much of what we’ve learned about linear regression.

19.4 The Logistic Regression Model

A generalized linear model (or GLM) is a probability model in which the mean of an outcome
is related to predictors through a regression equation. A link function g is used to relate the
mean, 𝜇, to a linear regression of the predictors 𝑋1, 𝑋2, ..., 𝑋𝑘.

𝑔(𝜇) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ... + 𝛽𝑘𝑋𝑘

In the case of a logistic regression model,

• the mean 𝜇 of our 0/1 outcome is represented by 𝜋 which describes the probability of a
“1” outcome.

• the linking function we use in logistic regression makes use of the logit function, which
is built on the natural logarithm.

19.5 The Link Function

Logistic regression is a non-linear regression approach, since the equation for the mean of the
0/1 Y values conditioned on the values of our predictors 𝑋1, 𝑋2, ..., 𝑋𝑘 turns out to be non-
linear in the 𝛽 coefficients. Its nonlinearity, however, is solely found in its link function, hence
the term generalized linear model.

526

The particular link function we use in logistic regression is called the logit link.

𝑙𝑜𝑔𝑖𝑡(𝜋) = 𝑙𝑜𝑔 (𝜋
1 − 𝜋) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ... + 𝛽𝑘𝑋𝑘

The inverse of the logit function is called the logistic function. If logit(𝜋) = 𝜂, then 𝜋 =
𝑒𝑥𝑝(𝜂)

1+𝑒𝑥𝑝(𝜂)

The plot below displays the logistic function 𝑦 = 𝑒𝑥
1+𝑒𝑥

set.seed(43201)
temp <- tibble(

x = runif(200, min = -6, max = 6),
y = exp(x) / (1 + exp(x)))

ggplot(temp, aes(x = x, y = y)) +
geom_line(linewidth = 2, col = "blue")

0.00

0.25

0.50

0.75

1.00

−6 −3 0 3 6
x

y

As you can see in the figure above, the logistic function 𝑒𝑥
1+𝑒𝑥 takes any value 𝑥 in the real

numbers and returns a value between 0 and 1.

527

19.6 The logit or log odds

We usually focus on the logit in statistical work, which is the inverse of the logistic function.

• If we have a probability 𝜋 < 0.5, then 𝑙𝑜𝑔𝑖𝑡(𝜋) < 0.
• If our probability 𝜋 > 0.5, then 𝑙𝑜𝑔𝑖𝑡(𝜋) > 0.
• Finally, if 𝜋 = 0.5, then 𝑙𝑜𝑔𝑖𝑡(𝜋) = 0.

19.7 Interpreting the Coefficients of a Logistic Regression Model

The critical thing to remember in interpreting a logistic regression model is that the logit is
the log odds function. Exponentiating the logit yields the odds.

So, suppose we have a yes/no outcome variable, where yes = 1, and no = 0, and 𝜋 = Pr(y =
1). Our model holds that:

𝑙𝑜𝑔𝑖𝑡(𝜋) = 𝑙𝑜𝑔 (𝜋
1 − 𝜋) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ... + 𝛽𝑘𝑋𝑘

The odds of a yes response (the odds that Y = 1) at the level 𝑋1, 𝑋2, ..., 𝑋𝑘 are:

𝑂𝑑𝑑𝑠(𝑌 = 1) = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ... + 𝛽𝑘𝑋𝑘)

The probability of a yes response (Pr(y = 1), or 𝜋) is just

𝜋 = 𝑃𝑟(𝑌 = 1) = 𝑂𝑑𝑑𝑠(𝑌 = 1)
1 + 𝑂𝑑𝑑𝑠(𝑌 = 1) = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ... + 𝛽𝑘𝑋𝑘)

1 + 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ... + 𝛽𝑘𝑋𝑘)

19.8 The Logistic Regression has non-constant variance

In ordinary least squares regression, the variance 𝑉 𝑎𝑟(𝑌 |𝑋1, 𝑋2, ..., 𝑋𝑘) = 𝜎2 is a constant
that does not depend on the predictor values. This is not the case in logistic regression. The
mean and variance specifications of the logistic regression model are quite different.

𝑙𝑜𝑔𝑖𝑡(𝜋) = 𝑙𝑜𝑔 (𝜋
1 − 𝜋) = 𝛽0+𝛽1𝑋1+𝛽2𝑋2+...+𝛽𝑘𝑋𝑘𝜇[𝑌 |𝑋1, ..., 𝑋𝑘] = 𝜋, 𝑉 𝑎𝑟[𝑌 |𝑋1, ..., 𝑋𝑘] = 𝜋(1−𝜋)

The variance is now a function of the mean, and contains no additional parameter for us to
estimate.

528

19.9 Fitting a Logistic Regression Model to our Simulated Data

Recall the sim12 data we built earlier.

ggplot(sim12, aes(x = x, y = y)) + geom_point()

0.00

0.25

0.50

0.75

1.00

6 9 12 15
x

y

Here is the fitted logistic regression model.

model12b <- glm(y ~ x, data = sim12, family = binomial)

model12b

Call: glm(formula = y ~ x, family = binomial, data = sim12)

Coefficients:
(Intercept) x

-9.1955 0.9566

Degrees of Freedom: 99 Total (i.e. Null); 98 Residual
Null Deviance: 138.6

529

Residual Deviance: 70.03 AIC: 74.03

The logistic regression equation is:

𝑙𝑜𝑔𝑖𝑡(𝑃 𝑟(𝑦 = 1)) = 𝑙𝑜𝑔 (𝑃𝑟(𝑦 = 1)
1 − 𝑃𝑟(𝑦 = 1)) = −9.1955 + 0.9566𝑥

We can exponentiate the results of this model to get to an equation about odds, and eventually,
a prediction about probabilities. Suppose, for instance, that we are interested in the prediction
when x = 12.

𝑙𝑜𝑔𝑖𝑡(𝑃 𝑟(𝑦 = 1)|𝑋 = 12) = 𝑙𝑜𝑔 (𝑃𝑟(𝑦 = 1)
1 − 𝑃𝑟(𝑦 = 1)) = −9.1955 + 0.9566 ∗ 12 = 2.2837

And we can also get this from the predict function applied to our model, although the
predict approach retains a few more decimal places internally:

predict(model12b, newdata = data.frame(x = 12))

1
2.284069

𝑂𝑑𝑑𝑠(𝑌 = 1|𝑋 = 12) = 𝑒𝑥𝑝(−9.20 + 0.96 ∗ 12) = 𝑒𝑥𝑝(2.2837) = 9.812921

exp(predict(model12b, newdata = data.frame(x = 12)))

1
9.81654

The estimated probability of a yes response (Pr(y = 1), or 𝜋) if x = 12 is just

𝜋 = 𝑃𝑟(𝑌 = 1|𝑋 = 12) = 𝑂𝑑𝑑𝑠(𝑌 = 1|𝑋 = 12)
1 + 𝑂𝑑𝑑𝑠(𝑌 = 1|𝑋 = 12) = 𝑒𝑥𝑝(−9.20 + 0.96𝑥)

1 + 𝑒𝑥𝑝(−9.20 + 0.96𝑥) = 9.812921
1 + 9.812921 = 0.908

Does this work out?

530

exp(predict(model12b, newdata = data.frame(x = 12))) /
(1 + exp(predict(model12b, newdata = data.frame(x = 12))))

1
0.907549

which is also directly available by running predict with type = "response".

predict(model12b, newdata = data.frame(x = 12), type = "response")

1
0.907549

19.10 Plotting the Logistic Regression Model

We can use the augment function from the broom package to get our fitted probabilities
included in the data.

m12b_aug <- augment(model12b, sim12, type.predict = "response")

ggplot(m12b_aug, aes(x = x, y = y)) +
geom_point() +
geom_line(aes(x = x, y = .fitted), col = "blue") +
labs(title = "Fitted Logistic Regression Model for sim12")

531

0.00

0.25

0.50

0.75

1.00

6 9 12 15
x

y

Fitted Logistic Regression Model for sim12

I’ll add a little jitter on the vertical scale to the points, so we can avoid overlap, and also make
the points a little bigger.

ggplot(m12b_aug, aes(x = x, y = y)) +
geom_jitter(height = 0.05, size = 2, pch = 21,

fill = "cornflowerblue") +
geom_line(aes(x = x, y = .fitted), col = "blue") +
labs(title = "Fitted Logistic Regression for sim12") +
theme_bw()

532

0.00

0.25

0.50

0.75

1.00

6 9 12 15
x

y

Fitted Logistic Regression for sim12

All right, it’s time to move on to fitting models. We’ll do that next.

533

20 Logistic Regression with glm

20.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(caret)
library(ROCR)
library(pROC)
library(broom)
library(mosaic)
library(naniar)
library(tidyverse)

theme_set(theme_bw())

20.1.1 Data Load

resect <- read_csv("data/resect.csv", show_col_types = FALSE)

20.2 The resect data

My source for these data was @Riffenburgh2006. The data describe 134 patients who had
undergone resection of the tracheal carina (most often this is done to address tumors in the
trachea), and the resect.csv data file contains the following variables:

• id = a patient ID #,
• age= the patient’s age at surgery,
• prior = prior tracheal surgery (1 = yes, 0 = no),
• resection = extent of the resection (in cm),
• intubated = whether intubation was required at the end of surgery (1 = yes, 0 = no),

and
• died = the patient’s death status (1 = dead, 0 = alive).

534

miss_var_summary(resect)

A tibble: 6 x 3
variable n_miss pct_miss
<chr> <int> <num>

1 subj_id 0 0
2 age 0 0
3 prior 0 0
4 resection 0 0
5 intubated 0 0
6 died 0 0

resect |> count(died, prior)

A tibble: 4 x 3
died prior n
<dbl> <dbl> <int>

1 0 0 89
2 0 1 28
3 1 0 11
4 1 1 6

resect |> inspect()

quantitative variables:
name class min Q1 median Q3 max mean sd n

1 subj_id numeric 1 34.25 67.5 100.75 134 67.5000000 38.8265373 134
2 age numeric 8 36.00 51.0 61.00 80 47.8432836 15.7775202 134
3 prior numeric 0 0.00 0.0 0.75 1 0.2537313 0.4367785 134
4 resection numeric 1 2.00 2.5 4.00 6 2.9634328 1.2402123 134
5 intubated numeric 0 0.00 0.0 0.00 1 0.1417910 0.3501447 134
6 died numeric 0 0.00 0.0 0.00 1 0.1268657 0.3340713 134
missing

1 0
2 0
3 0
4 0
5 0
6 0

535

We have no missing data, and 17 of the 134 patients died. Our goal will be to understand the
characteristics of the patients, and how they relate to the binary outcome of interest, death.

20.3 Running A Simple Logistic Regression Model

In the most common scenario, a logistic regression model is used to predict a binary outcome
(which can take on the values 0 or 1.) We will eventually fit a logistic regression model in two
ways.

1. Through the glm function in the base package of R (similar to lm for linear regression)
2. Through the lrm function available in the rms package (similar to ols for linear regres-

sion)

We’ll focus on the glm approach first, and save the lrm ideas for later in this Chapter.

20.3.1 Logistic Regression Can Be Harder than Linear Regression

• Logistic regression models are fitted using the method of maximum likelihood in glm,
which requires multiple iterations until convergence is reached.

• Logistic regression models are harder to interpret (for most people) than linear regres-
sions.

• Logistic regression models don’t have the same set of assumptions as linear models.
• Logistic regression outcomes (yes/no) carry much less information than quantitative

outcomes. As a result, fitting a reasonable logistic regression requires more data than a
linear model of similar size.

– The rule I learned in graduate school was that a logistic regression requires 100
observations to fit an intercept plus another 15 observations for each candidate
predictor. That’s not terrible, but it’s a very large sample size.

– Frank Harrell recommends that 96 observations + a function of the number of
candidate predictors (which depends on the amount of variation in the predictors,
but 15 x the number of such predictors isn’t too bad if the signal to noise ratio is
pretty good) are required just to get reasonable confidence intervals around your
predictions.
∗ In a twitter note, Frank suggests that 96 + 8 times the number of candidate
parameters might be reasonable so long as the smallest cell of interest (combi-
nation of an outcome and a split of the covariates) is 96 or more observations.

– @Peduzzi1996 suggest that if we let 𝜋 be the smaller of the proportions of “yes” or
“no” cases in the population of interest, and k be the number of inputs under con-
sideration, then 𝑁 = 10𝑘/𝜋 is the minimum number of cases to include, except that
if N < 100 by this standard, you should increase it to 100, according to @Long1997.

536

https://twitter.com/f2harrell/status/936230071219707913

∗ That suggests that if you have an outcome that happens 10% of the time,
and you are running a model with 3 predictors, then you could get away with
(10 × 3)/(0.10) = 300 observations, but if your outcome happened 40% of the
time, you could get away with only (10 × 3)/(0.40) = 75 observations, which
you’d round up to 100.

20.4 Logistic Regression using glm

We’ll begin by attempting to predict death based on the extent of the resection.

res_modA <- glm(died ~ resection, data=resect,
family="binomial"(link="logit"))

res_modA

Call: glm(formula = died ~ resection, family = binomial(link = "logit"),
data = resect)

Coefficients:
(Intercept) resection

-4.4337 0.7417

Degrees of Freedom: 133 Total (i.e. Null); 132 Residual
Null Deviance: 101.9
Residual Deviance: 89.49 AIC: 93.49

Note that the logit link is the default approach with the binomial family, so we could also
have used:

res_modA <- glm(died ~ resection, data = resect,
family = "binomial")

which yields the same model.

20.4.1 Interpreting the Coefficients of a Logistic Regression Model

Our model is:

537

𝑙𝑜𝑔𝑖𝑡(𝑑𝑖𝑒𝑑 = 1) = 𝑙𝑜𝑔 (𝑃𝑟(𝑑𝑖𝑒𝑑 = 1)
1 − 𝑃𝑟(𝑑𝑖𝑒𝑑 = 1))

= 𝛽0 + 𝛽1𝑥 = −4.4337 + 0.7417 × 𝑟𝑒𝑠𝑒𝑐𝑡𝑖𝑜𝑛

The predicted log odds of death for a subject with a resection of 4 cm is:

𝑙𝑜𝑔 (𝑃𝑟(𝑑𝑖𝑒𝑑 = 1)
1 − 𝑃𝑟(𝑑𝑖𝑒𝑑 = 1)) = −4.4337 + 0.7417 × 4 = −1.467

The predicted odds of death for a subject with a resection of 4 cm is thus:

𝑃𝑟(𝑑𝑖𝑒𝑑 = 1)
1 − 𝑃𝑟(𝑑𝑖𝑒𝑑 = 1) = 𝑒−4.4337+0.7417×4 = 𝑒−1.467 = 0.2306

Since the odds are less than 1, we should find that the probability of death is less than 1/2.
With a little algebra, we see that the predicted probability of death for a subject with a
resection of 4 cm is:

𝑃𝑟(𝑑𝑖𝑒𝑑 = 1) = 𝑒−4.4337+0.7417×4

1 + 𝑒−4.4337+0.7417×4 = 𝑒−1.467

1 + 𝑒−1.467 = 0.2306
1.2306 = 0.187

In general, we can frame the model in terms of a statement about probabilities, like this:

𝑃 𝑟(𝑑𝑖𝑒𝑑 = 1) = 𝑒𝛽0+𝛽1𝑥

1 + 𝑒𝛽0+𝛽1𝑥 = 𝑒−4.4337+0.7417×𝑟𝑒𝑠𝑒𝑐𝑡𝑖𝑜𝑛

1 + 𝑒−4.4337+0.7417×𝑟𝑒𝑠𝑒𝑐𝑡𝑖𝑜𝑛

and so by substituting in values for resection, we can estimate the model’s fitted probabilities
of death.

20.4.2 Using predict to describe the model’s fits

To obtain these fitted odds and probabilities in R, we can use the predict function.

• The default predictions are on the scale of the log odds. These predictions are also avail-
able through the type = "link" command within the predict function for a generalized
linear model like logistic regression.

• Here are the predicted log odds of death for a subject (Sally) with a 4 cm resection and
a subject (Harry) who had a 5 cm resection.

538

predict(res_modA, newdata = tibble(resection = c(4,5)))

1 2
-1.4669912 -0.7253027

• We can also obtain predictions for each subject on the original response (here, probabil-
ity) scale, backing out of the logit link.

predict(res_modA, newdata = tibble(resection = c(4, 5)),
type = "response")

1 2
0.1874004 0.3262264

So the predicted probability of death is 0.187 for Sally, the subject with a 4 cm resection, and
0.326 for Harry, the subject with a 5 cm resection.

20.4.3 Odds Ratio interpretation of Coefficients

Often, we will exponentiate the estimated slope coefficients of a logistic regression model to
help us understand the impact of changing a predictor on the odds of our outcome.

exp(coef(res_modA))

(Intercept) resection
0.01186995 2.09947754

To interpret this finding, suppose we have two subjects, Harry and Sally. Harry had a resection
that was 1 cm larger than Sally. This estimated coefficient suggests that the estimated odds
for death associated with Harry is 2.099 times larger than the odds for death associated with
Sally. In general, the odds ratio comparing two subjects who differ by 1 cm on the resection
length is 2.099.

To illustrate, again let’s assume that Harry’s resection was 5 cm, and Sally’s was 4 cm. Then
we have:

𝑙𝑜𝑔 (𝑃𝑟(𝐻𝑎𝑟𝑟𝑦𝑑𝑖𝑒𝑑)
1 − 𝑃𝑟(𝐻𝑎𝑟𝑟𝑦𝑑𝑖𝑒𝑑)) = −4.4337 + 0.7417 × 5 = −0.7253

539

𝑙𝑜𝑔 (𝑃𝑟(𝑆𝑎𝑙𝑙𝑦𝑑𝑖𝑒𝑑)
1 − 𝑃𝑟(𝑆𝑎𝑙𝑙𝑦𝑑𝑖𝑒𝑑)) = −4.4337 + 0.7417 × 4 = −1.4667.

which implies that our estimated odds of death for Harry and Sally are:

𝑂𝑑𝑑𝑠(𝐻𝑎𝑟𝑟𝑦𝑑𝑖𝑒𝑑) = 𝑃𝑟(𝐻𝑎𝑟𝑟𝑦𝑑𝑖𝑒𝑑)
1 − 𝑃𝑟(𝐻𝑎𝑟𝑟𝑦𝑑𝑖𝑒𝑑) = 𝑒−4.4337+0.7417×5 = 𝑒−0.7253 = 0.4842

𝑂𝑑𝑑𝑠(𝑆𝑎𝑙𝑙𝑦𝑑𝑖𝑒𝑑) = 𝑃𝑟(𝑆𝑎𝑙𝑙𝑦𝑑𝑖𝑒𝑑)
1 − 𝑃𝑟(𝑆𝑎𝑙𝑙𝑦𝑑𝑖𝑒𝑑) = 𝑒−4.4337+0.7417×4 = 𝑒−1.4667 = 0.2307

and so the odds ratio is:

𝑂𝑅 = 𝑂𝑑𝑑𝑠(𝐻𝑎𝑟𝑟𝑦𝑑𝑖𝑒𝑑)
𝑂𝑑𝑑𝑠(𝑆𝑎𝑙𝑙𝑦𝑑𝑖𝑒𝑑) = 0.4842

0.2307 = 2.099

• If the odds ratio was 1, that would mean that Harry and Sally had the same estimated
odds of death, and thus the same estimated probability of death, despite having different
sizes of resections.

• Since the odds ratio is greater than 1, it means that Harry has a higher estimated odds
of death than Sally, and thus that Harry has a higher estimated probability of death
than Sally.

• If the odds ratio was less than 1, it would mean that Harry had a lower estimated odds
of death than Sally, and thus that Harry had a lower estimated probability of death than
Sally.

Remember that the odds ratio is a fraction describing two positive numbers (odds can only be
non-negative) so that the smallest possible odds ratio is 0.

20.4.4 Interpreting the rest of the model output from glm

res_modA

Call: glm(formula = died ~ resection, family = "binomial", data = resect)

Coefficients:
(Intercept) resection

-4.4337 0.7417

540

Degrees of Freedom: 133 Total (i.e. Null); 132 Residual
Null Deviance: 101.9
Residual Deviance: 89.49 AIC: 93.49

In addition to specifying the logistic regression coefficients, we are also presented with infor-
mation on degrees of freedom, deviance (null and residual) and AIC.

• The degrees of freedom indicate the sample size.

– Recall that we had n = 134 subjects in the data. The “Null” model includes only
an intercept term (which uses 1 df) and we thus have n - 1 (here 133) degrees of
freedom available for estimation.

– In our res_modA model, a logistic regression is fit including a single slope (resection)
and an intercept term. Each uses up one degree of freedom to build an estimate,
so we have n - 2 = 134 - 2 = 132 residual df remaining.

• The AIC or Akaike Information Criterion (lower values are better) is also provided. This
is helpful if we’re comparing multiple models for the same outcome.

20.4.5 Deviance and Comparing Our Model to the Null Model

• The deviance (a measure of the model’s lack of fit) is available for both the null model
(the model with only an intercept) and for our model (res_modA) predicting our outcome,
mortality.

• The deviance test, though available in R (see below) isn’t really a test of whether the
model works well. Instead, it assumes the model is true, and then tests to see if the
coefficients are different from zero. So it isn’t of much practical use.

– To compare the deviance statistics, we can subtract the residual deviance from the
null deviance to describe the impact of our model on fit.

– Null Deviance - Residual Deviance can be compared to a 𝜒2 distribution with
Null DF - Residual DF degrees of freedom to obtain a global test of the in-sample
predictive power of our model.

– We can see this comparison more directly by running anova on our model:

anova(res_modA, test = "LRT")

Analysis of Deviance Table

Model: binomial, link: logit

Response: died

541

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 133 101.943
resection 1 12.45 132 89.493 0.0004179 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The test = "LRT" section completes a deviance test and provides a p value, which just es-
timates the probability that a chi-square distribution with a single degree of freedom would
exhibit an improvement in deviance as large as 12.45.

The p value for the deviance test here is about 0.0004. But, again, this isn’t a test of whether
the model is any good - it assumes the model is true, and then tests some consequences.

• Specifically, it tests whether (if the model is TRUE) some of the model’s coefficients are
non-zero.

• That’s not so practically useful, so I discourage you from performing global tests of a
logistic regression model with a deviance test.

20.4.6 Using glance with a logistic regression model

We can use the glance function from the broom package to obtain the null and residual
deviance and degrees of freedom. Note that the deviance for our model is related to the log
likelihood by -2*logLik.

glance(res_modA)

A tibble: 1 x 8
null.deviance df.null logLik AIC BIC deviance df.residual nobs

<dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
1 102. 133 -44.7 93.5 99.3 89.5 132 134

The glance result also provides the AIC, and the BIC (Bayes Information Criterion), each of
which is helpful in understanding comparisons between multiple models for the same outcome
(with smaller values of either criterion indicating better models.) The AIC is based on the
deviance, but penalizes you for making the model more complicated. The BIC does the same
sort of thing but with a different penalty.

Again we see that we have a null deviance of 101.94 on 133 degrees of freedom. Including the
resection information in the model decreased the deviance to 89.49 points on 132 degrees of

542

freedom, so that’s a decrease of 12.45 points while using one degree of freedom, which looks
like a meaningful reduction in deviance.

20.5 Interpreting the Model Summary

Let’s get a more detailed summary of our res_modA model, including 95% confidence intervals
for the coefficients:

summary(res_modA)

Call:
glm(formula = died ~ resection, family = "binomial", data = resect)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.4337 0.8799 -5.039 4.67e-07 ***
resection 0.7417 0.2230 3.327 0.000879 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 101.943 on 133 degrees of freedom
Residual deviance: 89.493 on 132 degrees of freedom
AIC: 93.493

Number of Fisher Scoring iterations: 5

confint(res_modA, level = 0.95)

Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) -6.344472 -2.855856
resection 0.322898 1.208311

Some elements of this summary are very familiar from our work with linear models.

543

• We still have a five-number summary of residuals, although these are called deviance
residuals.

• We have a table of coefficients with standard errors, and hypothesis tests, although these
are Wald z-tests, rather than the t tests we saw in linear modeling.

• We have a summary of global fit in the comparison of null deviance and residual deviance,
but without a formal p value. And we have the AIC, as discussed above.

• We also have some new items related to a dispersion parameter and to the number of
Fisher Scoring Iterations.

Let’s walk through each of these elements.

20.5.1 Wald Z tests for Coefficients in a Logistic Regression

The coefficients output provides the estimated coefficients, and their standard errors, plus a
Wald Z statistic, which is just the estimated coefficient divided by its standard error. This is
compared to a standard Normal distribution to obtain the two-tailed p values summarized in
the Pr(>|z|) column.

• The interesting result is resection, which has a Wald Z = 3.327, yielding a p value of
0.00088.

• The p value assesses whether the estimated coefficient of resection, 0.7417, is different
from 0. If the coefficient (on the logit scale) for resection was truly 0, this would mean
that:

– the log odds of death did not change based on the resection size,
– the odds of death were unchanged based on the resection size (the odds ratio

would be 1), and
– the probability of death was unchanged based on the resection size.

In our case, we have a change in the log odds of died associated with changes in resection,
according to this p value. We conclude that resection size is associated with a positive impact
on death rates (death rates are generally higher for people with larger resections.)

20.5.2 Confidence Intervals for the Coefficients

As in linear regression, we can obtain 95% confidence intervals (to get other levels, change the
level parameter in confint) for the intercept and slope coefficients.

Here, we see, for example, that the coefficient of resection has a point estimate of 0.7417,
and a confidence interval of (0.3229, 1.208). Since this is on the logit scale, it’s not that
interpretable, but we will often exponentiate the model and its confidence interval to obtain a
more interpretable result on the odds ratio scale.

544

tidy(res_modA, exponentiate = TRUE, conf.int = TRUE) |>
select(term, estimate, conf.low, conf.high)

A tibble: 2 x 4
term estimate conf.low conf.high
<chr> <dbl> <dbl> <dbl>

1 (Intercept) 0.0119 0.00176 0.0575
2 resection 2.10 1.38 3.35

From this output, we can estimate the odds ratio for death associated with a 1 cm increase
in resection size is 2.099, with a 95% CI of (1.38, 3.35). - If the odds ratio was 1, it would
indicate that the odds of death did not change based on the change in resection size. - Here,
it’s clear that the estimated odds of death will be larger (odds > 1) for subjects with larger
resection sizes. Larger odds of death also indicate larger probabilities of death. This confidence
interval indicates that with 95% confidence, we conclude that increases in resection size are
associated with increases in the odds of death. - If the odds ratio was less than 1 (remember
that it cannot be less than 0) that would mean that subjects with larger resection sizes were
associated with smaller estimated odds of death.

20.5.3 Deviance Residuals

In logistic regression, it’s certainly a good idea to check to see how well the model fits the
data. However, there are a few different types of residuals. The residuals presented here by
default are called deviance residuals. Other types of residuals are available for generalized
linear models, such as Pearson residuals, working residuals, and response residuals. Logistic
regression model diagnostics often make use of multiple types of residuals.

The deviance residuals for each individual subject sum up to the deviance statistic for the
model, and describe the contribution of each point to the model likelihood function.

The deviance residual, 𝑑𝑖, for the ith observation in a model predicting 𝑦𝑖 (a binary variable),
with the estimate being ̂𝜋𝑖 is:

𝑑𝑖 = 𝑠𝑖√−2[𝑦𝑖𝑙𝑜𝑔 ̂𝜋𝑖 + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − ̂𝜋𝑖)],

where 𝑠𝑖 is 1 if 𝑦𝑖 = 1 and 𝑠𝑖 = −1 if 𝑦𝑖 = 0.
Again, the sum of the deviance residuals is the deviance.

545

20.5.4 Dispersion Parameter

The dispersion parameter is taken to be 1 for glm fit using either the binomial or Poisson
families. For other sorts of generalized linear models, the dispersion parameter will be of some
importance in estimating standard errors sensibly.

20.5.5 Fisher Scoring iterations

The solution of a logistic regression model involves maximizing a likelihood function. Fisher’s
scoring algorithm in our res_modA needed five iterations to perform the logistic regression fit.
All that this tells you is that the model converged, and didn’t require a lot of time to do so.

20.6 Plotting a Simple Logistic Regression Model

Let’s plot the logistic regression model res_modA for died using the extent of the resection in
terms of probabilities. We can use either of two different approaches:

• we can plot the fitted values from our specific model against the original data, using the
augment function from the broom package, or

• we can create a smooth function called binomial_smooth that plots a simple logistic
model in an analogous way to geom_smooth(method = "lm") for a simple linear regres-
sion.

20.6.1 Using augment to capture the fitted probabilities

res_A_aug <- augment(res_modA, resect,
type.predict = "response")

head(res_A_aug)

A tibble: 6 x 12
subj_id age prior resection intubated died .fitted .resid .hat .sigma

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 34 1 2.5 0 0 0.0705 -0.382 0.0100 0.826
2 2 57 0 5 0 0 0.326 -0.889 0.0337 0.823
3 3 60 1 4 1 1 0.187 1.83 0.0120 0.811
4 4 62 1 4.2 0 0 0.211 -0.689 0.0143 0.824
5 5 28 0 6 1 1 0.504 1.17 0.0818 0.820
6 6 52 0 3 0 0 0.0990 -0.457 0.00922 0.826
i 2 more variables: .cooksd <dbl>, .std.resid <dbl>

546

This approach augments the resect data set with fitted, residual and other summaries of each
observation’s impact on the fit, using the “response” type of prediction, which yields the fitted
probabilities in the .fitted column.

20.6.2 Plotting a Logistic Regression Model’s Fitted Values

ggplot(res_A_aug, aes(x = resection, y = died)) +
geom_jitter(height = 0.05) +
geom_line(aes(x = resection, y = .fitted),

col = "blue") +
labs(title = "Logistic Regression from Model res_modA")

0.00

0.25

0.50

0.75

1.00

2 4 6
resection

di
ed

Logistic Regression from Model res_modA

20.6.3 Plotting a Simple Logistic Model using binomial_smooth

binomial_smooth <- function(...) {
geom_smooth(method = "glm", formula = y ~ x,

method.args = list(family = "binomial"), ...)
}

547

ggplot(resect, aes(x = resection, y = died)) +
geom_jitter(height = 0.05) +
binomial_smooth() + ## ...smooth(se=FALSE) to leave out interval
labs(title = "Logistic Regression from Model A")

0.00

0.25

0.50

0.75

1.00

2 4 6
resection

di
ed

Logistic Regression from Model A

As expected, we see an increase in the model probability of death as the extent of the resection
grows larger.

20.7 How well does Model A classify subjects?

A natural question to ask is how well does our model classify patients in terms of likelihood
of death.

We could specify a particular rule, for example: if the predicted probability of death is 0.5 or
greater, then predict “Died”.

res_A_aug$rule.5 <- ifelse(res_A_aug$.fitted >= 0.5,
"Predict Died", "Predict Alive")

table(res_A_aug$rule.5, res_A_aug$died)

548

0 1
Predict Alive 114 16
Predict Died 3 1

And perhaps build the linked table of row probabilities which tells us, for example, that 87.69%
of the patients predicted by the model to be alive actually did survive.

round(100*prop.table(
table(res_A_aug$rule.5, res_A_aug$died), 1), 2)

0 1
Predict Alive 87.69 12.31
Predict Died 75.00 25.00

Or the table of column probabilities which tell us, for example, that 97.44% of those who
actually survived were predicted by the model to be alive.

round(100*prop.table(
table(res_A_aug$rule.5, res_A_aug$died), 2), 2)

0 1
Predict Alive 97.44 94.12
Predict Died 2.56 5.88

We’ll discuss various measures of concordance derived from this sort of classification later.

20.8 The Confusion Matrix

Let’s build this misclassification table in standard epidemiological format.

res_A_aug <- res_A_aug |>
mutate(death_predicted = factor(.fitted >= 0.5),

death_actual = factor(died == "1"),
death_predicted = fct_relevel(death_predicted, "TRUE"),
death_actual = fct_relevel(death_actual, "TRUE"))

549

confuseA_small <- table(res_A_aug$death_predicted, res_A_aug$death_actual)

confuseA_small

TRUE FALSE
TRUE 1 3
FALSE 16 114

In total, we have 134 observations.

• 115 correct predictions, or 85.8% accuracy
• 17 subjects who died, or 12.6% prevalence of death
• 4 subjects who were predicted to die, or 3.0% detection prevalence.

The sensitivity (also called recall) here is 1 / (1 + 16) = 5.9%.

• 5.9% of the subjects who actually died were predicted to die by the model.

The specificity here is 114 / (114 + 3) = 97.4%.

• 97.4% of the subjects who actually survived were predicted to survive by the model.

The positive predictive value (PPV: also called precision) is 1 / (1 + 3) = 25%

• Our predictions of death were correct 25% of the time.

The negative predictive value (NPV) is 114 / (114 + 16) = 87.7%

• Our predictions of survival were correct 87.7% of the time.

20.9 Using the confusionMatrix tool from the caret package

This provides a more detailed summary of the classification results from our logistic regression
model.

confusionMatrix(
data = factor(res_A_aug$.fitted >= 0.5),
reference = factor(res_A_aug$died == 1),
positive = "TRUE"

)

550

Confusion Matrix and Statistics

Reference
Prediction FALSE TRUE

FALSE 114 16
TRUE 3 1

Accuracy : 0.8582
95% CI : (0.7875, 0.9124)

No Information Rate : 0.8731
P-Value [Acc > NIR] : 0.747802

Kappa : 0.0493

Mcnemar's Test P-Value : 0.005905

Sensitivity : 0.058824
Specificity : 0.974359

Pos Pred Value : 0.250000
Neg Pred Value : 0.876923

Prevalence : 0.126866
Detection Rate : 0.007463

Detection Prevalence : 0.029851
Balanced Accuracy : 0.516591

'Positive' Class : TRUE

• The No Information Rate or NIR is just the percentage of correct predictions we’d get
if we just predicted the more common classification (not dead) for every subject.

• Kappa is a correlation statistic ranging from -1 to +1. It measures the inter-rater relia-
bility of our predictions and the true classifications, in this context. Complete agreement
would be +1, and complete disagreement would be -1.

20.10 Receiver Operating Characteristic Curve Analysis

One way to assess the predictive accuracy within the model development sample in a logistic
regression is to consider an analyses based on the receiver operating characteristic (ROC)
curve. ROC curves are commonly used in assessing diagnoses in medical settings, and in
signal detection applications.

551

The accuracy of a “test” can be evaluated by considering two types of errors: false positives
and false negatives.

In our res_modA model, we use resection size to predict whether the patient died. Suppose
we established a value R, so that if the resection size was larger than R cm, we would predict
that the patient died, and otherwise we would predict that the patient did not die.

A good outcome of our model’s “test”, then, would be when the resection size is larger than
R for a patient who actually died. Another good outcome would be when the resection size is
smaller than R for a patient who survived.

But we can make errors, too.

• A false positive error in this setting would occur when the resection size is larger than
R (so we predict the patient dies) but in fact the patient does not die.

• A false negative error in this case would occur when the resection size is smaller than R
(so we predict the patient survives) but in fact the patient dies.

Formally, the true positive fraction (TPF) for a specific resection cutoff 𝑅, is the probability of
a positive test (a prediction that the patient will die) among the people who have the outcome
died = 1 (those who actually die).

𝑇 𝑃𝐹(𝑅) = 𝑃𝑟(𝑟𝑒𝑠𝑒𝑐𝑡𝑖𝑜𝑛 > 𝑅|𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑑𝑖𝑒𝑑)

Similarly, the false positive fraction (FPF) for a specific cutoff 𝑅 is the probability of a positive
test (prediction that the patient will die) among the people with died = 0 (those who don’t
actually die)

𝐹𝑃𝐹(𝑅) = 𝑃𝑟(𝑟𝑒𝑠𝑒𝑐𝑡𝑖𝑜𝑛 > 𝑅|𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑑𝑖𝑑𝑛𝑜𝑡𝑑𝑖𝑒)

The True Positive Rate is referred to as the sensitivity of a diagnostic test, and the True
Negative rate (1 - the False Positive rate) is referred to as the specificity of a diagnostic test.

Since the cutoff 𝑅 is not fixed in advanced, we can plot the value of TPF (on the y axis)
against FPF (on the x axis) for all possible values of 𝑅, and this is what the ROC curve is.
Others refer to the Sensitivity on the Y axis, and 1-Specificity on the X axis, and this is the
same idea.

Before we get too far into the weeds, let me show you some simple situations so
you can understand what you might learn from the ROC curve. The web page
http://blog.yhat.com/posts/roc-curves.html provides source materials.

552

20.10.1 Interpreting the Area under the ROC curve

The AUC or Area under the ROC curve is the amount of space underneath the ROC curve.
Often referred to as the c statistic, the AUC represents the quality of your TPR and FPR
overall in a single number. The C statistic ranges from 0 to 1, with C = 0.5 for a prediction
that is no better than random guessing, and C = 1 for a perfect prediction model.

Next, I’ll build a simulation to demonstrate several possible ROC curves in the sections that
follow.

set.seed(432999)
sim.temp <- tibble(x = rnorm(n = 200),

prob = exp(x)/(1 + exp(x)),
y = as.numeric(1 * runif(200) < prob))

sim.temp <- sim.temp |>
mutate(p_guess = 1,

p_perfect = y,
p_bad = exp(-2*x) / (1 + exp(-2*x)),
p_ok = prob + (1-y)*runif(1, 0, 0.05),
p_good = prob + y*runif(1, 0, 0.27))

20.10.1.1 What if we are guessing?

If we’re guessing completely at random, then the model should correctly classify a subject (as
died or not died) about 50% of the time, so the TPR and FPR will be equal. This yields a
diagonal line in the ROC curve, and an area under the curve (C statistic) of 0.5.

There are several ways to do this on the web, but I’ll show this one, which has some bizarre
code, but that’s a function of using a package called ROCR to do the work. It comes from this
link

pred_guess <- prediction(sim.temp$p_guess, sim.temp$y)
perf_guess <- performance(pred_guess, measure = "tpr", x.measure = "fpr")
auc_guess <- performance(pred_guess, measure="auc")

auc_guess <- round(auc_guess@y.values[[1]],3)
roc_guess <- data.frame(fpr=unlist(perf_guess@x.values),

tpr=unlist(perf_guess@y.values),
model="GLM")

ggplot(roc_guess, aes(x=fpr, ymin=0, ymax=tpr)) +

553

http://blog.yhat.com/posts/roc-curves.html
http://blog.yhat.com/posts/roc-curves.html

geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
labs(title = paste0("Guessing: ROC Curve w/ AUC=", auc_guess)) +
theme_bw()

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
fpr

tp
r

Guessing: ROC Curve w/ AUC=0.5

20.10.1.2 What if we classify things perfectly?

If we’re classifying subjects perfectly, then we have a TPR of 1 and an FPR of 0. That yields
an ROC curve that looks like the upper and left edges of a box. If our model correctly classifies
a subject (as died or not died) 100% of the time, the area under the curve (c statistic) will
be 1.0. We’ll add in the diagonal line here (in a dashed black line) to show how this model
compares to random guessing.

pred_perf <- prediction(sim.temp$p_perfect, sim.temp$y)
perf_perf <- performance(pred_perf, measure = "tpr", x.measure = "fpr")
auc_perf <- performance(pred_perf, measure="auc")

auc_perf <- round(auc_perf@y.values[[1]],3)
roc_perf <- data.frame(fpr=unlist(perf_perf@x.values),

tpr=unlist(perf_perf@y.values),
model="GLM")

554

ggplot(roc_perf, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = paste0("Perfect Prediction: ROC Curve w/ AUC=", auc_perf)) +
theme_bw()

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
fpr

tp
r

Perfect Prediction: ROC Curve w/ AUC=1

20.10.1.3 What does “worse than guessing” look like?

A bad classifier will appear below and to the right of the diagonal line we’d see if we were
completely guessing. Such a model will have a c statistic below 0.5, and will be valueless.

pred_bad <- prediction(sim.temp$p_bad, sim.temp$y)
perf_bad <- performance(pred_bad, measure = "tpr", x.measure = "fpr")
auc_bad <- performance(pred_bad, measure="auc")

auc_bad <- round(auc_bad@y.values[[1]],3)
roc_bad <- data.frame(fpr=unlist(perf_bad@x.values),

tpr=unlist(perf_bad@y.values),
model="GLM")

555

ggplot(roc_bad, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = paste0("A Bad Model: ROC Curve w/ AUC=", auc_bad)) +
theme_bw()

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
fpr

tp
r

A Bad Model: ROC Curve w/ AUC=0.263

20.10.1.4 What does “better than guessing” look like?

An “OK” classifier will appear above and to the left of the diagonal line we’d see if we were
completely guessing. Such a model will have a c statistic above 0.5, and might have some
value. The plot below shows a very fairly poor model, but at least it’s better than guessing.

pred_ok <- prediction(sim.temp$p_ok, sim.temp$y)
perf_ok <- performance(pred_ok, measure = "tpr", x.measure = "fpr")
auc_ok <- performance(pred_ok, measure="auc")

auc_ok <- round(auc_ok@y.values[[1]],3)
roc_ok <- data.frame(fpr=unlist(perf_ok@x.values),

tpr=unlist(perf_ok@y.values),

556

model="GLM")

ggplot(roc_ok, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = paste0("A Mediocre Model: ROC Curve w/ AUC=", auc_ok)) +
theme_bw()

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
fpr

tp
r

A Mediocre Model: ROC Curve w/ AUC=0.702

Sometimes people grasp for a rough guide as to the accuracy of a model’s predictions based
on the area under the ROC curve. A common thought is to assess the C statistic much like
you would a class grade.

C statistic Interpretation
0.90 to 1.00 model does an excellent job at discriminating “yes” from “no” (A)
0.80 to 0.90 model does a good job (B)
0.70 to 0.80 model does a fair job (C)
0.60 to 0.70 model does a poor job (D)
0.50 to 0.60 model fails (F)
below 0.50 model is worse than random guessing

557

20.10.1.5 What does “pretty good” look like?

A strong and good classifier will appear above and to the left of the diagonal line we’d see if we
were completely guessing, often with a nice curve that is continually increasing and appears
to be pulled up towards the top left. Such a model will have a c statistic well above 0.5, but
not as large as 1. The plot below shows a stronger model, which appears substantially better
than guessing.

pred_good <- prediction(sim.temp$p_good, sim.temp$y)
perf_good <- performance(pred_good, measure = "tpr", x.measure = "fpr")
auc_good <- performance(pred_good, measure="auc")

auc_good <- round(auc_good@y.values[[1]],3)
roc_good <- data.frame(fpr=unlist(perf_good@x.values),

tpr=unlist(perf_good@y.values),
model="GLM")

ggplot(roc_good, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = paste0("A Pretty Good Model: ROC Curve w/ AUC=", auc_good)) +
theme_bw()

558

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
fpr

tp
r

A Pretty Good Model: ROC Curve w/ AUC=0.899

20.11 The ROC Plot for res_modA

Let me show you the ROC curve for our res_modA model.

requires ROCR package
prob <- predict(res_modA, resect, type="response")
pred <- prediction(prob, resect$died)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
auc <- performance(pred, measure="auc")

auc <- round(auc@y.values[[1]],3)
roc.data <- data.frame(fpr=unlist(perf@x.values),

tpr=unlist(perf@y.values),
model="GLM")

ggplot(roc.data, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = paste0("ROC Curve w/ AUC=", auc)) +
theme_bw()

559

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
fpr

tp
r

ROC Curve w/ AUC=0.771

Based on the C statistic (AUC = 0.771) this would rank somewhere near the high end of a
“fair” predictive model by this standard, not quite to the level of a “good” model.

20.11.1 Another way to plot the ROC Curve

If we’ve loaded the pROC package, we can also use the following (admittedly simpler) approach
to plot the ROC curve, without ggplot2, and to obtain the C statistic, and a 95% confidence
interval around that C statistic.

requires pROC package
roc.modA <-

roc(resect$died ~ predict(res_modA, type="response"),
ci = TRUE)

Setting levels: control = 0, case = 1

Setting direction: controls < cases

roc.modA

560

Call:
roc.formula(formula = resect$died ~ predict(res_modA, type = "response"), ci = TRUE)

Data: predict(res_modA, type = "response") in 117 controls (resect$died 0) < 17 cases (resect$died 1).
Area under the curve: 0.7707
95% CI: 0.67-0.8715 (DeLong)

plot(roc.modA)

Specificity

S
en

si
tiv

ity

1.5 1.0 0.5 0.0 −0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

20.12 Assessing Residual Plots from Model A

Residuals are certainly less informative for logistic regression than they are for
linear regression: not only do yes/no outcomes inherently contain less information
than continuous ones, but the fact that the adjusted response depends on the fit
hampers our ability to use residuals as external checks on the model.

This is mitigated to some extent, however, by the fact that we are also making
fewer distributional assumptions in logistic regression, so there is no need to inspect
residuals for, say, skewness or heteroskedasticity.

561

• Patrick Breheny, University of Kentucky, Slides on GLM Residuals and Diagnostics (no
longer online, alas.)

The usual residual plots are available in R for a logistic regression model, but most of them are
irrelevant in the logistic regression setting. The residuals shouldn’t follow a standard Normal
distribution, and they will not show constant variance over the range of the predictor variables,
so plots looking into those issues aren’t helpful.

The only plot from the standard set that we’ll look at in many settings is plot 5, which helps
us assess influence (via Cook’s distance contours), and a measure related to leverage (how
unusual an observation is in terms of the predictors) and standardized Pearson residuals.

plot(res_modA, which = 5)

0.00 0.02 0.04 0.06 0.08

−
1

1
2

3
4

5

Leverage

S
td

. P
ea

rs
on

 r
es

id
.

glm(died ~ resection)

Cook's distance

0.5

1

Residuals vs Leverage

84

128

18

In this case, I don’t see any highly influential points, as no points fall outside of the Cook’s
distance (0.5 or 1) contours.

562

20.13 Model B: A “Kitchen Sink” Logistic Regression Model

res_modB <- glm(died ~ resection + age + prior + intubated,
data = resect, family = binomial)

res_modB

Call: glm(formula = died ~ resection + age + prior + intubated, family = binomial,
data = resect)

Coefficients:
(Intercept) resection age prior intubated
-5.152886 0.612211 0.001173 0.814691 2.810797

Degrees of Freedom: 133 Total (i.e. Null); 129 Residual
Null Deviance: 101.9
Residual Deviance: 67.36 AIC: 77.36

20.13.1 Comparing Model A to Model B

anova(res_modA, res_modB)

Analysis of Deviance Table

Model 1: died ~ resection
Model 2: died ~ resection + age + prior + intubated
Resid. Df Resid. Dev Df Deviance

1 132 89.493
2 129 67.359 3 22.134

The addition of age, prior and intubated reduces the lack of fit by 22.134 points, at a cost
of 3 degrees of freedom.

glance(res_modA)

A tibble: 1 x 8
null.deviance df.null logLik AIC BIC deviance df.residual nobs

563

<dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
1 102. 133 -44.7 93.5 99.3 89.5 132 134

glance(res_modB)

A tibble: 1 x 8
null.deviance df.null logLik AIC BIC deviance df.residual nobs

<dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
1 102. 133 -33.7 77.4 91.8 67.4 129 134

By either AIC or BIC, the larger model (res_modB) looks more effective.

20.13.2 Interpreting Model B

summary(res_modB)

Call:
glm(formula = died ~ resection + age + prior + intubated, family = binomial,

data = resect)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.152886 1.469453 -3.507 0.000454 ***
resection 0.612211 0.282807 2.165 0.030406 *
age 0.001173 0.020646 0.057 0.954700
prior 0.814691 0.704785 1.156 0.247705
intubated 2.810797 0.658395 4.269 1.96e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 101.943 on 133 degrees of freedom
Residual deviance: 67.359 on 129 degrees of freedom
AIC: 77.359

Number of Fisher Scoring iterations: 6

564

It appears that the intubated predictor adds some value to the model, by the Wald test.

Let’s focus on the impact of these variables through odds ratios.

tidy(res_modB, exponentiate = TRUE, conf.int = TRUE) |>
select(term, estimate, conf.low, conf.high)

A tibble: 5 x 4
term estimate conf.low conf.high
<chr> <dbl> <dbl> <dbl>

1 (Intercept) 0.00578 0.000241 0.0837
2 resection 1.84 1.08 3.35
3 age 1.00 0.962 1.04
4 prior 2.26 0.549 9.17
5 intubated 16.6 4.75 64.6

At a 5% significance level, we might conclude that:

• larger sized resections are associated with a meaningful rise (est OR: 1.84, 95% CI
1.08, 3.35) in the odds of death, holding all other predictors constant,

• the need for intubation at the end of surgery is associated with a substantial rise (est
OR: 16.6, 95% CI 4.7, 64.7) in the odds of death, holding all other predictors constant,
but that

• older age as well as having a prior tracheal surgery appears to be associated with an
increase in death risk, but not with a small p value.

20.14 Plotting Model B

Let’s think about plotting the fitted values from our model, in terms of probabilities.

20.14.1 Using augment to capture the fitted probabilities

res_B_aug <- augment(res_modB, resect,
type.predict = "response")

head(res_B_aug)

A tibble: 6 x 12
subj_id age prior resection intubated died .fitted .resid .hat .sigma

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

565

1 1 34 1 2.5 0 0 0.0591 -0.349 0.0267 0.725
2 2 57 0 5 0 0 0.117 -0.498 0.0380 0.724
3 3 60 1 4 1 1 0.729 0.794 0.114 0.722
4 4 62 1 4.2 0 0 0.155 -0.581 0.0704 0.723
5 5 28 0 6 1 1 0.796 0.675 0.131 0.723
6 6 52 0 3 0 0 0.0371 -0.275 0.0105 0.725
i 2 more variables: .cooksd <dbl>, .std.resid <dbl>

20.14.2 Plotting Model B Fits by Observed Mortality

ggplot(res_B_aug, aes(x = factor(died), y = .fitted, col = factor(died))) +
geom_boxplot() +
geom_jitter(width = 0.1) +
guides(col = "none")

0.0

0.2

0.4

0.6

0.8

0 1
factor(died)

.fi
tte

d

Certainly it appears as though most of our predicted probabilities (of death) for the subjects
who actually survived are quite small, but not all of them. We also have at least 6 big “misses”
among the 17 subjects who actually died.

566

20.14.3 Confusion Matrix for Model B

confusionMatrix(
data = factor(res_B_aug$.fitted >= 0.5),
reference = factor(res_B_aug$died == 1),
positive = "TRUE"

)

Confusion Matrix and Statistics

Reference
Prediction FALSE TRUE

FALSE 113 6
TRUE 4 11

Accuracy : 0.9254
95% CI : (0.867, 0.9636)

No Information Rate : 0.8731
P-Value [Acc > NIR] : 0.03897

Kappa : 0.6453

Mcnemar's Test P-Value : 0.75183

Sensitivity : 0.64706
Specificity : 0.96581

Pos Pred Value : 0.73333
Neg Pred Value : 0.94958

Prevalence : 0.12687
Detection Rate : 0.08209

Detection Prevalence : 0.11194
Balanced Accuracy : 0.80644

'Positive' Class : TRUE

567

20.14.4 The ROC curve for Model B

requires ROCR package
prob <- predict(res_modB, resect, type="response")
pred <- prediction(prob, resect$died)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
auc <- performance(pred, measure="auc")

auc <- round(auc@y.values[[1]],3)
roc.data <- data.frame(fpr=unlist(perf@x.values),

tpr=unlist(perf@y.values),
model="GLM")

ggplot(roc.data, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = paste0("Model B: ROC Curve w/ AUC=", auc)) +
theme_bw()

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
fpr

tp
r

Model B: ROC Curve w/ AUC=0.86

The area under the curve (C-statistic) is 0.86, which certainly looks like a more discriminating
fit than model A with resection alone.

568

20.14.5 Residuals, Leverage and Influence

plot(res_modB, which = 5)

0.00 0.05 0.10 0.15

−
2

0
2

4

Leverage

S
td

. P
ea

rs
on

 r
es

id
.

glm(died ~ resection + age + prior + intubated)

Cook's distance

0.5

1

Residuals vs Leverage

94

84

55

Again, we see no signs of deeply influential points in this model.

We’ll continue working with these resect data as we fit logistic regression models with the
help of the rms package in our next Chapter.

569

21 Logistic Regression with lrm

21.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(ROCR)
library(pROC)
library(naniar)
library(rms)
library(tidyverse)

theme_set(theme_bw())

21.1.1 Data Load

resect <- read_csv("data/resect.csv", show_col_types = FALSE)

21.2 Logistic Regression using lrm

To obtain the Nagelkerke 𝑅2 and the C statistic, as well as some other summaries, I’ll now
demonstrate the use of lrm from the rms package to fit a logistic regression model.

We’ll return to the original model, predicting death using resection size alone.

dd <- datadist(resect)
options(datadist="dd")

res_modC <- lrm(died ~ resection, data=resect, x=TRUE, y=TRUE)
res_modC

570

Logistic Regression Model

lrm(formula = died ~ resection, data = resect, x = TRUE, y = TRUE)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 134 LR chi2 12.45 R2 0.167 C 0.771
0 117 d.f. 1 R2(1,134)0.082 Dxy 0.541
1 17 Pr(> chi2) 0.0004 R2(1,44.5)0.227 gamma 0.582
max |deriv| 2e-06 Brier 0.103 tau-a 0.121

Coef S.E. Wald Z Pr(>|Z|)
Intercept -4.4337 0.8799 -5.04 <0.0001
resection 0.7417 0.2230 3.33 0.0009

This output specifies the following:

• Obs = The number of observations used to fit the model, with 0 = the number of zeros
and 1 = the number of ones in our outcome, died. Also specified is the maximum
absolute value of the derivative at the point where the maximum likelihood function was
estimated. I wouldn’t worry about that practically, as all you will care about is whether
the iterative function-fitting process converged, and R will warn you in other ways if it
doesn’t.

• A likelihood ratio test (drop in deviance test) subtracting the residual deviance from
the null deviance obtain the Likelihood Ratio 𝜒2 statistic, subtracting residual df from
null df to obtain degrees of freedom, and comparing the resulting test statistic to a 𝜒2

distribution with the appropriate degrees of freedom to determine a p value.
• A series of discrimination indexes, including the Nagelkerke 𝑅2, symbolized R2, and

several others we’ll discuss shortly.
• A series of rank discrimination indexes, including the C statistic (area under the ROC

curve) and Somers’ D (Dxy), and several others.
• A table of coefficients, standard errors, Wald Z statistics and p values based on those

Wald statistics.

The C statistic is estimated to be 0.771, with an associated (Nagelkerke) 𝑅2 = 0.167, both
indicating at best mediocre performance for this model, as it turns out.

21.2.1 Interpreting Nagelkerke 𝑅2

There are many ways to calculate 𝑅2 for logistic regression.

571

• At the URL linked here there is a nice summary of the key issue, which is that there are
at least three different ways to think about 𝑅2 in linear regression that are equivalent
in that context, but when you move to a categorical outcome, which interpretation you
use leads you down a different path for extension to the new type of outcome. In linear
regression…

– You might think of 𝑅2 as a measure of the proportion of variability explained.
– You might think of 𝑅2 as measuring the improvement from a null model to a fitted

model.
– You might think of 𝑅2 as the square of the correlation coefficient.

• Paul Allison, for instance, describes several at this link in a post entitled “What’s the
Best R-Squared for Logistic Regression?”

• Jonathan Bartlett looks at McFadden’s pseudo 𝑅2 in some detail (including some R
code) at this link, in a post entitled “R squared in logistic regression”

The Nagelkerke approach that is presented as R2 in the lrm output is as good as most of the
available approaches, and has the positive feature that it does reach 1 if the fitted model shows
as much improvement as possible over the null model (which predicts the mean response for
all subjects, and has 𝑅2 = 0). The greater the improvement, the higher the Nagelkerke 𝑅2.

For model A, our Nagelkerke 𝑅2 = 0.167, which is pretty poor. It doesn’t technically mean
that 16.7% of any sort of variation has been explained, though.

21.2.2 Interpreting the C statistic and Plotting the ROC Curve

The C statistic is a measure of the area under the receiver operating characteristic curve. This
link has some nice material that provides some insight into the C statistic and ROC curve.

• Recall that C ranges from 0 to 1. 0 = BAD, 1 = GOOD.

– values of C less than 0.5 indicate that your prediction model is not even as good as
simple random guessing of “yes” or “no” for your response.

– C = 0.5 for random guessing
– C = 1 indicates a perfect classification scheme - one that correctly guesses “yes” for

all “yes” patients, and for none of the “no” patients.

• The closer C is to 1, the happier we’ll be, most of the time.

– Often we’ll call models with 0.5 < C < 0.8 poor or weak in terms of predictive
ability by this measure

– 0.8 ≤ C < 0.9 are moderately strong in terms of predictive power (indicate good
discrimination)

– C ≥ 0.9 usually indicates a very strong model in this regard (indicate excellent
discrimination)

572

https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
http://statisticalhorizons.com/r2logistic
http://thestatsgeek.com/2014/02/08/r-squared-in-logistic-regression/
http://blog.yhat.com/posts/roc-curves.html
http://blog.yhat.com/posts/roc-curves.html

We’ve seen the ROC curve for this model before, when we looked at model res_modA fitted
using glm in the previous chapter. But, just for completeness, I’ll include it.

Note. I change the initial predict call from type = "response" for a glm fit to type =
"fitted" in a lrm fit. Otherwise, this is the same approach.

requires ROCR package
prob <- predict(res_modC, resect, type="fitted")
pred <- prediction(prob, resect$died)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
auc <- performance(pred, measure="auc")

auc <- round(auc@y.values[[1]],3)
roc.data <- data.frame(fpr=unlist(perf@x.values),

tpr=unlist(perf@y.values),
model="GLM")

ggplot(roc.data, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = paste0("Model C: ROC Curve w/ AUC=", auc)) +
theme_bw()

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
fpr

tp
r

Model C: ROC Curve w/ AUC=0.771

573

21.2.3 The C statistic and Somers’ D

• The C statistic is directly related to Somers’ D statistic, abbreviated 𝐷𝑥𝑦, by the
equation C = 0.5 + (D/2).

– Somers’ D and the ROC area only measure how well predicted values from the
model can rank-order the responses. For example, predicted probabilities of 0.01
and 0.99 for a pair of subjects are no better than probabilities of 0.2 and 0.8 using
rank measures, if the first subject had a lower response value than the second.

– Thus, the C statistic (or 𝐷𝑥𝑦) may not be very sensitive ways to choose between
models, even though they provide reasonable summaries of the models individually.

– This is especially true when the models are strong. The Nagelkerke 𝑅2 may be
more sensitive.

• But as it turns out, we sometimes have to look at the ROC shapes, as the summary
statistic alone isn’t enough.

In our case, Somers D (Dxy) = .541, so the C statistic is 0.771.

21.2.4 Validating the Logistic Regression Model Summary Statistics

Like other regression-fitting tools in rms, the lrm function has a special validate tool to help
perform resampling validation of a model, with or without backwards step-wise variable selec-
tion. Here, we’ll validate our model’s summary statistics using 100 bootstrap replications.

set.seed(432001)
validate(res_modC, B = 100)

index.orig training test optimism index.corrected n
Dxy 0.5415 0.5422 0.5415 0.0007 0.5408 100
R2 0.1666 0.1748 0.1666 0.0083 0.1583 100
Intercept 0.0000 0.0000 0.1631 -0.1631 0.1631 100
Slope 1.0000 1.0000 1.0463 -0.0463 1.0463 100
Emax 0.0000 0.0000 0.0428 0.0428 0.0428 100
D 0.0854 0.0909 0.0854 0.0055 0.0800 100
U -0.0149 -0.0149 0.0017 -0.0167 0.0017 100
Q 0.1004 0.1058 0.0837 0.0221 0.0783 100
B 0.1025 0.0986 0.1051 -0.0065 0.1090 100
g 1.0369 1.0677 1.0369 0.0308 1.0061 100
gp 0.1101 0.1080 0.1101 -0.0021 0.1122 100

574

Recall that our area under the curve (C statistic) = 0.5 + (Dxy/2), so that we can also use
the first row of statistics to validate the C statistic. Accounting for optimism in this manner,
our validation-corrected estimates are Dxy = 0.5408, so C = 0.7704, and, from the second row
of statistics, we can read off the validated Nagelkerke 𝑅2, which is 0.1583.

21.2.5 Plotting the Summary of the lrm approach

The summary function applied to an lrm fit shows the effect size comparing the 25th percentile
to the 75th percentile of resection.

plot(summary(res_modC))

Odds Ratio

2 3 4 5 6 7 8 9 10 12 14

resection − 4 : 2

summary(res_modC)

Effects Response : died

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
resection 2 4 2 1.4834 0.44591 0.6094 2.3574
Odds Ratio 2 4 2 4.4078 NA 1.8393 10.5630

575

So, a move from a resection of 2 cm to a resection of 4 cm is associated with an estimated
effect on the log odds of death of 1.48 (with standard error 0.45), or with an estimated effect
on the odds ratio for death of 4.41, with 95% CI (1.84, 10.56).

21.2.6 Plot In-Sample Predictions for Model C

Here we plot the effect of resection (and 95% confidence intervals) across the range of ob-
served values of resection on the log odds of death. Note the linear effect of resection size
on the log odds scale.

ggplot(Predict(res_modC))

−6

−4

−2

0

1 2 3 4 5
resection

lo
g

od
ds

By applying the plogis function within the Predict command, we can plot the effect of
resection on the estimated probability of death. Note the non-linear effect on this probability
in this logistic regression model.

ggplot(Predict(res_modC, fun = plogis)) +
labs(y = "Predicted probability from Model C",

title = "Model C with the resect data")

576

0.0

0.2

0.4

0.6

1 2 3 4 5
resection

P
re

di
ct

ed
 p

ro
ba

bi
lit

y
fr

om
 M

od
el

 C

Model C with the resect data

The Predict function itself provides the raw material being captured in this plot.

head(Predict(res_modC, fun = plogis))

resection yhat lower upper .predictor.
resection.1 1.000000 0.02431476 0.006636502 0.08505223 resection
resection.2 1.020101 0.02467096 0.006789313 0.08559056 resection
resection.3 1.040201 0.02503224 0.006945549 0.08613277 resection
resection.4 1.060302 0.02539867 0.007105283 0.08667889 resection
resection.5 1.080402 0.02577033 0.007268589 0.08722896 resection
resection.6 1.100503 0.02614728 0.007435542 0.08778304 resection

Response variable (y):

Limits are 0.95 confidence limits

21.2.7 ANOVA from the lrm approach

anova(res_modC)

577

Wald Statistics Response: died

Factor Chi-Square d.f. P
resection 11.07 1 9e-04
TOTAL 11.07 1 9e-04

The ANOVA approach applied to a lrm fit provides a Wald test for the model as a whole.
Here, the use of resection is a significant improvement over a null (intercept-only) model.
The p value is 9 x 10-4.

21.2.8 Are any points particularly influential?

I’ll use a cutoff for dfbeta here of 0.3, instead of the default 0.2, because I want to focus
on truly influential points. Note that we have to use the data frame version of resect as
show.influence isn’t tibble-friendly.

inf.C <- which.influence(res_modC, cutoff=0.3)
inf.C

$Intercept
[1] 84 128

$resection
[1] 84

show.influence(object = inf.C, dframe = data.frame(resect))

Count resection
84 2 *2.0
128 1 2.5

It appears that observation 84 may have a meaningful effect on both the intercept and the
coefficient for resection.

21.2.9 A Nomogram for Model C

We use the plogis function within a nomogram call to get R to produce fitted probabilities
(of our outcome, died) in this case.

578

plot(nomogram(res_modC, fun=plogis,
fun.at=c(0.05, seq(0.1, 0.9, by = 0.1), 0.95),
funlabel="Pr(died)"))

Points
0 10 20 30 40 50 60 70 80 90 100

resection
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Total Points
0 10 20 30 40 50 60 70 80 90 100

Linear Predictor
−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

Pr(died)
0.05 0.1 0.2 0.3 0.4 0.5

Since there’s no non-linearity in the right hand side of our simple logistic regression model,
the nomogram is straightforward. We calculate the points based on the resection by traveling
up, and then travel down in a straight vertical line from total points through the linear (log
odds) predictor straight to a fitted probability. Note that fitted probabilities above 0.5 are not

579

possible within the range of observed resection values in this case.

21.3 Model D: An Augmented Kitchen Sink Model

Can we predict survival from the patient’s age, whether the patient had prior tracheal surgery
or not, the extent of the resection, and whether intubation was required at the end of surgery?

21.3.1 Spearman 𝜌2 Plot

Let’s start by considering the limited use of non-linear terms for predictors that look important
in a Spearman 𝜌2 plot.

plot(spearman2(died ~ age + prior + resection + intubated, data=resect))

intubated

resection

prior

age

N df

134 1

134 1

134 1

134 1

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Spearman ρ2 Response : died

Adjusted ρ2

The most important variable appears to be whether intubation was required, so I’ll include
intubated’s interaction with the linear effect of the next most (apparently) important variable,
resection, and also a cubic spline for resection, with three knots. Since prior and age
look less important, I’ll simply add them as linear terms.

580

21.3.2 Fitting Model D using lrm

Note the use of %ia% here. This insures that only the linear part of the resection term will
be used in the interaction with intubated.

dd <- datadist(resect)
options(datadist="dd")

res_modD <- lrm(died ~ age + prior + rcs(resection, 3) +
intubated + intubated %ia% resection,

data=resect, x=TRUE, y=TRUE)

21.3.3 Assessing Model D using lrm’s tools

res_modD

Logistic Regression Model

lrm(formula = died ~ age + prior + rcs(resection, 3) + intubated +
intubated %ia% resection, data = resect, x = TRUE, y = TRUE)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 134 LR chi2 38.08 R2 0.464 C 0.880
0 117 d.f. 6 R2(6,134)0.213 Dxy 0.759
1 17 Pr(> chi2) <0.0001 R2(6,44.5)0.513 gamma 0.770
max |deriv| 9e-08 Brier 0.067 tau-a 0.169

Coef S.E. Wald Z Pr(>|Z|)
Intercept -11.3636 4.9099 -2.31 0.0206
age 0.0000 0.0210 0.00 0.9988
prior 0.6269 0.7367 0.85 0.3947
resection 3.3799 1.9700 1.72 0.0862
resection' -4.2104 2.7035 -1.56 0.1194
intubated 0.4576 2.7848 0.16 0.8695
intubated * resection 0.6188 0.7306 0.85 0.3970

• The model likelihood ratio test suggests that at least some of these predictors are helpful.
• The Nagelkerke 𝑅2 of 0.46, and the C statistic of 0.88 indicate a meaningful improvement

in discrimination over our model with resection alone.

581

• The Wald Z tests see some potential need to prune the model, as none of the elements
reaches statistical significance without the others. The product term between intubated
and resection, in particular, doesn’t appear to have helped much, once we already had
the main effects.

21.3.4 ANOVA and Wald Tests for Model D

anova(res_modD)

Wald Statistics Response: died

Factor Chi-Square d.f. P
age 0.00 1 0.9988
prior 0.72 1 0.3947
resection (Factor+Higher Order Factors) 4.95 3 0.1753
All Interactions 0.72 1 0.3970
Nonlinear 2.43 1 0.1194
intubated (Factor+Higher Order Factors) 16.45 2 0.0003
All Interactions 0.72 1 0.3970
intubated * resection (Factor+Higher Order Factors) 0.72 1 0.3970
TOTAL NONLINEAR + INTERACTION 2.56 2 0.2783
TOTAL 23.90 6 0.0005

Neither the interaction term nor the non-linearity from the cubic spline appears to be statis-
tically significant, based on the Wald tests via ANOVA. However it is clear that intubated
has a significant impact as a main effect.

21.3.5 Effect Sizes in Model D

plot(summary(res_modD))

582

Odds Ratio

0.50 100.00 200.00 300.00 400.00

age − 61 : 36

prior − 1 : 0

resection − 4 : 2

intubated − 1 : 0

Adjusted to:resection=2.5 intubated=0

summary(res_modD)

Effects Response : died

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
age 36 61 25 -0.00080933 0.52409 -1.02800 1.0264
Odds Ratio 36 61 25 0.99919000 NA 0.35772 2.7910
prior 0 1 1 0.62693000 0.73665 -0.81688 2.0707
Odds Ratio 0 1 1 1.87190000 NA 0.44181 7.9307
resection 2 4 2 2.42930000 1.43510 -0.38342 5.2419
Odds Ratio 2 4 2 11.35000000 NA 0.68153 189.0400
intubated 0 1 1 2.00470000 1.11220 -0.17513 4.1845
Odds Ratio 0 1 1 7.42380000 NA 0.83934 65.6610

Adjusted to: resection=2.5 intubated=0

The effect sizes are perhaps best described in terms of odds ratios. The odds ratio for
death isn’t significantly different from 1 for any variable, but the impact of resection and
intubated, though not strong enough to be significant, look more substantial (if poorly esti-
mated) than the effects of age and prior.

583

21.3.6 Plot In-Sample Predictions for Model D

Here are plots of the effects across the range of each predictor (holding the others constant)
on the log odds scale. Note the non-linear effect of resection implied by the use of a spline
there.

ggplot(Predict(res_modD))

−15

−10

−5

0

5

20 30 40 50 60 70
age

lo
g

od
ds

−15

−10

−5

0

5

intubated
lo

g
od

ds

−15

−10

−5

0

5

prior

lo
g

od
ds

−15

−10

−5

0

5

1 2 3 4 5
resection

lo
g

od
ds

We can also capture and plot these results on the probability scale, as follows1.

ggplot(Predict(res_modD, fun = plogis))

1Although I’ve yet to figure out how to get the y axis relabeled properly without simply dumping the Predict
results into a new tibble and starting over with creating the plots.

584

0.0

0.2

0.4

0.6

20 30 40 50 60 70
age

0.0

0.2

0.4

0.6

intubated

0.0

0.2

0.4

0.6

prior

0.0

0.2

0.4

0.6

1 2 3 4 5
resection

21.3.7 Plotting the ROC curve for Model D

Again, remember to use type = "fitted" with a lrm fit.

requires ROCR package
prob <- predict(res_modD, resect, type="fitted")
pred <- prediction(prob, resect$died)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
auc <- performance(pred, measure="auc")

auc <- round(auc@y.values[[1]],3)
roc.data <- data.frame(fpr=unlist(perf@x.values),

tpr=unlist(perf@y.values),
model="GLM")

ggplot(roc.data, aes(x=fpr, ymin=0, ymax=tpr)) +
geom_ribbon(alpha=0.2, fill = "blue") +
geom_line(aes(y=tpr), col = "blue") +
geom_abline(intercept = 0, slope = 1, lty = "dashed") +
labs(title = paste0("ROC Curve w/ AUC=", auc)) +
theme_bw()

585

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
fpr

tp
r

ROC Curve w/ AUC=0.883

The AUC fitted with ROCR (0.883) is slightly different than what lrm has told us (0.880), and
this also happens if we use the pROC approach, demonstrated below.

requires pROC package
roc.modD <-

roc(resect$died ~ predict(res_modD, type="fitted"),
ci = TRUE)

Setting levels: control = 0, case = 1

Setting direction: controls < cases

roc.modD

Call:
roc.formula(formula = resect$died ~ predict(res_modD, type = "fitted"), ci = TRUE)

Data: predict(res_modD, type = "fitted") in 117 controls (resect$died 0) < 17 cases (resect$died 1).
Area under the curve: 0.8826
95% CI: 0.7952-0.97 (DeLong)

586

plot(roc.modD)

Specificity

S
en

si
tiv

ity

1.5 1.0 0.5 0.0 −0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

21.3.8 Validation of Model D summaries

set.seed(432002)
validate(res_modD, B = 100)

Divergence or singularity in 5 samples

index.orig training test optimism index.corrected n
Dxy 0.7652 0.8080 0.7352 0.0727 0.6925 95
R2 0.4643 0.5347 0.4119 0.1228 0.3416 95
Intercept 0.0000 0.0000 -0.3533 0.3533 -0.3533 95
Slope 1.0000 1.0000 0.7658 0.2342 0.7658 95
Emax 0.0000 0.0000 0.1308 0.1308 0.1308 95
D 0.2767 0.3415 0.2407 0.1008 0.1759 95
U -0.0149 -0.0149 0.0883 -0.1032 0.0883 95
Q 0.2916 0.3564 0.1524 0.2040 0.0876 95
B 0.0673 0.0640 0.0736 -0.0096 0.0769 95

587

g 2.3819 4.0387 2.4635 1.5751 0.8068 95
gp 0.1720 0.1910 0.1632 0.0278 0.1442 95

The C statistic indicates fairly strong discrimination, at C = 0.88, although after validation,
this looks much weaker (based on Dxy = 0.6925, we would have C = 0.5 + 0.6925/2 = 0.85)
and the Nagelkerke 𝑅2 is also reasonably good, at 0.46, although this, too, is overly optimistic,
and we bias-correct through our validation study to 0.34.

21.4 Model E: Fitting a Reduced Model in light of Model D

Can you suggest a reduced model (using a subset of the independent variables in model D)
that adequately predicts survival?

Based on the anova for model D and the Spearman rho-squared plot, it appears that a two-
predictor model using intubation and resection may be sufficient. Neither of the other potential
predictors shows a statistically detectable effect in its Wald test.

res_modE <- lrm(died ~ intubated + resection, data=resect,
x=TRUE, y=TRUE)

res_modE

Logistic Regression Model

lrm(formula = died ~ intubated + resection, data = resect, x = TRUE,
y = TRUE)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 134 LR chi2 33.27 R2 0.413 C 0.867
0 117 d.f. 2 R2(2,134)0.208 Dxy 0.734
1 17 Pr(> chi2) <0.0001 R2(2,44.5)0.505 gamma 0.757
max |deriv| 5e-10 Brier 0.073 tau-a 0.164

Coef S.E. Wald Z Pr(>|Z|)
Intercept -4.6370 1.0430 -4.45 <0.0001
intubated 2.8640 0.6479 4.42 <0.0001
resection 0.5475 0.2689 2.04 0.0418

The model equation is that the log odds of death is -4.637 + 2.864 intubated + 0.548
resection.

This implies that:

588

• for intubated patients, the equation is -1.773 + 0.548 resection, while
• for non-intubated patients, the equation is -4.637 + 0.548 resection.

We can use the ilogit function within the faraway package to help plot this.

21.4.1 A Plot comparing the two intubation groups

ggplot(resect, aes(x = resection, y = died,
col = factor(intubated))) +

scale_color_manual(values = c("blue", "red")) +
geom_jitter(size = 2, height = 0.1) +
geom_line(aes(x = resection,

y = faraway::ilogit(-4.637 + 0.548*resection)),
col = "blue") +

geom_line(aes(x = resection,
y = faraway::ilogit(-1.773 + 0.548*resection)),

col = "red") +
geom_text(x = 4, y = 0.2, label = "Not Intubated",

col="blue") +
geom_text(x = 2.5, y = 0.6, label = "Intubated Patients",

col="red") +
labs(x = "Extent of Resection (in cm.)",

y = "Death (1,0) and estimated probability of death",
title = "resect data, Model E")

589

Not Intubated

Intubated Patients

0.0

0.4

0.8

2 4 6
Extent of Resection (in cm.)

D
ea

th
 (

1,
0)

 a
nd

 e
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 d
ea

th

factor(intubated)

0

1

resect data, Model E

The effect of intubation appears to be very large, compared to the resection size effect.

21.4.2 Nomogram for Model E

A nomogram of the model would help, too.

plot(nomogram(res_modE, fun=plogis,
fun.at=c(0.05, seq(0.1, 0.9, by=0.1), 0.95),
funlabel="Pr(died)"))

590

Points
0 10 20 30 40 50 60 70 80 90 100

intubated
0

1

resection
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Total Points
0 20 40 60 80 120 160 200

Linear Predictor
−4.5 −3.5 −2.5 −1.5 −0.5 0.5 1 1.5 2

Pr(died)
0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Again, we see that the effect of intubation is enormous, compared to the effect of resection.
Another way to see this is to plot the effect sizes directly.

21.4.3 Effect Sizes from Model E

plot(summary(res_modE))

591

Odds Ratio

0.75 20.00 40.00 60.00 80.00

intubated − 1 : 0

resection − 4 : 2

summary(res_modE)

Effects Response : died

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
intubated 0 1 1 2.8640 0.64790 1.59410 4.1338
Odds Ratio 0 1 1 17.5310 NA 4.92390 62.4160
resection 2 4 2 1.0949 0.53783 0.04082 2.1491
Odds Ratio 2 4 2 2.9890 NA 1.04170 8.5769

21.4.4 Plot In-Sample Predictions for Model E

Here are plots of the effects across the range of each predictor (holding the other constant) on
the log odds scale.

ggplot(Predict(res_modE))

592

−6

−4

−2

0

intubated

lo
g

od
ds

−6

−4

−2

0

1 2 3 4 5
resection

lo
g

od
ds

We can also capture and plot these results on the probability scale, as follows.

ggplot(Predict(res_modE, fun = plogis))

593

0.0

0.2

0.4

0.6

intubated

0.0

0.2

0.4

0.6

1 2 3 4 5
resection

21.4.5 ANOVA for Model E

anova(res_modE)

Wald Statistics Response: died

Factor Chi-Square d.f. P
intubated 19.54 1 <.0001
resection 4.14 1 0.0418
TOTAL 25.47 2 <.0001

21.4.6 Validation of Model E

validate(res_modE, method="boot", B=40)

index.orig training test optimism index.corrected n
Dxy 0.7340 0.6896 0.7326 -0.0430 0.7771 40
R2 0.4128 0.3814 0.4025 -0.0211 0.4339 40
Intercept 0.0000 0.0000 0.1367 -0.1367 0.1367 40

594

Slope 1.0000 1.0000 1.0472 -0.0472 1.0472 40
Emax 0.0000 0.0000 0.0369 0.0369 0.0369 40
D 0.2408 0.2183 0.2339 -0.0157 0.2565 40
U -0.0149 -0.0149 -0.0001 -0.0148 -0.0001 40
Q 0.2558 0.2332 0.2340 -0.0009 0.2566 40
B 0.0727 0.0727 0.0759 -0.0032 0.0759 40
g 1.3970 1.3391 1.3577 -0.0186 1.4156 40
gp 0.1597 0.1446 0.1563 -0.0117 0.1714 40

Our bootstrap validated assessments of discrimination and goodness of fit look somewhat more
reasonable now.

21.4.7 Do any points seem particularly influential?

As a last step, I’ll look at influence, and residuals, associated with model E.

inf.E <- which.influence(res_modE, cutoff=0.3)

inf.E

$Intercept
[1] 84 94

$resection
[1] 84 94

show.influence(inf.E, dframe = data.frame(resect))

Count resection
84 2 *2
94 2 *6

21.4.8 Fitting Model E using glm to get plots about influence

res_modEglm <- glm(died ~ intubated + resection,
data=resect, family="binomial")

par(mfrow=c(1,2))
plot(res_modEglm, which=c(4:5))

595

0 40 80 120

0.
00

0.
10

Obs. number

C
oo

k'
s

di
st

an
ce

Cook's distance
94

84

55

0.00 0.04 0.08

−
2

0
2

4
6

Leverage
S

td
. P

ea
rs

on
 r

es
id

.

Cook's distance

0.5

1

Residuals vs Leverage

94

84

55

Using this glm residuals approach, we again see that points 84 and 94 have the largest influence
on our model E.

21.5 Concordance: Comparing Model C, D and E’s predictions

To start, we’ll gather the predictions made by each model (C, D and E) on the probability
scale, in one place. Sadly, augment from broom doesn’t work well with lrm fits, so we have to
do this on our own.

resect_preds <- resect |>
mutate(C = predict(res_modC, type = "fitted"),

D = predict(res_modD, type = "fitted"),
E = predict(res_modE, type = "fitted"))

head(resect_preds)

A tibble: 6 x 9
subj_id age prior resection intubated died C D E

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 34 1 2.5 0 0 0.0705 0.0632 0.0367

596

2 2 57 0 5 0 0 0.326 0.0620 0.130
3 3 60 1 4 1 1 0.187 0.791 0.603
4 4 62 1 4.2 0 0 0.211 0.158 0.0881
5 5 28 0 6 1 1 0.504 0.711 0.819
6 6 52 0 3 0 0 0.0990 0.0737 0.0477

And now, we’ll use the pivot_longer() function from the tidyr package (part of the tidyverse)
to arrange the models and predicted probabilities in a more useful manner for plotting.

res_p <- resect_preds |>
pivot_longer(cols = 7:9, names_to = "model", values_to = "prediction") |>
select(subj_id, died, model, prediction)

head(res_p)

A tibble: 6 x 4
subj_id died model prediction

<dbl> <dbl> <chr> <dbl>
1 1 0 C 0.0705
2 1 0 D 0.0632
3 1 0 E 0.0367
4 2 0 C 0.326
5 2 0 D 0.0620
6 2 0 E 0.130

Here’s the resulting plot.

ggplot(res_p, aes(x = factor(died), y = prediction,
group = model, col = model)) +

geom_jitter(width = 0.25) +
geom_hline(yintercept = 0.5) +
facet_wrap(~ model) +
guides(color = "none") +
labs(title = "Comparing Predictions for our Three Models",

subtitle = "A graphical view of concordance",
x = "Actual mortality status (1 = died)",
y = "Predicted probability of death")

597

C D E

0 1 0 1 0 1

0.0

0.2

0.4

0.6

0.8

Actual mortality status (1 = died)

P
re

di
ct

ed
 p

ro
ba

bi
lit

y
of

 d
ea

th

A graphical view of concordance

Comparing Predictions for our Three Models

We could specify a particular rule, for example: if the predicted probability of death is 0.5 or
greater, then predict “Died”.

res_p$rule.5 <- ifelse(res_p$prediction >= 0.5,
"Predict Died", "Predict Alive")

ftable(table(res_p$model, res_p$rule.5, res_p$died))

0 1

C Predict Alive 114 16
Predict Died 3 1

D Predict Alive 113 7
Predict Died 4 10

E Predict Alive 114 8
Predict Died 3 9

And perhaps build the linked table of row probabilities…

round(100*prop.table(
ftable(table(res_p$model, res_p$rule.5, res_p$died))

598

,1),2)

0 1

C Predict Alive 87.69 12.31
Predict Died 75.00 25.00

D Predict Alive 94.17 5.83
Predict Died 28.57 71.43

E Predict Alive 93.44 6.56
Predict Died 25.00 75.00

For example, in model E, 93.44% of those predicted to be alive actually survived, and 75% of
those predicted to die actually died.

• Model D does a little better in one direction (94.17% of those predicted by Model D to
be alive actually survived) but worse in the other (71.43% of those predicted by Model
D to die actually died.)

• Model C does worse than each of the others in both predicting those who survive and
those who die.

Note that the approaches discussed here would be useful if we had a new sample to predict on,
as well. We could then compare the errors for that new data made by this sort of classification
scheme either graphically or in a table.

21.6 Conclusions

It appears that intubated status and, to a lesser degree, the extent of the resection both
play a meaningful role in predicting death associated with tracheal carina resection surgery.
Patients who are intubated are associated with worse outcomes (greater risk of death) and
more extensive resections are also associated with worse outcomes.

599

22 Estimating and Interpreting Effect Sizes

22.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(knitr)
library(rms)
library(tidyverse)

theme_set(theme_bw())

22.1.1 Data Load

Consider the smalldat.csv data available on our site, which is modeled on the public Fram-
ingham data set available from BIOLINCC1. From the BIOLINCC documentation:

The Framingham Heart Study is a long term prospective study of the etiology of
cardiovascular disease among a population of free living subjects in the community
of Framingham, Massachusetts. The Framingham Heart Study was a landmark
study in epidemiology in that it was the first prospective study of cardiovascular
disease and identified the concept of risk factors and their joint effects.

smalldat <- read_csv("data/smalldat.csv", show_col_types = FALSE)

22.2 Available Variables

The smalldat data contains 150 observations on the following variables2:

1The Framingham data from this source are not appropriate for publication or project use because they have
been anonymized by permuting the results of individual subjects.

2The educ levels are: 1_Low, 2_Middle, 3_High and 4_VHigh, which stands for Very High

600

https://biolincc.nhlbi.nih.gov/teaching/

Variable Description
subject Subject identification code
smoker 1 = current smoker, 0 = not current smoker
totchol total cholesterol, in mg/dl
age age in years
sex subject’s sex (M or F)
educ subject’s educational attainment (4 levels)

ggplot(smalldat, aes(x = totchol)) +
geom_histogram(bins = 15, col = "white", fill = "dodgerblue")

0

5

10

15

150 200 250 300 350
totchol

co
un

t

22.3 Effect Interpretation in A Linear Regression Model

m1 <- lm(totchol ~ age + sex + factor(educ),
data = smalldat)

kable(tidy(m1, conf.int = TRUE), digits = 3)

601

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 171.197 20.201 8.475 0.000 131.268 211.126
age 1.202 0.367 3.270 0.001 0.475 1.928
sexM 3.612 6.441 0.561 0.576 -9.119 16.343
factor(educ)2_Middle 11.044 7.702 1.434 0.154 -4.180 26.268
factor(educ)3_High -2.459 9.390 -0.262 0.794 -21.019 16.101
factor(educ)4_VHigh 10.927 9.780 1.117 0.266 -8.405 30.258

1. What is the effect of age on totchol in Model m1?

temp.a <- tidy(m1, conf.int = TRUE) %>%
filter(term == "age")

kable(temp.a, digits = 3)

term estimate std.error statistic p.value conf.low conf.high
age 1.202 0.367 3.27 0.001 0.475 1.928

The coefficient of the age effect on totchol is 1.202. Suppose we have two subjects, Doris and
Emily, who are the same sex and have the same level of education, but Doris is one year older
than Emily. Our model predicts that Doris’ total cholesterol will be 1.202 mg/dl higher than
Emily’s.

The 95% confidence interval for this estimated age coefficient is (0.475, 1.928), so holding
everything else constant, it seems that older age is associated with higher totchol in this
model.

2. What is the effect of sex on totchol in Model m1?

temp.s <- tidy(m1, conf.int = TRUE) %>%
filter(term == "sexM")

kable(temp.s, digits = 3)

term estimate std.error statistic p.value conf.low conf.high
sexM 3.612 6.441 0.561 0.576 -9.119 16.343

The model is parametrized to incorporate the sex information with an indicator (and factor)
variable called sexM which is interpreted as taking the value 1 when sex = M, and 0 otherwise.
The coefficient of the sexM effect on totchol is 3.612. Suppose we have two subjects, David

602

and Emily, who are the same age, have the same level of education, but David is male and
Emily is female. Our model predicts that David’s total cholesterol will be 3.612 mg/dl higher
than Emily’s.

The 95% confidence interval for this estimated sexM coefficient is (-9.119, 16.343), which
suggests that the effect of sex on totchol could be quite small, and that the data are consistent
with a wide range of estimates for the sexM effect, some of which are negative.

3. What is the effect of educ on totchol in Model m1?

The educ variable splits the subjects into four categories. In this model the “1_Low” category
is used as the baseline, and we have estimates for “2_Middle” (as compared to “1_Low”), for
“3_High” (as compared to “1_Low”) and for “4_VHigh” (as compared to “1_Low”.)

temp.ed <- tidy(m1, conf.int = TRUE) %>%
filter(term %in% c("factor(educ)2_Middle",

"factor(educ)3_High",
"factor(educ)4_VHigh"))

kable(temp.ed,
digits = 3)

term estimate std.error statistic p.value conf.low conf.high
factor(educ)2_Middle 11.044 7.702 1.434 0.154 -4.180 26.268
factor(educ)3_High -2.459 9.390 -0.262 0.794 -21.019 16.101
factor(educ)4_VHigh 10.927 9.780 1.117 0.266 -8.405 30.258

The coefficient of the educ effect comparing the “2_Middle” group to the baseline “1_Low”
group on totchol is 11.044.

Note that none of the educ levels show especially large differences from the baseline group,
and each of their 95% confidence intervals contains zero.

• Suppose we have two subjects, Lola and Mina, who are the same age, and the same sex,
but Lola is in the “1_Low” education group and Mina is in the “2_Middle” education
group.

• Our model predicts that Mina’s total cholesterol will be 11.044 mg/dl higher than Lola’s.

The coefficient of the educ effect comparing the “3_High” group to the baseline “1_Low”
group on totchol is -2.459.

• Suppose we have two subjects, Lola and Heidi, who are the same age, and the same sex,
but Lola is in the “1_Low” education group and Heidi is in the “3_High” education
group.

603

• Our model predicts that Heidi’s total cholesterol will be 2.459 mg/dl lower than Lola’s.

Finally, the coefficient of the educ effect comparing the “4_VHigh” group to the baseline
“1_Low” group on totchol is 10.927.

• Suppose we have two subjects, Lola and Vera, who are the same age, and the same sex,
but Lola is in the “1_Low” education group and Vera is in the “4_VHigh” education
group.

• Our model predicts that Vera’s total cholesterol will be 10.927 mg/dl higher than Lola’s.

22.4 Making a prediction and building a prediction interval with an
lm fit

Suppose we want to use m1 to make a prediction for Lola and Vera, who we’ll now assume
are each Female and 30 years of age, and we want to accompany this with a 90% prediction
interval for each subject. Here’s one way to do that.

new1 <- tibble(
name = c("Lola", "Vera"),
age = c(30, 30),
sex = c("F", "F"),
educ = c("1_Low", "4_VHigh")

)

new1

A tibble: 2 x 4
name age sex educ
<chr> <dbl> <chr> <chr>

1 Lola 30 F 1_Low
2 Vera 30 F 4_VHigh

res1 <- predict(m1, newdata = new1,
interval = "prediction", level = 0.9)

res1

fit lwr upr
1 207.2456 142.322 272.1691
2 218.1725 152.387 283.9580

604

new1_aug <- bind_cols(new1, fit = res1[,"fit"],
pi90.lo = res1[,"lwr"],
pi90.hi = res1[,"upr"])

new1_aug

A tibble: 2 x 7
name age sex educ fit pi90.lo pi90.hi
<chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl>

1 Lola 30 F 1_Low 207. 142. 272.
2 Vera 30 F 4_VHigh 218. 152. 284.

22.5 What if we include a Spline or an Interaction?

Suppose we fit a new model to predict totchol using a five-knot spline in age and the interaction
of sex and educational attainment. How does that change our interpretation of the effect
sizes?

None of these coefficients show particularly large effects, and zero is contained in each of the
95% confidence intervals provided in the table summarizing model m2.

d <- datadist(smalldat); options(datadist = "d")

m2 <- ols(totchol ~ rcs(age, 5) + sex*catg(educ),
data = smalldat, x = TRUE, y = TRUE)

kable(summary(m2), digits = 2)

Low High Diff. Effect S.E.
Lower
0.95

Upper
0.95 Type

age 42 57 15 9.99 9.40 -8.59 28.57 1
sex - M:F 1 2 NA 9.11 9.87 -10.41 28.64 1
educ -
2_Middle:1_Low

1 2 NA 11.36 9.81 -8.04 30.76 1

educ -
3_High:1_Low

1 3 NA 7.80 12.41 -16.73 32.34 1

educ -
4_VHigh:1_Low

1 4 NA 16.17 14.63 -12.75 45.10 1

605

The kable approach I used in these notes hides the adjusted values specified at the bottom of
the summary table for this ols model, but they are Adjusted to: sex=F educ=1_Low.

Now, how do we interpret these model m2 results?

plot(summary(m2))

totchol

−20 0 10 20 30 40 50

age − 57 : 42

sex − M:F

educ − 2_Middle:1_Low

educ − 3_High:1_Low

educ − 4_VHigh:1_Low

Adjusted to:sex=F educ=1_Low

• The age interpretation is that if we have two subjects, Al and Bob, who are the same
sex and have the same education level, but Al is age 42 and Bob is age 57, then model
m2 projects that Bob’s totchol will be 9.993 mg/dl higher than will Al’s.

• Because of the interaction between sex and educ in our model m2, we must select an
educ level in order to cleanly interpret the effect of sex on totchol. The sex - M:F
interpretation compares M(ale) to F(emale) sex while requiring3 that educ = 1_Low.
The result is that if we have two subjects, Carl and Diane, who are the same age and
each is in the low education group, but Carl is Male and Diane is Female, then model m2
predicts that Carl’s totchol will be 9.115 mg/dl higher than will Diane’s.

• Because of the interaction between sex and educ in our model m2, we must select a sex in
order to cleanly interpret the effect of educ on totchol. The educ - 2_Middle:1_Low
term, for instance, compares “2_Middle” education to “1_Low” education while requir-
ing that sex is Female4. The result is that if we have two subjects, Lola and Mina, who

3We know this because of the Adjusted to: sex = F, educ=1_Low note at the bottom of the summary output
for the ols model.

4Again, we know this because of the Adjusted to: sex = F, educ=1_Low note.

606

are the same age and each is Female, but Lola is in the “1_Low” education group and
Mina is in the “2_Middle” education group, then model m2 predicts that Mina’s totchol
will be 11.363 mg/dl higher than will Lola’s.

Here is a nomogram of model m2.

plot(nomogram(m2))

Points
0 10 20 30 40 50 60 70 80 90 100

age
35 40 45

55

60 65 70sex
(educ=1_Low) F

M

sex
(educ=2_Middle) F

M

sex
(educ=3_High)M

F

sex
(educ=4_VHigh) M

F

Total Points
0 10 30 50 70 90 110 130Linear Predictor

190 200 210 220 230 240 250 260 270

22.6 Making a prediction and building a prediction interval with an
ols fit

Suppose we want to use m2 to make a prediction for Lola and Vera, who we’ll again assume
are each Female and 30 years of age, and we want to accompany this with a 90% prediction
interval for each subject. Here’s one way to do that.

res2_lola <- Predict(m2,
age = 30, sex = "F", educ = "1_Low",
conf.int = 0.90,
conf.type = "individual")

res2_lola

607

age sex educ yhat lower upper
1 30 F 1_Low 176.7746 96.77241 256.7768

Response variable (y): totchol

Limits are 0.9 confidence limits

res2_vera <- Predict(m2,
age = 30, sex = "F", educ = "4_VHigh",
conf.int = 0.90,
conf.type = "individual")

res2_vera

age sex educ yhat lower upper
1 30 F 4_VHigh 192.9483 112.3727 273.5238

Response variable (y): totchol

Limits are 0.9 confidence limits

22.7 Effect Estimates in A Logistic Regression fit with glm

In a binary logistic model, where we predict the log odds of smoking (smoker = 1), we will
exponentiate so as to interpret the odds ratio estimates associated with each coefficient.

m3 <- glm(smoker ~ age + sex + factor(educ),
data = smalldat, family = binomial)

kable(tidy(m3, exponentiate = TRUE, conf.int = TRUE),
digits = 3)

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 19.054 1.152 2.557 0.011 2.082 195.209
age 0.943 0.021 -2.782 0.005 0.903 0.982
sexM 1.795 0.356 1.643 0.100 0.897 3.637
factor(educ)2_Middle 0.690 0.428 -0.866 0.386 0.295 1.589
factor(educ)3_High 0.725 0.519 -0.619 0.536 0.258 2.005
factor(educ)4_VHigh 0.339 0.571 -1.895 0.058 0.105 1.008

608

term estimate std.error statistic p.value conf.low conf.high

1. What is the effect of age on the odds of being a smoker in Model m3?

temp.3a <- tidy(m3, exponentiate = TRUE, conf.int = TRUE) %>%
filter(term == "age")

kable(temp.3a, digits = 3)

term estimate std.error statistic p.value conf.low conf.high
age 0.943 0.021 -2.782 0.005 0.903 0.982

The estimated odds ratio for the age effect on smoker is 0.943. Suppose we have two subjects,
Doris and Emily, who are the same sex and have the same level of education, but Doris is one
year older than Emily. Our model predicts that Doris’ odds of smoking will be 0.943 times as
high as Emily’s. Another way to write this would be that Doris’ odds of smoking are estimated
to be 94.3% of Emily’s. Yet another way would be to state that Doris’ odds of smoking are
estimated to be 5.7% smaller than Emily’s odds.

The 95% confidence interval for this estimated odds ratio for the age effect on being a smoker
is (0.903, 0.982). This confidence interval for the odds ratio does not include one, and again we
see that holding everything else constant, older age is associated with detectably lower odds
of being a smoker in this model.

2. What is the effect of sex on the odds of being a smoker in Model m3?

temp.3s <- tidy(m3, exponentiate = TRUE, conf.int = TRUE) %>%
filter(term == "sexM")

kable(temp.3s, digits = 3)

term estimate std.error statistic p.value conf.low conf.high
sexM 1.795 0.356 1.643 0.1 0.897 3.637

The model incorporates the sex information with an indicator (and factor) variable called sexM
which is interpreted as taking the value 1 when sex = M, and 0 otherwise. The estimated
odds ratio describing the sexM effect on being a smoker is 1.795. Suppose we have two
subjects, David and Emily, who are the same age, have the same level of education, but David
is male and Emily is female. Our model predicts that David’s odds of being a smoker are
1.795 times the odds that Emily is a smoker, or equivalently, that David’s odds are 179.5%

609

of Emily’s odds. Another equivalent statement would be that David’s odds are 79.5% larger
than Emily’s odds.

The 95% confidence interval for the odds ratio estimate of the effect of sexM on being a smoker
is (0.897, 3.637). The effect of sex on the odds of being a smoker appears modest, and 1 is
included in the confidence interval.

3. What is the effect of educ on the odds of being a smoker in Model m3?

Again, the educ variable splits the subjects into four categories. In this model the “1_Low”
category is used as the baseline, and we have estimates for “2_Middle” (as compared to
“1_Low”), for “3_High” (as compared to “1_Low”) and for “4_VHigh” (as compared to
“1_Low”.)

temp.3ed <- tidy(m3, exponentiate = TRUE, conf.int = TRUE) %>%
filter(term %in% c("factor(educ)2_Middle",

"factor(educ)3_High",
"factor(educ)4_VHigh"))

kable(temp.3ed,
digits = 3)

term estimate std.error statistic p.value conf.low conf.high
factor(educ)2_Middle 0.690 0.428 -0.866 0.386 0.295 1.589
factor(educ)3_High 0.725 0.519 -0.619 0.536 0.258 2.005
factor(educ)4_VHigh 0.339 0.571 -1.895 0.058 0.105 1.008

The estimated odds ratio describing the effect of educ being “2_Middle” instead of the baseline
“1_Low” on the odds of being a smoker is 0.69, for people of the same age and sex.

No educ levels show meaningful differences from the baseline group, and their 95% confidence
intervals all include 1, although the comparison of 4_VHigh to 1_Low only barely includes
1.

• Suppose we have two subjects, Lola and Mina, who are the same age, and the same sex,
but Lola is in the “1_Low” education group and Mina is in the “2_Middle” education
group.

• Our model predicts that Mina’s odds of being a smoker will be 0.69 times the odds of
Lola being a smoker.

The estimated odds ratio comparing the educ = “3_High” group to the baseline educ =
“1_Low” group on smoker is 0.725.

610

• Suppose we have two subjects, Lola and Heidi, who are the same age, and the same sex,
but Lola is in the “1_Low” education group and Heidi is in the “3_High” education
group.

• Our model predicts that Heidi’s odds of being a smoker will be 0.725 times the odds of
Lola being a smoker.

Finally, The estimated odds ratio comparing the educ = “4_VHigh” group to the baseline
educ = “1_Low” group on smoker is 0.339.

• Suppose we have two subjects, Lola and Vera, who are the same age, and the same sex,
but Lola is in the “1_Low” education group and Vera is in the “4_VHigh” education
group.

• Our model predicts that Vera’s odds of being a smoker will be 0.339 times the odds of
Lola being a smoker.

22.8 Estimates in The Same Logistic Regression fit with lrm

When we fit the same model as m3 using lrm, we get identical results as we get from the glm fit
for the categorical predictors, but there’s a change in how the odds ratio for the quantitative
predictor (age) is presented.

d <- datadist(smalldat); options(datadist = "d")

m3.lrm <- lrm(smoker ~ age + sex + educ,
data = smalldat, x = TRUE, y = TRUE)

kable(summary(m3.lrm), digits = 3)

Low High Diff. Effect S.E.
Lower
0.95

Upper
0.95 Type

age 42 57 15 -0.885 0.318 -1.508 -0.261 1
Odds Ratio 42 57 15 0.413 NA 0.221 0.770 2
sex - M:F 1 2 NA 0.585 0.356 -0.113 1.283 1
Odds Ratio 1 2 NA 1.795 NA 0.893 3.607 2
educ -
2_Middle:1_Low

1 2 NA -0.370 0.428 -1.209 0.468 1

Odds Ratio 1 2 NA 0.690 NA 0.299 1.596 2
educ -
3_High:1_Low

1 3 NA -0.321 0.519 -1.338 0.696 1

Odds Ratio 1 3 NA 0.725 NA 0.262 2.005 2

611

Low High Diff. Effect S.E.
Lower
0.95

Upper
0.95 Type

educ -
4_VHigh:1_Low

1 4 NA -1.082 0.571 -2.201 0.037 1

Odds Ratio 1 4 NA 0.339 NA 0.111 1.038 2

Note that the odds ratio effect sizes and confidence intervals are identical to what we saw in
the glm fit for the sex and educ variables here, but the age result is presented differently.

• The age interpretation is that if we have two subjects, Al and Bob, who are the same
sex and have the same education level, but Al is age 42 and Bob is age 57, then model
m3 projects that Bob’s odds of being a smoker will be 0.413 times Al’s odds of being a
smoker. Bob’s odds are 41.3% as large as Al’s, equivalently.

• After adjustment for sex and educ, increasing age appears to be associated with decreas-
ing odds of smoking. Note, too, that the effect of age on the odds of being a smoker has
a confidence interval for the odds ratio entirely below 1.

plot(summary(m3.lrm))

Odds Ratio

0.10 1.00 2.00 3.00 4.00

age − 57 : 42

sex − M:F

educ − 2_Middle:1_Low

educ − 3_High:1_Low

educ − 4_VHigh:1_Low

612

22.9 Estimates in A New Logistic Regression fit with lrm

Now, suppose we fit a new model to predict the log odds of being a smoker using a five-knot
spline in age and the interaction of sex and educational attainment. How does that change
our interpretation of the effect sizes?

d <- datadist(smalldat); options(datadist = "d")

m4 <- lrm(smoker ~ rcs(age,5) + sex * catg(educ),
data = smalldat, x = TRUE, y = TRUE)

kable(summary(m4), digits = 3)

Low High Diff. Effect S.E.
Lower
0.95

Upper
0.95 Type

age 42 57 15 -0.817 0.538 -1.872 0.237 1
Odds Ratio 42 57 15 0.442 NA 0.154 1.268 2
sex - M:F 1 2 NA 1.487 0.583 0.345 2.629 1
Odds Ratio 1 2 NA 4.422 NA 1.412 13.853 2
educ -
2_Middle:1_Low

1 2 NA 0.668 0.546 -0.402 1.739 1

Odds Ratio 1 2 NA 1.951 NA 0.669 5.690 2
educ -
3_High:1_Low

1 3 NA 0.019 0.699 -1.351 1.389 1

Odds Ratio 1 3 NA 1.019 NA 0.259 4.011 2
educ -
4_VHigh:1_Low

1 4 NA -1.541 1.159 -3.813 0.731 1

Odds Ratio 1 4 NA 0.214 NA 0.022 2.078 2

Again, the kable approach I used in these notes hides the adjusted values specified at the
bottom of the summary table for this lrm model (model m4), but they are Adjusted to:
sex=F educ=1_Low.

Now, how do we interpret these model m4 results?

plot(summary(m4))

613

Odds Ratio

0.10 4.00 8.00 12.00 16.00 20.00

age − 57 : 42

sex − M:F

educ − 2_Middle:1_Low

educ − 3_High:1_Low

educ − 4_VHigh:1_Low

Adjusted to:sex=F educ=1_Low

• The age interpretation is that if we have two subjects, Al and Bob, who are the same
sex and have the same education level, but Al is age 42 and Bob is age 57, then model
m4 projects that Bob’s odds of being a smoker will be 0.442 times Al’s odds of being a
smoker. Equivalently, Bob’s odds are 44.2% as large as Al’s.

• Because of the interaction between sex and educ in our model m4, we must select an
educ level in order to cleanly interpret the effect of sex on smoker. The sex - M:F
interpretation compares M(ale) to F(emale) sex while requiring5 that educ = 1_Low.
The result is that if we have two subjects, Carl and Diane, who are the same age and
each is in the low education group, but Carl is Male and Diane is Female, then model m4
predicts that Carl’s odds of being a smoker will be 4.422 times the odds for Diane.

• Because of the interaction between sex and educ in our model m4, we must select a sex in
order to cleanly interpret the effect of educ on totchol. The educ - 2_Middle:1_Low
term, for instance, compares “2_Middle” education to “1_Low” education while requir-
ing that sex is Female6. The result is that if we have two subjects, Lola and Mina, who
are the same age and each is Female, but Lola is in the “1_Low” education group and
Mina is in the “2_Middle” education group, then model m4 predicts that Mina’s odds
of being a smoker will be 1.951 times Lola’s odds, or, equivalently, that Mina will have
95.1% higher odds than Lola.

It should be easy to see that one is contained in each of the 95% confidence intervals summa-
rizing model m4 except for the one for the main effect of sex, but we might also consider the

5We know this because of the Adjusted to: sex = F, educ=1_Low note at the bottom of the summary output.
6Adjusted to: sex = F, educ=1_Low tells us this.

614

impact of the interaction term, as described by the anova result for model m4.

anova(m4)

Wald Statistics Response: smoker

Factor Chi-Square d.f. P
age 8.34 4 0.0799
Nonlinear 1.78 3 0.6196
sex (Factor+Higher Order Factors) 12.64 4 0.0132
All Interactions 10.48 3 0.0149
educ (Factor+Higher Order Factors) 12.43 6 0.0531
All Interactions 10.48 3 0.0149
sex * educ (Factor+Higher Order Factors) 10.48 3 0.0149
TOTAL NONLINEAR + INTERACTION 12.60 6 0.0498
TOTAL 21.69 11 0.0269

Finally, here is a nomogram of model m4.

plot(nomogram(m4, fun = plogis))

Points
0 10 20 30 40 50 60 70 80 90 100

age
35 40

70 65 60 55 45

sex
(educ=1_Low) F

M

sex
(educ=2_Middle) M

F

sex
(educ=3_High) F

M

sex
(educ=4_VHigh)F

M

Total Points
0 20 40 60 80 120 160 200Linear Predictor
−4 −3 −2 −1 0 1 2Predicted Value

0.1 0.2 0.3 0.40.50.6 0.7 0.8

615

23 Colorectal Cancer Screening and Some
Special Cases

In this Chapter, we discuss two issues not yet raised regarding regression on a binary out-
come.

1. What do we do if our binary outcome is not available for each subject individually, but
instead aggregated?

2. What is probit regression, and how can we use it as an alternative to logistic regression
on a binary outcome?

23.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(broom)
library(rms)
library(tidyverse)

theme_set(theme_bw())

23.2 Data Load

colscr <- read_csv("data/screening.csv", show_col_types = FALSE)
colscr2 <- read_csv("data/screening2.csv", show_col_types = FALSE)

616

23.3 Logistic Regression for Aggregated Data

23.3.1 Colorectal Cancer Screening Data

The screening.csv data (imported into the R tibble colscr are simulated. They mirror
a subset of the actual results from the Better Health Partnership’s pilot study of colorectal
cancer screening in primary care clinics in Northeast Ohio, but the numbers have been fuzzed
slightly, and the clinics have been de-identified and moved around from system to system.

Available to us are the following variables:

Variable Description
location clinic code
subjects number of subjects reported by clinic

screen_rate proportion of subjects who were screened
screened number of subjects who were screened

notscreened number of subjects not screened
meanage mean age of clinic’s subjects, years
female % of clinic’s subjects who are female

pct_lowins % of clinic’s subjects who have Medicaid or are uninsured
system system code

describe(colscr)

colscr

9 Variables 26 Observations
--
location

n missing distinct
26 0 26

lowest : A B C D E, highest: V W X Y Z
--
subjects

n missing distinct Info Mean Gmd .05 .10
26 0 26 1 3247 2134 1249 1475
.25 .50 .75 .90 .95
1915 2766 3608 6523 7068

lowest : 803 1179 1459 1491 1512, highest: 5451 6061 6985 7095 7677

617

http://www.betterhealthpartnership.org/data_center/

--
screen_rate

n missing distinct Info Mean Gmd .05 .10
26 0 26 1 0.7659 0.08339 0.6682 0.6732
.25 .50 .75 .90 .95

0.7179 0.7579 0.8088 0.8654 0.8899

lowest : 0.63549 0.666667 0.672891 0.673452 0.686992
highest: 0.823713 0.846911 0.883875 0.891911 0.904911
--
screened

n missing distinct Info Mean Gmd .05 .10
26 0 26 1 2584 1895 843.5 993.0
.25 .50 .75 .90 .95

1395.2 2169.5 2716.0 5293.5 6107.2

lowest : 572 794 992 994 1088, highest: 4818 4848 5739 6230 6947
--
notscreened

n missing distinct Info Mean Gmd .05 .10
26 0 26 1 663.2 303.5 336.0 352.5
.25 .50 .75 .90 .95

508.8 611.0 791.0 989.0 1172.5

lowest : 231 335 339 366 371, highest: 881 927 1051 1213 1356
--
meanage

n missing distinct Info Mean Gmd .05 .10
26 0 23 0.999 60.58 2.186 58.23 58.35
.25 .50 .75 .90 .95

58.82 60.50 61.98 62.50 62.90

lowest : 58 58.2 58.3 58.4 58.5, highest: 62.2 62.4 62.6 63 65.9
--
female

n missing distinct Info Mean Gmd .05 .10
26 0 23 0.999 58.72 7.118 46.93 48.45
.25 .50 .75 .90 .95

55.42 60.05 62.62 64.90 67.50

lowest : 46.2 46.6 47.9 49 54.3, highest: 63.6 64.1 65.7 68.1 70.3
--
pct_lowins

618

n missing distinct Info Mean Gmd .05 .10
26 0 24 0.999 24.47 22.12 0.675 1.800
.25 .50 .75 .90 .95

4.800 23.950 44.025 49.500 49.950

lowest : 0.3 0.4 1.5 2.1 3 , highest: 45.4 47.1 49.5 50.1 51.3
--
system

n missing distinct
26 0 4

Value Sys_1 Sys_2 Sys_3 Sys_4
Frequency 7 7 6 6
Proportion 0.269 0.269 0.231 0.231
--

23.3.2 Fitting a Logistic Regression Model to Proportion Data

Here, we have a binary outcome (was the subject screened or not?) but we have aggregated
results. We can use the counts of the numbers of subjects at each clinic (in subjects) and the
proportion who were screened (in screen_rate) to fit a logistic regression model, as follows:

m_screen1 <- glm(screen_rate ~ meanage + female +
pct_lowins + system, family = binomial,

weights = subjects, data = colscr)

summary(m_screen1)

Call:
glm(formula = screen_rate ~ meanage + female + pct_lowins + system,

family = binomial, data = colscr, weights = subjects)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.3270393 0.5530782 -2.399 0.0164 *
meanage 0.0679866 0.0089754 7.575 3.60e-14 ***
female -0.0193142 0.0015831 -12.200 < 2e-16 ***
pct_lowins -0.0134547 0.0008585 -15.672 < 2e-16 ***
systemSys_2 -0.1382189 0.0246591 -5.605 2.08e-08 ***
systemSys_3 -0.0400170 0.0254505 -1.572 0.1159

619

systemSys_4 0.0229273 0.0294207 0.779 0.4358

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2825.28 on 25 degrees of freedom
Residual deviance: 816.39 on 19 degrees of freedom
AIC: 1037.9

Number of Fisher Scoring iterations: 4

23.3.3 Fitting a Logistic Regression Model to Counts of Successes and Failures

m_screen2 <- glm(cbind(screened, notscreened) ~
meanage + female + pct_lowins + system,

family = binomial, data = colscr)
summary(m_screen2)

Call:
glm(formula = cbind(screened, notscreened) ~ meanage + female +

pct_lowins + system, family = binomial, data = colscr)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.3270392 0.5530782 -2.399 0.0164 *
meanage 0.0679866 0.0089754 7.575 3.60e-14 ***
female -0.0193142 0.0015831 -12.200 < 2e-16 ***
pct_lowins -0.0134547 0.0008585 -15.672 < 2e-16 ***
systemSys_2 -0.1382189 0.0246591 -5.605 2.08e-08 ***
systemSys_3 -0.0400170 0.0254505 -1.572 0.1159
systemSys_4 0.0229273 0.0294207 0.779 0.4358

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2825.28 on 25 degrees of freedom
Residual deviance: 816.39 on 19 degrees of freedom
AIC: 1037.9

620

Number of Fisher Scoring iterations: 4

23.3.4 How does one address this problem in rms?

We can use Glm. As an example to mirror m_screen1, we have the following…

d <- datadist(colscr)
options(datadist = "d")

mod_screen_1 <- Glm(screen_rate ~ meanage + female +
pct_lowins + system,

family = binomial, weights = subjects,
data = colscr, x = T, y = T)

mod_screen_1

General Linear Model

Glm(formula = screen_rate ~ meanage + female + pct_lowins + system,
family = binomial, data = colscr, weights = subjects, x = T,
y = T)

Model Likelihood
Ratio Test

Obs 26 LR chi2 2008.90
Residual d.f.19 d.f. 6

g 0.461 Pr(> chi2) <0.0001

Coef S.E. Wald Z Pr(>|Z|)
Intercept -1.3270 0.5531 -2.40 0.0164
meanage 0.0680 0.0090 7.57 <0.0001
female -0.0193 0.0016 -12.20 <0.0001
pct_lowins -0.0135 0.0009 -15.67 <0.0001
system=Sys_2 -0.1382 0.0247 -5.61 <0.0001
system=Sys_3 -0.0400 0.0255 -1.57 0.1159
system=Sys_4 0.0229 0.0294 0.78 0.4358

621

23.4 Probit Regression

23.4.1 Colorectal Cancer Screening Data on Individuals

The data in the colscr2 data frame describe (disguised) data on the status of 172 adults who
were eligible for colon cancer screening, with the following information included:

Variable Description
subject subject ID code

age subject’s age (years)
race subject’s race (White/Black/Other)

hispanic subject of Hispanic ethnicity (1 = yes / 0 = no)
insurance Commercial, Medicaid, Medicare, Uninsured

bmi body mass index at most recent visit
sbp systolic blood pressure at most recent visit

up_to_date meets colon cancer screening standards

The goal is to use the other variables (besides subject ID) to predict whether or not a subject
is up to date.

colscr2 %>% describe()

.

8 Variables 172 Observations
--
subject

n missing distinct Info Mean Gmd .05 .10
172 0 172 1 186.5 57.67 109.6 118.1
.25 .50 .75 .90 .95

143.8 186.5 229.2 254.9 263.4

lowest : 101 102 103 104 105, highest: 268 269 270 271 272
--
age

n missing distinct Info Mean Gmd .05 .10
172 0 19 0.995 57.8 5.536 51.00 52.00
.25 .50 .75 .90 .95

54.00 57.00 61.25 65.00 67.00

Value 51 52 53 54 55 56 57 58 59 60 61

622

Frequency 10 17 14 9 15 13 18 13 4 10 6
Proportion 0.058 0.099 0.081 0.052 0.087 0.076 0.105 0.076 0.023 0.058 0.035

Value 62 63 64 65 66 67 68 69
Frequency 11 4 5 7 6 3 4 3
Proportion 0.064 0.023 0.029 0.041 0.035 0.017 0.023 0.017

For the frequency table, variable is rounded to the nearest 0
--
race

n missing distinct
172 0 3

Value Black Other White
Frequency 118 9 45
Proportion 0.686 0.052 0.262
--
hispanic

n missing distinct Info Sum Mean Gmd
172 0 2 0.18 11 0.06395 0.1204

--
insurance

n missing distinct
172 0 4

Value Commercial Medicaid Medicare Uninsured
Frequency 32 81 46 13
Proportion 0.186 0.471 0.267 0.076
--
bmi

n missing distinct Info Mean Gmd .05 .10
172 0 165 1 31.24 8.982 20.32 21.88
.25 .50 .75 .90 .95

25.48 30.05 36.03 43.06 45.68

lowest : 17.2 17.59 17.85 18.09 18.44, highest: 49.41 50.83 53.28 54.66 55.41
--
sbp

n missing distinct Info Mean Gmd .05 .10
172 0 68 0.999 128.9 19.46 101.6 109.1
.25 .50 .75 .90 .95

118.0 127.0 138.0 150.9 162.0

623

lowest : 89 90 94 95 96, highest: 166 168 169 170 198
--
up_to_date

n missing distinct Info Sum Mean Gmd
172 0 2 0.717 104 0.6047 0.4809

--

23.4.2 A logistic regression model

Here is a logistic regression model.

m_scr2_logistic <- glm(up_to_date ~ age + race + hispanic +
insurance + bmi + sbp,

family = binomial, data = colscr2)

summary(m_scr2_logistic)

Call:
glm(formula = up_to_date ~ age + race + hispanic + insurance +

bmi + sbp, family = binomial, data = colscr2)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.7040470 2.7418625 0.986 0.3240
age 0.0204901 0.0396920 0.516 0.6057
raceOther -1.9722351 1.0023237 -1.968 0.0491 *
raceWhite -0.3210458 0.4001744 -0.802 0.4224
hispanic 0.0005855 0.7953482 0.001 0.9994
insuranceMedicaid -1.0151860 0.4945169 -2.053 0.0401 *
insuranceMedicare -0.5216006 0.5629935 -0.926 0.3542
insuranceUninsured 0.1099966 0.7906196 0.139 0.8893
bmi 0.0155894 0.0213547 0.730 0.4654
sbp -0.0241777 0.0099138 -2.439 0.0147 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

624

Null deviance: 230.85 on 171 degrees of freedom
Residual deviance: 210.55 on 162 degrees of freedom
AIC: 230.55

Number of Fisher Scoring iterations: 4

confint(m_scr2_logistic)

Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) -2.64274441 8.157738367
age -0.05703934 0.099298904
raceOther -4.24604744 -0.175953229
raceWhite -1.10800168 0.469396096
hispanic -1.53691431 1.688738936
insuranceMedicaid -2.03640881 -0.079142467
insuranceMedicare -1.66246932 0.564088260
insuranceUninsured -1.40110091 1.759391281
bmi -0.02568426 0.058563761
sbp -0.04436143 -0.005282686

In this model, there appears to be some link between sbp and screening, as well as, perhaps,
some statistically significant differences between some race groups and some insurance groups.
We won’t look at this much further for now, though. Instead, we’ll simply describe predictions
for two subjects, Harry and Sally.

23.4.3 Predicting status for Harry and Sally

• Harry is age 65, White, non-Hispanic, with Medicare insurance, a BMI of 28 and SBP
of 135.

• Sally is age 60, Black, Hispanic, with Medicaid insurance, a BMI of 22 and SBP of 148.

newdat_s2 <- tibble(subject = c("Harry", "Sally"),
age = c(65, 60),
race = c("White", "Black"),
hispanic = c(0, 1),
insurance = c("Medicare", "Medicaid"),
bmi = c(28, 22),
sbp = c(135, 148))

625

predict(m_scr2_logistic, newdata = newdat_s2,
type = "response")

1 2
0.5904364 0.4215335

The prediction for Harry is 0.59, and for Sally, 0.42, by this logistic regression model.

23.4.4 A probit regression model

Now, consider a probit regression, fit by changing the default link for the binomial family as
follows:

m_scr2_probit <- glm(up_to_date ~ age + race + hispanic +
insurance + bmi + sbp,

family = binomial(link = "probit"),
data = colscr2)

summary(m_scr2_probit)

Call:
glm(formula = up_to_date ~ age + race + hispanic + insurance +

bmi + sbp, family = binomial(link = "probit"), data = colscr2)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.584604 1.658489 0.955 0.3394
age 0.013461 0.024107 0.558 0.5766
raceOther -1.238445 0.587093 -2.109 0.0349 *
raceWhite -0.199260 0.243505 -0.818 0.4132
hispanic 0.029483 0.484819 0.061 0.9515
insuranceMedicaid -0.619277 0.293205 -2.112 0.0347 *
insuranceMedicare -0.322881 0.333549 -0.968 0.3330
insuranceUninsured 0.052776 0.463798 0.114 0.9094
bmi 0.009652 0.012887 0.749 0.4539
sbp -0.014696 0.005944 -2.472 0.0134 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

626

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 230.85 on 171 degrees of freedom
Residual deviance: 210.49 on 162 degrees of freedom
AIC: 230.49

Number of Fisher Scoring iterations: 4

confint(m_scr2_probit)

Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) -1.70739455 4.894713408
age -0.03400934 0.061437784
raceOther -2.53819772 -0.119812915
raceWhite -0.67910311 0.282566349
hispanic -0.92476109 1.011089937
insuranceMedicaid -1.21212866 -0.049749873
insuranceMedicare -0.99315267 0.329851215
insuranceUninsured -0.83335121 0.966504724
bmi -0.01577917 0.035632196
sbp -0.02659318 -0.003148488

23.4.5 Interpreting the Probit Model’s Coefficients

It is possible to use any number of link functions to ensure that predicted values in a generalized
linear model fall between 0 and 1. The probit regression model, for instance, uses the inverse
of the cumulative distribution function of the Normal model as its link function. Let’s look
more closely at the coefficients of the probit model we just fit.

m_scr2_probit$coef

(Intercept) age raceOther raceWhite
1.584603569 0.013461338 -1.238445198 -0.199260184

hispanic insuranceMedicaid insuranceMedicare insuranceUninsured
0.029483051 -0.619276718 -0.322880519 0.052775722

bmi sbp
0.009652339 -0.014695526

627

The probit regression coefficients give the change in the z-score of the outcome of interest
(here, up_to_date) for a one-unit change in the target predictor, holding all other predictors
constant.

• So, for a one-year increase in age, holding all other predictors constant, the z-score for
up_to_date increases by 0.013

• And for a Medicaid subject as compared to a Commercial subject of the same age, race,
ethnicity, bmi and sbp, the z-score for the Medicaid subject is predicted to be -0.619
lower, according to this model.

23.4.6 What about Harry and Sally?

Do the predictions for Harry and Sally change much with this probit model, as compared to
the logistic regression?

predict(m_scr2_probit, newdata = newdat_s2, type = "response")

1 2
0.5885511 0.4364027

628

24 Modeling a Count Outcome

In this chapter, and the next two chapters, I use a count outcome (# of poor physical health
days out of the last 30) in OHIO SMART data created in Chapter 6 to demonstrate regression
models for count outcomes.

Methods discussed in the chapter include:

• Ordinary Least Squares
• Poisson Regression
• Overdispersed Quasi-Poisson Regression

24.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(boot)
library(countreg)
library(topmodels)
library(GGally)
library(lmtest)
library(rms)
library(sandwich)
library(tidyverse)

theme_set(theme_bw())

24.2 Data Load

smart_oh <- readRDS("data/smart_ohio.Rds")

629

24.3 Creating A Useful Analytic Subset, ohioA

For this work, I’ll include the subset of all observations in smart_oh with complete data on
these 14 variables.

Variable Description
SEQNO Subject identification code

mmsa_name Name of statistical area
genhealth Five categories (E, VG, G, F, P) on general health
physhealth Now thinking about your physical health, which includes physical illness

and injury, for how many days during the past 30 days was your physical
health not good?

menthlth Now thinking about your mental health, which includes stress, depression,
and problems with emotions, for how many days during the past 30 days
was your mental health not good?

healthplan 1 if the subject has any kind of health care coverage, 0 otherwise
costprob 1 indicates Yes to “Was there a time in the past 12 months when you

needed to see a doctor but could not because of cost?”
agegroup 13 age groups from 18 through 80+
female 1 if subject is female

incomegroup 8 income groups from < 10,000 to 75,000 or more
bmi body-mass index

smoke100 1 if Yes to “Have you smoked at least 100 cigarettes in your entire life?”
alcdays # of days out of the past 30 on which the subject had at least one alcoholic

drink

ohioA <- smart_oh |>
select(SEQNO, mmsa_name, genhealth, physhealth,

menthealth, healthplan, costprob,
agegroup, female, incomegroup, bmi, smoke100,
alcdays) |>

drop_na()

24.3.1 Is age group associated with physhealth?

ggplot(ohioA, aes(x = agegroup, y = physhealth)) +
geom_violin(col = "blue")

630

0

10

20

30

18−24 25−29 30−34 35−39 40−44 45−49 50−54 55−59 60−64 65−69 70−74 75−79 80−96
agegroup

ph
ys

he
al

th

It’s hard to see much of anything here. The main conclusion seems to be that 0 is by far the
most common response.

Here’s a table by age group of:

• the number of respondents in that age group,
• the group’s mean physhealth response (remember that these are the number of poor

physical health days in the last 30),
• their median physhealth response (which turns out to be 0 in each group), and
• the percentage of group members who responded 0.

ohioA |> group_by(agegroup) |>
summarize(n = n(), mean = round(mean(physhealth),2),

median = median(physhealth),
percent_0s = round(100*sum(physhealth == 0)/n,1))

A tibble: 13 x 5
agegroup n mean median percent_0s
<fct> <int> <dbl> <dbl> <dbl>

1 18-24 297 2.31 0 59.6
2 25-29 259 2.53 0 66
3 30-34 296 2.14 0 69.3

631

4 35-39 366 3.67 0 63.9
5 40-44 347 4.18 0 62.8
6 45-49 409 4.46 0 63.3
7 50-54 472 4.76 0 60.4
8 55-59 608 6.71 0 57.1
9 60-64 648 5.9 0 57.6
10 65-69 604 6.09 0 56
11 70-74 490 4.89 0 61.6
12 75-79 338 6.38 0 54.1
13 80-96 374 6.1 0 56.4

We can see a real change between the 45-49 age group and the 50-54 age group. The mean
difference is clear from the table above, and the plot below (of the percentage with a zero
response) in each age group identifies the same story.

ohioA |> group_by(agegroup) |>
summarize(n = n(),

percent_0s = round(100*sum(physhealth == 0)/n,1)) |>
ggplot(aes(y = agegroup, x = percent_0s)) +
geom_label(aes(label = percent_0s)) +
labs(x = "% with no Bad Physical Health Days in last 30",

y = "Age Group")

59.6

66

69.3

63.9

62.8

63.3

60.4

57.1

57.6

56

61.6

54.1

56.4

18−24

25−29

30−34

35−39

40−44

45−49

50−54

55−59

60−64

65−69

70−74

75−79

80−96

55 60 65 70
% with no Bad Physical Health Days in last 30

A
ge

 G
ro

up

632

It looks like we have a fairly consistent result in the younger age range (18-49) or the older
range (50+). On the theory that most of the people reading this document are in that younger
range, we’ll focus on those respondents in what follows.

24.4 Exploratory Data Analysis (in the 18-49 group)

We want to predict the 0-30 physhealth count variable for the 18-49 year old respondents.

To start, we’ll use two predictors:

• the respondent’s body mass index, and
• whether the respondent has smoked 100 cigarettes in their lifetime.

We anticipate that each of these variables will have positive associations with the physhealth
score. That is, heavier people, and those who have used tobacco will be less healthy, and thus
have higher numbers of poor physical health days.

24.4.1 Build a subset of those ages 18-49

First, we’ll identify the subset of respondents who are between 18 and 49 years of age.

ohioA_young.raw <- ohioA |>
filter(agegroup %in% c("18-24", "25-29", "30-34",

"35-39", "40-44", "45-49")) |>
droplevels()

ohioA_young.raw |>
select(physhealth, bmi, smoke100, agegroup) |>
summary()

physhealth bmi smoke100 agegroup
Min. : 0.000 Min. :14.00 Min. :0.0000 18-24:297
1st Qu.: 0.000 1st Qu.:23.74 1st Qu.:0.0000 25-29:259
Median : 0.000 Median :27.32 Median :0.0000 30-34:296
Mean : 3.337 Mean :28.79 Mean :0.4189 35-39:366
3rd Qu.: 2.000 3rd Qu.:32.43 3rd Qu.:1.0000 40-44:347
Max. :30.000 Max. :75.52 Max. :1.0000 45-49:409

633

24.4.2 Centering bmi

I’m going to center the bmi variable to help me interpret the final models later.

ohioA_young <- ohioA_young.raw |>
mutate(bmi_c = bmi - mean(bmi))

Now, let’s look more closely at the distribution of these variables, starting with our outcome.

24.4.3 Distribution of the Outcome

What’s the distribution of physhealth?

ggplot(ohioA_young.raw, aes(x = physhealth)) +
geom_histogram(binwidth = 1, fill = "red", col = "white")

0

500

1000

0 10 20 30
physhealth

co
un

t

ohioA_young.raw |>
count(physhealth == 0, physhealth == 30)

A tibble: 3 x 3

634

`physhealth == 0` `physhealth == 30` n
<lgl> <lgl> <int>

1 FALSE FALSE 612
2 FALSE TRUE 98
3 TRUE FALSE 1264

Most of our respondents said zero, the minimum allowable value, although there is also a much
smaller bump at 30, the maximum value we will allow.

Dealing with this distribution is going to be a bit of a challenge. We will develop a series of
potential modeling approaches for this sort of data, but before we do that, let’s look at the
distribution of our other two variables, and the pairwise associations, in a scatterplot matrix.

24.4.4 Scatterplot Matrix

Now, here’s the scatterplot matrix for those 1974 subjects, using the centered bmi data cap-
tured in the bmi_c variable.

temp <- ohioA_young |> select(bmi_c, smoke100, physhealth)

ggpairs(temp)

Corr:

0.050*

Corr:

0.145***

Corr:

0.128***

bmi_c smoke100 physhealth

bm
i_c

sm
oke100

physhealth

0 20 40 0.00 0.25 0.50 0.75 1.00 0 10 20 30

0.00

0.02

0.04

0.06

0.00

0.25

0.50

0.75

1.00

0

10

20

30

635

So bmi_c and smoke100 each have modest positive correlations with physhealth and only a
very small correlation with each other. Here are some summary statistics for this final data.

24.4.5 Summary of the final subset of data

Remember that since the mean of bmi is 28.8, the bmi_c values are just bmi - 28.8 for each
subject.

ohioA_young |>
select(bmi, bmi_c, smoke100, physhealth) |>
summary()

bmi bmi_c smoke100 physhealth
Min. :14.00 Min. :-14.791 Min. :0.0000 Min. : 0.000
1st Qu.:23.74 1st Qu.: -5.051 1st Qu.:0.0000 1st Qu.: 0.000
Median :27.32 Median : -1.471 Median :0.0000 Median : 0.000
Mean :28.79 Mean : 0.000 Mean :0.4189 Mean : 3.337
3rd Qu.:32.43 3rd Qu.: 3.636 3rd Qu.:1.0000 3rd Qu.: 2.000
Max. :75.52 Max. : 46.729 Max. :1.0000 Max. :30.000

24.5 Modeling Strategies Explored Here

We are going to predict physhealth using bmi_c and smoke100.

• Remember that physhealth is a count of the number of poor physical health days in
the past 30.

• As a result, physhealth is restricted to taking values between 0 and 30.

We will demonstrate the use of each of the following regression models, some of which are
better choices than others.

1. Ordinary Least Squares (OLS) predicting physhealth
2. OLS predicting the logarithm of (physhealth + 1)
3. Poisson regression, which is appropriate for predicting counts
4. Poisson regression, adjusted to account for overdispersion

and, in Chapter 25:

5. Negative binomial regression, also used for counts and which adjusts for overdispersion

and, in Chapter 26:

636

6. Zero-inflated models, in both the Poisson and Negative Binomial varieties, which allow
us to fit counts that have lots of zero values

7. A “hurdle” model, which allows us to separately fit a model to predict the incidence of
“0” and then a separate model to predict the value of physhealth when we know it is
not zero

8. Tobit regression, where a lower (and upper) bound may be set, but the underlying model
describes a latent variable which can extend beyond these boundaries

24.5.1 What Will We Demonstrate?

With each approach, we will fit the model and specify procedures for doing so in R. Then we
will:

1. Specify the fitted model equation
2. Interpret the model’s coefficient estimates and 95% confidence intervals around those

estimates.
3. Perform a test of whether each variable adds value to the model, when the other one is

already included.
4. Store the fitted values and appropriate residuals for each model.
5. Summarize the model’s apparent 𝑅2 value, the proportion of variation explained, and

the model log likelihood.
6. Perform checks of model assumptions as appropriate.
7. Describe how predictions would be made for two new subjects.

• Harry has a BMI that is 10 kg/m2 higher than the average across all respondents
and has smoked more than 100 cigarettes in his life.

• Sally has a BMI that is 5 kg/m2 less than the average across all respondents and
has not smoked more than 100 cigarettes in her life.

In addition, for some of the new models, we provide a little of the mathematical background,
and point to other resources you can use to learn more about the model.

24.5.2 Extra Data File for Harry and Sally

To make our lives a little easier, I’ll create a little tibble containing the necessary data for
Harry and Sally.

hs_data <- tibble(subj = c("Harry", "Sally"),
bmi_c = c(10, -5), smoke100 = c(1, 0))

hs_data

637

A tibble: 2 x 3
subj bmi_c smoke100
<chr> <dbl> <dbl>

1 Harry 10 1
2 Sally -5 0

24.6 The OLS Approach

mod_ols1 <- lm(physhealth ~ bmi_c + smoke100,
data = ohioA_young)

summary(mod_ols1)

Call:
lm(formula = physhealth ~ bmi_c + smoke100, data = ohioA_young)

Residuals:
Min 1Q Median 3Q Max

-11.1472 -3.6639 -2.2426 -0.7807 28.8777

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.57046 0.21648 11.874 < 2e-16 ***
bmi_c 0.14437 0.02305 6.263 4.61e-10 ***
smoke100 1.83061 0.33469 5.470 5.09e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.328 on 1971 degrees of freedom
Multiple R-squared: 0.0356, Adjusted R-squared: 0.03462
F-statistic: 36.37 on 2 and 1971 DF, p-value: 3.072e-16

confint(mod_ols1)

2.5 % 97.5 %
(Intercept) 2.1459143 2.995005
bmi_c 0.0991636 0.189573
smoke100 1.1742213 2.486995

638

24.6.1 Interpreting the Coefficients

• The intercept, 2.57, is the predicted physhealth (in days) for a subject with average
BMI who has not smoked 100 cigarettes or more.

• The bmi_c coefficient, 0.144, indicates that for each additional kg/m2 of BMI, while
holding smoke100 constant, the predicted physhealth value increases by 0.144 day.

• The smoke100 coefficient, 1.83, indicates that a subject who has smoked 100 cigarettes
or more has a predicted physhealth value 1.83 days larger than another subject with
the same bmi but who has not smoked 100 cigarettes.

24.6.2 Store fitted values and residuals

We can use broom to do this. Here, for instance, is a table of the first six predictions and
residuals.

sm_ols_1 <- augment(mod_ols1, ohioA_young)

sm_ols_1 |> select(physhealth, .fitted, .resid) |> head()

A tibble: 6 x 3
physhealth .fitted .resid

<dbl> <dbl> <dbl>
1 0 2.13 -2.13
2 0 2.25 -2.25
3 0 3.14 -3.14
4 30 5.72 24.3
5 0 3.20 -3.20
6 0 3.83 -3.83

It turns out that 0 of the 1974 predictions that we make are below 0, and the largest prediction
made by this model is 11.15 days.

24.6.3 Specify the 𝑅2 and log(likelihood) values

The glance function in the broom package gives us the raw and adjusted 𝑅2 values, and the
model log(likelihood), among other summaries.

glance(mod_ols1) |> round(3)

639

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.036 0.035 7.33 36.4 0 2 -6731. 13470. 13492.
i 3 more variables: deviance <dbl>, df.residual <dbl>, nobs <dbl>

Here, we have

Model 𝑅2 log(likelihood)
OLS 0.036 -6730.98

24.6.4 Check model assumptions

Here is a plot of the residuals vs. the fitted values for this OLS model.

ggplot(sm_ols_1, aes(x = .fitted, y = .resid)) +
geom_point() +
labs(title = "Residuals vs. Fitted Values for OLS model")

−10

0

10

20

30

0 3 6 9
.fitted

.r
es

id

Residuals vs. Fitted Values for OLS model

As usual, we can check OLS assumptions (linearity, homoscedasticity and normality) with R’s
complete set of residual plots.

640

par(mfrow = c(2,2))
plot(mod_ols1)

2 4 6 8 10

−
10

0
10

20
30

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

3910261620

−3 −1 1 2 3

−
1

1
2

3
4

Theoretical Quantiles
S

ta
nd

ar
di

ze
d

re
si

du
al

s

Q−Q Residuals

3910261620

2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
3910261620

0.000 0.010 0.020

−
2

0
1

2
3

4

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

67719181968

par(mfrow = c(1,1))

We see the problem with our residuals. They don’t follow a Normal distribution.

641

24.6.5 Predictions for Harry and Sally

predict(mod_ols1, newdata = hs_data,
interval = "prediction")

fit lwr upr
1 5.844750 -8.541164 20.23067
2 1.848618 -12.529923 16.22716

The prediction for Harry is 5.8 days, and for Sally is 1.8 days. The prediction intervals for
each include some values below 0, even though 0 is the smallest possible value.

24.6.6 Notes

• This model could have been estimated using the ols function in the rms package, as
well.

dd <- datadist(ohioA_young)
options(datadist = "dd")

(mod_ols1a <- ols(physhealth ~ bmi_c + smoke100,
data = ohioA_young, x = TRUE, y = TRUE))

Linear Regression Model

ols(formula = physhealth ~ bmi_c + smoke100, data = ohioA_young,
x = TRUE, y = TRUE)

Model Likelihood Discrimination
Ratio Test Indexes

Obs 1974 LR chi2 71.55 R2 0.036
sigma7.3276 d.f. 2 R2 adj 0.035
d.f. 1971 Pr(> chi2) 0.0000 g 1.570

Residuals

Min 1Q Median 3Q Max
-11.1472 -3.6639 -2.2426 -0.7807 28.8777

642

Coef S.E. t Pr(>|t|)
Intercept 2.5705 0.2165 11.87 <0.0001
bmi_c 0.1444 0.0230 6.26 <0.0001
smoke100 1.8306 0.3347 5.47 <0.0001

24.7 OLS model on log(physhealth + 1) days

We could try to solve the problem of fitting some predictions below 0 by log-transforming the
data, so as to force values to be at least 0. Since we have undefined values when we take the
log of 0, we’ll add one to each of the physhealth values before taking logs, and then transform
back when we want to make predictions.

mod_ols_log1 <- lm(log(physhealth + 1) ~ bmi_c + smoke100,
data = ohioA_young)

summary(mod_ols_log1)

Call:
lm(formula = log(physhealth + 1) ~ bmi_c + smoke100, data = ohioA_young)

Residuals:
Min 1Q Median 3Q Max

-1.7079 -0.7058 -0.5051 0.5053 3.0484

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.57746 0.03099 18.634 < 2e-16 ***
bmi_c 0.01912 0.00330 5.796 7.91e-09 ***
smoke100 0.23679 0.04791 4.942 8.38e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.049 on 1971 degrees of freedom
Multiple R-squared: 0.03003, Adjusted R-squared: 0.02905
F-statistic: 30.51 on 2 and 1971 DF, p-value: 8.897e-14

confint(mod_ols_log1)

643

2.5 % 97.5 %
(Intercept) 0.51668682 0.63823590
bmi_c 0.01265192 0.02559421
smoke100 0.14282518 0.33075147

24.7.1 Interpreting the Coefficients

• The intercept, 0.58, is the predicted logarithm of (physhealth + 1) (in days) for a
subject with average BMI who has not smoked 100 cigarettes or more.

– We can exponentiate to see that the prediction for (physhealth + 1) here is
exp(0.58) = 1.79 so the predicted physhealth for a subject with average BMI
who has not smoked 100 cigarettes is 0.79 days.

• The bmi_c coefficient, 0.019, indicates that for each additional kg/m2 of BMI, while
holding smoke100 constant, the predicted logarithm of (physhealth + 1) increases by
0.019

• The smoke100 coefficient, 0.24, indicates that a subject who has smoked 100 cigarettes
or more has a predicted log of (physhealth + 1) value that is 0.24 larger than another
subject with the same bmi but who has not smoked 100 cigarettes.

24.7.2 Store fitted values and residuals

We can use broom to help us with this. Here, for instance, is a table of the first six predictions
and residuals, on the scale of our transformed response, log(physhealth + 1).

sm_ols_log1 <- augment(mod_ols_log1, ohioA_young)

sm_ols_log1 <- sm_ols_log1 |>
mutate(outcome = log(physhealth + 1))

sm_ols_log1 |>
select(physhealth, outcome, .fitted, .resid) |>
head()

A tibble: 6 x 4
physhealth outcome .fitted .resid

<dbl> <dbl> <dbl> <dbl>
1 0 0 0.520 -0.520
2 0 0 0.535 -0.535
3 0 0 0.647 -0.647

644

4 30 3.43 0.995 2.44
5 0 0 0.656 -0.656
6 0 0 0.739 -0.739

Note that the outcome used in this model is log(physhealth + 1), so the .fitted and .resid
values react to that outcome, and not to our original physhealth.

Another option would be to calculate the model-predicted physhealth, which I’ll call ph for
a moment, with the formula:

𝑝ℎ = 𝑒.𝑓𝑖𝑡𝑡𝑒𝑑 − 1

sm_ols_log1 <- sm_ols_log1 |>
mutate(pred.physhealth = exp(.fitted) - 1,

res.physhealth = physhealth - pred.physhealth)

sm_ols_log1 |>
select(physhealth, pred.physhealth, res.physhealth) |>
head()

A tibble: 6 x 3
physhealth pred.physhealth res.physhealth

<dbl> <dbl> <dbl>
1 0 0.681 -0.681
2 0 0.708 -0.708
3 0 0.910 -0.910
4 30 1.70 28.3
5 0 0.926 -0.926
6 0 1.09 -1.09

It turns out that 0 of the 1974 predictions that we make are below 0, and the largest prediction
made by this model is 4.52 days.

24.7.3 Specify the 𝑅2 and log(likelihood) values

The glance function in the broom package gives us the raw and adjusted 𝑅2 values, and the
model log(likelihood), among other summaries.

glance(mod_ols_log1) |> round(3)

645

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.03 0.029 1.05 30.5 0 2 -2894. 5796. 5818.
i 3 more variables: deviance <dbl>, df.residual <dbl>, nobs <dbl>

Here, we have

Model Scale 𝑅2 log(likelihood)
OLS on log log(physhealth + 1) 0.03 -2893.83

24.7.4 Getting 𝑅2 on the scale of physhealth

We could find the correlation of our model-predicted physhealth values, after back-
transformation, and our observed physhealth values, if we wanted to, and then square that
to get a sort of 𝑅2 value. But this model is not linear in physhealth, of course, so it’s not
completely comparable to our prior OLS model.

24.7.5 Check model assumptions

As usual, we can check OLS assumptions (linearity, homoscedasticity and normality) with R’s
complete set of residual plots. Of course, these residuals and fitted values are now on the
log(physhealth + 1) scale.

par(mfrow = c(2,2))
plot(mod_ols_log1)

646

0.4 0.8 1.2 1.6

−
2

0
1

2
3

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

3910261620

−3 −1 1 2 3

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals

3910261620

0.4 0.8 1.2 1.6

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
3910261620

0.000 0.010 0.020

−
2

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

88

6771918

par(mfrow = c(1,1))

647

24.7.6 Predictions for Harry and Sally

predict(mod_ols_log1, newdata = hs_data,
interval = "prediction", type = "response")

fit lwr upr
1 1.005480 -1.053893 3.064854
2 0.481846 -1.576472 2.540164

Again, these predictions are on the log(physhealth + 1) scale, and so we have to exponentiate
them, and then subtract 1, to see them on the original physhealth scale.

exp(predict(mod_ols_log1, newdata = hs_data,
interval = "prediction", type = "response")) - 1

fit lwr upr
1 1.7332198 -0.6514221 20.43133
2 0.6190605 -0.7932970 11.68175

The prediction for Harry is now 1.73 days, and for Sally is 0.62 days. The prediction intervals
for each again include some values below 0, which is the smallest possible value.

24.8 A Poisson Regression Model

The physhealth data describe a count. Specifically a count of the number of days where the
subject felt poorly in the last 30. Why wouldn’t we model this count with linear regression?

• A count can only be positive. Linear regression would estimate some subjects as having
negative counts.

• A count is unlikely to follow a Normal distribution. In fact, it’s far more likely that the
log of the counts will follow a Poisson distribution.

So, we’ll try that. The Poisson distribution is used to model a count outcome - that is, an
outcome with possible values (0, 1, 2, …). The model takes a somewhat familiar form to
the models we’ve used for linear and logistic regression1. If our outcome is y and our linear
predictors X, then the model is:

1This discussion is motivated by Section 6.2 of Gelman and Hill.

648

𝑦𝑖 ∼ Poisson(𝜆𝑖)

The parameter 𝜆 must be positive, so it makes sense to fit a linear regression on the logarithm
of this…

𝜆𝑖 = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋1 + ...𝛽𝑘𝑋𝑘)

The coefficients 𝛽 can be exponentiated and treated as multiplicative effects.

We’ll run a generalized linear model with a log link function, ensuring that all of the pre-
dicted values will be positive, and using a Poisson error distribution. This is called Poisson
regression.

Poisson regression may be appropriate when the dependent variable is a count of events. The
events must be independent - the occurrence of one event must not make any other more or
less likely. That’s hard to justify in our case, but we can take a look.

mod_poiss1 <- glm(physhealth ~ bmi_c + smoke100,
family = poisson(),
data = ohioA_young)

summary(mod_poiss1)

Call:
glm(formula = physhealth ~ bmi_c + smoke100, family = poisson(),

data = ohioA_young)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.906991 0.018699 48.51 <2e-16 ***
bmi_c 0.035051 0.001421 24.66 <2e-16 ***
smoke100 0.532505 0.024903 21.38 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 20222 on 1973 degrees of freedom
Residual deviance: 19151 on 1971 degrees of freedom
AIC: 21645

649

Number of Fisher Scoring iterations: 6

confint(mod_poiss1)

Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) 0.87011622 0.94342323
bmi_c 0.03225125 0.03782255
smoke100 0.48373882 0.58136497

24.8.1 The Fitted Equation

The model equation is

log(physhealth) = 0.91 + 0.035 bmi_c + 0.53 smoke100

It looks like both bmi and smoke_100 have confidence intervals excluding 0.

24.8.2 Interpreting the Coefficients

Our new model for 𝑦𝑖 = counts of poor physhealth days in the last 30, follows the regression
equation:

𝑦𝑖 ∼ Poisson(𝑒𝑥𝑝(0.91 + 0.035𝑏𝑚𝑖𝑐 + 0.53𝑠𝑚𝑜𝑘𝑒100))

where smoke100 is 1 if the subject has smoked 100 cigarettes (lifetime) and 0 otherwise, and
bmi_c is just the centered body-mass index value in kg/m2. We interpret the coefficients as
follows:

• The constant term, 0.91, gives us the intercept of the regression - the prediction if
smoke100 = 0 and bmi_c = 0. In this case, because we’ve centered BMI, it implies
that exp(0.91) = 2.48 is the predicted days of poor physhealth for a non-smoker with
average BMI.

• The coefficient of bmi_c, 0.035, is the expected difference in count of poor physhealth
days (on the log scale) for each additional kg/m2 of body mass index. The expected
multiplicative increase is 𝑒0.035 = 1.036, corresponding to a 3.6% difference in the count.

650

• The coefficient of smoke100, 0.53, tells us that the predictive difference between those
who have and who have not smoked 100 cigarettes can be found by multiplying the
physhealth count by exp(0.53) = 1.7, yielding a 70% increase of the physhealth
count.

As with linear or logistic regression, each coefficient is interpreted as a comparison where one
predictor changes by one unit, while the others remain constant.

24.8.3 Testing the Predictors

We can use the Wald tests (z tests) provided with the Poisson regression output, or we can
fit the model and then run an ANOVA to obtain a test based on the deviance (a simple
transformation of the log likelihood ratio.)

• By the small p values in the Wald tests above, it seems that each predictor adds some
predictive value to the model given the other predictor.

• The ANOVA approach for this model lets us check the impact of adding smoke100 to a
model already containing bmi_c.

anova(mod_poiss1, test = "Chisq")

Analysis of Deviance Table

Model: poisson, link: log

Response: physhealth

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 1973 20222
bmi_c 1 609.46 1972 19612 < 2.2e-16 ***
smoke100 1 461.46 1971 19151 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To obtain a p value for smoke100’s impact after bmi_c is accounted for, we compare the
difference in deviance to a chi-square distribution with 1 degree of freedom. To check the effect
of bmi_c, we could refit the model with bmi_c entering last, and again run an ANOVA.

We could also run a likelihood-ratio test for each predictor, by fitting the model with and
without that predictor.

651

mod_poiss1_without_bmi <- glm(physhealth ~ smoke100,
family = poisson(),
data = ohioA_young)

anova(mod_poiss1, mod_poiss1_without_bmi, test = "Chisq")

Analysis of Deviance Table

Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1971 19151
2 1972 19692 -1 -540.98 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

24.8.4 Correcting for Overdispersion with coeftest/coefci

The main assumption we’ll think about in a Poisson model is about overdispersion. We
might deal with the overdispersion we see in this model by changing the nature of the tests we
run within this model, using the coeftest or coefci approaches from the lmtest package,
as I’ll demonstrate next, or we might refit the model using a quasi-likelihood approach, as I’ll
show in the material to come.

Here, we’ll use the coeftest and coefci approach from lmtest combined with robust sand-
wich estimation (via the sandwich package) to re-compute the Wald tests.

coeftest(mod_poiss1, vcov. = sandwich)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.9069908 0.0717221 12.6459 < 2.2e-16 ***
bmi_c 0.0350508 0.0061178 5.7293 1.008e-08 ***
smoke100 0.5325053 0.1004300 5.3023 1.144e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coefci(mod_poiss1, vcov. = sandwich)

652

2.5 % 97.5 %
(Intercept) 0.76641801 1.04756366
bmi_c 0.02306016 0.04704145
smoke100 0.33566606 0.72934460

Both predictors still display small p values, but the standard errors are more appropriate.
Later, we’ll fit this approach by changing the estimation method to a quasi-likelihood ap-
proach.

24.8.5 Store fitted values and residuals

What happens if we try using the broom package in this case? We can, if we like, get our
residuals and predicted values right on the scale of our physhealth response.

sm_poiss1 <- augment(mod_poiss1, ohioA_young,
type.predict = "response")

sm_poiss1 |>
select(physhealth, .fitted) |>
head()

A tibble: 6 x 2
physhealth .fitted

<dbl> <dbl>
1 0 2.23
2 0 2.29
3 0 3.10
4 30 5.32
5 0 3.15
6 0 3.68

24.8.6 Rootogram: see the fit of a count regression model

A rootogram is a very useful way to visualize the fit of a count regression model2. The
rootogram function in the topmodels package makes this pretty straightforward. By default,
this fits a hanging rootogram on the square root of the frequencies.

rootogram(mod_poiss1, max = 30)

2See http://data.library.virginia.edu/getting-started-with-negative-binomial-regression-modeling/

653

−20

−10

0

10

20

0 10 20 30
physhealth

sq
rt

(F
re

qu
en

cy
)

The red curved line is the theoretical Poisson fit. “Hanging” from each point on the red line is
a bar, the height of which represents the difference between expected and observed counts. A
bar hanging below 0 indicates underfitting. A bar hanging above 0 indicates overfitting. The
counts have been transformed with a square root transformation to prevent smaller counts
from getting obscured and overwhelmed by larger counts. We see a great deal of underfitting
for counts of 0, and overfitting for most other counts, especially 1-6, with some underfitting
again by physhealth above 14 days.

24.8.7 Specify the 𝑅2 and log(likelihood) values

We can calculate the 𝑅2 as the squared correlation of the fitted values and the observed
values.

The correlation of observed and fitted values
(poiss_r <- with(sm_poiss1, cor(physhealth, .fitted)))

[1] 0.1846814

R-square
poiss_r^2

654

[1] 0.03410723

The glance function in the broom package gives us model log(likelihood), among other sum-
maries.

glance(mod_poiss1) |> round(3)

A tibble: 1 x 8
null.deviance df.null logLik AIC BIC deviance df.residual nobs

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 20222. 1973 -10820. 21645. 21662. 19151. 1971 1974

Here, we have

Model Scale 𝑅2 log(likelihood)
Poisson log(physhealth) 0.034 -10189.33

24.8.8 Check model assumptions

The Poisson model is a classical generalized linear model, estimated using the method of
maximum likelihood. While the default plot option for a glm still shows the plots we would
use to assess the assumptions of an OLS model, we don’t actually get much from that, since
our Poisson model has different assumptions. It can be useful to look at a plot of residuals
vs. fitted values on the original physhealth scale.

ggplot(sm_poiss1, aes(x = .fitted, y = .resid)) +
geom_point() +
labs(title = "Residuals vs. Fitted `physhealth`",

subtitle = "Original Poisson Regression model")

655

−5

0

5

10

5 10 15 20
.fitted

.r
es

id

Original Poisson Regression model

Residuals vs. Fitted `physhealth`

24.8.9 Using glm.diag.plots from the boot package

The glm.diag.plots function from the boot package makes a series of diagnostic plots for
generalized linear models.

• (Top, Left) Jackknife deviance residuals against fitted values. This is essentially identical
to what you obtain with plot(mod_poiss1, which = 1). A jackknife deviance residual
is also called a likelihood residual. It is the change in deviance when this observation is
omitted from the data.

• (Top, Right) Normal Q-Q plot of standardized deviance residuals. (Dotted line shows ex-
pectation if those standardized residuals followed a Normal distribution, and these resid-
uals generally should.) The result is similar to what you obtain with plot(mod_poiss1,
which = 2).

• (Bottom, Left) Cook statistic vs. standardized leverage

– n = # of observations, p = # of parameters estimated
– Horizontal dotted line is at 8

𝑛−2𝑝 . Points above the line have high influence on the
model.

– Vertical line is at 2𝑝
𝑛−2𝑝 . Points to the right of the line have high leverage.

• (Bottom, Right) Index plot of Cook’s statistic to help identify the observations with high
influence. This is essentially the same plot as plot(mod_poiss1, which = 4)

656

glm.diag.plots(mod_poiss1)

0.5 1.5 2.5

−
5

0
5

10

Linear predictor

R
es

id
ua

ls

−3 −1 1 2 3

−
5

0
5

10

Ordered deviance residuals
Q

ua
nt

ile
s

of
 s

ta
nd

ar
d

no
rm

al

0.00 0.04 0.08

0.
0

0.
2

0.
4

0.
6

0.
8

h/(1−h)

C
oo

k
st

at
is

tic

0 500 1000 2000

0.
0

0.
2

0.
4

0.
6

0.
8

Case

C
oo

k
st

at
is

tic

When working with these plots, it is possible to use the iden command to perform some
interactive identification of points in your R terminal. But that doesn’t play out effectively in
an HTML summary document like this, so we’ll leave that out.

657

24.8.10 Predictions for Harry and Sally

The predictions from a glm fit like this don’t include prediction intervals. But we can get
predictions on the scale of our original response variable, physhealth, like this.

predict(mod_poiss1, newdata = hs_data, se.fit = TRUE,
type = "response")

$fit
1 2

5.989478 2.078688

$se.fit
1 2

0.11544326 0.04314273

$residual.scale
[1] 1

By using response as the type, these predictions fall on the original physhealth scale. The
prediction for Harry is now 5.99 days, and for Sally is 2.08 days.

24.9 Overdispersion in a Poisson Model

Poisson regressions do not supply an independent variance parameter 𝜎, and as a result can be
overdispersed, and usually are. Under the Poisson distribution, the variance equals the mean
- so the standard deviation equals the square root of the mean. The notion of overdisper-
sion arises here. When fitting generalized linear models with Poisson error distributions, the
residual deviance and its degrees of freedom should be approximately equal if the model fits
well.

If the residual deviance is far greater than the degrees of freedom, then overdispersion may
well be a problem. In this case, the residual deviance is about 8.5 times the size of the
residual degrees of freedom, so that’s a clear indication of overdispersion. We saw earlier
that the Poisson regression model requires that the outcome (here the physhealth counts)
be independent. A possible reason for the overdispersion we see here is that physhealth on
different days likely do not occur independently of one another but likely “cluster” together.

658

24.9.1 Testing for Overdispersion?

Gelman and Hill provide an overdispersion test in R for a Poisson model as follows…

yhat <- predict(mod_poiss1, type = "response")
n <- arm::display(mod_poiss1)$n

glm(formula = physhealth ~ bmi_c + smoke100, family = poisson(),
data = ohioA_young)

coef.est coef.se
(Intercept) 0.91 0.02
bmi_c 0.04 0.00
smoke100 0.53 0.02

n = 1974, k = 3
residual deviance = 19150.9, null deviance = 20221.8 (difference = 1070.9)

k <- arm::display(mod_poiss1)$k

glm(formula = physhealth ~ bmi_c + smoke100, family = poisson(),
data = ohioA_young)

coef.est coef.se
(Intercept) 0.91 0.02
bmi_c 0.04 0.00
smoke100 0.53 0.02

n = 1974, k = 3
residual deviance = 19150.9, null deviance = 20221.8 (difference = 1070.9)

z <- (ohioA_young$physhealth - yhat) / sqrt(yhat)
cat("overdispersion ratio is ", sum(z^2)/ (n - k), "\n")

overdispersion ratio is 15.58261

cat("p value of overdispersion test is ",
pchisq(sum(z^2), df = n-k, lower.tail = FALSE), "\n")

p value of overdispersion test is 0

659

The p value is very small, indicating that the probability is essentially zero that a random
variable from a 𝜒2 distribution with (n - k) = 1971 degrees of freedom would be as large as
what we observed in this case. So there is almost surely some overdispersion.

In summary, the physhealth counts are overdispersed by a factor of 15.581, which is enormous
(even a factor of 2 would be considered large.) The basic correction for overdisperson is to
multiply all regression standard errors by

√
15.581 = 3.95.

The quasipoissonmodel and the negative binomial model that we’ll fit below are very similar.
We write the overdispersed “quasiPoisson” model as:

𝑦𝑖 ∼ overdispersed Poisson(𝜇𝑖𝑒𝑥𝑝(𝑋𝑖𝛽), 𝜔)

where 𝜔 is the overdispersion parameter, 15.581, in our case. The Poisson model we saw
previously is then just the overdispersed Poisson model with 𝜔 = 1.

24.10 Fitting the Quasi-Poisson Model

To deal with overdispersion, one useful approach is to apply a quasi-likelihood estimation
procedure, as follows:

mod_poiss_od1 <- glm(physhealth ~ bmi_c + smoke100,
family = quasipoisson(),
data = ohioA_young)

summary(mod_poiss_od1)

Call:
glm(formula = physhealth ~ bmi_c + smoke100, family = quasipoisson(),

data = ohioA_young)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.906991 0.073818 12.287 < 2e-16 ***
bmi_c 0.035051 0.005611 6.247 5.11e-10 ***
smoke100 0.532505 0.098308 5.417 6.81e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 15.58436)

660

Null deviance: 20222 on 1973 degrees of freedom
Residual deviance: 19151 on 1971 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

confint(mod_poiss_od1)

Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) 0.75877174 1.04831740
bmi_c 0.02383574 0.04583252
smoke100 0.34039368 0.72606948

This “quasi-Poisson regression” model uses the same mean function as Poisson regression, but
now estimated by quasi-maximum likelihood estimation or, equivalently, through the method
of generalized estimating equations, where the inference is adjusted by an estimated dispersion
parameter. Sometimes, though I won’t demonstrate this here, people fit an “adjusted” Poisson
regression model, where this estimation by quasi-ML is augmented to adjust the inference via
sandwich estimates of the covariances3.

24.10.1 The Fitted Equation

The model equation is still log(physhealth) = 0.91 + 0.035 bmi_c + 0.53 smoke100.
The estimated coefficients still have small p values, but the standard errors for each coefficient
are considerably larger when we account for overdispersion.

The dispersion parameter for the quasi-Poisson family is now taken to be a bit less than the
square root of the ratio of the residual deviance and its degrees of freedom. This is a much
more believable model, as a result.

24.10.2 Interpreting the Coefficients

No meaningful change from the Poisson model we saw previously.

3See Zeileis A Kleiber C Jackman S Regression Models for Count Data in R Vignette at https://cran.r-
project.org/web/packages/pscl/vignettes/countreg.pdf

661

24.10.3 Testing the Predictors

Again, we can use the Wald tests (z tests) provided with the Poisson regression output, or we
can fit the model and then run an ANOVA to obtain a test based on the deviance (a simple
transformation of the log likelihood ratio.)

• By the Wald tests shown above, each predictor appears to add some predictive value to
the model given the other predictor.

• The ANOVA approach for this model lets us check the impact of adding smoke100 to a
model already containing bmi_c.

anova(mod_poiss_od1, test = "Chisq")

Analysis of Deviance Table

Model: quasipoisson, link: log

Response: physhealth

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 1973 20222
bmi_c 1 609.46 1972 19612 4.011e-10 ***
smoke100 1 461.46 1971 19151 5.282e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The result is unchanged. To obtain a p value for smoke100’s impact after bmi_c is accounted
for, we compare the difference in deviance to a chi-square distribution with 1 degree of freedom.
The resulting p value is very small.

To check the effect of bmi_c, we could refit the model with and without bmi_c, and again run
an ANOVA. I’ll skip that here.

24.10.4 Store fitted values and residuals

What happens if we try using the broom package in this case? We can, if we like, get our
predicted values right on the scale of our physhealth response.

662

sm_poiss_od1 <- augment(mod_poiss_od1, ohioA_young,
type.predict = "response")

sm_poiss_od1 |>
select(physhealth, .fitted) |>
head()

A tibble: 6 x 2
physhealth .fitted

<dbl> <dbl>
1 0 2.23
2 0 2.29
3 0 3.10
4 30 5.32
5 0 3.15
6 0 3.68

It turns out that 0 of the 1974 predictions that we make are below 0, and the largest prediction
made by this model is 21.7 days.

The rootogram function we’ve shown doesn’t support overdispersed Poisson models at the
moment.

24.10.5 Specify the 𝑅2 and log(likelihood) values

We can calculate the 𝑅2 as the squared correlation of the fitted values and the observed
values.

The correlation of observed and fitted values
(poiss_od_r <- with(sm_poiss_od1, cor(physhealth, .fitted)))

[1] 0.1846814

R-square
poiss_od_r^2

[1] 0.03410723

The glance function in the broom package gives us model log(likelihood), among other sum-
maries.

663

glance(mod_poiss_od1) |> round(3)

A tibble: 1 x 8
null.deviance df.null logLik AIC BIC deviance df.residual nobs

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 20222. 1973 NA NA NA 19151. 1971 1974

Here, we have

Model Scale 𝑅2 log(likelihood)
Poisson log(physhealth) 0.034 NA

24.10.6 Check model assumptions

Having dealt with the overdispersion, this should be a cleaner model in some ways, but the
diagnostics (other than the dispersion) will be the same. Here is a plot of residuals vs. fitted
values on the original physhealth scale.

ggplot(sm_poiss_od1, aes(x = .fitted, y = .resid)) +
geom_point() +
labs(title = "Residuals vs. Fitted `physhealth`",

subtitle = "Overdispersed Poisson Regression model")

664

−5

0

5

10

5 10 15 20
.fitted

.r
es

id

Overdispersed Poisson Regression model

Residuals vs. Fitted `physhealth`

I’ll skip the glm.diag.plots results, since you’ve already seen them.

24.10.7 Predictions for Harry and Sally

The predictions from this overdispersed Poisson regression will match those in the original
Poisson regression, but the standard error will be larger.

predict(mod_poiss_od1, newdata = hs_data, se.fit = TRUE,
type = "response")

$fit
1 2

5.989478 2.078688

$se.fit
1 2

0.4557357 0.1703147

$residual.scale
[1] 3.947703

665

By using response as the type, these predictions fall on the original physhealth scale. Again,
the prediction for Harry is 5.99 days, and for Sally is 2.08 days.

24.11 Poisson and Quasi-Poisson models using Glm from the rms
package

The Glm function in the rms package can be used to fit both the original Poisson regression
and the quasi-Poisson model accounting for overdispersion.

24.11.1 Refitting the original Poisson regression with Glm

d <- datadist(ohioA_young)
options(datadist = "d")

mod_poi_Glm_1 <- Glm(physhealth ~ bmi_c + smoke100,
family = poisson(),
data = ohioA_young,
x = T, y = T)

mod_poi_Glm_1

General Linear Model

Glm(formula = physhealth ~ bmi_c + smoke100, family = poisson(),
data = ohioA_young, x = T, y = T)

Model Likelihood
Ratio Test

Obs1974 LR chi2 1070.93
Residual d.f.1971 d.f. 2

g 0.418 Pr(> chi2) <0.0001

Coef S.E. Wald Z Pr(>|Z|)
Intercept 0.9070 0.0187 48.50 <0.0001
bmi_c 0.0351 0.0014 24.66 <0.0001
smoke100 0.5325 0.0249 21.38 <0.0001

666

24.11.2 Refitting the overdispersed Poisson regression with Glm

d <- datadist(ohioA_young)
options(datadist = "d")

mod_poi_od_Glm_1 <- Glm(physhealth ~ bmi_c + smoke100,
family = quasipoisson(),
data = ohioA_young,
x = T, y = T)

mod_poi_od_Glm_1

General Linear Model

Glm(formula = physhealth ~ bmi_c + smoke100, family = quasipoisson(),
data = ohioA_young, x = T, y = T)

Model Likelihood
Ratio Test

Obs1974 LR chi2 1070.93
Residual d.f.1971 d.f. 2

g 0.418 Pr(> chi2) <0.0001

Coef S.E. Wald Z Pr(>|Z|)
Intercept 0.9070 0.0738 12.29 <0.0001
bmi_c 0.0351 0.0056 6.25 <0.0001
smoke100 0.5325 0.0983 5.42 <0.0001

The big advantage here is that we have access to the usual ANOVA, summary, and nomogram
features that rms brings to fitting models.

24.11.3 ANOVA on a Glm fit

anova(mod_poi_od_Glm_1)

Wald Statistics Response: physhealth

Factor Chi-Square d.f. P
bmi_c 39.03 1 <.0001

667

smoke100 29.34 1 <.0001
TOTAL 74.39 2 <.0001

This shows the individual Wald 𝜒2 tests without having to refit the model.

24.11.4 ggplots from Glm fit

ggplot(Predict(mod_poi_od_Glm_1, fun = exp))

0.0

2.5

5.0

7.5

10.0

−10 0 10 20
bmi_c

0.0

2.5

5.0

7.5

10.0

smoke100

24.11.5 Summary of a Glm fit

summary(mod_poi_od_Glm_1)

Effects Response : physhealth

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
bmi_c -5.0513 3.6362 8.6875 0.30450 0.048742 0.20891 0.4001
smoke100 0.0000 1.0000 1.0000 0.53251 0.098308 0.33971 0.7253

668

24.11.6 Plot of the Summary

plot(summary(mod_poi_od_Glm_1))

0.20 0.30 0.40 0.50 0.60 0.70 0.80

bmi_c − 3.6362 : −5.0513

smoke100 − 1 : 0

24.11.7 Nomogram of a Glm fit

plot(nomogram(mod_poi_od_Glm_1, fun = exp,
funlabel = "physhealth days"))

669

Points
0 10 20 30 40 50 60 70 80 90 100

bmi_c
−15 −5 0 5 10 20 30 40 50

smoke100
0

1

Total Points
0 10 30 50 70 90 110 130

Linear Predictor
0.2 0.6 1 1.4 1.8 2.2 2.6 3

physhealth days
2 4 6 8 10 12141618202224

Note the use of fun=exp in both the ggplot of Predict and the nomogram. What’s that
doing?

In the next chapter, we’ll expand beyond Poisson regression to consider a Negative Binomial
model.

670

25 Negative Binomial Models for Count Data

We will continue to use a count outcome (# of poor physical health days out of the last
30) in OHIO SMART data created in Chapter 6 to demonstrate regression models for count
outcomes, as we did in Chapter 24.

Methods discussed in the chapter include:

• Negative Binomial Regression

25.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(boot)
library(countreg)
library(topmodels)
library(MASS)
library(tidyverse)

theme_set(theme_bw())

25.2 Data Load and Subset Creation

smart_oh <- readRDS("data/smart_ohio.Rds")

As in Chapter 24, we’ll create a subset of these data for analysis.

ohioA <- smart_oh |>
select(SEQNO, mmsa_name, genhealth, physhealth,

menthealth, healthplan, costprob,
agegroup, female, incomegroup, bmi, smoke100,

671

alcdays) |>
drop_na()

ohioA_young <- ohioA |>
filter(agegroup %in% c("18-24", "25-29", "30-34",

"35-39", "40-44", "45-49")) |>
droplevels() |>

mutate(bmi_c = bmi - mean(bmi))

25.3 Setup for this Chapter

Again, we’re going to predict physhealth using bmi_c and smoke100.

• Remember that physhealth is a count of the number of poor physical health days in
the past 30.

• As a result, physhealth is restricted to taking values between 0 and 30.

In this chapter, we demonstrate Negative binomial regression, which (like Poisson regression
discussed in Chapter 24) is also used for counts and adjusts for overdispersion.

25.3.1 What Will We Demonstrate?

With this new approach, we will again fit the model and specify procedures for doing so in R.
Then we will:

1. Specify the fitted model equation
2. Interpret the model’s coefficient estimates and 95% confidence intervals around those

estimates.
3. Perform a test of whether each variable adds value to the model, when the other one is

already included.
4. Store the fitted values and appropriate residuals for each model.
5. Summarize the model’s apparent 𝑅2 value, the proportion of variation explained, and

the model log likelihood.
6. Perform checks of model assumptions as appropriate.
7. Describe how predictions would be made for two new subjects.

• Harry has a BMI that is 10 kg/m2 higher than the average across all respondents
and has smoked more than 100 cigarettes in his life.

• Sally has a BMI that is 5 kg/m2 less than the average across all respondents and
has not smoked more than 100 cigarettes in her life.

672

In addition, for some of the new models, we provide a little of the mathematical background,
and point to other resources you can use to learn more about the model.

25.3.2 Extra Data File for Harry and Sally

To make our lives a little easier, I’ll create a little tibble containing the necessary data for
Harry and Sally.

hs_data <- tibble(subj = c("Harry", "Sally"),
bmi_c = c(10, -5),
smoke100 = c(1, 0))

hs_data

A tibble: 2 x 3
subj bmi_c smoke100
<chr> <dbl> <dbl>

1 Harry 10 1
2 Sally -5 0

25.3.3 Our Poisson Model (for comparison)

mod_poiss1 <- glm(physhealth ~ bmi_c + smoke100,
family = poisson(),
data = ohioA_young)

25.4 Negative Binomial Model

Another approach to dealing with overdispersion is to fit a negative binomial model1 to predict
the log(physhealth) counts. This involves the fitting of an additional parameter, 𝜃. That’s
our dispersion parameter2

Sometimes, people will fit a model where 𝜃 is known, for instance a geometric model (where
𝜃 = 1), and then this can be directly plugged into a glm() fit, but the more common scenario
is that we are going to iteratively estimate the 𝛽 coefficients and 𝜃. To do this, I’ll use the
glm.nb function from the MASS package.

1See https://cran.r-project.org/web/packages/pscl/vignettes/countreg.pdf for more details.
2This 𝜃 is the inverse of the dispersion parameter estimated for these models by most other software packages,

like SAS, Stata and SPSS. See https://stats.idre.ucla.edu/r/dae/negative-binomial-regression/ for more de-
tails.

673

mod_nb1 <- glm.nb(physhealth ~ bmi_c + smoke100, link = log,
data = ohioA_young)

summary(mod_nb1)

Call:
glm.nb(formula = physhealth ~ bmi_c + smoke100, data = ohioA_young,

link = log, init.theta = 0.1487673114)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.874530 0.078994 11.071 < 2e-16 ***
bmi_c 0.035712 0.008317 4.294 1.76e-05 ***
smoke100 0.596396 0.121166 4.922 8.56e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.1488) family taken to be 1)

Null deviance: 1468.1 on 1973 degrees of freedom
Residual deviance: 1422.6 on 1971 degrees of freedom
AIC: 6976.6

Number of Fisher Scoring iterations: 1

Theta: 0.14877
Std. Err.: 0.00705

2 x log-likelihood: -6968.55300

confint(mod_nb1)

Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) 0.72304817 1.03304660
bmi_c 0.02072601 0.05124925
smoke100 0.35977590 0.83584673

674

25.4.1 The Fitted Equation

The form of the model equation for a negative binomial regression is the same as that for
Poisson regression.

log(physhealth) = 0.87 + 0.036 bmi_c + 0.60 smoke100

25.4.2 Comparison with the (raw) Poisson model

To compare the negative binomial model to the Poisson model (without the overdispersion) we
can use the logLik function to make a comparison. Note that the Poisson model is a subset
of the negative binomial.

logLik(mod_nb1)

'log Lik.' -3484.277 (df=4)

logLik(mod_poiss1)

'log Lik.' -10819.6 (df=3)

2 * (logLik(mod_nb1) - logLik(mod_poiss1))

'log Lik.' 14670.65 (df=4)

pchisq(2 * (logLik(mod_nb1) - logLik(mod_poiss1)), df = 1, lower.tail = FALSE)

'log Lik.' 0 (df=4)

Here, the difference in the log likelihoods is large enough that the resulting p value is very
small. This strongly suggests that the negative binomial model, which adds the dispersion
parameter, is more appropriate than the raw Poisson model.

However, both the regression coefficients and the standard errors are rather similar to the
quasi-Poisson and the sandwich-adjusted Poisson results above. Thus, in terms of predicted
means, all three models give very similar results; the associated Wald tests also lead to the
same conclusions.

675

25.4.3 Interpreting the Coefficients

There’s only a small change here from the Poisson models we saw previously.

• The constant term, 0.87, gives us the intercept of the regression - the prediction if
smoke100 = 0 and bmi_c = 0. In this case, because we’ve centered BMI, it implies
that exp(0.87) = 2.39 is the predicted days of poor physhealth for a non-smoker with
average BMI.

• The coefficient of bmi_c, 0.036, is the expected difference in count of poor physhealth
days (on the log scale) for each additional kg/m2 of body mass index. The expected
multiplicative increase is 𝑒0.036 = 1.037, corresponding to a 3.7% difference in the count.

• The coefficient of smoke100, 0.60, tells us that the predictive difference between those
who have and who have not smoked 100 cigarettes can be found by multiplying the
physhealth count by exp(0.6) = 1.82, yielding essentially an 82% increase of the
physhealth count.

25.4.4 Interpretation of Coefficients in terms of IRRs

We might be interested in looking at incident rate ratios rather than coefficients. The coeffi-
cients have an additive effect in the log(y) scale, and the IRR have a multiplicative effect in
the y scale. To do this, we can exponentiate our model coefficients. This also applies to the
confidence intervals.

exp(coef(mod_nb1))

(Intercept) bmi_c smoke100
2.397748 1.036357 1.815563

exp(confint(mod_nb1))

Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) 2.060705 2.809613
bmi_c 1.020942 1.052585
smoke100 1.433008 2.306766

As an example, then, the incident rate for smoke100 = 1 is 1.82 times the incident rate of
physhealth days for the reference group (smoke100 = 0). The percent change in the incident
rate of physhealth is a 3.6% increase for every kg/m2 increase in centered bmi.

676

25.4.5 Testing the Predictors

Again, we can use the Wald tests (z tests) provided with the negative binomial regression
output.

As an alternative, we probably should not use the standard anova process, because the models
there don’t re-estimate 𝜃 for each new model, as the warning message below indicates.

anova(mod_nb1)

Warning in anova.negbin(mod_nb1): tests made without re-estimating 'theta'

Analysis of Deviance Table

Model: Negative Binomial(0.1488), link: log

Response: physhealth

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 1973 1468.0
bmi_c 1 20.837 1972 1447.2 5.001e-06 ***
smoke100 1 24.584 1971 1422.6 7.115e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

So, instead, if we want, for instance to assess the significance of bmi_c, after smoke100 is
already included in the model, we fit both models (with and without bmi_c) and then compare
those models with a likelihood ratio test.

mod_nb1_without_bmi <- glm.nb(physhealth ~ smoke100,
link = log,
data = ohioA_young)

anova(mod_nb1, mod_nb1_without_bmi)

Likelihood ratio tests of Negative Binomial Models

Response: physhealth
Model theta Resid. df 2 x log-lik. Test df LR stat.

677

1 smoke100 0.1452219 1972 -6991.195
2 bmi_c + smoke100 0.1487673 1971 -6968.553 1 vs 2 1 22.6421

Pr(Chi)
1
2 1.951615e-06

And we could compare the negative binomial models with and without smoke100 in a similar
way.

mod_nb1_without_smoke <- glm.nb(physhealth ~ bmi_c,
link = log,
data = ohioA_young)

anova(mod_nb1, mod_nb1_without_smoke)

Likelihood ratio tests of Negative Binomial Models

Response: physhealth
Model theta Resid. df 2 x log-lik. Test df LR stat.

1 bmi_c 0.1449966 1972 -6992.839
2 bmi_c + smoke100 0.1487673 1971 -6968.553 1 vs 2 1 24.28569

Pr(Chi)
1
2 8.305388e-07

25.4.6 Store fitted values and residuals

The broom package works in this case, too. We’ll look here at predicted (fitted) values on the
scale of our physhealth response.

sm_nb1 <- augment(mod_nb1, ohioA_young,
type.predict = "response")

Warning: The `augment()` method for objects of class `negbin` is not maintained by the broom team, and is only supported through the `glm` tidier method. Please be cautious in interpreting and reporting broom output.

This warning is displayed once per session.

sm_nb1 |>
select(physhealth, .fitted) |>

678

head()

A tibble: 6 x 2
physhealth .fitted

<dbl> <dbl>
1 0 2.15
2 0 2.22
3 0 3.18
4 30 5.23
5 0 3.24
6 0 3.78

25.4.7 Rootogram for Negative Binomial model

Here’s the rootogram for the negative binomial model.

rootogram(mod_nb1, max = 30)

0

10

20

30

0 100 200 300
physhealth

sq
rt

(F
re

qu
en

cy
)

Again, the red curved line is the theoretical (negative binomial) fit. “Hanging” from each
point on the red line is a bar, the height of which represents the difference between expected

679

and observed counts. A bar hanging below 0 indicates underfitting. A bar hanging above 0
indicates overfitting. The counts have been transformed with a square root transformation to
prevent smaller counts from getting obscured and overwhelmed by larger counts.

The match looks much better than the Poisson model, which is a sign that accounting for
overdispersion is very important. Even this model badly underfits the number of 30 values,
however.

25.4.8 Simulating what the Negative Binomial model predicts

We can use the parameters of the negative binomial model to simulate data3 and compare the
simulated results to our observed physhealth data.

par(mfrow=c(1,2))
ohioA_young$physhealth |>

table() |> barplot(main = "Observed physhealth")
set.seed(432122)
rnbinom(n = nrow(ohioA_young),

size = mod_nb1$theta,
mu = exp(coef(mod_nb1)[1])) |>

table() |> barplot(main = "Simulated physhealth")

0 4 8 15 25

Observed physhealth

0
40

0
80

0
12

00

0 8 17 28 61

Simulated physhealth

0
40

0
80

0
12

00

3See http://data.library.virginia.edu/getting-started-with-negative-binomial-regression-modeling/

680

Again we see that the simulated data badly underfits the 30 values, and includes some predic-
tions larger than 30.

25.4.9 Specify the 𝑅2 and log(likelihood) values

We can calculate the 𝑅2 as the squared correlation of the fitted values and the observed
values.

The correlation of observed and fitted values
(nb_r <- with(sm_nb1, cor(physhealth, .fitted)))

[1] 0.183675

R-square
nb_r^2

[1] 0.03373649

The glance function in the broom package gives us model log(likelihood), among other sum-
maries.

glance(mod_nb1) |> round(3)

A tibble: 1 x 8
null.deviance df.null logLik AIC BIC deviance df.residual nobs

<dbl> <dbl> <logLik> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1468. 1973 -3484.277 6977. 6999. 1423. 1971 1974

Here, we have

Model Scale 𝑅2 log(likelihood)
Negative Binomial log(physhealth) .034 -3484.27

25.4.10 Check model assumptions

Here is a plot of residuals vs. fitted values on the original physhealth scale.

681

ggplot(sm_nb1, aes(x = .fitted, y = .resid)) +
geom_point() +
labs(title = "Residuals vs. Fitted `physhealth`",

subtitle = "Negative Binomial Regression model")

−1

0

1

2

5 10 15 20
.fitted

.r
es

id

Negative Binomial Regression model

Residuals vs. Fitted `physhealth`

Here are the glm diagnostic plots from the boot package.

glm.diag.plots(mod_nb1)

682

0.5 1.5 2.5

−
1.

0
0.

0
1.

0
2.

0

Linear predictor

R
es

id
ua

ls

−3 −1 1 2 3

−
1.

0
0.

0
1.

0
2.

0

Ordered deviance residuals

Q
ua

nt
ile

s
of

 s
ta

nd
ar

d
no

rm
al

0.000 0.010 0.020

0.
00

0
0.

01
0

0.
02

0

h/(1−h)

C
oo

k
st

at
is

tic

0 500 1000 2000

0.
00

0
0.

01
0

0.
02

0

Case

C
oo

k
st

at
is

tic

From the lower left plot, we see fewer points with large values of both Cook’s distance and
leverage, so that’s a step in the right direction. The upper right plot still has some issues, but
we’re closer to a desirable result there, too.

25.4.11 Predictions for Harry and Sally

The predictions from this negative binomial regression model will be only a little different than
those from the Poisson models.

683

predict(mod_nb1, newdata = hs_data, se.fit = TRUE,
type = "response")

$fit
1 2

6.221696 2.005657

$se.fit
1 2

0.7537535 0.1773595

$residual.scale
[1] 1

As we’ve seen in the past, when we use response as the type, the predictions fall on the
original physhealth scale. The prediction for Harry is 6.2 days, and for Sally is 2.0 days.

25.5 The Problem: Too Few Zeros

Remember that we observe more than 1000 zeros in our physhealth data.

ohioA_young |> count(physhealth == 0)

A tibble: 2 x 2
`physhealth == 0` n
<lgl> <int>

1 FALSE 710
2 TRUE 1264

Let’s go back to our Poisson model (without overdispersion) for a moment, and concentrate
on the zero values.

predict expected mean physhealth for each subject
mu <- predict(mod_poiss1, type = "response")

sum the probabilities of a zero count for each mean
exp <- sum(dpois(x = 0, lambda = mu))

predicted number of zeros from Poisson model

684

round(exp)

[1] 124

As we’ve seen previously, we’re severely underfitting zero counts. We can compare the observed
number of zero physhealth results to the expected number of zero values from the likelihood-
based models.

round(c("Obs" = sum(ohioA_young$physhealth == 0),
"Poisson" = sum(dpois(0, fitted(mod_poiss1))),
"NB" = sum(dnbinom(0, mu = fitted(mod_nb1), size = mod_nb1$theta))),0)

Obs Poisson NB
1264 124 1250

There are at least two ways to tackle this problem.

• Fitting a model which deliberately inflates the number of zeros that are fitted
• Fitting a hurdle model

We’ll look at those options, next.

685

26 Zero-Inflated Models for Count Data

We will continue to use a count outcome (# of poor physical health days out of the last
30) in OHIO SMART data created in Chapter 6 to demonstrate regression models for count
outcomes, as we did in Chapter 24 and Chapter 25.

Methods discussed in the chapter include:

• Zero-inflated Poisson Regression
• Zero-inflated Negative Binomial Regression
• Two different types of “hurdle” model
• A Tobit (Censored) Regression Model

26.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(lmtest)
library(MASS)
library(pscl)
library(VGAM)
library(tidyverse)

theme_set(theme_bw())

26.2 Data Load and Subset Creation

smart_oh <- readRDS("data/smart_ohio.Rds")

As in Chapter 24 and Chapter 25, we’ll create a subset of these data for analysis.

686

ohioA <- smart_oh |>
select(SEQNO, mmsa_name, genhealth, physhealth,

menthealth, healthplan, costprob,
agegroup, female, incomegroup, bmi, smoke100,
alcdays) |>

drop_na()

ohioA_young <- ohioA |>
filter(agegroup %in% c("18-24", "25-29", "30-34",

"35-39", "40-44", "45-49")) |>
droplevels() |>

mutate(bmi_c = bmi - mean(bmi))

26.3 Setup for this Chapter

Again, we’re going to predict physhealth using bmi_c and smoke100.

• Remember that physhealth is a count of the number of poor physical health days in
the past 30.

• As a result, physhealth is restricted to taking values between 0 and 30.

In this chapter, we demonstrate:

• Zero-inflated Poisson models
• Zero-inflated Negative Binomial models
• Hurdle models
• Tobit models

26.3.1 What Will We Demonstrate?

With each new approach, we again will fit the model and specify procedures for doing so in
R. Then we will:

1. Specify the fitted model equation
2. Interpret the model’s coefficient estimates and 95% confidence intervals around those

estimates.
3. Perform a test of whether each variable adds value to the model, when the other one is

already included.
4. Store the fitted values and appropriate residuals for each model.
5. Summarize the model’s apparent 𝑅2 value, the proportion of variation explained, and

the model log likelihood.

687

6. Perform checks of model assumptions as appropriate.
7. Describe how predictions would be made for two new subjects.

• Harry has a BMI that is 10 kg/m2 higher than the average across all respondents
and has smoked more than 100 cigarettes in his life.

• Sally has a BMI that is 5 kg/m2 less than the average across all respondents and
has not smoked more than 100 cigarettes in her life.

In addition, for some of the new models, we provide a little of the mathematical background,
and point to other resources you can use to learn more about the model.

26.3.2 Extra Data File for Harry and Sally

To make our lives a little easier, I’ll create a little tibble containing the necessary data for
Harry and Sally.

hs_data <- tibble(subj = c("Harry", "Sally"),
bmi_c = c(10, -5),
smoke100 = c(1, 0))

hs_data

A tibble: 2 x 3
subj bmi_c smoke100
<chr> <dbl> <dbl>

1 Harry 10 1
2 Sally -5 0

26.3.3 Previous Models (for comparison)

mod_poiss1 <- glm(physhealth ~ bmi_c + smoke100,
family = poisson(),
data = ohioA_young)

mod_nb1 <- glm.nb(physhealth ~ bmi_c + smoke100,
link = log,
data = ohioA_young)

688

26.4 The Zero-Inflated Poisson Regression Model

There are at least two ways to tackle the problem of not predicting enough 0 values.

• Fitting a model which deliberately inflates the number of zeros that are fitted
• Fitting a hurdle model

The zero-inflated Poisson or (ZIP) model is used to describe count data with an excess of zero
counts1. The model posits that there are two processes involved:

• a logit model is used to predict excess zeros
• while a Poisson model is used to predict the counts, generally

The pscl package is used here, which can conflict with the topmodels package we used to fit
rootograms.

To run the zero-inflated Poisson model, we use the following:

mod_zip1 <- zeroinfl(physhealth ~ bmi_c + smoke100,
data = ohioA_young)

summary(mod_zip1)

Call:
zeroinfl(formula = physhealth ~ bmi_c + smoke100, data = ohioA_young)

Pearson residuals:
Min 1Q Median 3Q Max

-1.4387 -0.6987 -0.6138 -0.1947 9.3029

Count model coefficients (poisson with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.997619 0.018797 106.3 <2e-16 ***
bmi_c 0.018177 0.001398 13.0 <2e-16 ***
smoke100 0.393355 0.024889 15.8 <2e-16 ***

Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.682306 0.062852 10.856 < 2e-16 ***
bmi_c -0.027725 0.006509 -4.260 2.05e-05 ***
smoke100 -0.237181 0.095316 -2.488 0.0128 *

1See https://stats.idre.ucla.edu/r/dae/zip/ for more on the zero-inflated poisson model.

689

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of iterations in BFGS optimization: 14
Log-likelihood: -5680 on 6 Df

confint(mod_zip1)

2.5 % 97.5 %
count_(Intercept) 1.96077775 2.03445952
count_bmi_c 0.01543587 0.02091727
count_smoke100 0.34457348 0.44213651
zero_(Intercept) 0.55911859 0.80549344
zero_bmi_c -0.04048184 -0.01496748
zero_smoke100 -0.42399711 -0.05036477

The output describes two separate regression models. Below the model call, we see information
on a Poisson regression model. Then we see another block describing the inflation model.

Each predictor (bmi_c and smoke100) yields a small p value in each part of the model.

26.4.1 Comparison to a null model

To show that this model fits better than the null model (the model with intercept only), we
can compare them directly with a chi-squared test. Since we have two predictors in the full
model, the degrees of freedom for this test is 2.

mod_zipnull <- pscl::zeroinfl(physhealth ~ 1,
data = ohioA_young)

summary(mod_zipnull)

Call:
pscl::zeroinfl(formula = physhealth ~ 1, data = ohioA_young)

Pearson residuals:
Min 1Q Median 3Q Max

-0.6934 -0.6934 -0.6934 -0.2779 5.5399

690

Count model coefficients (poisson with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.22765 0.01233 180.7 <2e-16 ***

Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.5766 0.0469 12.29 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of iterations in BFGS optimization: 9
Log-likelihood: -5908 on 2 Df

pchisq(2 * (logLik(mod_zip1) - logLik(mod_zipnull)), df = 2, lower.tail = FALSE)

'log Lik.' 8.596735e-100 (df=6)

26.4.2 Comparison to a Poisson Model with the Vuong test

vuong(mod_zip1, mod_poiss1)

Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed N(0,1) under the
null that the models are indistinguishible)

Vuong z-statistic H_A p-value
Raw 19.90824 model1 > model2 < 2.22e-16
AIC-corrected 19.89662 model1 > model2 < 2.22e-16
BIC-corrected 19.86415 model1 > model2 < 2.22e-16

Certainly, the ZIP model seems to improve the standard Poisson model, according to the
Vuong test.

26.4.3 The Fitted Equation

The form of the model equation for a zero-inflated Poisson regression requires us to take two
separate models into account. First we have a logistic regression model to predict the log odds
of zero physhealth days. That takes care of the extra zeros. Then, to predict the number of
physhealth days, we have a Poisson model, which may produce some additional zero count
estimates.

691

26.4.4 Interpreting the Coefficients

We can exponentiate the logistic regression coefficients to obtain results in terms of odds
ratios for that model, and that can be of some help in understanding the process behind
excess zeros.

Also, exponentiating the coefficients of the count model help us describe those counts on the
original scale of physhealth.

exp(coef(mod_zip1))

count_(Intercept) count_bmi_c count_smoke100 zero_(Intercept)
7.3714810 1.0183428 1.4819444 1.9784348

zero_bmi_c zero_smoke100
0.9726561 0.7888485

For example,

• in the model for physhealth = 0, the odds of physhealth = 0 are 79% as high for
subjects with smoke100 = 1 as for non-smokers with the same BMI.

• in the Poisson model for physhealth, the physhealth count is estimated to increase by
1.48 for smokers as compared to non-smokers with the same BMI.

26.4.5 Testing the Predictors

We can test the model with and without bmi_c, for example, by fitting the model both ways,
and comparing the results with either a Wald or Likelihood Ratio test, each of which is available
in the lmtest package.

mod_zip1_nobmi <- zeroinfl(physhealth ~ smoke100,
data = ohioA_young)

lmtest::waldtest(mod_zip1, mod_zip1_nobmi)

Wald test

Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
Res.Df Df Chisq Pr(>Chisq)

1 1968
2 1970 -2 187.2 < 2.2e-16 ***

692

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

lmtest::lrtest(mod_zip1, mod_zip1_nobmi)

Likelihood ratio test

Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
#Df LogLik Df Chisq Pr(>Chisq)

1 6 -5679.8
2 4 -5769.5 -2 179.35 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

26.4.6 Store fitted values and residuals

The broom package does not work with the zeroinfl tool. So we need to build up the fitted
values and residuals ourselves.

sm_zip1 <- ohioA_young |>
mutate(fitted = fitted(mod_zip1, type = "response"),

resid = resid(mod_zip1, type = "response"))

sm_zip1 |>
dplyr::select(physhealth, fitted, resid) |>
head()

A tibble: 6 x 3
physhealth fitted resid

<dbl> <dbl> <dbl>
1 0 2.21 -2.21
2 0 2.28 -2.28
3 0 3.12 -3.12
4 30 5.27 24.7
5 0 3.17 -3.17
6 0 3.71 -3.71

693

26.4.7 Modeled Number of Zero Counts

The zero-inflated model is designed to perfectly match the number of observed zeros. We
can compare the observed number of zero physhealth results to the expected number of zero
values from the likelihood-based models.

round(c("Obs" = sum(ohioA_young$physhealth == 0),
"Poisson" = sum(dpois(0, fitted(mod_poiss1))),
"NB" = sum(dnbinom(0, mu = fitted(mod_nb1), size = mod_nb1$theta)),
"ZIP" = sum(predict(mod_zip1, type = "prob")[,1])), 0)

Obs Poisson NB ZIP
1264 124 1250 1264

26.4.8 Rootogram for ZIP model

Here’s the rootogram for the zero-inflated Poisson model.

topmodels::rootogram(mod_zip1, max = 30)

−10

0

10

20

30

0 10 20 30
physhealth

sq
rt

(F
re

qu
en

cy
)

694

The zero frequencies are perfectly matched here, but we can see that counts of 1 and 2 are
now substantially underfit, and values between 6 and 13 are overfit.

26.4.9 Specify the 𝑅2 and log (likelihood) values

We can calculate a proxy for 𝑅2 as the squared correlation of the fitted values and the observed
values.

The correlation of observed and fitted values
(zip_r <- with(sm_zip1, cor(physhealth, fitted)))

[1] 0.1873284

R-square
zip_r^2

[1] 0.03509194

logLik(mod_zip1)

'log Lik.' -5679.794 (df=6)

Here, we have

Model Scale 𝑅2 log(likelihood)
Zero-Inflated Poisson Complex: log(physhealth) .035 -5679.83

26.4.10 Check model assumptions

Here is a plot of residuals vs. fitted values on the original physhealth scale.

ggplot(sm_zip1, aes(x = fitted, y = resid)) +
geom_point() +
labs(title = "Residuals vs. Fitted `physhealth`",

subtitle = "Zero-Inflated Poisson Regression model")

695

−20

−10

0

10

20

30

5 10 15
fitted

re
si

d

Zero−Inflated Poisson Regression model

Residuals vs. Fitted `physhealth`

26.4.11 Predictions for Harry and Sally

The predictions from this ZIP regression model are obtained as follows…

predict(mod_zip1, newdata = hs_data, type = "response")

1 2
6.002249 2.056792

As we’ve seen in the past, when we use response as the type, the predictions fall on the
original physhealth scale. The prediction for Harry is 6.0 days, and for Sally is 2.1 days.

26.5 The Zero-Inflated Negative Binomial Regression Model

As an alternative to the ZIP model, we might consider a zero-inflated negative binomial re-
gression2. This will involve a logistic regression to predict the probability of a 0, and then a
negative binomial model to describe the counts of physhealth.

To run the zero-inflated negative binomial model, we use the following code:

2See https://stats.idre.ucla.edu/r/dae/zinb/

696

mod_zinb1 <- pscl::zeroinfl(physhealth ~ bmi_c + smoke100,
dist = "negbin", data = ohioA_young)

summary(mod_zinb1)

Call:
pscl::zeroinfl(formula = physhealth ~ bmi_c + smoke100, data = ohioA_young,

dist = "negbin")

Pearson residuals:
Min 1Q Median 3Q Max

-0.5579 -0.4192 -0.3957 -0.1166 6.4355

Count model coefficients (negbin with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.545639 0.099787 15.489 < 2e-16 ***
bmi_c 0.024617 0.006641 3.707 0.00021 ***
smoke100 0.517302 0.110770 4.670 3.01e-06 ***
Log(theta) -0.874127 0.143900 -6.075 1.24e-09 ***

Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.071616 0.164055 -0.437 0.66245
bmi_c -0.027609 0.009314 -2.964 0.00303 **
smoke100 -0.127260 0.137180 -0.928 0.35357

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Theta = 0.4172
Number of iterations in BFGS optimization: 16
Log-likelihood: -3469 on 7 Df

confint(mod_zinb1)

2.5 % 97.5 %
count_(Intercept) 1.35005972 1.741217558
count_bmi_c 0.01160172 0.037633119
count_smoke100 0.30019616 0.734408526
zero_(Intercept) -0.39315782 0.249925968

697

zero_bmi_c -0.04586350 -0.009355106
zero_smoke100 -0.39612706 0.141607082

26.5.1 Comparison to a null model

To show that this model fits better than the null model (the model with intercept only), we
can compare them directly with a chi-squared test. Since we have two predictors in the full
model, the degrees of freedom for this test is 2.

mod_zinbnull <- pscl::zeroinfl(physhealth ~ 1, dist = "negbin",
data = ohioA_young)

summary(mod_zinbnull)

Call:
pscl::zeroinfl(formula = physhealth ~ 1, data = ohioA_young, dist = "negbin")

Pearson residuals:
Min 1Q Median 3Q Max

-0.4048 -0.4048 -0.4048 -0.1622 3.2340

Count model coefficients (negbin with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.7766 0.0964 18.429 < 2e-16 ***
Log(theta) -1.0445 0.1612 -6.479 9.25e-11 ***

Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2605 0.1920 -1.357 0.175

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Theta = 0.3519
Number of iterations in BFGS optimization: 13
Log-likelihood: -3498 on 3 Df

pchisq(2 * (logLik(mod_nb1) - logLik(mod_zinbnull)), df = 2, lower.tail = FALSE)

'log Lik.' 8.538917e-07 (df=4)

698

26.5.2 Comparison to a Negative Binomial Model: Vuong test

vuong(mod_zinb1, mod_nb1)

Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed N(0,1) under the
null that the models are indistinguishible)

Vuong z-statistic H_A p-value
Raw 3.0756577 model1 > model2 0.0010502
AIC-corrected 2.4599576 model1 > model2 0.0069477
BIC-corrected 0.7397477 model1 > model2 0.2297265

The zero-inflated negative binomial model appears to be an improvement over the standard
negative binomial model according to the the raw or AIC-corrected Vuong tests, but not
according to the BIC-corrected test.

26.5.3 The Fitted Equation

Like the ZIP, the zero-inflated negative binomial regression also requires us to take two separate
models into account. First we have a logistic regression model to predict the log odds of
zero physhealth days. That takes care of the extra zeros. Then, to predict the number of
physhealth days, we have a negative binomial regression, with a 𝜃 term, and this negative
binomial regression model may also produce some additional zero count estimates.

26.5.4 Interpreting the Coefficients

As with the zip, we can exponentiate the logistic regression coefficients to obtain results in
terms of odds ratios for that model, and that can be of some help in understanding the process
behind excess zeros.

exp(coef(mod_zinb1))

count_(Intercept) count_bmi_c count_smoke100 zero_(Intercept)
4.6909665 1.0249229 1.6774962 0.9308884

zero_bmi_c zero_smoke100
0.9727684 0.8805047

For example,

699

• in the model for physhealth = 0, the odds of physhealth = 0 are 88.1% as high for
subjects with smoke100 = 1 as for non-smokers with the same BMI.

Interpreting the negative binomial piece works the same way as it did in the negative binomial
regression.

26.5.5 Testing the Predictors

We can test the model with and without bmi_c, for example, by fitting the model both ways,
and comparing the results with either a Wald or Likelihood Ratio test, each of which is available
in the lmtest package.

mod_zinb1_nobmi <- pscl::zeroinfl(physhealth ~ smoke100,
dist = "negbin",
data = ohioA_young)

lmtest::waldtest(mod_zinb1, mod_zinb1_nobmi)

Wald test

Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
Res.Df Df Chisq Pr(>Chisq)

1 1967
2 1969 -2 29.593 3.75e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

lmtest::lrtest(mod_zinb1, mod_zinb1_nobmi)

Likelihood ratio test

Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
#Df LogLik Df Chisq Pr(>Chisq)

1 7 -3469.3
2 5 -3485.0 -2 31.418 1.506e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

700

26.5.6 Store fitted values and residuals

Again, we need to build up the fitted values and residuals without the broom package.

sm_zinb1 <- ohioA_young |>
mutate(fitted = fitted(mod_zinb1, type = "response"),

resid = resid(mod_zinb1, type = "response"))

sm_zip1 |>
dplyr::select(physhealth, fitted, resid) |>
head()

A tibble: 6 x 3
physhealth fitted resid

<dbl> <dbl> <dbl>
1 0 2.21 -2.21
2 0 2.28 -2.28
3 0 3.12 -3.12
4 30 5.27 24.7
5 0 3.17 -3.17
6 0 3.71 -3.71

26.5.7 Modeled Number of Zero Counts

Once again, we can compare the observed number of zero physhealth results to the expected
number of zero values from the likelihood-based models.

round(c("Obs" = sum(ohioA_young$physhealth == 0),
"Poisson" = sum(dpois(0, fitted(mod_poiss1))),
"NB" = sum(dnbinom(0, mu = fitted(mod_nb1), size = mod_nb1$theta)),
"ZIP" = sum(predict(mod_zip1, type = "prob")[,1]),
"ZINB" = sum(predict(mod_zinb1, type = "prob")[,1])),0)

Obs Poisson NB ZIP ZINB
1264 124 1250 1264 1264

So, the Poisson model is clearly inappropriate, but the zero-inflated (Poisson and NB) and the
negative binomial model all give reasonable fits in this regard.

701

26.5.8 Rootogram for Zero-Inflated Negative Binomial model

Here’s the rootogram for the zero-inflated negative binomial model.

topmodels::rootogram(mod_zinb1, max = 30)

0

10

20

30

0 50 100 150
physhealth

sq
rt

(F
re

qu
en

cy
)

As in the ZIP model, the zero frequencies are perfectly matched here, but we can see that
counts of 1 and 2 are now closer to the data we observe than in the ZIP model. We are still
substantially underfitting values of 30.

26.5.9 Specify the 𝑅2 and log (likelihood) values

We can calculate a proxy for 𝑅2 as the squared correlation of the fitted values and the observed
values.

The correlation of observed and fitted values
(zinb_r <- with(sm_zinb1, cor(physhealth, fitted)))

[1] 0.1858996

702

R-square
zinb_r^2

[1] 0.03455865

logLik(mod_zinb1)

'log Lik.' -3469.29 (df=7)

Here, we have

Model Scale 𝑅2 log(likelihood)
Zero-Inflated Negative

Binomial
Complex:

log(physhealth)
.035 -3469.27

26.5.10 Check model assumptions

Here is a plot of residuals vs. fitted values on the original physhealth scale.

ggplot(sm_zinb1, aes(x = fitted, y = resid)) +
geom_point() +
labs(title = "Residuals vs. Fitted `physhealth`",

subtitle = "Zero-Inflated Negative Binomial Regression model")

703

−20

−10

0

10

20

30

5 10 15 20
fitted

re
si

d

Zero−Inflated Negative Binomial Regression model

Residuals vs. Fitted `physhealth`

26.5.11 Predictions for Harry and Sally

The predictions from this zero-inflated negative binomial regression model are obtained as
follows…

predict(mod_zinb1, newdata = hs_data, type = "response")

1 2
6.205985 2.004987

As we’ve seen in the past, when we use response as the type, the predictions fall on the
original physhealth scale. The prediction for Harry is 6.2 days, and for Sally is 2.0 days.

26.6 A “hurdle” model (with Poisson)

Much of the discussion here of hurdle models comes from Clay Ford at the University of
Virginia3. Ford describes a hurdle model as follows:

3http://data.library.virginia.edu/getting-started-with-hurdle-models/ is an excellent introduction, by Clay
Ford, a Statistical Research Consultant at the University of Virginia Library. I can also recommend

704

The hurdle model is a two-part model that specifies one process for zero counts and
another process for positive counts. The idea is that positive counts occur once a
threshold is crossed, or put another way, a hurdle is cleared. If the hurdle is not
cleared, then we have a count of 0.

The first part of the model is typically a binary logit model. This models whether
an observation takes a positive count or not. The second part of the model is
usually a truncated Poisson or Negative Binomial model. Truncated means we’re
only fitting positive counts. If we were to fit a hurdle model to our [medicare]
data, the interpretation would be that one process governs whether a patient visits
a doctor or not, and another process governs how many visits are made.

To fit a hurdle model, we’ll use the hurdle function in the pscl package.

mod_hur1 <- pscl::hurdle(physhealth ~ bmi_c + smoke100,
dist = "poisson", zero.dist = "binomial",
data = ohioA_young)

summary(mod_hur1)

Call:
pscl::hurdle(formula = physhealth ~ bmi_c + smoke100, data = ohioA_young,

dist = "poisson", zero.dist = "binomial")

Pearson residuals:
Min 1Q Median 3Q Max

-1.4403 -0.6987 -0.6139 -0.1946 9.2997

Count model coefficients (truncated poisson with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.997612 0.018797 106.3 <2e-16 ***
bmi_c 0.018178 0.001398 13.0 <2e-16 ***
smoke100 0.393348 0.024889 15.8 <2e-16 ***
Zero hurdle model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.683509 0.062827 -10.879 < 2e-16 ***
bmi_c 0.027777 0.006508 4.268 1.97e-05 ***

https://rpubs.com/kaz_yos/pscl-2 as a place to learn more about the pscl package, and the fitting and
interpretation of both hurdle and zero-inflated regression models. That rpubs site has a link to this article
by Hu, Pavlicova and Nunes from the Am J Drug Alcohol Abuse which provides a real set of examples from
a trial of a behavioral health intervention meant to reduce the risk of unprotected sexual occasions as part
of a strategy to reduce HIV risk.

705

https://www.ncbi.nlm.nih.gov/pubmed/21854279
https://www.ncbi.nlm.nih.gov/pubmed/21854279

smoke100 0.238300 0.095301 2.500 0.0124 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of iterations in BFGS optimization: 14
Log-likelihood: -5680 on 6 Df

confint(mod_hur1)

2.5 % 97.5 %
count_(Intercept) 1.96077105 2.03445261
count_bmi_c 0.01543722 0.02091901
count_smoke100 0.34456599 0.44212932
zero_(Intercept) -0.80664805 -0.56037031
zero_bmi_c 0.01502124 0.04053230
zero_smoke100 0.05151314 0.42508607

We are using the default settings here, using the same predictors for both models:

• a Binomial model to predict the probability of physhealth = 0 given our predictors,
as specified by the zero.dist argument in the hurdle function, and

• a (truncated) Poisson model to predict the positive-count of physhealth given those
same predictors, as specified by the dist argument in the hurdle function.

26.6.1 Comparison to a null model

To show that this model fits better than the null model (the model with intercept only), we
can compare them directly with a chi-squared test. Since we have two predictors in the full
model, the degrees of freedom for this test is 2.

mod_hurnull <- pscl::hurdle(physhealth ~ 1, dist = "poisson",
zero.dist = "binomial",
data = ohioA_young)

summary(mod_hurnull)

Call:
pscl::hurdle(formula = physhealth ~ 1, data = ohioA_young, dist = "poisson",

zero.dist = "binomial")

706

Pearson residuals:
Min 1Q Median 3Q Max

-0.6934 -0.6934 -0.6934 -0.2779 5.5399

Count model coefficients (truncated poisson with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.22765 0.01233 180.7 <2e-16 ***
Zero hurdle model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.5768 0.0469 -12.3 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of iterations in BFGS optimization: 8
Log-likelihood: -5908 on 2 Df

pchisq(2 * (logLik(mod_hur1) - logLik(mod_hurnull)), df = 2, lower.tail = FALSE)

'log Lik.' 8.577393e-100 (df=6)

26.6.2 Comparison to a Poisson Model: Vuong test

vuong(mod_hur1, mod_poiss1)

Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed N(0,1) under the
null that the models are indistinguishible)

Vuong z-statistic H_A p-value
Raw 19.90847 model1 > model2 < 2.22e-16
AIC-corrected 19.89685 model1 > model2 < 2.22e-16
BIC-corrected 19.86438 model1 > model2 < 2.22e-16

The hurdle model shows a detectable improvement over the standard Poisson model according
to this test.

707

26.6.3 Comparison to a Zero-Inflated Poisson Model: Vuong test

Is the hurdle model comparable to the zero-inflated Poisson?

vuong(mod_hur1, mod_zip1)

Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed N(0,1) under the
null that the models are indistinguishible)

Vuong z-statistic H_A p-value
Raw 0.2269041 model1 > model2 0.41025
AIC-corrected 0.2269041 model1 > model2 0.41025
BIC-corrected 0.2269041 model1 > model2 0.41025

The hurdle model doesn’t show a substantial improvement over the zero-inflated Poisson model
according to this test.

26.6.4 The Fitted Equation

The form of the model equation for this hurdle also requires us to take two separate models into
account. First we have a logistic regression model to predict the log odds of zero physhealth
days. That takes care of the zeros. Then, to predict the number of physhealth days, we use
a truncated Poisson model, which is truncated to produce only estimates greater than zero.

26.6.5 Interpreting the Coefficients

We can exponentiate the logistic regression coefficients to obtain results in terms of odds
ratios for that model, and that can be of some help in understanding the process behind
excess zeros.

Also, exponentiating the coefficients of the count model help us describe those counts on the
original scale of physhealth.

exp(coef(mod_hur1))

count_(Intercept) count_bmi_c count_smoke100 zero_(Intercept)
7.3714308 1.0183443 1.4819335 0.5048423

zero_bmi_c zero_smoke100
1.0281661 1.2690894

708

For example,

• in the model for physhealth = 0, the odds of physhealth = 0 are 127% as high for
subjects with smoke100 = 1 as for non-smokers with the same BMI.

• in the Poisson model for physhealth, the physhealth count is estimated to increase by
1.48 for smokers as compared to non-smokers with the same BMI.

26.6.6 Testing the Predictors

We can test the model with and without bmi_c, for example, by fitting the model both ways,
and comparing the results with either a Wald or Likelihood Ratio test, each of which is available
in the lmtest package.

mod_hur1_nobmi <- pscl::hurdle(physhealth ~ smoke100,
dist = "poisson",
zero.dist = "binomial",
data = ohioA_young)

lmtest::waldtest(mod_hur1, mod_hur1_nobmi)

Wald test

Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
Res.Df Df Chisq Pr(>Chisq)

1 1968
2 1970 -2 187.19 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

lmtest::lrtest(mod_hur1, mod_hur1_nobmi)

Likelihood ratio test

Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
#Df LogLik Df Chisq Pr(>Chisq)

1 6 -5679.8
2 4 -5769.5 -2 179.35 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

709

26.6.7 Store fitted values and residuals

The broom package does not work with the hurdle class of models. Again we need to build
up the fitted values and residuals ourselves.

sm_hur1 <- ohioA_young |>
mutate(fitted = fitted(mod_hur1, type = "response"),

resid = resid(mod_hur1, type = "response"))

sm_hur1 |>
dplyr::select(physhealth, fitted, resid) |>
head()

A tibble: 6 x 3
physhealth fitted resid

<dbl> <dbl> <dbl>
1 0 2.21 -2.21
2 0 2.28 -2.28
3 0 3.12 -3.12
4 30 5.27 24.7
5 0 3.17 -3.17
6 0 3.71 -3.71

26.6.8 Modeled Number of Zero Counts

Once again, we can compare the observed number of zero physhealth results to the expected
number of zero values from the likelihood-based models.

round(c("Obs" = sum(ohioA_young$physhealth == 0),
"Poisson" = sum(dpois(0, fitted(mod_poiss1))),
"NB" = sum(dnbinom(0, mu = fitted(mod_nb1), size = mod_nb1$theta)),
"ZIP" = sum(predict(mod_zip1, type = "prob")[,1]),
"ZINB" = sum(predict(mod_zinb1, type = "prob")[,1]),
"Hurdle" = sum(predict(mod_hur1, type = "prob")[,1])),0)

Obs Poisson NB ZIP ZINB Hurdle
1264 124 1250 1264 1264 1264

The hurdle model does about as well as the negative binomial and zero-inflated models. All
but the Poisson give reasonable fits in this regard.

710

26.6.9 Rootogram for Hurdle Model

topmodels::rootogram(mod_hur1, max = 30)

−10

0

10

20

30

0 10 20 30
physhealth

sq
rt

(F
re

qu
en

cy
)

The results are still not perfect, of course. In fitting the zeros exactly, we’re underfitting counts
of 1, 2, and 30, and overfitting many of the counts between 6 and 20. We still have a problem
here with overdispersion. That’s why we’ll consider a hurdle model with a negative binomial
regression for the counts in a moment.

26.6.10 Understanding the Modeled Counts in Detail

The expected mean count uses both parts of the hurdle model. Mathematically, we want…

𝐸[𝑦|𝑥] = 1 − 𝑓1(0|𝑥)
1 − 𝑓2(0|𝑥)𝜇2(𝑥)

where

• our count of physhealth is 𝑦
• our predictors are represented by x
• and the expected count is the product of a ratio and a mean.

711

The ratio is the probability of a non-zero in the first process divided the probability
of a non-zero in the second untruncated process. The f symbols represent distri-
butions. Recall these are logistic and Poisson, respectively, by default but can be
others. The mean is for the untruncated version of the positive-count process.

If we want to see the expected hurdle counts, we can get them using some clever applications
of the predict function.

The first six expected mean counts (𝐸[𝑦|𝑥] from the equation above) are:

head(predict(mod_hur1, type = "response"))

1 2 3 4 5 6
2.214179 2.281482 3.116124 5.267881 3.167890 3.712120

The ratio of non-zero probabilities, 1−𝑓1(0|𝑥)
1−𝑓2(0|𝑥) , from the mathematical expression above can be

extracted by:

head(predict(mod_hur1, type = "zero"))

1 2 3 4 5 6
0.3173312 0.3221978 0.3344433 0.4806542 0.3372292 0.3649208

The mean for the untruncated process, 𝜇2(𝑥), can also be obtained by:

head(predict(mod_hur1, type = "count"))

1 2 3 4 5 6
6.977501 7.081000 9.317347 10.959814 9.393877 10.172401

and we can multiply these last two pieces together to verify that they match our expected
hurdle counts.

head(predict(mod_hur1, type = "zero") * predict(mod_hur1, type = "count"),5)

1 2 3 4 5
2.214179 2.281482 3.116124 5.267881 3.167890

712

26.6.11 Specify the 𝑅2 and log (likelihood) values

We can calculate a proxy for 𝑅2 as the squared correlation of the fitted values and the observed
values.

The correlation of observed and fitted values
(hur1_r <- with(sm_hur1, cor(physhealth, fitted)))

[1] 0.1873104

R-square
hur1_r^2

[1] 0.03508517

logLik(mod_hur1)

'log Lik.' -5679.792 (df=6)

Here, we have

Model Scale 𝑅2 log(likelihood)
Hurdle Model (Poisson) Complex: log(physhealth) .035 -5679.83

26.6.12 Check model assumptions

Here is a plot of residuals vs. fitted values on the original physhealth scale.

ggplot(sm_hur1, aes(x = fitted, y = resid)) +
geom_point() +
labs(title = "Residuals vs. Fitted `physhealth`",

subtitle = "Hurdle model with Poisson counts")

713

−20

−10

0

10

20

30

5 10 15
fitted

re
si

d

Hurdle model with Poisson counts

Residuals vs. Fitted `physhealth`

26.6.13 Predictions for Harry and Sally

The predictions from this zero-inflated negative binomial regression model are obtained as
follows…

predict(mod_hur1, newdata = hs_data, type = "response")

1 2
6.003689 2.057127

As we’ve seen in the past, when we use response as the type, the predictions fall on the
original physhealth scale. The prediction for Harry is 6.0 days, and for Sally is 2.1 days.

26.7 A “hurdle” model (with negative binomial for overdispersion)

Let’s account for overdispersion better with a negative binomial model for the counts in our
hurdle model. We specify that the positive-count process be fit with this NB model using dist
= negbin.

714

mod_hur_nb1 <- pscl::hurdle(physhealth ~ bmi_c + smoke100,
dist = "negbin", zero.dist = "binomial",
data = ohioA_young)

summary(mod_hur_nb1)

Call:
pscl::hurdle(formula = physhealth ~ bmi_c + smoke100, data = ohioA_young,

dist = "negbin", zero.dist = "binomial")

Pearson residuals:
Min 1Q Median 3Q Max

-0.5749 -0.4178 -0.3948 -0.1165 6.4023

Count model coefficients (truncated negbin with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.54170 0.10101 15.263 < 2e-16 ***
bmi_c 0.02434 0.00677 3.595 0.000324 ***
smoke100 0.51792 0.11101 4.666 3.08e-06 ***
Log(theta) -0.88245 0.14653 -6.023 1.72e-09 ***
Zero hurdle model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.683509 0.062827 -10.879 < 2e-16 ***
bmi_c 0.027777 0.006508 4.268 1.97e-05 ***
smoke100 0.238300 0.095301 2.500 0.0124 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Theta: count = 0.4138
Number of iterations in BFGS optimization: 17
Log-likelihood: -3469 on 7 Df

confint(mod_hur_nb1)

2.5 % 97.5 %
count_(Intercept) 1.34373051 1.73966938
count_bmi_c 0.01107002 0.03760872
count_smoke100 0.30035006 0.73549531
zero_(Intercept) -0.80664805 -0.56037031

715

zero_bmi_c 0.01502124 0.04053230
zero_smoke100 0.05151314 0.42508607

26.7.1 Comparison to a null model

To show that this model fits better than the null model (the model with intercept only), we
can compare them directly with a chi-squared test. Since we have two predictors in the full
model, the degrees of freedom for this test is 2.

mod_hur_nb_null <- pscl::hurdle(physhealth ~ 1, dist = "negbin",
zero.dist = "binomial",
data = ohioA_young)

summary(mod_hur_nb_null)

Call:
pscl::hurdle(formula = physhealth ~ 1, data = ohioA_young, dist = "negbin",

zero.dist = "binomial")

Pearson residuals:
Min 1Q Median 3Q Max

-0.4048 -0.4048 -0.4048 -0.1622 3.2340

Count model coefficients (truncated negbin with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.77653 0.09641 18.427 < 2e-16 ***
Log(theta) -1.04455 0.16123 -6.479 9.25e-11 ***
Zero hurdle model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.5768 0.0469 -12.3 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Theta: count = 0.3518
Number of iterations in BFGS optimization: 12
Log-likelihood: -3498 on 3 Df

pchisq(2 * (logLik(mod_hur_nb1) - logLik(mod_hur_nb_null)), df = 2, lower.tail = FALSE)

'log Lik.' 2.17419e-13 (df=7)

716

26.7.2 Comparison to a Negative Binomial Model: Vuong test

vuong(mod_hur_nb1, mod_nb1)

Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed N(0,1) under the
null that the models are indistinguishible)

Vuong z-statistic H_A p-value
Raw 3.0953118 model1 > model2 0.00098303
AIC-corrected 2.4837306 model1 > model2 0.00650071
BIC-corrected 0.7750288 model1 > model2 0.21916133

The hurdle model improves the standard negative binomial model according to the raw and
AIC-corrected versions of this test, but not the BIC-corrected version.

26.7.3 Comparison to a Zero-Inflated NB Model: Vuong test

Is the hurdle model comparable to the zero-inflated Poisson?

vuong(mod_hur_nb1, mod_zinb1)

Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed N(0,1) under the
null that the models are indistinguishible)

Vuong z-statistic H_A p-value
Raw 0.9126037 model1 > model2 0.18073
AIC-corrected 0.9126037 model1 > model2 0.18073
BIC-corrected 0.9126037 model1 > model2 0.18073

The hurdle model appears just barely improved over the zero-inflated Negative Binomial
model.

717

26.7.4 Comparing the Hurdle Models with AIC and BIC

AIC(mod_hur1); BIC(mod_hur1)

[1] 11371.58

[1] 11405.11

AIC(mod_hur_nb1); BIC(mod_hur_nb1)

[1] 6952.186

[1] 6991.301

The negative binomial approach certainly looks better than the Poisson here.

26.7.5 The Fitted Equation

The form of the model equation for this hurdle also requires us to take two separate models into
account. First we have a logistic regression model to predict the log odds of zero physhealth
days. That takes care of the zeros. Then, to predict the number of physhealth days, we use
a truncated negative binomial model, which is truncated to produce only estimates greater
than zero, with 𝜃 estimated as exp(-1.123) or 0.325.

26.7.6 Interpreting the Coefficients

We can exponentiate the logistic regression coefficients to obtain results in terms of odds
ratios for that model, and that can be of some help in understanding the process behind
excess zeros.

exp(coef(mod_hur_nb1))

count_(Intercept) count_bmi_c count_smoke100 zero_(Intercept)
4.6725266 1.0246380 1.6785372 0.5048423

zero_bmi_c zero_smoke100
1.0281661 1.2690894

718

For example,

• in the model for physhealth = 0, the odds of physhealth = 0 are 127% as high for
subjects with smoke100 = 1 as for non-smokers with the same BMI.

26.7.7 Testing the Predictors

We can test the model with and without bmi_c, for example, by fitting the model both ways,
and comparing the results with either a Wald or Likelihood Ratio test, each of which is available
in the lmtest package.

mod_hurnb1_nobmi <- pscl::hurdle(physhealth ~ smoke100,
dist = "negbin",
zero.dist = "binomial",
data = ohioA_young)

lmtest::waldtest(mod_hur_nb1, mod_hurnb1_nobmi)

Wald test

Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
Res.Df Df Chisq Pr(>Chisq)

1 1967
2 1969 -2 31.141 1.729e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

lmtest::lrtest(mod_hur_nb1, mod_hurnb1_nobmi)

Likelihood ratio test

Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
#Df LogLik Df Chisq Pr(>Chisq)

1 7 -3469.1
2 5 -3485.0 -2 31.812 1.236e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

719

26.7.8 Store fitted values and residuals

Again we need to build up the fitted values and residuals, without broom to help.

sm_hur_nb1 <- ohioA_young |>
mutate(fitted = fitted(mod_hur_nb1, type = "response"),

resid = resid(mod_hur_nb1, type = "response"))

sm_hur_nb1 |>
dplyr::select(physhealth, fitted, resid) |>
head()

A tibble: 6 x 3
physhealth fitted resid

<dbl> <dbl> <dbl>
1 0 2.16 -2.16
2 0 2.23 -2.23
3 0 3.09 -3.09
4 30 5.37 24.6
5 0 3.15 -3.15
6 0 3.72 -3.72

26.7.9 Rootogram for NB Hurdle Model

topmodels::rootogram(mod_hur_nb1, max = 30)

720

0

10

20

30

0 50 100 150
physhealth

sq
rt

(F
re

qu
en

cy
)

This improves the situation, but we’re still underfitting the 30s.

26.7.10 Specify the 𝑅2 and log (likelihood) values

We can calculate a proxy for 𝑅2 as the squared correlation of the fitted values and the observed
values.

The correlation of observed and fitted values
(hurnb1_r <- with(sm_hur_nb1, cor(physhealth, fitted)))

[1] 0.1856393

R-square
hurnb1_r^2

[1] 0.03446194

logLik(mod_hur_nb1)

721

'log Lik.' -3469.093 (df=7)

Here, we have

Model Scale 𝑅2 log(likelihood)
Hurdle Model (Neg.

Bin.)
Complex:

log(physhealth)
.035 -3469.07

26.7.11 Check model assumptions

Here is a plot of residuals vs. fitted values on the original physhealth scale.

ggplot(sm_hur_nb1, aes(x = fitted, y = resid)) +
geom_point() +
labs(title = "Residuals vs. Fitted `physhealth`",

subtitle = "Hurdle model with Negative Binomial counts")

−20

−10

0

10

20

30

5 10 15 20
fitted

re
si

d

Hurdle model with Negative Binomial counts

Residuals vs. Fitted `physhealth`

722

26.7.12 Predictions for Harry and Sally

The predictions from this zero-inflated negative binomial regression model are obtained as
follows…

predict(mod_hur_nb1, newdata = hs_data, type = "response")

1 2
6.222041 2.007094

The prediction for Harry is 6.22 days, and for Sally is 2.01 days.

26.7.13 Note: Fitting a Different Hurdle Model for Counts and Pr(zero)

Suppose we wanted to use only bmi_c to predict the probability of a zero count, but use both
predictors in the model for the positive counts. We use the | command.

mod_hur_new1 <-
pscl::hurdle(physhealth ~ bmi_c + smoke100 | bmi_c,

dist = "negbin", zero.dist = "binomial",
data = ohioA_young)

summary(mod_hur_new1)

Call:
pscl::hurdle(formula = physhealth ~ bmi_c + smoke100 | bmi_c, data = ohioA_young,

dist = "negbin", zero.dist = "binomial")

Pearson residuals:
Min 1Q Median 3Q Max

-0.5630 -0.4179 -0.3971 -0.1150 6.1958

Count model coefficients (truncated negbin with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.54170 0.10101 15.263 < 2e-16 ***
bmi_c 0.02434 0.00677 3.595 0.000324 ***
smoke100 0.51792 0.11101 4.666 3.08e-06 ***
Log(theta) -0.88245 0.14653 -6.023 1.72e-09 ***
Zero hurdle model coefficients (binomial with logit link):

723

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.58186 0.04718 -12.332 < 2e-16 ***
bmi_c 0.02853 0.00649 4.396 1.1e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Theta: count = 0.4138
Number of iterations in BFGS optimization: 17
Log-likelihood: -3472 on 6 Df

26.7.14 Hanging Rootogram for this new Hurdle Model

topmodels::rootogram(mod_hur_new1, max = 30)

0

10

20

30

0 50 100 150
physhealth

sq
rt

(F
re

qu
en

cy
)

Not a meaningful improvement, certainly.

26.8 A Tobit (Censored) Regression Model

The idea of the tobit model (sometimes called a censored regression model) is to estimate
associations for outcomes where we can see either left-censoring (censoring from below) or

724

right-censoring (censoring from above.)

Consider the variable physhealth, which is restricted to fall between 0 and 30 by the way the
measure was constructed. But supposed we think about a broader and latent (unobserved)
variable describing physical health. Among the people with physhealth = 0, some would
be incredible athletes and others would be in much poorer physical health but still healthy
enough to truthfully answer 0. On the other end, some of the people responding 30 are in
substantially worse physical health than others with that same response.

• Censoring from below takes place when values at or below a threshold (in this case 0)
take that value.

• Censoring from above takes place when values at or above a threshold (here, 30) take
that value.

Several examples of tobit analysis are available at https://stats.idre.ucla.edu/r/dae/tobit-
models/, which is my primary source for the material here on those models.

The tobit model postulates that the value 0 in our model is just the lower limit of the underlying
measure of poor physical health that we would actually observe in the population if we had
a stronger measure. Similarly, we’ll postulate that 30 is just the upper limit of “poor health”
that we can see. The approach I’ll take to run the tobit model comes from the vglm function
in the VGAM package.

Here’s the model, and its summary. Note that the default Lower value for a tobit model is 0,
so we didn’t technically have to list that here.

mod_tob1 <- vglm(physhealth ~ bmi_c + smoke100,
tobit(Lower = 0, Upper = 30),
type.fitted = "censored",
data = ohioA_young)

summary(mod_tob1)

Call:
vglm(formula = physhealth ~ bmi_c + smoke100, family = tobit(Lower = 0,

Upper = 30), data = ohioA_young, type.fitted = "censored")

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept):1 -9.29104 0.75509 -12.305 < 2e-16 ***
(Intercept):2 2.87081 0.03028 94.818 < 2e-16 ***
bmi_c 0.37434 0.06537 5.727 1.02e-08 ***
smoke100 4.35390 0.97223 4.478 7.52e-06 ***

725

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Names of linear predictors: mu, loglink(sd)

Log-likelihood: -3420.605 on 3944 degrees of freedom

Number of Fisher scoring iterations: 6

No Hauck-Donner effect found in any of the estimates

confint(mod_tob1)

2.5 % 97.5 %
(Intercept):1 -10.7709932 -7.8110877
(Intercept):2 2.8114721 2.9301560
bmi_c 0.2462244 0.5024551
smoke100 2.4483714 6.2594277

26.8.1 The Fitted Equation

Because we’ve used the censoring approach, our model will limit its predictions to the range
of [0, 30], where any predictions outside that range are censored. Values below 0 are fitted as
0, and values above 30 are fitted as 30.

The model equation is

physhealth = -9.29 + 0.37 bmi_c + 4.35 smoke100

26.8.2 Interpreting the Coefficients

Tobit model regression coefficients are interpreted as we would a set of OLS coefficients, ex-
cept that the linear effect is on the uncensored latent variable, rather than on the observed
outcome.

In our case,

• a one-unit increase in bmi_c is associated with a 0.37 day increase in the predicted value
of physhealth, holding smoke100 constant

• a move from smoke100 = 0 to 1 is associated with a 4.35 day increase in the predicted
value of physhealth, holding bmi_c constant

726

• the coefficient labeled (Intercept):1 is the intercept for the model and is the predicted
value of physhealth when smoke100 = 0 and bmi_c = 0. Note that this value is -9.29,
which is outside the range of physhealth values we observed.

• the coefficient labeled (Intercept):2 is a statistic we can use after we exponentiate it,
as follows:

– here (Intercept):2 = 2.87, and exp(2.87) = 17.6370182, which is analogous to
the square root of the residual variance in OLS regression, which is summarized for
our OLS model as Residual standard error: 17.64.

26.8.3 Testing the Predictors

We can test the model with and without bmi_c, for example, by fitting the model both ways,
and comparing the results with either a Wald or Likelihood Ratio test, each of which is available
in the lmtest package.

mod_tob_nobmi <- vglm(physhealth ~ smoke100,
tobit(Lower = 0, Upper = 30),
type.fitted = "censored",
data = ohioA_young)

lmtest::waldtest(mod_tob1, mod_tob_nobmi)

Wald test

Model 1: physhealth ~ bmi_c + smoke100
Model 2: physhealth ~ smoke100
Res.Df Df Chisq Pr(>Chisq)

1 3944
2 3945 -1 32.796 1.023e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The likelihood ratio test we have used in some other settings isn’t available here.

26.8.4 Store fitted values and residuals

The residuals and fitted values from the tobit model can be stored and then summarized in
several ways:

727

sm_tob1 <- ohioA_young |>
mutate(fitted = fitted(mod_tob1,

type.fitted = "censored"),
resid = physhealth - fitted)

sm_tob1 |>
dplyr::select(physhealth, fitted, resid) |>
head()

A tibble: 6 x 3
physhealth fitted[,1] resid[,1]

<dbl> <dbl> <dbl>
1 0 0 0
2 0 0 0
3 0 0 0
4 30 0 30
5 0 0 0
6 0 0 0

26.8.5 Building Something Like a Rootogram

Building a rootogram is tricky for a tobit model, to say the least, but we can approximate
a piece of the issue by plotting the rounded fitted values against the observed physhealth
data.

ggplot(sm_tob1, aes(x = physhealth, y = round(fitted))) +
geom_jitter(width = 0.2) +
geom_abline(intercept = 0, slope = 1, col = "red")

728

0

5

10

0 10 20 30
physhealth

ro
un

d(
fit

te
d)

Note that the model never predicts a subject to have an underlying physhealth worse than
about 13 (remember that larger numbers indicate worse health here.)

26.8.6 Tables of the Observed and Fitted physhealth from Tobit

addmargins(table(round(sm_tob1$physhealth)))

0 1 2 3 4 5 6 7 8 10 12 13 14 15 16 17
1264 112 139 78 29 50 5 40 9 41 4 1 24 38 2 1
18 20 21 25 26 28 29 30 Sum
1 23 3 8 2 1 1 98 1974

addmargins(table(round(sm_tob1$fitted)))

0 1 2 3 4 5 6 8 13 Sum
1924 20 7 10 4 6 1 1 1 1974

729

26.8.7 Specify the 𝑅2 and log (likelihood) values

We can calculate a proxy for 𝑅2 as the squared correlation of the fitted values and the observed
values.

The correlation of observed and fitted values
(tob1_r <- with(sm_tob1, cor(physhealth, fitted)))

[,1]
[1,] 0.09329619

R-square
tob1_r^2

[,1]
[1,] 0.008704178

logLik(mod_tob1)

[1] -3420.605

Here, we have

Model Scale 𝑅2 log(likelihood)
Tobit physhealth .008 -3420.58

26.8.8 Check model assumptions

Here is a plot of residuals vs. fitted values.

ggplot(sm_tob1, aes(x = fitted, y = resid)) +
geom_point() +
labs(title = "Residuals vs. Fitted Values for Tobit 1")

730

−10

0

10

20

30

0 4 8 12
fitted

re
si

d

Residuals vs. Fitted Values for Tobit 1

Here is a normal Q-Q plot of the Tobit Model 1 residuals.

qqnorm(sm_tob1$resid)

731

−3 −2 −1 0 1 2 3

−
10

0
10

20
30

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

26.8.9 Predictions for Harry and Sally

The predictions from this tobit model are obtained as follows…

predict(mod_tob1, newdata = hs_data, type = "response")

[,1]
1 -1.193743
2 -11.162739

The prediction for both Harry and Sally under the tobit model would be truncated to 0 days.

732

27 Modeling an Ordinal Categorical Outcome

27.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(gmodels)
library(MASS)
library(nnet)
library(rms)
library(tidyverse)

theme_set(theme_bw())

27.1.1 Data Load

smart_oh <- readRDS("data/smart_ohio.Rds")

27.2 A subset of the Ohio SMART data

Let’s consider the following data, which uses part of the smart_oh data we built in Chapter 6.
The outcome we’ll study now is genhealth, which has five ordered categories. I’ll include the
subset of all observations in smart_oh with complete data on these 7 variables.

Variable Description
SEQNO Subject identification code

genhealth Five categories (1 = Excellent, 2 = Very Good, 3 = Good, 4 = Fair, 5 =
Poor) on general health

physhealth Now thinking about your physical health, which includes physical illness
and injury, for how many days during the past 30 days was your physical
health not good?

733

Variable Description
veg_day mean number of vegetable servings consumed per day
costprob 1 indicates Yes to “Was there a time in the past 12 months when you

needed to see a doctor but could not because of cost?”, and 0 otherwise.
incomegroup 8 income groups from < 10,000 to 75,000 or more

bmi body-mass index

To make my life easier later, I’m going to drop any subjects with missing data on these
variables. I’m also going to drop the subjects who have no missing data, but have a listed bmi
above 60.

sm1 <- smart_oh |>
select(SEQNO, genhealth, physhealth, costprob, veg_day,

incomegroup, bmi) |>
filter(bmi <= 60) |>
drop_na()

In total, we have 5394 subjects in the sm1 sample.

27.2.1 Several Ways of Storing Multi-Categorical data

We will store the information in our outcome, genhealth in both a numeric form (gen_n) and
an ordered factor (gen_h) with some abbreviated labels) because we’ll have some use for each
approach in this material.

sm1 <- sm1 |>
mutate(genh = fct_recode(genhealth,

"1-E" = "1_Excellent",
"2_VG" = "2_VeryGood",
"3_G" = "3_Good",
"4_F" = "4_Fair",
"5_P" = "5_Poor"),

genh = factor(genh, ordered = TRUE),
gen_n = as.numeric(genhealth))

sm1 |> count(genh, gen_n, genhealth)

A tibble: 5 x 4
genh gen_n genhealth n
<ord> <dbl> <fct> <int>

1 1-E 1 1_Excellent 822

734

2 2_VG 2 2_VeryGood 1805
3 3_G 3 3_Good 1667
4 4_F 4 4_Fair 801
5 5_P 5 5_Poor 299

27.3 Building Cross-Tabulations

Is income group associated with general health?

27.3.1 Using base table functions

addmargins(table(sm1$incomegroup, sm1$genh))

1-E 2_VG 3_G 4_F 5_P Sum
0-9K 14 45 60 74 40 233
10-14K 12 41 66 93 46 258
15-19K 40 76 119 96 61 392
20-24K 51 129 175 100 50 505
25-34K 51 172 215 123 36 597
35-49K 97 270 303 118 24 812
50-74K 128 337 265 94 16 840
75K+ 429 735 464 103 26 1757
Sum 822 1805 1667 801 299 5394

More people answer Very Good and Good than choose the other categories. It might be easier
to look at percentages here.

27.3.1.1 Adding percentages within each row

Here are the percentages giving each genhealth response within each income group.

addmargins(
round(100*prop.table(

table(sm1$incomegroup, sm1$genh)
,1)
,1)

)

735

1-E 2_VG 3_G 4_F 5_P Sum
0-9K 6.0 19.3 25.8 31.8 17.2 100.1
10-14K 4.7 15.9 25.6 36.0 17.8 100.0
15-19K 10.2 19.4 30.4 24.5 15.6 100.1
20-24K 10.1 25.5 34.7 19.8 9.9 100.0
25-34K 8.5 28.8 36.0 20.6 6.0 99.9
35-49K 11.9 33.3 37.3 14.5 3.0 100.0
50-74K 15.2 40.1 31.5 11.2 1.9 99.9
75K+ 24.4 41.8 26.4 5.9 1.5 100.0
Sum 91.0 224.1 247.7 164.3 72.9 800.0

So, for example, 11.3% of the genhealth responses in subjects with incomes between 25 and
34 thousand dollars were Excellent.

27.3.1.2 Adding percentages within each column

Here are the percentages in each incomegroup within each genhealth response.

addmargins(
round(100*prop.table(

table(sm1$incomegroup, sm1$genh)
,2)
,1)

)

1-E 2_VG 3_G 4_F 5_P Sum
0-9K 1.7 2.5 3.6 9.2 13.4 30.4
10-14K 1.5 2.3 4.0 11.6 15.4 34.8
15-19K 4.9 4.2 7.1 12.0 20.4 48.6
20-24K 6.2 7.1 10.5 12.5 16.7 53.0
25-34K 6.2 9.5 12.9 15.4 12.0 56.0
35-49K 11.8 15.0 18.2 14.7 8.0 67.7
50-74K 15.6 18.7 15.9 11.7 5.4 67.3
75K+ 52.2 40.7 27.8 12.9 8.7 142.3
Sum 100.1 100.0 100.0 100.0 100.0 500.1

From this table, we see that 7.4% of the Excellent genhealth responses were given by people
with incomes between 25 and 34 thousand dollars.

736

27.3.2 Using xtabs

The xtabs function provides a formula method for obtaining cross-tabulations.

xtabs(~ incomegroup + genh, data = sm1)

genh
incomegroup 1-E 2_VG 3_G 4_F 5_P

0-9K 14 45 60 74 40
10-14K 12 41 66 93 46
15-19K 40 76 119 96 61
20-24K 51 129 175 100 50
25-34K 51 172 215 123 36
35-49K 97 270 303 118 24
50-74K 128 337 265 94 16
75K+ 429 735 464 103 26

27.3.3 Storing a table in a tibble

We can store the elements of a cross-tabulation in a tibble, like this:

(sm1.tableA <- sm1 |> count(incomegroup, genh))

A tibble: 40 x 3
incomegroup genh n
<fct> <ord> <int>

1 0-9K 1-E 14
2 0-9K 2_VG 45
3 0-9K 3_G 60
4 0-9K 4_F 74
5 0-9K 5_P 40
6 10-14K 1-E 12
7 10-14K 2_VG 41
8 10-14K 3_G 66
9 10-14K 4_F 93
10 10-14K 5_P 46
i 30 more rows

From such a tibble, we can visualize the data in many ways, but we can also return to xtabs
and include the frequencies (n) in that setup.

737

xtabs(n ~ incomegroup + genh, data = sm1.tableA)

genh
incomegroup 1-E 2_VG 3_G 4_F 5_P

0-9K 14 45 60 74 40
10-14K 12 41 66 93 46
15-19K 40 76 119 96 61
20-24K 51 129 175 100 50
25-34K 51 172 215 123 36
35-49K 97 270 303 118 24
50-74K 128 337 265 94 16
75K+ 429 735 464 103 26

And, we can get the 𝜒2 test of independence, with:

summary(xtabs(n ~ incomegroup + genh, data = sm1.tableA))

Call: xtabs(formula = n ~ incomegroup + genh, data = sm1.tableA)
Number of cases in table: 5394
Number of factors: 2
Test for independence of all factors:

Chisq = 894.2, df = 28, p-value = 3.216e-170

27.3.4 Using CrossTable from the gmodels package

The CrossTable function from the gmodels package produces a cross-tabulation with various
counts and proportions like people often generate with SPSS and SAS.

CrossTable(sm1$incomegroup, sm1$genh, chisq = T)

Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |

738

|-------------------------|

Total Observations in Table: 5394

| sm1$genh
sm1$incomegroup	1-E	2_VG	3_G	4_F	5_P	Row Total

0-9K | 14 | 45 | 60 | 74 | 40 | 233 |
13.027	13.941	2.002	44.865	56.796	
0.060	0.193	0.258	0.318	0.172	0.043
0.017	0.025	0.036	0.092	0.134	
0.003	0.008	0.011	0.014	0.007	

----------------|-----------|-----------|-----------|-----------|-----------|-----------|
10-14K | 12 | 41 | 66 | 93 | 46 | 258 |

18.980	23.806	2.366	78.061	70.259	
0.047	0.159	0.256	0.360	0.178	0.048
0.015	0.023	0.040	0.116	0.154	
0.002	0.008	0.012	0.017	0.009	

----------------|-----------|-----------|-----------|-----------|-----------|-----------|
15-19K | 40 | 76 | 119 | 96 | 61 | 392 |

6.521	23.208	0.038	24.531	70.973	
0.102	0.194	0.304	0.245	0.156	0.073
0.049	0.042	0.071	0.120	0.204	
0.007	0.014	0.022	0.018	0.011	

----------------|-----------|-----------|-----------|-----------|-----------|-----------|
20-24K | 51 | 129 | 175 | 100 | 50 | 505 |

8.756	9.463	2.296	8.340	17.301	
0.101	0.255	0.347	0.198	0.099	0.094
0.062	0.071	0.105	0.125	0.167	
0.009	0.024	0.032	0.019	0.009	

----------------|-----------|-----------|-----------|-----------|-----------|-----------|
25-34K | 51 | 172 | 215 | 123 | 36 | 597 |

17.567	3.862	5.042	13.307	0.255	
0.085	0.288	0.360	0.206	0.060	0.111
0.062	0.095	0.129	0.154	0.120	
0.009	0.032	0.040	0.023	0.007	

----------------|-----------|-----------|-----------|-----------|-----------|-----------|
35-49K | 97 | 270 | 303 | 118 | 24 | 812 |

5.779	0.011	10.798	0.055	9.808	
0.119	0.333	0.373	0.145	0.030	0.151
0.118	0.150	0.182	0.147	0.080	

739

| 0.018 | 0.050 | 0.056 | 0.022 | 0.004 | |
----------------|-----------|-----------|-----------|-----------|-----------|-----------|

50-74K | 128 | 337 | 265 | 94 | 16 | 840 |
0.000	11.121	0.112	7.575	20.061	
0.152	0.401	0.315	0.112	0.019	0.156
0.156	0.187	0.159	0.117	0.054	
0.024	0.062	0.049	0.017	0.003	

----------------|-----------|-----------|-----------|-----------|-----------|-----------|
75K+ | 429 | 735 | 464 | 103 | 26 | 1757 |

97.108	36.780	11.492	95.573	52.335	
0.244	0.418	0.264	0.059	0.015	0.326
0.522	0.407	0.278	0.129	0.087	
0.080	0.136	0.086	0.019	0.005	

----------------|-----------|-----------|-----------|-----------|-----------|-----------|
Column Total | 822 | 1805 | 1667 | 801 | 299 | 5394 |

| 0.152 | 0.335 | 0.309 | 0.148 | 0.055 | |
----------------|-----------|-----------|-----------|-----------|-----------|-----------|

Statistics for All Table Factors

Pearson's Chi-squared test
--
Chi^2 = 894.1685 d.f. = 28 p = 3.216132e-170

27.4 Graphing Categorical Data

27.4.1 A Bar Chart for a Single Variable

ggplot(sm1, aes(x = genhealth, fill = genhealth)) +
geom_bar() +
scale_fill_brewer(palette = "Set1") +
guides(fill = "none")

740

0

500

1000

1500

1_Excellent 2_VeryGood 3_Good 4_Fair 5_Poor
genhealth

co
un

t

or, you might prefer to plot percentages, perhaps like this:

ggplot(sm1, aes(x = genhealth, fill = genhealth)) +
geom_bar(aes(y = (..count..)/sum(..count..))) +
geom_text(aes(y = (..count..)/sum(..count..),

label = scales::percent((..count..) /
sum(..count..))),

stat = "count", vjust = 1,
color = "white", size = 5) +

scale_y_continuous(labels = scales::percent) +
scale_fill_brewer(palette = "Dark2") +
guides(fill = "none") +
labs(y = "Percentage")

Warning: The dot-dot notation (`..count..`) was deprecated in ggplot2 3.4.0.
i Please use `after_stat(count)` instead.

741

15.24%

33.46%
30.90%

14.85%

5.54%

0%

10%

20%

30%

1_Excellent 2_VeryGood 3_Good 4_Fair 5_Poor
genhealth

P
er

ce
nt

ag
e

Use bar charts, rather than pie charts.

27.4.2 A Counts Chart for a 2-Way Cross-Tabulation

ggplot(sm1, aes(x = genhealth, y = incomegroup)) +
geom_count()

742

0−9K

10−14K

15−19K

20−24K

25−34K

35−49K

50−74K

75K+

1_Excellent 2_VeryGood 3_Good 4_Fair 5_Poor
genhealth

in
co

m
eg

ro
up n

200

400

600

27.5 Building a Model for genh using veg_day

To begin, we’ll predict each subject’s genh response using just one predictor, veg_day.

27.5.1 A little EDA

Let’s start with a quick table of summary statistics.

sm1 |> group_by(genh) |>
summarize(n(), mean(veg_day), sd(veg_day), median(veg_day))

A tibble: 5 x 5
genh `n()` `mean(veg_day)` `sd(veg_day)` `median(veg_day)`
<ord> <int> <dbl> <dbl> <dbl>

1 1-E 822 2.16 1.46 1.87
2 2_VG 1805 1.99 1.13 1.78
3 3_G 1667 1.86 1.11 1.71
4 4_F 801 1.74 1.18 1.57
5 5_P 299 1.71 1.06 1.57

743

To actually see what’s going on, we might build a comparison boxplot, or violin plot. The plot
below shows both, together, with the violin plot helping to indicate the skewed nature of the
veg_day data and the boxplot indicating quartiles and outlying values within each genhealth
category.

ggplot(sm1, aes(x = genhealth, y = veg_day)) +
geom_violin(aes(fill = genhealth), trim = TRUE) +
geom_boxplot(width = 0.2) +
guides(fill = "none", color = "none") +
theme_bw()

0

5

10

15

20

1_Excellent 2_VeryGood 3_Good 4_Fair 5_Poor
genhealth

ve
g_

da
y

27.5.2 Describing the Proportional-Odds Cumulative Logit Model

To fit the ordinal logistic regression model (specifically, a proportional-odds cumulative-logit
model) in this situation, we’ll use the polr function in the MASS package.

• Our outcome is genh, which has five ordered levels, with 1-E best and 5-P worst.
• Our model will include one quantitative predictor, veg_day.

The model will have four logit equations:

• one estimating the log odds that genh will be less than or equal to 1 (i.e. genhealth =
1_Excellent,)

744

• one estimating the log odds that genh ≤ 2 (i.e. genhealth = 1_Excellent or 2_Very-
Good,)

• another estimating the log odds that genh ≤ 3 (i.e. genhealth = 1_Excellent, 2_Very-
Good or 3_Good,) and, finally,

• one estimating the log odds that genh ≤ 4 (i.e. genhealth = 1_Excellent, 2_VeryGood,
3_Good or 4_Fair)

That’s all we need to estimate the five categories, since Pr(genh ≤ 5) = 1, because (5_Poor)
is the maximum category for genhealth.

We’ll have a total of five free parameters when we add in the slope for veg_day, and I’ll label
these parameters as 𝜁1, 𝜁2, 𝜁3, 𝜁4 and 𝛽1. The 𝜁s are read as “zeta” values, and the people who
built the polr function use that term.

The four logistic equations that will be fit differ only by their intercepts. They are:

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 1)] = 𝑙𝑜𝑔 𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 1
𝑃𝑟(𝑔𝑒𝑛ℎ > 1) = 𝜁1 − 𝛽1𝑣𝑒𝑔𝑑𝑎𝑦

which describes the log odds of a genh value of 1 (Excellent) as compared to a genh value
greater than 1 (which includes Very Good, Good, Fair and Poor).

The second logit model is:

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 2)] = 𝑙𝑜𝑔 𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 2
𝑃𝑟(𝑔𝑒𝑛ℎ > 2) = 𝜁2 − 𝛽1𝑣𝑒𝑔𝑑𝑎𝑦

which describes the log odds of a genh value of 1 (Excellent) or 2 (Very Good) as compared
to a genh value greater than 2 (which includes Good, Fair and Poor).

Next we have:

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 3)] = 𝑙𝑜𝑔 𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 3
𝑃𝑟(𝑔𝑒𝑛ℎ > 3) = 𝜁3 − 𝛽1𝑣𝑒𝑔𝑑𝑎𝑦

which describes the log odds of a genh value of 1 (Excellent) or 2 (Very Good) or 3 (Good) as
compared to a genh value greater than 3 (which includes Fair and Poor).

Finally, we have

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 4)] = 𝑙𝑜𝑔 𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 4
𝑃𝑟(𝑔𝑒𝑛ℎ > 4) = 𝜁4 − 𝛽1𝑣𝑒𝑔𝑑𝑎𝑦

which describes the log odds of a genh value of 4 or less, which includes Excellent, Very Good,
Good and Fair as compared to a genh value greater than 4 (which is Poor).

745

Again, the intercept term is the only piece that varies across the four equations.

In this case, a positive coefficient 𝛽1 for veg_day means that increasing the value of veg_day
would increase the genh category (describing a worse level of general health, since higher values
of genh are associated with worse health.)

27.5.3 Fitting a Proportional Odds Logistic Regression with polr

Our model m1 will use proportional odds logistic regression (sometimes called an ordered logit
model) to predict genh on the basis of veg_day. The polr function from the MASS package
will be our main tool. Note that we include Hess = TRUE to retain what is called the Hessian
matrix, which lets R calculate standard errors more effectively in summary and other follow-up
descriptions of the model.

m1 <- polr(genh ~ veg_day,
data = sm1, Hess = TRUE)

summary(m1)

Call:
polr(formula = genh ~ veg_day, data = sm1, Hess = TRUE)

Coefficients:
Value Std. Error t value

veg_day -0.1847 0.02178 -8.48

Intercepts:
Value Std. Error t value

1-E|2_VG -2.0866 0.0584 -35.7590
2_VG|3_G -0.4065 0.0498 -8.1621
3_G|4_F 1.0202 0.0521 19.5771
4_F|5_P 2.5002 0.0710 35.2163

Residual Deviance: 15669.85
AIC: 15679.85

confint(m1)

Waiting for profiling to be done...

2.5 % 97.5 %
-0.2277073 -0.1423088

746

27.6 Interpreting Model m1

27.6.1 Looking at Predictions

Consider two individuals:

• Harry, who eats an average of 2.0 servings of vegetables per day, so Harry’s veg_day =
2, and

• Sally, who eats an average of 1.0 serving of vegetables per day, so Sally’s veg_day = 1.

We’re going to start by using our model m1 to predict the genh for Harry and Sally, so we can
see the effect (on the predicted genh probabilities) of a change of one unit in veg_day.

For example, what are the log odds that Harry, with veg_day = 2, will describe his genh as
Excellent (genh ≤ 1)?

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 1)] = 𝜁1 − 𝛽1𝑣𝑒𝑔_𝑑𝑎𝑦

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 1)] = −2.0866 − (−0.1847)𝑣𝑒𝑔_𝑑𝑎𝑦

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 1)] = −2.0866 − (−0.1847)(2) = −1.7172

That’s not much help. So we’ll convert it to a probability by taking the inverse logit. The
formula is

𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 1) = 𝑒𝑥𝑝(𝜁1 + 𝛽1𝑣𝑒𝑔𝑑𝑎𝑦)
1 + 𝑒𝑥𝑝(𝜁1 + 𝛽1𝑣𝑒𝑔𝑑𝑎𝑦) = 𝑒𝑥𝑝(−1.7172)

1 + 𝑒𝑥𝑝(−1.7172) = 0.180
1.180 = 0.15

So the model estimates a 15% probability that Harry will describe his genh as Excellent.

OK. Now, what are the log odds that Harry, who eats 2 servings per day, will describe his
genh as either Excellent or Very Good (genh ≤ 2)?

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 2)] = 𝜁2 − 𝛽1𝑣𝑒𝑔_𝑑𝑎𝑦

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 2)] = −0.4065 − (−0.1847)𝑣𝑒𝑔_𝑑𝑎𝑦

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 2)] = −0.4065 − (−0.1847)(2) = −0.0371

747

Again, we’ll convert this to a probability by taking the inverse logit.

𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 2) = 𝑒𝑥𝑝(𝜁2 + 𝛽1𝑣𝑒𝑔𝑑𝑎𝑦)
1 + 𝑒𝑥𝑝(𝜁2 + 𝛽1𝑣𝑒𝑔𝑑𝑎𝑦) = 𝑒𝑥𝑝(−0.0371)

1 + 𝑒𝑥𝑝(−0.0371) = 0.964
1.964 = 0.49

So, the model estimates a probability of .49 that Harry will describe his genh as either Excellent
or Very Good, so by subtraction, that’s a probability of .34 that Harry describes his genh as
Very Good.

Happily, that’s the last time we’ll calculate this by hand.

27.6.2 Making Predictions for Harry (and Sally) with predict

Suppose Harry eats 2 servings of vegetables per day on average, and Sally eats 1.

temp.dat <- data.frame(name = c("Harry", "Sally"),
veg_day = c(2,1))

predict(m1, temp.dat, type = "p")

1-E 2_VG 3_G 4_F 5_P
1 0.1522351 0.3385119 0.3097906 0.1457864 0.05367596
2 0.1298931 0.3148971 0.3246105 0.1667285 0.06387071

The predicted probabilities of falling into each category of genh are:

Subject veg_day Pr(1_E) Pr(2_VG) Pr(3_G) Pr(4_F) Pr(5_P)
Harry 2 15.2 33.9 31.0 14.6 5.4
Sally 1 13.0 31.4 32.5 16.7 6.4

• Harry has a higher predicted probability of lower (healthier) values of genh. Specifically,
Harry has a higher predicted probability than Sally of falling into the Excellent and Very
Good categories, and a lower probability than Sally of falling into the Good, Fair and
Poor categories.

• This means that Harry, with a higher veg_day is predicted to have, on average, a lower
(that is to say, healthier) value of genh.

• As we’ll see, this association will be indicated by a negative coefficient of veg_day in the
proportional odds logistic regression model.

748

27.6.3 Predicting the actual classification of genh

The default prediction approach actually returns the predicted genh classification for Harry
and Sally, which is just the classification with the largest predicted probability. Here, for Harry
that is Very Good, and for Sally, that’s Good.

predict(m1, temp.dat)

[1] 2_VG 3_G
Levels: 1-E 2_VG 3_G 4_F 5_P

27.6.4 A Cross-Tabulation of Predictions?

addmargins(table(predict(m1), sm1$genh))

1-E 2_VG 3_G 4_F 5_P Sum
1-E 6 3 3 3 0 15
2_VG 647 1398 1198 525 192 3960
3_G 169 404 466 273 107 1419
4_F 0 0 0 0 0 0
5_P 0 0 0 0 0 0
Sum 822 1805 1667 801 299 5394

The m1 model classifies all subjects in the sm1 sample as either Excellent, Very Good or Good,
and most subjects as Very Good or Good.

27.6.5 The Fitted Model Equations

summary(m1)

Call:
polr(formula = genh ~ veg_day, data = sm1, Hess = TRUE)

Coefficients:
Value Std. Error t value

veg_day -0.1847 0.02178 -8.48

749

Intercepts:
Value Std. Error t value

1-E|2_VG -2.0866 0.0584 -35.7590
2_VG|3_G -0.4065 0.0498 -8.1621
3_G|4_F 1.0202 0.0521 19.5771
4_F|5_P 2.5002 0.0710 35.2163

Residual Deviance: 15669.85
AIC: 15679.85

The first part of the output provides coefficient estimates for the veg_day predictor, and these
are followed by the estimates for the various model intercepts. Plugging in the estimates, we
have:

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 1)] = −2.0866 − (−0.1847)𝑣𝑒𝑔𝑑𝑎𝑦

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 2)] = −0.4065 − (−0.1847)𝑣𝑒𝑔𝑑𝑎𝑦

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 3)] = 1.0202 − (−0.1847)𝑣𝑒𝑔𝑑𝑎𝑦

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟(𝑔𝑒𝑛ℎ ≤ 4)] = 2.5002 − (−0.1847)𝑣𝑒𝑔𝑑𝑎𝑦

Note that we can obtain these pieces separately as follows:

m1$zeta

1-E|2_VG 2_VG|3_G 3_G|4_F 4_F|5_P
-2.0866313 -0.4064704 1.0202035 2.5001655

shows the boundary intercepts, and

m1$coefficients

veg_day
-0.1847272

shows the regression coefficient for veg_day.

750

27.6.6 Interpreting the veg_day coefficient

The first part of the output provides coefficient estimates for the veg_day predictor.

• The estimated slope for veg_day is -0.1847

– Remember Harry and Sally, who have the same values of bmi and costprob, but
Harry eats one more serving than Sally does. We noted that Harry is predicted by
the model to have a smaller (i.e. healthier) genh response than Sally.

– So a negative coefficient here means that higher values of veg_day are associated
with more of the probability distribution falling in lower values of genh.

– We usually don’t interpret this slope (on the log odds scale) directly, but rather
exponentiate it.

27.6.7 Exponentiating the Slope Coefficient to facilitate Interpretation

We can compute the odds ratio associated with veg_day and its confidence interval as fol-
lows…

exp(coef(m1))

veg_day
0.8313311

exp(confint(m1))

Waiting for profiling to be done...

2.5 % 97.5 %
0.7963573 0.8673534

• So, if Harry eats one more serving of vegetables than Sally, our model predicts that
Harry will have 83.1% of the odds of Sally of having a larger genh score. That means
that Harry is likelier to have a smaller genh score.

– Since genh gets larger as a person’s general health gets worse (moves from Excellent
towards Poor), this means that since Harry is predicted to have smaller odds of a
larger genh score, he is also predicted to have smaller odds of worse general health.

– Our 95% confidence interval around that estimated odds ratio of 0.831 is (0.796,
0.867). Since that interval is entirely below 1, the odds of having the larger (worse)
genh for Harry are detectably lower than the odds for Sally.

– So, an increase in veg_day is associated with smaller (better) genh scores.

751

27.6.8 Comparison to a Null Model

We can fit a model with intercepts only to assess the predictive value of veg_day in our model
m1, using the anova function.

m0 <- polr(genh ~ 1, data = sm1)

anova(m1, m0)

Likelihood ratio tests of ordinal regression models

Response: genh
Model Resid. df Resid. Dev Test Df LR stat. Pr(Chi)

1 1 5390 15744.89
2 veg_day 5389 15669.85 1 vs 2 1 75.04297 0

We could also compare model m1 to the null model m0 with AIC or BIC.

AIC(m1, m0)

df AIC
m1 5 15679.85
m0 4 15752.89

BIC(m1,m0)

df BIC
m1 5 15712.81
m0 4 15779.26

Model m1 looks like the better choice so far.

27.7 The Assumption of Proportional Odds

Let us calculate the odds for all levels of genh if a person eats two servings of vegetables.
First, we’ll get the probabilities, in another way, to demonstrate how to do so…

(prob.2 <- exp(m1$zeta - 2*m1$coefficients)/(1 + exp(m1$zeta - 2*m1$coefficients)))

752

1-E|2_VG 2_VG|3_G 3_G|4_F 4_F|5_P
0.1522351 0.4907471 0.8005376 0.9463240

(prob.1 <- exp(m1$zeta - 1*m1$coefficients)/(1 + exp(m1$zeta - 1*m1$coefficients)))

1-E|2_VG 2_VG|3_G 3_G|4_F 4_F|5_P
0.1298931 0.4447902 0.7694008 0.9361293

Now, we’ll calculate the odds, first for a subject eating two servings:

(odds.2 = prob.2/(1-prob.2))

1-E|2_VG 2_VG|3_G 3_G|4_F 4_F|5_P
0.1795724 0.9636607 4.0134766 17.6303153

And here are the odds, for a subject eating one serving per day:

(odds.1 = prob.1/(1-prob.1))

1-E|2_VG 2_VG|3_G 3_G|4_F 4_F|5_P
0.1492841 0.8011211 3.3365277 14.6566285

Now, let’s take the ratio of the odds for someone who eats two servings over the odds for
someone who eats one.

odds.2/odds.1

1-E|2_VG 2_VG|3_G 3_G|4_F 4_F|5_P
1.20289 1.20289 1.20289 1.20289

They are all the same. The odds ratios are equal, which means they are proportional. For any
level of genh, the estimated odds that a person who eats 2 servings has better (lower) genh is
about 1.2 times the odds for someone who eats one serving. Those who eat more vegetables
have higher odds of better (lower) genh. Less than 1 means lower odds, and more than 1
means greater odds.

Now, let’s take the log of the odds ratios:

753

log(odds.2/odds.1)

1-E|2_VG 2_VG|3_G 3_G|4_F 4_F|5_P
0.1847272 0.1847272 0.1847272 0.1847272

That should be familiar. It is the slope coefficient in the model summary, without the minus
sign. R tacks on a minus sign so that higher levels of predictors correspond to the ordinal
outcome falling in the higher end of its scale.

If we exponentiate the slope estimated by R (-0.1847), we get 0.83. If we have two people,
and A eats one more serving of vegetables on average than B, then the estimated odds of A
having a higher ‘genh’ (i.e. worse general health) are 83% as high as B’s.

27.7.1 Testing the Proportional Odds Assumption

One way to test the proportional odds assumption is to compare the fit of the proportional
odds logistic regression to a model that does not make that assumption. A natural candidate
is a multinomial logit model, which is typically used to model unordered multi-categorical
outcomes, and fits a slope to each level of the genh outcome in this case, as opposed to the
proportional odds logit, which fits only one slope across all levels.

Since the proportional odds logistic regression model is nested in the multinomial logit, we
can perform a likelihood ratio test. To do this, we first fit the multinomial logit model, with
the multinom function from the nnet package.

(m1_multi <- multinom(genh ~ veg_day, data = sm1))

weights: 15 (8 variable)
initial value 8681.308100
iter 10 value 7890.985276
final value 7835.248471
converged

Call:
multinom(formula = genh ~ veg_day, data = sm1)

Coefficients:
(Intercept) veg_day

2_VG 0.9791063 -0.09296694
3_G 1.0911990 -0.19260067

754

4_F 0.5708594 -0.31080687
5_P -0.3583310 -0.34340619

Residual Deviance: 15670.5
AIC: 15686.5

The multinomial logit fits four intercepts and four slopes, for a total of 8 estimated parameters.
The proportional odds logit, as we’ve seen, fits four intercepts and one slope, for a total of 5.
The difference is 3, and we use that number in the sequence below to build our test of the
proportional odds assumption.

LL_1 <- logLik(m1)
LL_1m <- logLik(m1_multi)
(G <- -2 * (LL_1[1] - LL_1m[1]))

[1] -0.6488392

pchisq(G, 3, lower.tail = FALSE)

[1] 1

The p value is very large, so it indicates that the proportional odds model fits about as well as
the more complex multinomial logit. A large p value here isn’t always the best way to assess
the proportional odds assumption, but it does provide some evidence of model adequacy.

27.8 Can model m1 be fit using rms tools?

Yes.

d <- datadist(sm1)
options(datadist = "d")
m1_lrm <- lrm(genh ~ veg_day, data = sm1, x = T, y = T)

m1_lrm

Logistic Regression Model

lrm(formula = genh ~ veg_day, data = sm1, x = T, y = T)

755

Frequencies of Responses

1-E 2_VG 3_G 4_F 5_P
822 1805 1667 801 299

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 5394 LR chi2 75.04 R2 0.015 C 0.555
max |deriv| 2e-13 d.f. 1 R2(1,5394)0.014 Dxy 0.111

Pr(> chi2) <0.0001 R2(1,4995)0.015 gamma 0.111
Brier 0.247 tau-a 0.082

Coef S.E. Wald Z Pr(>|Z|)
y>=2_VG 2.0866 0.0584 35.76 <0.0001
y>=3_G 0.4065 0.0498 8.16 <0.0001
y>=4_F -1.0202 0.0521 -19.58 <0.0001
y>=5_P -2.5002 0.0710 -35.22 <0.0001
veg_day -0.1847 0.0218 -8.48 <0.0001

The model has a small p value (remember the large sample size) but nonetheless appears very
weak, with a Nagelkerke 𝑅2 of 0.015, and a C statistic of 0.555.

summary(m1_lrm)

Effects Response : genh

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
veg_day 1.21 2.36 1.15 -0.21243 0.025051 -0.26153 -0.16334
Odds Ratio 1.21 2.36 1.15 0.80861 NA 0.76987 0.84931

A change from 1.21 to 2.36 servings in veg_day is associated with an odds ratio of 0.81,
with 95% confidence interval (0.77, 0.85). Since these values are all below 1, we have a clear
indication of a statistically detectable effect of veg_day with higher veg_day associated with
lower genh, which means, in this case, better health.

There is also a tool in rms called orm which may be used to fit a wide array of ordinal regression
models. I suggest you read Frank Harrell’s book on Regression Modeling Strategies if you want
to learn more.

756

27.9 Building a Three-Predictor Model

Now, we’ll model genh using veg_day, bmi and costprob.

27.9.1 Scatterplot Matrix

GGally::ggpairs(sm1 |>
select(bmi, veg_day, costprob, genh))

Corr:

−0.038**

Corr:

0.035*

Corr:
−0.009

bmi veg_day costprob genh

bm
i

veg_day
costprob

genh

10 20 30 40 50 60 0 5 10 15 20 0.000.250.500.751.00 1−E2_VG3_G4_F5_P

0.00
0.02
0.04
0.06

0
5

10
15
20

0.00
0.25
0.50
0.75
1.00

0100200

0100200

0100200

0100200

0100200

We might choose to plot the costprob data as a binary factor, rather than the raw 0-1 numbers
included above, but not at this time.

27.9.2 Our Three-Predictor Model, m2

m2 <- polr(genh ~ veg_day + bmi + costprob, data = sm1)

summary(m2)

757

Re-fitting to get Hessian

Call:
polr(formula = genh ~ veg_day + bmi + costprob, data = sm1)

Coefficients:
Value Std. Error t value

veg_day -0.17130 0.021783 -7.864
bmi 0.06673 0.003855 17.311
costprob 0.96825 0.084871 11.409

Intercepts:
Value Std. Error t value

1-E|2_VG -0.1252 0.1229 -1.0183
2_VG|3_G 1.6358 0.1234 13.2572
3_G|4_F 3.1534 0.1294 24.3755
4_F|5_P 4.6881 0.1412 33.1928

Residual Deviance: 15229.24
AIC: 15243.24

This model contains four intercepts (to cover the five genh categories) and three slopes (one
each for veg_day, bmi and costprob.)

27.9.3 Does the three-predictor model outperform m1?

anova(m1, m2)

Likelihood ratio tests of ordinal regression models

Response: genh
Model Resid. df Resid. Dev Test Df LR stat. Pr(Chi)

1 veg_day 5389 15669.85
2 veg_day + bmi + costprob 5387 15229.24 1 vs 2 2 440.6041 0

It looks like the fit improves as we move from model 1 to model 2. The AIC and BIC are also
better for the three-predictor model than they were for the model with veg_day alone.

AIC(m1, m2)

758

df AIC
m1 5 15679.85
m2 7 15243.24

BIC(m1, m2)

df BIC
m1 5 15712.81
m2 7 15289.40

27.9.4 Wald tests for individual predictors

To obtain the appropriate Wald tests, we can use lrm to fit the model instead.

d <- datadist(sm1)
options(datadist = "d")
m2_lrm <- lrm(genh ~ veg_day + bmi + costprob,

data = sm1, x = T, y = T)
m2_lrm

Logistic Regression Model

lrm(formula = genh ~ veg_day + bmi + costprob, data = sm1, x = T,
y = T)

Frequencies of Responses

1-E 2_VG 3_G 4_F 5_P
822 1805 1667 801 299

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 5394 LR chi2 515.65 R2 0.096 C 0.629
max |deriv| 4e-09 d.f. 3 R2(3,5394)0.091 Dxy 0.258

Pr(> chi2) <0.0001 R2(3,4995)0.098 gamma 0.258
Brier 0.231 tau-a 0.192

Coef S.E. Wald Z Pr(>|Z|)
y>=2_VG 0.1252 0.1229 1.02 0.3085

759

y>=3_G -1.6358 0.1234 -13.26 <0.0001
y>=4_F -3.1534 0.1294 -24.38 <0.0001
y>=5_P -4.6881 0.1412 -33.19 <0.0001
veg_day -0.1713 0.0218 -7.86 <0.0001
bmi 0.0667 0.0039 17.31 <0.0001
costprob 0.9683 0.0849 11.41 <0.0001

It appears that each of the added predictors (bmi and costprob) adds statistically detectable
value to the model.

27.9.5 A Cross-Tabulation of Predictions?

addmargins(table(predict(m2), sm1$genh))

1-E 2_VG 3_G 4_F 5_P Sum
1-E 6 5 4 1 0 16
2_VG 686 1295 950 388 141 3460
3_G 128 495 672 374 135 1804
4_F 1 9 38 36 20 104
5_P 1 1 3 2 3 10
Sum 822 1805 1667 801 299 5394

At least the m2 model predicted that a few of the cases will fall in the Fair and Poor categories,
but still, this isn’t impressive.

27.9.6 Interpreting the Effect Sizes

We can do this in two ways:

• By exponentiating the polr output, which shows the effect of increasing each predictor
by a single unit

– Increasing veg_day by 1 serving while holding the other predictors constant is
associated with reducing the odds (by a factor of 0.84 with 95% CI 0.81, 0.88)) of
higher values of genh: hence increasing veg_day is associated with increasing the
odds of a response indicating better health.

– Increasing bmi by 1 kg/m2 while holding the other predictors constant is associated
with increasing the odds (by a factor of 1.07 with 95% CI 1.06, 1.08)) of higher
values of genh: hence increasing bmi is associated with reducing the odds of a
response indicating better health.

760

– Increasing costprob from 0 to 1 while holding the other predictors constant is
associated with an increase (by a factor of 2.63 with 95% CI 2.23, 3.11)) of a higher
genh value. Since higher genh values indicate worse health, those with costprob
= 1 are modeled to have generally worse health.

exp(coef(m2))

veg_day bmi costprob
0.8425722 1.0690045 2.6333356

exp(confint(m2))

Waiting for profiling to be done...

Re-fitting to get Hessian

2.5 % 97.5 %
veg_day 0.8071346 0.879096
bmi 1.0609722 1.077126
costprob 2.2301783 3.110633

• Or by looking at the summary provided by lrm, which like all such summaries produced
by rms shows the impact of moving from the 25th to the 75th percentile on all continuous
predictors.

summary(m2_lrm)

Effects Response : genh

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
veg_day 1.21 2.360 1.1500 -0.19699 0.025051 -0.24609 -0.14789
Odds Ratio 1.21 2.360 1.1500 0.82120 NA 0.78185 0.86252
bmi 24.33 31.988 7.6575 0.51097 0.029515 0.45312 0.56882
Odds Ratio 24.33 31.988 7.6575 1.66690 NA 1.57320 1.76620
costprob 0.00 1.000 1.0000 0.96825 0.084871 0.80191 1.13460
Odds Ratio 0.00 1.000 1.0000 2.63330 NA 2.22980 3.10990

761

plot(summary(m2_lrm))

Odds Ratio

0.8 1.2 1.6 2.0 2.4 2.8 3.2

veg_day − 2.36 : 1.21

bmi − 31.9875 : 24.33

costprob − 1 : 0

27.9.7 Quality of the Model Fit

Model m2, as we can see from the m2_lrm output, is still weak, with a Nagelkerke 𝑅2 of 0.10,
and a C statistic of 0.63.

27.9.8 Validating the Summary Statistics in m2_lrm

set.seed(43203); validate(m2_lrm)

index.orig training test optimism index.corrected n
Dxy 0.2583 0.2625 0.2579 0.0046 0.2537 40
R2 0.0964 0.0989 0.0960 0.0029 0.0935 40
Intercept 0.0000 0.0000 -0.0023 0.0023 -0.0023 40
Slope 1.0000 1.0000 0.9876 0.0124 0.9876 40
Emax 0.0000 0.0000 0.0031 0.0031 0.0031 40
D 0.0954 0.0980 0.0950 0.0030 0.0924 40
U -0.0004 -0.0004 -1.5149 1.5146 -1.5149 40

762

Q 0.0958 0.0984 1.6099 -1.5115 1.6073 40
B 0.2314 0.2308 0.2315 -0.0007 0.2321 40
g 0.6199 0.6278 0.6182 0.0096 0.6103 40
gp 0.1434 0.1448 0.1430 0.0018 0.1417 40

As in our work with binary logistic regression, we can convert the index-corrected Dxy to an
index-corrected C with C = 0.5 + (Dxy/2). Both the 𝑅2 and C statistics are pretty consistent
with what we saw above.

27.9.9 Testing the Proportional Odds Assumption

Again, we’ll fit the analogous multinomial logit model, with the multinom function from the
nnet package.

(m2_multi <- multinom(genh ~ veg_day + bmi + costprob,
data = sm1))

weights: 25 (16 variable)
initial value 8681.308100
iter 10 value 8025.745934
iter 20 value 7605.878993
final value 7595.767250
converged

Call:
multinom(formula = genh ~ veg_day + bmi + costprob, data = sm1)

Coefficients:
(Intercept) veg_day bmi costprob

2_VG -0.9126285 -0.0905958 0.06947231 0.3258568
3_G -2.1886806 -0.1893454 0.11552563 1.0488262
4_F -3.4095145 -0.3056028 0.13679908 1.4422074
5_P -4.2629564 -0.3384199 0.13178846 1.8612088

Residual Deviance: 15191.53
AIC: 15223.53

The multinomial logit fits four intercepts and 12 slopes, for a total of 16 estimated parameters.
The proportional odds logit in model m2, as we’ve seen, fits four intercepts and three slopes,
for a total of 7. The difference is 9, and we use that number in the sequence below to build
our test of the proportional odds assumption.

763

LL_2 <- logLik(m2)
LL_2m <- logLik(m2_multi)
(G <- -2 * (LL_2[1] - LL_2m[1]))

[1] 37.70952

pchisq(G, 9, lower.tail = FALSE)

[1] 1.965186e-05

The resulting small p value suggests a problem with proportional odds assumption. When this
happens, I suggest you build the following plot of score residuals:

par(mfrow = c(2,2))
resid(m2_lrm, 'score.binary', pl=TRUE)
par(mfrow= c(1,1))

genh

ve
g_

da
y

−
0.

02

2_VG 3_G 4_F 5_P

genh

ve
g_

da
y

genh

bm
i

−
0.

2

2_VG 3_G 4_F 5_P

genh

bm
i

genh

co
st

pr
ob

−
0.

00
4

2_VG 3_G 4_F 5_P

genh

co
st

pr
ob

From this plot, bmi (especially) and costprob vary as we move from the Very Good toward
the Poor cutpoints, relative to veg_day, which is more stable.

764

27.9.10 Plotting the Fitted Model

27.9.10.1 Nomogram

fun.ge3 <- function(x) plogis(x - m2_lrm$coef[1] + m2_lrm$coef[2])
fun.ge4 <- function(x) plogis(x - m2_lrm$coef[1] + m2_lrm$coef[3])
fun.ge5 <- function(x) plogis(x - m2_lrm$coef[1] + m2_lrm$coef[4])

plot(nomogram(m2_lrm, fun=list('Prob Y >= 2 (VG or worse)' = plogis,
'Prob Y >= 3 (Good or worse)' = fun.ge3,
'Prob Y >= 4 (Fair or Poor)' = fun.ge4,
'Prob Y = 5 (Poor)' = fun.ge5)))

Points
0 10 20 30 40 50 60 70 80 90 100

veg_day
22 20 18 16 14 12 10 8 6 4 2 0

bmi
10 15 20 25 30 35 40 45 50 55 60

costprob
0

1

Total Points
0 20 40 60 80 100 120 140 160 180 200 220

Linear Predictor
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Prob Y >= 2 (VG or worse)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Prob Y >= 3 (Good or worse)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Prob Y >= 4 (Fair or Poor)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Prob Y = 5 (Poor)
0.05 0.1 0.15 0.20.250.30.350.40.450.5

765

27.9.10.2 Using Predict and showing mean prediction on 1-5 scale

ggplot(Predict(m2_lrm, fun = Mean(m2_lrm, code = TRUE)))

1.5

2.0

2.5

3.0

3.5

4.0

20 30 40 50
bmi

1.5

2.0

2.5

3.0

3.5

4.0

costprob

1.5

2.0

2.5

3.0

3.5

4.0

0.0 2.5 5.0 7.5
veg_day

The nomogram and Predict results would be more interesting, of course, if we included a
spline or interaction term. Let’s do that in model m3_lrm, and also add the incomegroup
information.

27.10 A Larger Model, including income group

m3_lrm <- lrm(gen_n ~ rcs(veg_day,3) + rcs(bmi, 4) +
incomegroup + catg(costprob) +
bmi %ia% costprob,

data = sm1, x = T, y = T)

m3_lrm

Logistic Regression Model

766

lrm(formula = gen_n ~ rcs(veg_day, 3) + rcs(bmi, 4) + incomegroup +
catg(costprob) + bmi %ia% costprob, data = sm1, x = T, y = T)

Frequencies of Responses

1 2 3 4 5
822 1805 1667 801 299

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 5394 LR chi2 1190.35 R2 0.209 C 0.696
max |deriv| 1e-11 d.f. 14 R2(14,5394)0.196 Dxy 0.391

Pr(> chi2) <0.0001 R2(14,4995)0.210 gamma 0.392
Brier 0.214 tau-a 0.291

Coef S.E. Wald Z Pr(>|Z|)
y>=2 3.7535 0.4852 7.74 <0.0001
y>=3 1.8717 0.4838 3.87 0.0001
y>=4 0.2035 0.4831 0.42 0.6737
y>=5 -1.4386 0.4846 -2.97 0.0030
veg_day -0.2602 0.0633 -4.11 <0.0001
veg_day' 0.1756 0.0693 2.53 0.0113
bmi -0.0325 0.0203 -1.60 0.1086
bmi' 0.5422 0.0989 5.48 <0.0001
bmi'' -1.4579 0.2663 -5.47 <0.0001
incomegroup=10-14K 0.2445 0.1705 1.43 0.1516
incomegroup=15-19K -0.2626 0.1582 -1.66 0.0969
incomegroup=20-24K -0.6434 0.1501 -4.29 <0.0001
incomegroup=25-34K -0.7427 0.1459 -5.09 <0.0001
incomegroup=35-49K -1.1621 0.1415 -8.21 <0.0001
incomegroup=50-74K -1.4579 0.1418 -10.28 <0.0001
incomegroup=75K+ -1.8592 0.1361 -13.66 <0.0001
costprob=1 1.4576 0.3528 4.13 <0.0001
bmi * costprob -0.0259 0.0116 -2.24 0.0250

Another option here would have been to consider building incomegroup as a scored variable,
with an order on its own, but I won’t force that here. Here’s the polr version…

m3 <- polr(genh ~ rcs(veg_day,3) + rcs(bmi, 4) +
incomegroup + costprob +
bmi %ia% costprob, data = sm1)

767

27.10.1 Cross-Tabulation of Predicted/Observed Classifications

addmargins(table(predict(m3), sm1$genh))

1-E 2_VG 3_G 4_F 5_P Sum
1-E 3 2 0 0 0 5
2_VG 642 1200 815 221 49 2927
3_G 170 565 754 468 182 2139
4_F 7 37 96 108 65 313
5_P 0 1 2 4 3 10
Sum 822 1805 1667 801 299 5394

This model predicts more Fair results, but still far too many Very Good with no Excellent at
all.

27.10.2 Nomogram

fun.ge3 <- function(x) plogis(x - m3_lrm$coef[1] + m3_lrm$coef[2])
fun.ge4 <- function(x) plogis(x - m3_lrm$coef[1] + m3_lrm$coef[3])
fun.ge5 <- function(x) plogis(x - m3_lrm$coef[1] + m3_lrm$coef[4])

plot(nomogram(m3_lrm, fun=list('Prob Y >= 2 (VG or worse)' = plogis,
'Prob Y >= 3 (Good or worse)' = fun.ge3,
'Prob Y >= 4 (Fair or Poor)' = fun.ge4,
'Prob Y = 5 (Poor)' = fun.ge5)))

768

Points
0 10 20 30 40 50 60 70 80 90 100

veg_day
22 20 18 16 14 12 10 8 6 4 2 0

bmi (costprob=0)
25 15 10

30 35 40 45 50 55 60

bmi (costprob=1)
25 20 15 10

30 35 40 50 60

incomegroup
75K+ 35−49K 20−24K 0−9K

50−74K 25−34K 15−19K 10−14K

Total Points
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Linear Predictor
−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Prob Y >= 2 (VG or worse)
0.40.450.50.550.60.650.7 0.75 0.8 0.85 0.9 0.95

Prob Y >= 3 (Good or worse)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Prob Y >= 4 (Fair or Poor)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Prob Y = 5 (Poor)
0.05 0.1 0.15 0.2 0.25 0.30.350.40.450.50.55

27.10.3 Using Predict and showing mean prediction on 1-5 scale

ggplot(Predict(m3_lrm, fun = Mean(m3_lrm, code = TRUE)))

769

1.5

2.0

2.5

3.0

3.5

20 30 40 50
bmi

0

1

1.5 2.0 2.5 3.0 3.5

co
st

pr
ob

0−9K
10−14K
15−19K
20−24K
25−34K
35−49K
50−74K

75K+

1.5 2.0 2.5 3.0 3.5

in
co

m
eg

ro
up

1.5

2.0

2.5

3.0

3.5

0.0 2.5 5.0 7.5
veg_day

Here, we’re plotting the mean score on the 1-5 gen_n scale.

27.10.4 Validating the Summary Statistics in m3_lrm

set.seed(43221); validate(m3_lrm)

index.orig training test optimism index.corrected n
Dxy 0.3915 0.3928 0.3899 0.0029 0.3886 40
R2 0.2093 0.2112 0.2071 0.0041 0.2053 40
Intercept 0.0000 0.0000 0.0019 -0.0019 0.0019 40
Slope 1.0000 1.0000 0.9871 0.0129 0.9871 40
Emax 0.0000 0.0000 0.0032 0.0032 0.0032 40
D 0.2205 0.2227 0.2179 0.0049 0.2156 40
U -0.0004 -0.0004 -1.4667 1.4663 -1.4667 40
Q 0.2209 0.2231 1.6845 -1.4614 1.6823 40
B 0.2137 0.2134 0.2142 -0.0007 0.2145 40
g 1.0363 1.0410 1.0276 0.0133 1.0229 40
gp 0.2262 0.2265 0.2244 0.0022 0.2240 40

770

Still not very impressive, but much better than where we started. It’s not crazy to suggest that
in new data, we might expect a Nagelkerke 𝑅2 of 0.205 and a C statistic of 0.5 + (0.3886/2)
= 0.6943.

27.11 References for this Chapter

1. Some of the material here is adapted from http://stats.idre.ucla.edu/r/dae/ordinal-
logistic-regression/.

2. I also found great guidance at http://data.library.virginia.edu/fitting-and-interpreting-
a-proportional-odds-model/

3. Other parts are based on the work of Jeffrey S. Simonoff (2003) Analyzing
Categorical Data in Chapter 10. Related data and R code are available at
http://people.stern.nyu.edu/jsimonof/AnalCatData/Splus/.

4. Another good source for a simple example is https://onlinecourses.science.psu.edu/stat504/node/177.

5. Also helpful is https://onlinecourses.science.psu.edu/stat504/node/178 which shows a
more complex example nicely.

771

28 Multinomial Logistic Regression

28.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(knitr)
library(MASS)
library(nnet)
library(tidyverse)

theme_set(theme_bw())

28.1.1 Data Load

authorship <- read_csv("data/authorship.csv", show_col_types = FALSE)

28.2 The Authorship Example

This example is based on the work of Jeffrey S. Simonoff (2003) Analyzing Categorical Data in
Chapter 10. Related data and R code are available at this link. Meanwhile, the data set and
analysis are based on the work of Peng RD and Hengartner NW (2002) Quantitative analysis
of literary styles, The American Statistician, 56, 175-185.

The authorship.csv data file contains 841 rows. Each row describes a block of text that
contains 1700 total words from one of several books by four authors: Jane Austen (samples
from 7 books), Jack London (6 books), John Milton (2 books), or William Shakespeare (12
books). The data include counts within the blocks of text of 69 function words, such as “a”,
“by”, “no”, “that” and “with”. The goal of our analysis, mirroring that of Simonoff, will be to
use the incidence of these function words to build a model that distinguishes the authors.

772

http://people.stern.nyu.edu/jsimonof/AnalCatData/Splus/

authorship$Author <- factor(authorship$Author,
levels = c("Shakespeare", "Austen", "London", "Milton"))

authorship

A tibble: 841 x 71
BookID Author a all also an and any are as at be
<dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1 Austen 46 12 0 3 66 9 4 16 13 13
2 1 Austen 35 10 0 7 44 4 3 18 16 9
3 1 Austen 46 2 0 3 40 1 13 11 9 23
4 1 Austen 40 7 0 4 64 3 3 20 13 20
5 1 Austen 29 5 0 6 52 5 14 17 6 16
6 1 Austen 27 8 0 3 42 2 15 11 14 12
7 1 Austen 34 8 0 15 44 2 6 16 14 11
8 1 Austen 38 6 1 2 67 3 6 17 4 21
9 1 Austen 34 12 0 5 50 2 8 7 13 7
10 1 Austen 54 8 0 6 44 4 8 13 17 14
i 831 more rows
i 59 more variables: been <dbl>, but <dbl>, by <dbl>, can <dbl>, do <dbl>,
down <dbl>, even <dbl>, every <dbl>, `for` <dbl>, from <dbl>, had <dbl>,
has <dbl>, have <dbl>, her <dbl>, his <dbl>, `if` <dbl>, `in` <dbl>,
into <dbl>, is <dbl>, it <dbl>, its <dbl>, may <dbl>, more <dbl>,
must <dbl>, my <dbl>, no <dbl>, not <dbl>, now <dbl>, of <dbl>, on <dbl>,
one <dbl>, only <dbl>, or <dbl>, our <dbl>, should <dbl>, so <dbl>, ...

To-morrow, and to-morrow, and to-morrow, Creeps in this petty pace from day to
day, To the last syllable of recorded time; And all our yesterdays have lighted fools
The way to dusty death. Out, out, brief candle! Life’s but a walking shadow, a
poor player, That struts and frets his hour upon the stage, And then is heard no
more. It is a tale Told by an idiot, full of sound and fury, Signifying nothing.

28.3 Focus on 11 key words

Again, following Simonoff, we will focus on 11 words from the set of 69 potential predictors in
the data, specifically…

• “be”, “been”, “had”, “it”, “may”, “not”, “on”, “the”, “upon”, “was” and “which”

773

auth2 <- authorship |>
select(Author, BookID, be, been, had, it, may, not,

on, the, upon, was, which)

auth2.long <- auth2 |>
gather("word", "n", 3:13)

auth2.long

A tibble: 9,251 x 4
Author BookID word n
<fct> <dbl> <chr> <dbl>

1 Austen 1 be 13
2 Austen 1 be 9
3 Austen 1 be 23
4 Austen 1 be 20
5 Austen 1 be 16
6 Austen 1 be 12
7 Austen 1 be 11
8 Austen 1 be 21
9 Austen 1 be 7
10 Austen 1 be 14
i 9,241 more rows

28.3.1 Side by Side Boxplots

ggplot(auth2.long, aes(x = Author, y = n)) +
geom_boxplot() +
facet_wrap(~ word, ncol = 3, scales = "free_y") +
labs(x = "", y = "")

774

was which

on the upon

it may not

be been had

ShakespeareAustenLondonMilton ShakespeareAustenLondonMilton

ShakespeareAustenLondonMilton

0

10

20

30

40

50

0

10

20

30

0.0

2.5

5.0

7.5

10.0

0

10

20

0

5

10

15

50

100

150

0

5

10

15

20

0

10

20

30

40

50

0

20

40

0

10

20

0

20

40

60

775

Oh! do not attack me with your watch. A watch is always too fast or too slow. I
cannot be dictated to by a watch.

28.4 A Multinomial Logistic Regression Model

Let’s start with a multinomial model to predict Author on the basis of these 11 key predictors,
using the multinom function from the nnet package.

authnom1 <- multinom(Author ~ be + been + had + it + may + not + on +
the + upon + was + which, data=authorship,

maxit=200)

weights: 52 (36 variable)
initial value 1165.873558
iter 10 value 293.806160
iter 20 value 273.554538
iter 30 value 192.309644
iter 40 value 71.091334
iter 50 value 48.419335
iter 60 value 46.808141
iter 70 value 46.184752
iter 80 value 46.026162
iter 90 value 45.932823
iter 100 value 45.897793
iter 110 value 45.868017
iter 120 value 45.863256
final value 45.863228
converged

summary(authnom1)

Call:
multinom(formula = Author ~ be + been + had + it + may + not +

on + the + upon + was + which, data = authorship, maxit = 200)

Coefficients:
(Intercept) be been had it may

Austen -15.504834 0.48974946 0.5380318 0.4620513 0.00388835 -0.15025084
London -14.671720 -0.07497073 0.1733116 0.4842272 0.08674782 -0.01590702

776

Milton -1.776866 -0.10891178 -0.9127155 0.5319573 -0.82046587 -0.06760436
not on the upon was which

Austen -0.08861462 0.5967404 -0.02361614 -2.119001 0.7021371 0.10370827
London -0.32567063 0.5749969 0.12039782 -1.914428 0.6767581 -0.59121054
Milton 0.05575887 0.5198173 0.08739368 -2.042475 0.3048202 -0.05939104

Std. Errors:
(Intercept) be been had it may not

Austen 4.892258 0.1643694 0.3117357 0.2695081 0.09554376 0.3008164 0.1078329
London 5.372898 0.1916618 0.3308759 0.2812555 0.11355697 0.4946804 0.1440760
Milton 5.417300 0.1613282 0.5910561 0.3187304 0.23015421 0.3500753 0.1309306

on the upon was which
Austen 0.2213827 0.03457288 0.6426484 0.1808681 0.1646472
London 0.2251642 0.03088881 0.7072129 0.1768901 0.2542886
Milton 0.2223575 0.04783646 0.6436399 0.1820885 0.2111105

Residual Deviance: 91.72646
AIC: 163.7265

28.4.1 Testing Model 1

z1 <- summary(authnom1)$coefficients/summary(authnom1)$standard.errors
round(z1,2)

(Intercept) be been had it may not on the upon was
Austen -3.17 2.98 1.73 1.71 0.04 -0.50 -0.82 2.70 -0.68 -3.30 3.88
London -2.73 -0.39 0.52 1.72 0.76 -0.03 -2.26 2.55 3.90 -2.71 3.83
Milton -0.33 -0.68 -1.54 1.67 -3.56 -0.19 0.43 2.34 1.83 -3.17 1.67

which
Austen 0.63
London -2.32
Milton -0.28

p1 <- (1 - pnorm(abs(z1), 0, 1)) * 2
kable(round(p1,3))

(Intercept) be been had it may not on the upon was which
Austen 0.002 0.003 0.084 0.086 0.968 0.617 0.411 0.007 0.495 0.001 0.000 0.529
London 0.006 0.696 0.600 0.085 0.445 0.974 0.024 0.011 0.000 0.007 0.000 0.020

777

(Intercept) be been had it may not on the upon was which
Milton 0.743 0.500 0.123 0.095 0.000 0.847 0.670 0.019 0.068 0.002 0.094 0.778

Simonoff suggests that “been” and “may” can be dropped. What do we think?

The proper function of man is to live, not to exist. I shall not waste my days in
trying to prolong them. I shall use my time.

28.5 Model 2

authnom2 <- multinom(Author ~ be + had + it + not + on +
the + upon + was + which, data=authorship,

maxit=200)

weights: 44 (30 variable)
initial value 1165.873558
iter 10 value 304.985478
iter 20 value 285.428679
iter 30 value 143.301103
iter 40 value 54.589791
iter 50 value 52.140470
iter 60 value 51.421454
iter 70 value 51.012790
iter 80 value 50.888718
iter 90 value 50.834262
iter 100 value 50.743136
final value 50.743111
converged

summary(authnom2)

Call:
multinom(formula = Author ~ be + had + it + not + on + the +

upon + was + which, data = authorship, maxit = 200)

Coefficients:
(Intercept) be had it not on

Austen -16.55647 0.45995950 0.6698612 0.02621612 -0.03684654 0.4676716

778

London -16.06419 -0.13378141 0.6052164 0.10517792 -0.27934022 0.4958923
Milton -2.22344 -0.07031256 0.1737526 -0.81984885 0.05444678 0.5363108

the upon was which
Austen -0.001852454 -1.950761 0.6543956 0.06363998
London 0.128565811 -1.643829 0.6418607 -0.54690144
Milton 0.074236636 -1.762533 0.2932065 -0.08748272

Std. Errors:
(Intercept) be had it not on

Austen 4.723001 0.1293729 0.2201823 0.08657746 0.08771157 0.1949021
London 5.202732 0.1587639 0.2306803 0.10117217 0.11608348 0.2072383
Milton 4.593806 0.1499103 0.2057258 0.21551377 0.12103678 0.1895226

the upon was which
Austen 0.02945139 0.5620273 0.1524982 0.1466250
London 0.02739965 0.6219927 0.1512911 0.2087120
Milton 0.04463721 0.6246766 0.1601393 0.1928361

Residual Deviance: 101.4862
AIC: 161.4862

28.5.1 Comparing Model 2 to Model 1

anova(authnom1, authnom2)

Likelihood ratio tests of Multinomial Models

Response: Author
Model Resid. df

1 be + had + it + not + on + the + upon + was + which 2493
2 be + been + had + it + may + not + on + the + upon + was + which 2487
Resid. Dev Test Df LR stat. Pr(Chi)

1 101.48622
2 91.72646 1 vs 2 6 9.759767 0.1351402

28.5.2 Testing Model 2

z2 <- summary(authnom2)$coefficients/summary(authnom2)$standard.errors
round(z2,2)

779

(Intercept) be had it not on the upon was which
Austen -3.51 3.56 3.04 0.30 -0.42 2.40 -0.06 -3.47 4.29 0.43
London -3.09 -0.84 2.62 1.04 -2.41 2.39 4.69 -2.64 4.24 -2.62
Milton -0.48 -0.47 0.84 -3.80 0.45 2.83 1.66 -2.82 1.83 -0.45

p2 <- (1 - pnorm(abs(z2), 0, 1)) * 2
round(p2,3)

(Intercept) be had it not on the upon was which
Austen 0.000 0.000 0.002 0.762 0.674 0.016 0.950 0.001 0.000 0.664
London 0.002 0.399 0.009 0.299 0.016 0.017 0.000 0.008 0.000 0.009
Milton 0.628 0.639 0.398 0.000 0.653 0.005 0.096 0.005 0.067 0.650

28.5.3 A little history

Simonoff has an interesting note: Consider the lifetimes of these four authors:

• William Shakespeare was born in 1564 and died in 1616
• John Milton was born in 1608 (44 years after Shakespeare) and died in 1674
• Jane Austen was born in 1775 (211 years after Shakespeare) and died in 1817
• Jack London was born in 1876 (312 years after Shakespeare) and died in 1916

How many large coefficients does each author display relative to Shakespeare?

28.6 Classification Table

How well does this model (model 2) distinguish these authors based on blocks of 1700 words
of text?

table(authorship$Author, predict(authnom2))

Shakespeare Austen London Milton
Shakespeare 168 3 1 1
Austen 4 308 5 0
London 0 1 294 1
Milton 2 0 1 52

780

Based on this classification table, I’d say it does a nice job. Almost 98% of the blocks of text
are correctly classified.

Fly, envious Time, till thou run out thy race; Call on the lazy leaden-stepping
hours, Whose speed is but the heavy plummet’s pace; And glut thyself with what
thy womb devours, Which is no more then what is false and vain, And merely
mortal dross; So little is our loss, So little is thy gain. For when, as each thing bad
thou hast entomb’d And last of all thy greedy self consumed, Then long Eternity
shall greet our bliss, With an individual kiss; And Joy shall overtake us, as a flood,
When every thing that is sincerely good, And perfectly divine, With truth, and
peace, and love, shall ever shine, About the supreme throne Of Him, to whose
happy-making sight, alone, When once our heavenly-guided soul shall climb, Then
all this earthly grossness quit, Attired with stars, we shall for ever sit, Triumphing
over Death, and Chance, and thee, O Time!

28.7 Probability Curves based on a Single Predictor

In situations where only one predictor is used, we can develop nice plots of estimated probabil-
ities for each group as a function of the predictor. Suppose we look at the single word “been”
(note that this was left out of Model 2.)

Note that the possible values for counts of “been” in the data range from 0 to 27…

summary(authorship$been)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 2.000 4.000 4.614 7.000 27.000

Now, we’ll build a model to predict the author based solely on the counts of the word “been”.

authnom3 <- multinom(Author ~ been,
data=authorship, maxit=200)

weights: 12 (6 variable)
initial value 1165.873558
iter 10 value 757.915093
iter 20 value 755.454631
final value 755.454551
converged

781

Next, we’ll build a grid of the predicted log odds for each author (as compared to Shakespeare)
using the fitted coefficients. The grid will cover every possible value from 0 to 27, increasing
by 0.1, using the following trick in R.

beengrid <- cbind(1,c(0:270)/10)
austenlogit <- beengrid %*% coef(authnom3)[1,]
londonlogit <- beengrid %*% coef(authnom3)[2,]
miltonlogit <- beengrid %*% coef(authnom3)[3,]

Next, we’ll use that grid of logit values to estimate the fitted probabilities for each value of
“been” between 0 and 27.

austenprob <- exp(austenlogit)/
(exp(austenlogit) + exp(londonlogit) +

exp(miltonlogit) + 1)
londonprob <- exp(londonlogit)/

(exp(austenlogit) + exp(londonlogit) +
exp(miltonlogit) + 1)

miltonprob <- exp(miltonlogit)/
(exp(austenlogit) + exp(londonlogit) +

exp(miltonlogit) + 1)
shakesprob <- 1 - austenprob - londonprob - miltonprob

been_dat <- data_frame(been_count = beengrid[,2],
austen = austenprob[,1],
london = londonprob[,1],
milton = miltonprob[,1],
shakespeare = shakesprob[,1])

Warning: `data_frame()` was deprecated in tibble 1.1.0.
i Please use `tibble()` instead.

been_dat

A tibble: 271 x 5
been_count austen london milton shakespeare

<dbl> <dbl> <dbl> <dbl> <dbl>
1 0 0.0258 0.136 0.285 0.553
2 0.1 0.0288 0.147 0.272 0.553
3 0.2 0.0321 0.158 0.258 0.551
4 0.3 0.0357 0.171 0.245 0.548

782

5 0.4 0.0396 0.184 0.232 0.545
6 0.5 0.0438 0.197 0.219 0.540
7 0.6 0.0484 0.211 0.207 0.534
8 0.7 0.0534 0.225 0.195 0.527
9 0.8 0.0587 0.240 0.183 0.518
10 0.9 0.0644 0.256 0.171 0.509
i 261 more rows

Now, we gather the data by author name and probability

been_dat_long <- been_dat |>
gather("name", "prob", 2:5)

been_dat_long

A tibble: 1,084 x 3
been_count name prob

<dbl> <chr> <dbl>
1 0 austen 0.0258
2 0.1 austen 0.0288
3 0.2 austen 0.0321
4 0.3 austen 0.0357
5 0.4 austen 0.0396
6 0.5 austen 0.0438
7 0.6 austen 0.0484
8 0.7 austen 0.0534
9 0.8 austen 0.0587
10 0.9 austen 0.0644
i 1,074 more rows

28.7.1 Produce the Plot of Estimated Probabilities based on “been” counts

ggplot(been_dat_long, aes(x = been_count, y = prob,
col = name)) +

geom_line(linewidth = 1.5) +
labs(x = "Count of the word `been`",

y = "Model probability")

783

0.00

0.25

0.50

0.75

1.00

0 10 20
Count of the word `been`

M
od

el
 p

ro
ba

bi
lit

y name

austen

london

milton

shakespeare

28.7.2 Boxplot of “been” counts

Compare this to what we see in the raw counts of the word “been”.

been.long <- filter(auth2.long, word == "been")
been.long$Auth <- fct_relevel(been.long$Author,

"Austen", "London", "Milton", "Shakespeare")
releveling to make the colors match the model plot

ggplot(been.long, aes(x = Auth, y = n, fill = Auth)) +
geom_boxplot() +
guides(fill = "none") +
labs(x = "", y = "Count of the word `been`")

784

0

10

20

Austen London Milton Shakespeare

C
ou

nt
 o

f t
he

 w
or

d
`b

ee
n`

28.7.3 Quote Sources

1. To-morrow, and to-morrow, and to-morrow … Shakespeare Macbeth Act 5.
2. Oh! do not attack me with your watch. … Jane Austen Mansfield Park
3. The proper function of man is to live, not to exist. … Jack London The Bulletin San

Francisco 1916-12-02.
4. Fly, envious Time, till thou run out thy race … John Milton On Time

785

29 Time To Event / Survival Data

In many medical studies, the main outcome variable is the time to the occurrence of a particular
event.

• In a randomized controlled trial of cancer, for instance, surgery, radiation, and
chemotherapy might be compared with respect to time from randomization and the
start of therapy until death.

– In this case, the event of interest is the death of a patient, but in other situations
it might be remission from a disease, relief from symptoms or the recurrence of a
particular condition.

– Such observations are generally referred to by the generic term survival data even
when the endpoint or event being considered is not death but something else.

These notes on survival analysis are just an introduction to the key ideas of the field. The
PQHS department offers an entire course on survival analysis (PQHS 435) and I recommend
that to those of you interested in deeper learning about the approaches we’ll discuss, or in
learning more about other approaches to survival analysis.

The OpenIntro Statistics extra material on Survival Analysis in R, written by David Diez is a
very useful guide to survival analysis in R, using the survival package and supplemented by
the KMsurv and OIsurv packages. A PDF version of that material is available, along with a
full set of the code used in that guide, along with instructions to obtain the packages.

29.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(mosaic)
library(survival)
library(survminer)
library(tidyverse)

theme_set(theme_bw())

786

https://www.openintro.org/book/surv_in_r/

29.1.1 Data Load

hem <- read_csv("data/hem.csv", show_col_types = FALSE)

29.2 An Outline of Key Topics Discussed in these Notes

In this chapter, we tackle the building blocks of survival analysis, and use R to work with
survival objects.

• The Survival Function, 𝑆(𝑡)
– The Kaplan-Meier Estimate/Plot
– Comparing Survival Functions with log rank test

• The Hazard Function, 𝐻(𝑡) = −𝑙𝑜𝑔(𝑆(𝑡))
• Using survival and related packages in R

In the next chapter, we introduce the the Cox Proportional Hazards Regression Model, one of
several available models for fitting regressions to time-to-event (survival) outcomes.

29.3 Foundations of Survival Analysis

Survival analysis is concerned with prospective studies, where we start with a cohort of subjects
and follow them forwards in time to determine some clinical outcome. Follow-up continues
until either some event of interest occurs, the study ends, or further observation becomes
impossible.

The outcomes in a survival analysis consist of the subject’s fate and length of follow-up at
the end of the study.

• For some patients, the outcome of interest may not occur during follow-up.
• For such patients, whose follow-up time is censored, we know only that this event did

not occur while the patient was being followed. We do not know whether or not it will
occur at some later time.

The primary problems with survival data are non-normality and censoring…

1. Survival data are quantitative, but not symmetrically distributed. They will often appear
positively skewed, with a few people surviving a very long time compared with the
majority; so assuming a normal distribution will not be reasonable.

2. At the completion of the study, some patients may not have reached the endpoint of
interest (death, relapse, etc.). Consequently, the exact survival times are not known.

787

• All that is known is that the survival times are greater than the amount of time
the individual has been in the study.

• The survival times of these individuals are said to be censored (precisely, they are
right-censored).

29.3.1 The Survival Function, 𝑆(𝑡)

The survival function, 𝑆(𝑡) (sometimes called the survivor function) is the probability that
the survival time, 𝑇 , is greater than or equal to a particular time, 𝑡.

• 𝑆(𝑡) = proportion of people surviving to time 𝑡 or beyond

If there’s no censoring, the survival function is easy to estimate.

̂𝑆(𝑡) = # of subjects with survival times ≥ 𝑡
𝑛

but this won’t work if there is censoring.

29.3.2 Kaplan-Meier Estimator of the Survival Function

The survival function 𝑆(𝑡) is the probability of surviving until at least time 𝑡. It is essentially
estimated by the number of patients alive at time 𝑡 divided by the total number of study
subjects remaining at that time.

The Kaplan-Meier estimator first orders the (unique) survival times from smallest to largest,
then estimates the survival function at each unique survival time.

• The survival function at the second death time, 𝑡(2) is equal to the estimated probability
of not dying at time 𝑡(2) conditional on the individual being still at risk at time 𝑡(2).

In the presence of censoring, the survival function is estimated as follows.

1. Order the survival times from smallest to largest, where t_{(j)} is the 𝑗th largest unique
survival time, so we have…

𝑡(1) ≤ 𝑡(2) ≤ 𝑡(3) ≤ ...𝑡(𝑛)

2. The Kaplan-Meier estimate of the survival function is

788

̂𝑆(𝑡) = ∏
𝑗∶𝑡(𝑗)≤𝑡

(1 − 𝑑𝑗
𝑟𝑗

)

where 𝑟𝑗 is the number of people at risk just before 𝑡(𝑗), including those censored at time 𝑡(𝑗),
and 𝑑𝑗 is the number of people who experience the event at time 𝑡(𝑗).

When we want to compare survival functions (or their Kaplan-Meier estimates, at least) we’ll
use a log rank test or one of several extensions of that test.

29.3.3 Creating a Survival Object in R

To do survival analysis in R, we’re going to start with three main functions, all in the survival
package:

• Surv creates a survival object
• survfit builds a Kaplan-Meier test, and the results may be plotted, as we’ve seen.
• survdiff builds a log rank test, that will let us compare two survival functions, as well

as running several alternatives.

Plus, we’ll build out some estimates of the hazard function.

The Surv function, part of the survival package in R, will create a survival object from
two arguments:

1. time = follow-up time
2. event = a status indicator, where

• event = 1 or TRUE means the event was observed (for instance, the patient died)
• event = 0 or FALSE means the follow-up time was censored

29.4 A First Example: Recurrent Lobar Intracerebral Hemorrhage

O’Donnell et al. (2000) studied the effect of the apolipoprotein E gene on the risk of recurrent
lobar intracerebral hemorrhage in 70 patients who survived such a hemorrhage1. Patients in
the study are classified by:

• time = follow-up time, in months
• recur = indicator of whether or not they had a recurrent event (1 = subject had a

recurrence, 0 subject did not have a recurrence), and

1These data come from Dupont WD (2002) Statistical Modeling for Biomedical Researchers. New York:
Cambridge U. Press, section 6.4.

789

• genotype = the subject’s apolipoprotein E genotype (0 = Homozygous 𝜖3/𝜖3 and 1 =
At least one 𝜖2 or 𝜖4 allele)

hem |> head(4)

A tibble: 4 x 4
id genotype time recur

<dbl> <dbl> <dbl> <dbl>
1 1 0 0.230 1
2 2 0 1.05 0
3 3 1 1.38 0
4 4 1 1.41 1

table(hem$recur)

0 1
52 18

We have 70 patients at the start, and observe 18 events (rest are censored.)

favstats(time ~ recur, data = hem)

recur min Q1 median Q3 max mean sd n
1 0 1.0513350 14.414783 23.01437 38.64477 53.88091 25.51129 14.68242 52
2 1 0.2299795 3.367556 10.92403 24.84600 42.87474 14.98517 13.88893 18
missing

1 0
2 0

The median survival time looks like 23 weeks in the patients who do not exhibit a recurrence,
but only 11 weeks in those who do.

790

29.5 Building a Survival Object

hemsurv <- Surv(time = hem$time, event = hem$recur)

head(hemsurv, 4)

[1] 0.2299795 1.0513350+ 1.3798770+ 1.4127311

This object both displays the survival time for each subject, and indicates whether or not the
subject’s follow-up was censored before a recurrent event occurred. Survival times with a +
sign indicate censoring.

• Subject 1 lived for 0.23 months hemorrhage-free and then had a recurrence.
• Subject 2 lived for 1.05 months hemorrhage-free, at which point they were censored

(perhaps because the study ended, or perhaps because the subject was no longer available
for follow-up)

Remember that 18 of the subjects experienced a recurrent hemorrhage, and the other 52 are
therefore censored.

29.6 Kaplan-Meier Estimate of the Survival Function

To build a Kaplan-Meier estimate of the survival function (to account properly for censoring),
we take the survival object we have created, and use the survfit function from the survival
package.

hemfit1 <- survfit(hemsurv ~ 1)

We can look at the hemfit1 object directly, although the K-M estimate is usually plotted.

print(hemfit1, print.rmean=TRUE)

Call: survfit(formula = hemsurv ~ 1)

n events rmean* se(rmean) median 0.95LCL 0.95UCL
[1,] 70 18 40.4 2.63 NA 42.9 NA

* restricted mean with upper limit = 53.9

791

We see that 18 events occurred out of a total of 70 subjects. The median survival time is listed
as NA (missing) which implies it cannot be estimated by this simple model.

• This is because only 18 of our 70 subjects have a known recurrence-free survival time
(the rest are censored), so we don’t actually know what the median survival time will be
across our 70 subjects. Apparently, R can produce a lower bound on a 95% confidence
interval for the median survival time, but not the actual point estimate.

We also observe a restricted mean survival time estimate. The restricted mean uses as its
upper limit the largest observed or censored survival time, which here is a censored value: 53.9
months. So it is the mean survival time, assuming all censored subjects lived hemorrhage-free
for 53.9 months.

summary(hemfit1)

Call: survfit(formula = hemsurv ~ 1)

time n.risk n.event survival std.err lower 95% CI upper 95% CI
0.23 70 1 0.986 0.0142 0.958 1.000
1.41 67 1 0.971 0.0202 0.932 1.000
1.58 65 1 0.956 0.0248 0.909 1.000
3.06 63 1 0.941 0.0287 0.886 0.999
3.32 62 1 0.926 0.0320 0.865 0.991
3.52 61 1 0.911 0.0349 0.845 0.982
3.55 60 1 0.895 0.0375 0.825 0.972
4.76 57 1 0.880 0.0400 0.805 0.962
9.53 54 1 0.863 0.0424 0.784 0.951
12.32 50 1 0.846 0.0449 0.762 0.939
15.57 46 1 0.828 0.0476 0.740 0.926
19.15 38 1 0.806 0.0511 0.712 0.912
24.77 32 1 0.781 0.0553 0.679 0.897
24.87 31 1 0.756 0.0590 0.648 0.881
28.09 26 1 0.726 0.0635 0.612 0.862
33.61 22 1 0.693 0.0687 0.571 0.842
37.52 17 1 0.653 0.0758 0.520 0.819
42.87 8 1 0.571 0.1011 0.404 0.808

This written summary provides us with lots of detail on the Kaplan-Meier estimate. In par-
ticular, the first two lines of this summary can be read to indicate the following.

• Up to time 0.23 months, no patients had a recurrence. Then, an event occurred, and the
estimated survival (i.e. non-recurrence) probability is reduced from 1 to 0.986.

792

• By time 1.41 months, when the next event occurred, only 67 patients remained at risk.
This is because one of them had a recurrent hemorrhage already (at 0.23 months) and
two others had been right-censored. The estimated hemorrhage-free survival probability
estimate starting at time 1.41 months is now 0.971.

A Kaplan-Meier plot graphically represents this summary.

29.6.1 The Kaplan-Meier Plot, using Base R

Now, let’s plot the Kaplan-Meier estimate, so we can see what is going on.

plot(hemfit1, ylab="Pr(Hemorrhage-Free Survival)",
xlab="Months of Follow-Up",
main="Kaplan-Meier Plot for hem Data")

0 10 20 30 40 50

0.
0

0.
4

0.
8

Kaplan−Meier Plot for hem Data

Months of Follow−Up

P
r(

H
em

or
rh

ag
e−

F
re

e
S

ur
vi

va
l)

The solid line indicates estimated hemorrhage-free survival probability. The dotted lines iden-
tify pointwise confidence intervals (default 95%).

• For example, we see that the estimated probability of hemorrhage-free survival to 20
months is estimated to be about 0.8

• The estimated probability of hemorrhage-free survival to 50 months is estimated to be
about 0.6

793

The steps down indicate events (recurrences.) The estimated probability of survival to 0
months starts at 1, and drops down at each time point where an event (or more than one
event) is observed.

29.6.2 Using survminer to draw survival curves

Another approach to plotting the Kaplan-Meier estimate comes from ggsurvplot, from the
survminer package.

ggsurvplot(hemfit1, data = hem)

++++
++ ++ ++++++ ++++++++++ ++++ + ++ ++++++++++++

++++++ +

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + All

Again, the solid line indicates estimated hemorrhage-free survival probability. The crosses
indicate censoring. The steps down indicate events (recurrences,) and the shading indicates
(default 95%) pointwise confidence intervals. By pointwise confidence intervals, I mean that
these bounds apply only to individual points in the time scale.

For more on an alternative approach, using simultaneous confidence bands, visit the OpenIntro
Statistics Survival Analysis in R materials, written by David Diez, which are also posted on
our web site.

794

https://www.openintro.org/stat/surv.php
https://github.com/THOMASELOVE/432-2018/blob/master/texts/Diez_OpenIntro_survival_analysis_in_R.pdf

29.6.3 A “Fancy” K-M Plot with a number at risk table

We can do a lot more with these plots. Following the suggestions at https://github.com/kassambara/survminer/
we can create the following…

ggsurvplot(hemfit1, data = hem,
conf.int = TRUE, # Add confidence interval
risk.table = TRUE, # Add risk table
xlab = "Time in months", # adjust X axis label
break.time.by = 12 # add tick every 12 months
)

++++ ++ ++ ++++++ ++++++++++ ++++ + ++ ++++++++++++++++++ +

0.00

0.25

0.50

0.75

1.00

0 12 24 36 48
Time in months

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + All

70 50 32 19 1All
0 12 24 36 48

Time in months

S
tr

at
a Number at risk

This sort of plot is really designed to work best when we compare multiple groups in terms of
their survival. So let’s do that.

29.7 Comparing Survival Across the Two Genotypes

Now, suppose we want to compare the hemorrhage-free survival functions for subjects classified
by their apoliprotein E genotype. Working with the same survival object hemsurv we now run
the survfit function to compare across the two genotype groups.

795

hemfit2 <- survfit(hemsurv ~ hem$genotype)
print(hemfit2, print.rmean=TRUE)

Call: survfit(formula = hemsurv ~ hem$genotype)

n events rmean* se(rmean) median 0.95LCL 0.95UCL
hem$genotype=0 32 4 47.8 2.87 NA NA NA
hem$genotype=1 38 14 33.9 3.77 37.5 24.9 NA

* restricted mean with upper limit = 53.9

• In genotype = 0 (the subjects who are Homozygous 𝜖3/𝜖3,) we had 32 subjects, and
observed 4 recurrent hemorrhages. Our estimated restricted mean survival time in those
subjects is 47.8 months and we cannot estimate a median survival time because only a
small fraction of our subjects were not censored.

• In genotype = 1 (subjects who have at least one 𝜖2 or 𝜖4 allele,) we had 38 subjects and
observed 14 recurrences. The estimated restricted mean survival time is 33.9 months
in these subjects, and we can (it seems) estimate a median survival time in this group
of 37.5 months. Note that we don’t actually need to observe the event in half of the
subjects to estimate a median survival time.

29.7.1 Kaplan-Meier Survival Function Estimates, by Genotype

I find I have to crank the figure height in Quarto up to at least 6 to get the risk table to show
up nicely in this setting.

ggsurvplot(hemfit2, data = hem,
conf.int = TRUE,
xlab = "Time in months",
break.time.by = 12,
legend.labs = c("Homozygous", "Heterozygous"),
risk.table = TRUE,
risk.table.height = 0.25
)

796

++ + + + ++++
++++ ++ +++++++ ++ +++ +

+
+

++ + +++++
+++

+++

+

+ + +

++ +

0.00

0.25

0.50

0.75

1.00

0 12 24 36 48
Time in months

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + +Homozygous Heterozygous

32 27 20 11 1

38 23 12 8 0Heterozygous

Homozygous

0 12 24 36 48
Time in months

S
tr

at
a

Number at risk

It appears that patients who were homozygous for the 𝜖3 allele of this gene (i.e. genotype =
0 in the hemorrhage data) had a much better prognosis than others (genotype = 1.)

29.8 Testing the difference between two survival curves

To obtain a significance test comparing these two survival curves, we turn to a log rank test,
which tests the null hypothesis 𝐻0 ∶ 𝑆1(𝑡) = 𝑆2(𝑡) for all 𝑡 where the two exposures have

797

survival functions 𝑆1(𝑡) and 𝑆2(𝑡). We use the survdiff function to explore this test, which
uses a 𝜒2 statistic to do the testing.

survdiff(hemsurv ~ hem$genotype)

Call:
survdiff(formula = hemsurv ~ hem$genotype)

N Observed Expected (O-E)^2/E (O-E)^2/V
hem$genotype=0 32 4 9.28 3.00 6.28
hem$genotype=1 38 14 8.72 3.19 6.28

Chisq= 6.3 on 1 degrees of freedom, p= 0.01

Based on the log rank test, we see a pretty small p value (p = .0122) for the comparison of the
hemorrhage-free survival curves for the two genotypes, as shown in the Kaplan-Meier plot.

• The log rank test generalizes to permit survival comparisons across more than two groups,
with the test statistic having an asymptotic chi-squared distribution with one degree of
freedom less than the number of patient groups being compared.

29.8.1 Alternative log rank tests

An alternative approach to testing is the Peto and Peto modification of the Gehan-Wilcoxon
test, which results from adding rho=1 to the survdiff function (rho=0, the default, yields the
log rank test.)

survdiff(hemsurv ~ hem$genotype, rho=1)

Call:
survdiff(formula = hemsurv ~ hem$genotype, rho = 1)

N Observed Expected (O-E)^2/E (O-E)^2/V
hem$genotype=0 32 3.63 7.87 2.29 5.46
hem$genotype=1 38 11.79 7.54 2.39 5.46

Chisq= 5.5 on 1 degrees of freedom, p= 0.02

As compared to the log rank test, this Peto-Peto modification (and others using rho > 0) give
greater weight to the left hand (earlier) side of the survival curves.

798

• To obtain chi-square tests that give greater weight to the right hand (later) side of the
survival curves than the log rank test, use a rho value which is less than 0.

29.9 A “Fancy” K-M Plot with a number at risk table

We can add the log rank test result to our “fancy” K-M plot. Visit https://github.com/kassambara/survminer/
for more options.

ggsurvplot(hemfit2, data = hem, size = 1,
palette = c("purple", "darkgoldenrod"), # custom colors
conf.int = TRUE, # Add confidence interval
pval = TRUE, # Add p-value
risk.table = TRUE, # Add risk table
risk.table.height = 0.25, # change if you have >2 groups
risk.table.y.text.col = T, # show colors in table listing
xlab = "Time in months", # adjust X axis label
break.time.by = 12, # break X axis in time intervals
legend.labs = c("Homozygous", "Heterozygous"), # labels
ggtheme = theme_bw() # Change ggplot2 theme
)

799

++
+

+ + ++++
++++ ++ +++++++ ++ +++ +

+
+

++
+

+++++
+++

+++

+

+ + +

++ +

p = 0.012

0.00

0.25

0.50

0.75

1.00

0 12 24 36 48
Time in months

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + +Homozygous Heterozygous

32 27 20 11 1

38 23 12 8 0Heterozygous

Homozygous

0 12 24 36 48
Time in months

S
tr

at
a

Number at risk

29.9.1 Customizing the Kaplan-Meier Plot Presentation Further

We can even add a plot of the number of censored subjects at each time point, as
well as a median survival pointer (which, of course, we’ve seen that we can’t estimate

800

in one of the groups), and customize the style of the confidence intervals. Again, see
https://github.com/kassambara/survminer/ for even more customized results.

ggsurvplot(hemfit2,
data = hem,
palette = c("#E7B800", "#2E9FDF"),
risk.table = TRUE,
pval = TRUE,
conf.int = TRUE,
xlab = "Time in months",
break.time.by = 12,
ggtheme = theme_light(),
risk.table.y.text.col = T,
risk.table.height = 0.25,
risk.table.y.text = FALSE,
ncensor.plot = TRUE,
ncensor.plot.height = 0.25,
conf.int.style = "step",
surv.median.line = "hv",
legend.labs = c("Homozygous", "Heterozygous")

)

801

++ + + + ++++ ++++ ++ +++++++ ++ +++ +

+
+

++ + +++++ +++ +++
+

+ + +
++ +

p = 0.012

0.00

0.25

0.50

0.75

1.00

0 12 24 36 48
Time in months

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + +Homozygous Heterozygous

32 27 20 11 1

38 23 12 8 0−
−

0 12 24 36 48
Time in months

S
tr

at
a

Number at risk

0

1

2

0 12 24 36 48
Time in months

n.
ce

ns
or

Number of censoring

802

29.10 The Hazard Function

To build regression models for time-to-event data, we will need to introduce the hazard
function. Consider a subject in the hemorrhage study who has a hemorrhage-free survival
time of 9 months.

• For this subject to have had a recurrent hemorrhage at 9 months, they had to be
hemorrhage-free for the first 8 months.

• The subject’s hazard at 9 months is the failure rate “per month” conditional on the
subject being hemorrhage-free for the first 8 months.

If 𝑆(𝑡) is the survival function, and time 𝑡 is taken to be continuous, then 𝑆(𝑡) = 𝑒𝐻(𝑡) defines
the hazard function 𝐻(𝑡).

• Note that 𝐻(𝑡) = −𝑙𝑛(𝑆(𝑡)).
• The function 𝐻(𝑡) is an important analytic tool.

– It’s used to describe the concept of the risk of “failure” in an interval after time 𝑡,
conditioned on the subject having survived to time 𝑡.

– It’s often called the cumulative hazard function, to emphasize the fact that its value
is the “sum” of the hazard up to time 𝑡.

There are several different methods to estimate 𝐻(𝑡), but we’ll focus on two…

1. The inverse Kaplan-Meier estimator
2. The Nelson-Aalen estimator

29.10.1 The Inverse Kaplan-Meier Estimator of 𝐻(𝑡)

Our first estimator of the hazard function, 𝐻(𝑡) will be the inverse Kaplan-Meier estimate,
which I’ll place in an R object called H_est1.

• To start, we will take the negative of the log of the Kaplan-Meier survival estimate. That
takes care of the first t-1 levels of the eventual estimate.

• To complete the process, we will repeat the final one of those time-specific estimates at
the end.

H_est1 <- -log(hemfit1$surv)
H_est1 <- c(H_est1, tail(H_est1, 1))

Here are the first five, and last five values of the hazard function estimate.

head(H_est1,5) # first 5 values

803

[1] 0.01438874 0.01438874 0.01438874 0.02942661 0.02942661

tail(H_est1, 5) # last 5

[1] 0.5602049 0.5602049 0.5602049 0.5602049 0.5602049

We can create a little tibble containing the times and hazard estimates, like this:

haz_hem <- tibble(
time = c(hemfit1$time, tail(hemfit1$time, 1)),
inverse_KM = H_est1

)

29.10.2 Cumulative Hazard Function from Inverse K-M

Since we’ve built the data set of times and hazard values, we can use the geom_step function
in ggplot2.

ggplot(haz_hem, aes(x = time, y = inverse_KM)) +
geom_step() +
scale_x_continuous(breaks = c(0, 12, 24, 36, 48)) +
labs(x = "Months of Follow-Up",

y = "Cumulative Hazard",
title = "Cumulative Hazard Function via Inverse K-M")

804

0.0

0.2

0.4

0 12 24 36 48
Months of Follow−Up

C
um

ul
at

iv
e

H
az

ar
d

Cumulative Hazard Function via Inverse K−M

29.10.3 The Nelson-Aalen Estimator of 𝐻(𝑡)

An alternative estimate of the cumulative hazard is called the Nelson-Aalen estimate, captured
here in H_est2.

h_st <- hemfit1$n.event / hemfit1$n.risk
H_est2 <- cumsum(h_st)
H_est2 <- c(H_est2, tail(H_est2, 1))
haz_hem$Nelson_Aalen <- H_est2

head(haz_hem)

A tibble: 6 x 3
time inverse_KM Nelson_Aalen
<dbl> <dbl> <dbl>

1 0.230 0.0144 0.0143
2 1.05 0.0144 0.0143
3 1.38 0.0144 0.0143
4 1.41 0.0294 0.0292
5 1.51 0.0294 0.0292
6 1.58 0.0449 0.0446

805

29.10.4 Convert Wide Data to Long

In order to easily plot the two hazard function estimates in the same graph, we’ll want to
convert these data from wide format to long format, with the pivot_longer function.

haz_hem_comp <- pivot_longer(data = haz_hem, cols = 2:3,
names_to = "method", values_to = "hazardest")

head(haz_hem_comp)

A tibble: 6 x 3
time method hazardest
<dbl> <chr> <dbl>

1 0.230 inverse_KM 0.0144
2 0.230 Nelson_Aalen 0.0143
3 1.05 inverse_KM 0.0144
4 1.05 Nelson_Aalen 0.0143
5 1.38 inverse_KM 0.0144
6 1.38 Nelson_Aalen 0.0143

29.10.5 Plot Comparison of Hazard Estimates

ggplot(haz_hem_comp, aes(x = time, y = hazardest,
col = method)) +

geom_step(linewidth = 2) +
scale_x_continuous(breaks = c(0, 12, 24, 36, 48)) +
labs(x = "Months of Follow-Up",

y = "Cumulative Hazard",
title = "Cumulative Hazard Function") +

theme_bw()

806

0.0

0.2

0.4

0 12 24 36 48
Months of Follow−Up

C
um

ul
at

iv
e

H
az

ar
d

method

inverse_KM

Nelson_Aalen

Cumulative Hazard Function

We can see that the two cumulative hazard function estimates are nearly identical in this case.
We could instead compare the two functions in faceted plots, if that would be helpful.

ggplot(haz_hem_comp, aes(x = time, y = hazardest)) +
geom_step() +
scale_x_continuous(breaks = c(0, 12, 24, 36, 48)) +
labs(x = "Months of Follow-Up",

y = "Cumulative Hazard",
title = "Cumulative Hazard Function") +

facet_grid(method ~ .) + theme_bw()

807

inverse_K
M

N
elson_A

alen

0 12 24 36 48

0.0

0.2

0.4

0.0

0.2

0.4

Months of Follow−Up

C
um

ul
at

iv
e

H
az

ar
d

Cumulative Hazard Function

29.11 NEW!! Checking Assumptions Using a log (-log) plot

When fitting a log rank test, we may wish to consider whether the proportional hazards
assumption required by such a test is satisfied. One common approach to doing this is to fit
a log minus log plot, as follows.

plot(hemfit2, fun = "cloglog",
main = "log minus log plot for hemfit2",
xlab = "Months (on log scale)",
ylab = "log(-log(survival)", col = c(1,2))

llab <- gsub("x = ","", names(hemfit2$strata))
legend("bottomright", legend=llab, col=1:2,

lty = 1, horiz = FALSE, bty='n', cex = 0.7)

808

0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0

−
3

−
2

−
1

0

log minus log plot for hemfit2

Months (on log scale)

lo
g(

−
lo

g(
su

rv
iv

al
)

hem$genotype=0
hem$genotype=1

Since the two curves shown in the plot cross during the observation period, this is an indication
that the proportional hazard assumption made by the log rank test may be unsatisfied.

Next, we will consider the issue of modeling a survival outcome using Cox proportional hazards
regression.

809

30 Cox Regression Models, Part 1

30.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(survival)
library(rms)
library(tidyverse)

theme_set(theme_bw())

30.1.1 Data Load

hem <- read_csv("data/hem.csv", show_col_types = FALSE)

The Cox proportional hazards (Cox regression) model fits survival data with a constant (i.e. not
varying over time) covariate 𝑥 to a hazard function of the form:

ℎ(𝑡|𝑥) = ℎ0(𝑡)𝑒𝑥𝑝[𝛽1𝑥]

where we will estimate the unknown value of 𝛽1 and where ℎ0(𝑡) is the baseline hazard, which
is a non-parametric and unspecified value which depends on 𝑡 but not on 𝑥.

• For particular 𝑥 values, we will be able to estimate the survival function if we have an
estimate of the baseline survival function, ̂𝑆0(𝑡).

The estimated survival function for an individual with covariate value 𝑥𝑘 turns out to be

̂𝑆(𝑡|𝑥𝑘) = [̂𝑆0(𝑡)]𝑒𝑥𝑝(𝛽1𝑥𝑘)

From Wikipedia (yes, really) …

810

Survival models can be viewed as consisting of two parts: the underlying hazard
function, describing how the risk of event per time unit changes over time at base-
line levels of covariates; and the effect parameters, describing how the hazard varies
in response to explanatory covariates.

The key assumption in a Cox model is that the hazards are proportional - other types of
survival models need not have this restriction. Quoting the always reliable (well, it’s better
than you think) Wikipedia …

In a proportional hazards model, the unique effect of a unit increase in a covariate
is multiplicative with respect to the hazard rate. For example, taking a drug may
halve one’s hazard rate for a stroke occurring, or, changing the material from which
a manufactured component is constructed may double its hazard rate for failure.

There are two main approaches to fitting Cox models in R.

• the coxph function in the survival package, and
• the cph function in the rms package.

30.2 Sources used in building this material

• David Diez’s excellent supplement for the OpenIntro Statistics project, on Survival Anal-
ysis in R.

• Some tools in R to do some fancier work can be viewed at https://cran.r-project.org/
web/views/Survival.html

• You might also look at these two blog posts, originally from the Just Another Data blog.

– https://www.r-bloggers.com/survival-analysis-1/

– https://www.r-bloggers.com/survival-analysis-2/

• https://rpubs.com/daspringate/survival has some great slides, and I’ve stolen from them
quite a bit here.

30.3 Fitting a Cox Model in R with coxph

As a first example, I’ll fit a model to predict time to recurrence in the hem data, on the basis
of a single predictor: genotype.

cfit <- with(hem, coxph(Surv(time, recur) ~ genotype))
cfit

811

https://www.openintro.org/book/surv_in_r/
https://www.openintro.org/book/surv_in_r/
https://cran.r-project.org/web/views/Survival.html
https://cran.r-project.org/web/views/Survival.html
https://www.r-bloggers.com/survival-analysis-1/
https://www.r-bloggers.com/survival-analysis-2/
https://rpubs.com/daspringate/survival

Call:
coxph(formula = Surv(time, recur) ~ genotype)

coef exp(coef) se(coef) z p
genotype 1.3317 3.7874 0.5699 2.337 0.0195

Likelihood ratio test=6.61 on 1 df, p=0.01015
n= 70, number of events= 18

This summary provides an overall comparison of the two genotypes, using a proportional
hazards model.

• The default approach in R is to use the “efron” method of breaking ties: other options
include “breslow” and “exact”.

30.3.1 Summarizing the Fit

summary(cfit)

Call:
coxph(formula = Surv(time, recur) ~ genotype)

n= 70, number of events= 18

coef exp(coef) se(coef) z Pr(>|z|)
genotype 1.3317 3.7874 0.5699 2.337 0.0195 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
genotype 3.787 0.264 1.239 11.57

Concordance= 0.622 (se = 0.061)
Likelihood ratio test= 6.61 on 1 df, p=0.01
Wald test = 5.46 on 1 df, p=0.02
Score (logrank) test = 6.28 on 1 df, p=0.01

This provides estimates of the 𝛽 value for genotype, including standard errors and 𝑝 values
for a Wald test. Also included is an estimate of the hazard ratio and its confidence interval.

• Here we have a hazard ratio estimate of exp(coef) = 3.787, with 95% CI (1.24, 11.57).

812

• The hazard ratio is the multiplicative effect of the covariate (here, having at least one of
the 𝜖2 or 𝜖4 allele) on the hazard function for recurrent hemorrhage

– A hazard ratio of 1 indicates no effect
– A hazard ratio > 1 indicates an increase in the hazard as the covariate rises
– A hazard ratio < 1 indicates a decrease in the hazard as the covariate rises

We can also tidy the hazard ratio estimate with the broom package.

tidy(cfit, exponentiate = TRUE)

A tibble: 1 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 genotype 3.79 0.570 2.34 0.0195

In addition, we have several other summaries:

• The concordance measure is only appropriate when we have at least one continuous
predictor in our Cox model.

• The Cox & Snell pseudo-𝑅2 reflects the improvement of the model we’ve fit over the
model with an intercept alone, but isn’t a proportion of anything (hence the listing of
the maximum possible value).

• The Likelihood ratio, Wald and Score (logrank) tests provide insight into the overall
predictive value for the model.

We can obtain a more detailed description of the likelihood-ratio test of the model with
anova.

anova(cfit)

Analysis of Deviance Table
Cox model: response is Surv(time, recur)
Terms added sequentially (first to last)

loglik Chisq Df Pr(>|Chi|)
NULL -66.675
genotype -63.371 6.6078 1 0.01015 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

813

30.3.2 Glancing at the model?

glance(cfit)

A tibble: 1 x 18
n nevent statistic.log p.value.log statistic.sc p.value.sc statistic.wald

<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 70 18 6.61 0.0102 6.28 0.0122 5.46
i 11 more variables: p.value.wald <dbl>, statistic.robust <dbl>,
p.value.robust <dbl>, r.squared <dbl>, r.squared.max <dbl>,
concordance <dbl>, std.error.concordance <dbl>, logLik <dbl>, AIC <dbl>,
BIC <dbl>, nobs <int>

Here, we obtain several additional summaries of the model, including most of the important
information from a summary of cfit.

30.3.3 Plot the baseline survival function

Here, we’ll plot the time in terms of months, but scaled to 12 month (one year) groups.

plot(survfit(cfit), xscale = 12,
xlab = "Years after initial hemorrhage",
ylab = "Proportion without recurrent hemorrhage",
main = "Baseline Survival Function")

814

0 1 2 3 4

0.
0

0.
4

0.
8

Baseline Survival Function

Years after initial hemorrhageP
ro

po
rt

io
n

w
ith

ou
t r

ec
ur

re
nt

 h
em

or
rh

ag
e

30.3.4 Plot the genotype effect

There are several ways to build these plots. One approach follows. Another uses a cph fit and
the survplot function from the rms package.

newdat <- with(hem,
data.frame(
genotype = c(1, 0)

)
)

newdat

genotype
1 1
2 0

plot(survfit(cfit, newdata = newdat), xscale = 12,
conf.int = TRUE,
col = c("red", "blue"),
xlab = "Years after initial hemorrhage",

815

ylab = "Proportion without recurrent hemorrhage",
main = "Plotting the genotype effects from the cfit Model")

legend(0.5, 0.2,
legend=c(

expression(paste("Homozygous ", epsilon, "3 / ",
epsilon, "3")),

expression(paste("At least one ", epsilon,"2 or ",
epsilon,"4 Allele"))

),
lty = 1,
col = c("red", "blue"),
text.col = c("red", "blue"))

0 1 2 3 4

0.
0

0.
4

0.
8

Plotting the genotype effects from the cfit Model

Years after initial hemorrhageP
ro

po
rt

io
n

w
ith

ou
t r

ec
ur

re
nt

 h
em

or
rh

ag
e

Homozygous ε3 / ε3
At least one ε2 or ε4 Allele

30.3.5 Testing the Key Assumption: Proportional Hazards

The cox.zph function in the survival package will test the proportionality of all of the
predictors included in your model by creating interactions with time.

• A small 𝑝 value would indicate a violation of the proportionality assumption.

cox.zph(cfit, transform="km", global=TRUE)

816

chisq df p
genotype 2.09 1 0.15
GLOBAL 2.09 1 0.15

Since the p value here is quite large, we may be all right. But it’s sensible to focus further on
plots derived from the model fit, rather than relying solely on this test.

30.3.6 Plotting the cox.zph results for the cfit model

cox.zph function can be used to generate a plot for each of the individual predictors in the
model. Of course, in this case, we have just one predictor: genotype. If the proportional
hazards assumption is appropriate, then we should see a slope of essentially zero in each such
plot. A slope that is seriously different from zero suggests a violation of the proportional
hazards assumption.

plot(cox.zph(cfit, transform="km", global=TRUE))

−
4

0
2

4
6

Time

B
et

a(
t)

 fo
r

ge
no

ty
pe

1.5 3.4 5.9 15 25 35 40

The plot suggests only a slight rise in the plotted values over time, suggesting no serious prob-
lem with the proportional hazards assumption. This combined testing and plotting approach
is a reasonable starting place for assessing the proportional hazards assumption, but it’s likely
insufficient for good practical work.

817

Should the proportional hazards assumption fit less well, we have two main options: (1) fit a
non-linear term in the covariate in question, and (2) fit a different type of regression model
that doesn’t require the proportional hazards assumption.

30.4 Fitting a Cox Model using cph from the rms package

To set up a cph fit for our comparison of genotypes in the hem data, we’ll follow these steps.

units(hem$time) <- "month"
d <- datadist(hem)
options(datadist = "d")

hemsurv <- Surv(time = hem$time, event = hem$recur)

model_hem <- cph(hemsurv ~ genotype, data = hem,
x = TRUE, y = TRUE, surv = TRUE)

Note that the surv = TRUE piece is required to get some of the follow-up analyses to work
smoothly.

30.4.1 The Main cph results

model_hem

Cox Proportional Hazards Model

cph(formula = hemsurv ~ genotype, data = hem, x = TRUE, y = TRUE,
surv = TRUE)

Model Tests Discrimination
Indexes

Obs 70 LR chi2 6.61 R2 0.106
Events 18 d.f. 1 R2(1,70) 0.077
Center 0.7229 Pr(> chi2) 0.0102 R2(1,18) 0.268

Score chi2 6.28 Dxy 0.244
Pr(> chi2) 0.0122

Coef S.E. Wald Z Pr(>|Z|)
genotype 1.3317 0.5699 2.34 0.0195

818

Included here are likelihood ratio and score tests for the model as a whole (as compared to
the intercept-only model), as well as the usual discrimination indexes.

• These include both an 𝑅2 analog due to Nagelkerke (which can go all the way up to 1),
and

• Somers’ 𝐷𝑥𝑦, which can also produce an estimate of the C statistic (area under the
curve) via the formula C = 0.5 + Dxy / 2, so here C = 0.5 + (.244/2) = 0.622

• For lots more on survival analysis C statistics, look at the survAUC package in R.

These results are followed by a table of Wald tests for each of the coefficients in the model.

30.4.2 Using anova with cph

As in other rms fits, we can use anova to obtain more detailed (in terms of combining nonlinear
terms and, if available, interactions) tests.

anova(model_hem)

Wald Statistics Response: hemsurv

Factor Chi-Square d.f. P
genotype 5.46 1 0.0195
TOTAL 5.46 1 0.0195

30.4.3 Effect Sizes after cph fit

We can use summary on a cph object to get and plot effect size estimates (here, these are
hazard ratios.)

summary(model_hem)

Effects Response : hemsurv

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
genotype 0 1 1 1.3317 0.5699 0.21468 2.4486
Hazard Ratio 0 1 1 3.7873 NA 1.23950 11.5730

plot(summary(model_hem))

819

Hazard Ratio

1 4 6 8 10 12 14 16

genotype − 1 : 0

30.4.4 Validating cph summaries

For details on these last few indices (D, U, Q, etc.), visit ?validate.cph in R.

set.seed(43201); validate(model_hem)

index.orig training test optimism index.corrected n
Dxy 0.2441 0.2508 0.2197 0.0311 0.2130 40
R2 0.1058 0.1203 0.1058 0.0144 0.0914 40
Slope 1.0000 1.0000 -6.4747 7.4747 -6.4747 40
D 0.0421 0.0532 0.0421 0.0111 0.0310 40
U -0.0150 -0.0168 0.0198 -0.0366 0.0216 40
Q 0.0571 0.0699 0.0222 0.0477 0.0094 40
g 0.6705 0.7908 0.6705 0.1203 0.5502 40

30.4.5 Plotting Survival Functions for each Genotype

Here is the survplot approach I mentioned earlier.

survplot(model_hem, genotype,
lty = c(1,2), n.risk=TRUE, time.inc=12,
col=c("magenta", "dodgerblue"),
xlab="Hemorrhage-Free Survival in Months")

820

Hemorrhage−Free Survival in Months

0 12 24 36 48 60

S
ur

vi
va

l P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

70 50 32 19 1 0 0
70 50 32 19 1 0 1

0

1

We can add, for instance, confidence interval bars, with:

survplot(model_hem, genotype,
lwd=3, lty = c(1,2), conf.int=.95,
n.risk=TRUE, time.inc = 12, conf='bars',
col=c("magenta", "dodgerblue"),
xlab="Hemorrhage-Free Survival Time in Months")

821

Hemorrhage−Free Survival Time in Months

0 12 24 36 48 60

S
ur

vi
va

l P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

70 50 32 19 1 0 0
70 50 32 19 1 0 1

0

1

For more details, check out R’s help file on survplot.

30.4.6 Genotype’s effect on log relative hazard

ggplot(Predict(model_hem, genotype))

822

−1

0

1

0.00 0.25 0.50 0.75 1.00
genotype

lo
g

R
el

at
iv

e
H

az
ar

d

30.4.7 Nomogram of our simple hem model

We can estimate 1-year and 3-year hemorrhage-free survival probabilities, for example, with
this model, and incorporate these results into our nomogram.

survx <- Survival(model_hem)
plot(nomogram(model_hem, fun=list(function(x) survx(12, x),

function(x) survx(36, x)),
funlabel=c("12-month Pr(Survival)",

"36-month Pr(Survival)")))

823

Points
0 10 20 30 40 50 60 70 80 90 100

genotype
0

1

Total Points
0 10 20 30 40 50 60 70 80 90 100

Linear Predictor
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

12−month Pr(Survival)
0.80.820.840.860.880.90.920.94

36−month Pr(Survival)
0.550.60.650.70.750.80.85

Again, this is just a very simple model, with one binary predictor.

30.4.8 Assessing the Proportional Hazards Assumption

cox.zph(model_hem, transform="km")

chisq df p
genotype 2.09 1 0.15
GLOBAL 2.09 1 0.15

• Consider using transform="rank" to transform the survival times by their ranks prior
to performing the test.

• Or use transform="identity" as we’ll do in the plot below.

30.4.9 Plot to Check PH Assumption

plot(cox.zph(model_hem, "identity"))

824

0 10 20 30 40

−
2

0
2

4
6

Time

B
et

a(
t)

 fo
r

ge
no

ty
pe

825

31 Cox Regression Models, Part 2

31.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(survival)
library(survminer)
library(rms)
library(tidyverse)

theme_set(theme_bw())

31.1.1 Data Load

leukem <- read_csv("data/leukem.csv", show_col_types = FALSE)

31.2 A Second Example: The leukem data

leukem

A tibble: 51 x 8
id age pblasts pinf plab maxtemp months alive

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 20 78 39 7 99 18 0
2 2 25 64 61 16 103 31 1
3 3 26 61 55 12 98.2 31 0
4 4 26 64 64 16 100 31 0
5 5 27 95 95 6 98 36 0
6 6 27 80 64 8 101 1 0

826

7 7 28 88 88 20 98.6 9 0
8 8 28 70 70 14 101 39 1
9 9 31 72 72 5 98.8 20 1
10 10 33 58 58 7 98.6 4 0
i 41 more rows

The data describe 51 leukemia patients. The variables are:

• id, a patient identification code
• age, age at diagnosis
• pblasts, the Smear differential percentage of blasts
• pinf, the Percentage of absolute marrow leukemia infiltrate
• plab, the Percentage labeling index of the bone marrow leukemia cells
• maxtemp, Highest temperature prior to treatment (in ∘𝐹)
• months, which is Survival time from diagnosis (in months)
• alive, which indicates Status as of the end of the study (1 = alive and thus censored, 0

= dead)

glimpse(leukem)

Rows: 51
Columns: 8
$ id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,~
$ age <dbl> 20, 25, 26, 26, 27, 27, 28, 28, 31, 33, 33, 33, 34, 36, 37, 40~
$ pblasts <dbl> 78, 64, 61, 64, 95, 80, 88, 70, 72, 58, 92, 42, 26, 55, 71, 91~
$ pinf <dbl> 39, 61, 55, 64, 95, 64, 88, 70, 72, 58, 92, 38, 26, 55, 71, 91~
$ plab <dbl> 7, 16, 12, 16, 6, 8, 20, 14, 5, 7, 5, 12, 7, 14, 15, 9, 12, 4,~
$ maxtemp <dbl> 99.0, 103.0, 98.2, 100.0, 98.0, 101.0, 98.6, 101.0, 98.8, 98.6~
$ months <dbl> 18, 31, 31, 31, 36, 1, 9, 39, 20, 4, 45, 36, 12, 8, 1, 15, 24,~
$ alive <dbl> 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,~

31.2.1 Creating our response: A survival time object

Regardless of how we’re going to fit a survival model, we start by creating a survival time
object that combines the information in months (the survival times, possibly censored) and
alive (the censoring indicator) into a single variable we’ll call stime in this example.

The function below correctly registers the survival time, and censors subjects who are alive at
the end of the study (we need to indicate those whose times are known, and they are identified
by alive == 0). All other subjects are alive for at least as long as we observe them, but their
exact survival times are right-censored.

827

stime <- Surv(leukem$months, leukem$alive == 0)
stime

[1] 18 31+ 31 31 36 1 9 39+ 20+ 4 45+ 36 12 8 1 15 24 2 33
[20] 29+ 7 0 1 2 12 9 1 1 9 5 27+ 1 13 1 5 1 3 4
[39] 1 18 1 2 1 8 3 4 14 3 13 13 1

31.2.2 Models We’ll Fit

We’ll fit several models here, including:

• Model A: A model for survival time using age at diagnosis alone.
• Model B: A model for survival time using the main effects of 5 predictors, specifically,

age, pblasts, pinf, plab, and maxtemp.
• Model B2: The model we get after applying stepwise variable selection to Model B,

which will include age, pinf and plab.
• Model C: A model using age (with a restricted cubic spline), plab and maxtemp

31.3 Model A: coxph Model for Survival Time using age at
diagnosis

We’ll start by using age at diagnosis to predict our survival object (survival time, accounting
for censoring).

modA <- coxph(Surv(months, alive==0) ~ age,
data=leukem, model=TRUE)

summary(modA)

Call:
coxph(formula = Surv(months, alive == 0) ~ age, data = leukem,

model = TRUE)

n= 51, number of events= 45

coef exp(coef) se(coef) z Pr(>|z|)
age 0.032397 1.032927 0.009521 3.403 0.000667 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

828

exp(coef) exp(-coef) lower .95 upper .95
age 1.033 0.9681 1.014 1.052

Concordance= 0.65 (se = 0.047)
Likelihood ratio test= 11.85 on 1 df, p=6e-04
Wald test = 11.58 on 1 df, p=7e-04
Score (logrank) test = 12.29 on 1 df, p=5e-04

glance(modA) %>%
select(r.squared, r.squared.max,

concordance, std.error.concordance)

A tibble: 1 x 4
r.squared r.squared.max concordance std.error.concordance

<dbl> <dbl> <dbl> <dbl>
1 0.207 0.996 0.650 0.0465

Across these 51 subjects, we observe 45 events (deaths) and 6 subjects are censored. The
hazard ratio (shown under exp(coef)) is 1.0329272, and this means each additional year of
age at diagnosis is associated with a 1.03-fold increase in the hazard of death.

For this simple Cox regression model, we will focus on interpreting

1. the hazard ratio (specified by the exp(coef) result and associated confidence interval)
as a measure of effect size,

• Here, the hazard ratio associated with a 1-year increase in age is 1.033, and its 95%
confidence interval is: (1.014, 1.052).

2. the concordance and Rsquare as measures of fit quality, and

• concordance is only appropriate when we have at least one continuous predictor
in our Cox model, in which case it assesses the probability of agreement between
the survival time and the risk score generated by the predictor (or set of predictors.)
A value of 1 indicates perfect agreement, but values of 0.6 to 0.7 are more common
in survival data. 0.5 is an agreement that is no better than chance. Here, our
concordance is 0.65, which is a fairly typical value.

• Rsquare in this setting is Cox and Snell’s pseudo-𝑅2, which reflects the improve-
ment of the model we have fit over the model with the intercept alone - a comparison
that is tested by the likelihood ratio test. The maximum value of this statistic is
often less than one, in which case R will tell you that. Here, our observed pseudo-𝑅2

is 0.207 and that is out of a possible maximum of 0.996.

829

3. the significance tests, particularly the Wald test (shown next to the coefficient estimates
in the position of a t test in linear regression), and the Likelihood ratio test at the
bottom of the output, which compares this model to a null model which predicts the
mean survival time for all subjects.

• The Wald test for an individual predictor compares the coefficient to its standard
error, just like a t test in linear regression.

• The likelihood ratio test compares the entire model to the null model (intercept-
only). Again, run an ANOVA (technically an analysis of deviance) to get more
details on the likelihood-ratio test.

anova(modA)

Analysis of Deviance Table
Cox model: response is Surv(months, alive == 0)
Terms added sequentially (first to last)

loglik Chisq Df Pr(>|Chi|)
NULL -142.94
age -137.02 11.849 1 0.000577 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

31.3.1 Plotting the Survival Curve implied by Model A

plot(survfit(modA), ylab="Probability of Survival",
xlab="Months in Study", col=c("red", "black", "black"))

830

0 10 20 30 40

0.
0

0.
4

0.
8

Months in Study

P
ro

ba
bi

lit
y

of
 S

ur
vi

va
l

31.3.2 Testing the Proportional Hazards Assumption

As we’ve noted, the key assumption in a Cox model is that the hazards are proportional.

cox.zph(modA)

chisq df p
age 1.05 1 0.31
GLOBAL 1.05 1 0.31

A small p value would indicate a problem with the proportional hazards assumption - again,
not the case here. We can also plot the results:

plot(cox.zph(modA))

831

−
0.

10
0.

00
0.

10

Time

B
et

a(
t)

 fo
r

ag
e

1.1 1.6 2.3 4.1 8 12 15 32

We’re looking for the smooth curve to be fairly level across the time horizon here, as opposed
to substantially increasing or decreasing in level as time passes.

31.4 Building Model A with cph for the leukem data

units(leukem$months) <- "month"
d <- datadist(leukem)
options(datadist="d")
modA_cph <- cph(Surv(months, alive==0) ~ age, data=leukem,

x=TRUE, y=TRUE, surv=TRUE, time.inc=12)

modA_cph

Cox Proportional Hazards Model

cph(formula = Surv(months, alive == 0) ~ age, data = leukem,
x = TRUE, y = TRUE, surv = TRUE, time.inc = 12)

Model Tests Discrimination

832

Indexes
Obs 51 LR chi2 11.85 R2 0.208
Events 45 d.f. 1 R2(1,51) 0.192
Center 1.6152 Pr(> chi2) 0.0006 R2(1,45) 0.214

Score chi2 12.29 Dxy 0.301
Pr(> chi2) 0.0005

Coef S.E. Wald Z Pr(>|Z|)
age 0.0324 0.0095 3.40 0.0007

exp(coef(modA_cph)) # hazard ratio estimate

age
1.032923

exp(confint(modA_cph)) # hazard ratio 95% CI

2.5 % 97.5 %
age 1.013826 1.052379

31.4.1 Plotting the age effect implied by our model.

We can plot the age effect implied by the model, using ggplot2, as follows…

ggplot(Predict(modA_cph, age))

833

−1

0

1

30 40 50 60 70
age

lo
g

R
el

at
iv

e
H

az
ar

d

31.4.2 Survival Plots (Kaplan-Meier) of the age effect

The first survival plot I’ll show displays 95% confidence intervals for the probability of survival
at the median age at diagnosis in the sample, which turns out to be 50 years, with numbers
of patients still at risk indicated every 12 months of time in the study. We can substitute in
conf = bars to get a different flavor for this sort of plot.

survplot(modA_cph, age=median(leukem$age), conf.int=.95,
col='blue', time.inc=12, n.risk=TRUE,
conf='bands', type="kaplan-meier",
xlab="Study Survival Time in Months")

834

Study Survival Time in Months

0 12 24 36 48

S
ur

vi
va

l P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

51 21 11 4 0

Or we can generate a survival plot that shows survival probabilities over time across a range
of values for age at diagnosis, as follows…

survplot(modA_cph, levels.only=TRUE, time.inc=12,
type="kaplan-meier",
xlab="Study Survival Time in Months")

Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
collapsing to unique 'x' values
Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
collapsing to unique 'x' values
Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
collapsing to unique 'x' values
Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
collapsing to unique 'x' values
Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
collapsing to unique 'x' values

835

Study Survival Time in Months

0 12 24 36 48

S
ur

vi
va

l P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

26
38.125

50.25 62.375
74.5

This plot shows a series of modeled survival probabilities, for five different diagnosis age levels,
as identified by the labels. Generally we see that the younger the subject is at diagnosis, the
longer their survival time in the study.

31.4.3 ANOVA test for the cph-built model for leukem

We can run a likelihood-ratio (drop in deviance) test to consider the age effect…

anova(modA_cph)

Wald Statistics Response: Surv(months, alive == 0)

Factor Chi-Square d.f. P
age 11.57 1 7e-04
TOTAL 11.57 1 7e-04

31.4.4 Summarizing the Effect Sizes from modA_cph

We can generate the usual summaries of effect size in this context, too.

836

summary(modA_cph)

Effects Response : Surv(months, alive == 0)

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
age 35 61 26 0.8422 0.24755 0.35701 1.3274
Hazard Ratio 35 61 26 2.3215 NA 1.42910 3.7712

plot(summary(modA_cph))

Hazard Ratio

1.5 2.0 2.5 3.0 3.5 4.0 4.5

age − 61 : 35

As with all rms package effect estimates, this quantitative predictor (age) yields an effect
comparing age at the 25th percentile of the sample (age = 35) to age at the 75th percentile
(age = 61). So the hazard ratio is 2.32, with 95% CI (1.43, 3.77) for the effect of moving 26
years. Our coxph version of this same model showed a hazard ratio for the effect of moving
just a single year.

31.4.5 Validating the Cox Model Summary Statistics

set.seed(432410); validate(modA_cph)

837

index.orig training test optimism index.corrected n
Dxy 0.3007 0.2950 0.3007 -0.0057 0.3064 40
R2 0.2081 0.2226 0.2081 0.0145 0.1936 40
Slope 1.0000 1.0000 1.0253 -0.0253 1.0253 40
D 0.0379 0.0425 0.0379 0.0045 0.0334 40
U -0.0070 -0.0070 0.0037 -0.0107 0.0037 40
Q 0.0449 0.0495 0.0343 0.0152 0.0297 40
g 0.6210 0.6492 0.6210 0.0282 0.5928 40

The 𝑅2 statistic barely moves, and neither does the Somers’ d estimate, so at least in this
simple model, the nominal summary statistics are likely to hold up pretty well in new data.

31.4.6 Looking for Influential Points

This plot shows the influence of each point, in terms of DFBETA - the impact on the coefficient
of age in the model were that specific point to be removed from the data set. We can also
identify the row numbers of the largest (positive and negative) DFBETAs.

plot(residuals(modA_cph, type="dfbeta",
collapse = leukem$id) ~

leukem$id, main="Index Plot of DFBETA for Age",
type="h", ylab="DFBETA in modelA_cph")

0 10 20 30 40 50

−
0.

00
2

0.
00

0
0.

00
2

Index Plot of DFBETA for Age

leukem$id

D
F

B
E

TA
 in

 m
od

el
A

_c
ph

838

which.max(residuals(modA_cph, type="dfbeta"))

8
8

which.min(residuals(modA_cph, type="dfbeta"))

50
50

The DFBETAs look very small here. Changes in the 𝛽 estimates as large as 0.002 don’t have
a meaningful impact in this case, so I don’t see anything particularly influential.

31.4.7 Checking the Proportional Hazards Assumption

As before, we can check the proportional hazards assumption with a test, or plot.

cox.zph(modA_cph)

chisq df p
age 1.05 1 0.31
GLOBAL 1.05 1 0.31

plot(cox.zph(modA_cph))

839

−
0.

10
0.

00
0.

10

Time

B
et

a(
t)

 fo
r

ag
e

1.1 1.6 2.3 4.1 8 12 15 32

Still no serious signs of trouble, of course. We’ll see what happens when we fit a bigger
model.

31.5 Model B: Fitting a 5-Predictor Model with coxph

Next, we use the coxph function from the survival package to apply a Cox regression model
to predict the survival time using the main effects of the five predictors: age, pblasts, pinf,
plab and maxtemp.

modB <- coxph(Surv(months, alive==0) ~
age + pblasts + pinf + plab + maxtemp, data=leukem)

modB

Call:
coxph(formula = Surv(months, alive == 0) ~ age + pblasts + pinf +

plab + maxtemp, data = leukem)

coef exp(coef) se(coef) z p
age 0.033080 1.033633 0.010163 3.255 0.00113
pblasts 0.009452 1.009497 0.013959 0.677 0.49831
pinf -0.017102 0.983043 0.012244 -1.397 0.16248

840

plab -0.066000 0.936131 0.038651 -1.708 0.08771
maxtemp 0.155448 1.168182 0.111978 1.388 0.16507

Likelihood ratio test=18.48 on 5 df, p=0.002405
n= 51, number of events= 45

tidy(modB, exponentiate = TRUE, conf.int = TRUE, conf.level = 0.95) |>
select(term, estimate, conf.low, conf.high)

A tibble: 5 x 4
term estimate conf.low conf.high
<chr> <dbl> <dbl> <dbl>

1 age 1.03 1.01 1.05
2 pblasts 1.01 0.982 1.04
3 pinf 0.983 0.960 1.01
4 plab 0.936 0.868 1.01
5 maxtemp 1.17 0.938 1.45

The confidence intervals suggest that only the hazard ratio for age after accounting for all
other predictors in this model seems to have a clear direction of its effect (higher hazard is
associated with older age.)

31.5.1 Plotting the Survival Curve implied by Model B

plot(survfit(modB), ylab="Probability of Survival",
xlab="Months in Study", col=c("red", "black", "black"))

841

0 10 20 30 40

0.
0

0.
4

0.
8

Months in Study

P
ro

ba
bi

lit
y

of
 S

ur
vi

va
l

The crosses in the plot indicate censoring points, while the drops indicate people who have
died, and are thus no longer at risk.

31.5.2 Testing the Proportional Hazards Assumption

cox.zph(modB, transform="km", global=TRUE)

chisq df p
age 1.87 1 0.171
pblasts 4.37 1 0.037
pinf 3.51 1 0.061
plab 1.19 1 0.275
maxtemp 1.53 1 0.216
GLOBAL 9.22 5 0.101

Note that we get a global test, and a separate test for each predictor. None show substan-
tial problems. We can plot the scaled Schoenfeld residuals directly with ggcoxzph from the
survminer package.

ggcoxzph(cox.zph(modB))

842

−0.250.000.250.50
1.11.62.34.1 8 12 1532

Time

B
et

a(
t)

 fo
r

ag
e

Schoenfeld Individual Test p: 0.1714
−0.40.00.4

1.11.62.34.1 8 12 15 32
Time

B
et

a(
t)

 fo
r

pb
la

st
s

Schoenfeld Individual Test p: 0.0366

−0.6−0.30.00.3
1.11.62.34.1 8 12 15 32

Time

B
et

a(
t)

 fo
r

pi
nf

Schoenfeld Individual Test p: 0.0611
−101

1.1 1.62.34.1 8 12 15 32
Time

B
et

a(
t)

 fo
r

pl
ab

Schoenfeld Individual Test p: 0.2749

−5.0−2.50.02.55.0
1.11.62.34.1 8 12 15 32

Time

B
et

a(
t)

 fo
r

m
ax

te
m

p

Schoenfeld Individual Test p: 0.2162

Global Schoenfeld Test p: 0.1008

31.5.3 Assessing Collinearity

Perhaps we have some collinearity here, which might imply that we could sensibly fit a smaller
model, which would be appealing anyway, with only 45 actual events - we should probably be
sticking to a model with no more than 2 or perhaps as many as 3 coefficients to be estimated.

rms::vif(modB)

age pblasts pinf plab maxtemp
1.081775 3.029862 3.000944 1.035400 1.045249

The variance inflation factors don’t look enormous - it may be that removing one of these
variables will help us focus in on the mst useful predictors. Let’s consider a stepwise variable
selection algorithm to see what results…

• Note that the leaps library, which generates best subsets output, is designed for linear
regression, as is the lars library, which generates the lasso. Either could be used here
for some guidance, but not with the survival object stime = Surv(months, age) as the
response, but instead only with months as the outcome, which ignores the censoring.
The step procedure can be used on the survival object, though.

843

31.6 Model B2: A Stepwise Reduction of Model B

stats::step(modB)

Start: AIC=277.4
Surv(months, alive == 0) ~ age + pblasts + pinf + plab + maxtemp

Df AIC
- pblasts 1 275.85
- pinf 1 277.17
- maxtemp 1 277.21
<none> 277.40
- plab 1 278.42
- age 1 286.47

Step: AIC=275.85
Surv(months, alive == 0) ~ age + pinf + plab + maxtemp

Df AIC
- maxtemp 1 275.63
<none> 275.85
- pinf 1 275.89
- plab 1 276.86
- age 1 284.47

Step: AIC=275.63
Surv(months, alive == 0) ~ age + pinf + plab

Df AIC
<none> 275.63
- pinf 1 275.69
- plab 1 275.95
- age 1 285.52

Call:
coxph(formula = Surv(months, alive == 0) ~ age + pinf + plab,

data = leukem)

coef exp(coef) se(coef) z p
age 0.033171 1.033727 0.009733 3.408 0.000655
pinf -0.010147 0.989905 0.007088 -1.432 0.152246

844

plab -0.057558 0.944067 0.038476 -1.496 0.134662

Likelihood ratio test=16.25 on 3 df, p=0.001008
n= 51, number of events= 45

The stepwise procedure lands on a model with three predictors. How does this result look,
practically?

modB2 <- coxph(Surv(months, alive==0) ~ age + pinf + plab, data=leukem)
summary(modB2)

Call:
coxph(formula = Surv(months, alive == 0) ~ age + pinf + plab,

data = leukem)

n= 51, number of events= 45

coef exp(coef) se(coef) z Pr(>|z|)
age 0.033171 1.033727 0.009733 3.408 0.000655 ***
pinf -0.010147 0.989905 0.007088 -1.432 0.152246
plab -0.057558 0.944067 0.038476 -1.496 0.134662

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
age 1.0337 0.9674 1.0142 1.054
pinf 0.9899 1.0102 0.9762 1.004
plab 0.9441 1.0592 0.8755 1.018

Concordance= 0.676 (se = 0.046)
Likelihood ratio test= 16.25 on 3 df, p=0.001
Wald test = 15.28 on 3 df, p=0.002
Score (logrank) test = 16.21 on 3 df, p=0.001

31.6.1 The Survival Curve implied by Model B2

plot(survfit(modB2), ylab="Probability of Survival", xlab="Months in Study",
col=c("red", "black", "black"))

845

0 10 20 30 40

0.
0

0.
4

0.
8

Months in Study

P
ro

ba
bi

lit
y

of
 S

ur
vi

va
l

31.6.2 Checking Proportional Hazards for Model B2

cox.zph(modB2, transform="km", global=TRUE)

chisq df p
age 1.66 1 0.197
pinf 3.20 1 0.074
plab 2.17 1 0.141
GLOBAL 6.07 3 0.108

ggcoxzph(cox.zph(modB2))

846

−0.250.000.250.50
1.1 1.6 2.3 4.1 8 12 15 32

Time

B
et

a(
t)

 fo
r

ag
e

Schoenfeld Individual Test p: 0.1973

−0.20.00.2
1.1 1.6 2.3 4.1 8 12 15 32

Time

B
et

a(
t)

 fo
r

pi
nf

Schoenfeld Individual Test p: 0.0737

−101
1.1 1.6 2.3 4.1 8 12 15 32

Time

B
et

a(
t)

 fo
r

pl
ab

Schoenfeld Individual Test p: 0.1411

Global Schoenfeld Test p: 0.1081

31.7 Model C: Using a Spearman Plot to pick a model

If we want to use the Spearman 𝜌2 plot to consider how we might perhaps incorporate non-
linear terms describing any or all of the five potential predictors (age, pblasts, pinf, plab
and maxtemp) for survival time, we need to do so on the raw months variable, rather than the
survival object (stime = Surv(months, alive==0)) which accounts for censoring…

plot(spearman2(months ~ age + pblasts + pinf + plab + maxtemp, data=leukem))

847

age

plab

maxtemp

pinf

pblasts

N df

51 1

51 1

51 1

51 1

51 1

0.00 0.05 0.10 0.15

Spearman ρ2 Response : months

Adjusted ρ2

Recognizing that we can probably only fit a small model safely (since we observe only 45 actual
[uncensored] survival times) I will consider a non-linear term in age (specifically a restricted
cubic spline with 3 knots), along with linear terms for plab and maxtemp. I’m mostly just
looking for a new model to study for this example.

31.7.1 Fitting Model C

still have datadist set up for leukem
modC <- cph(Surv(months, alive==0) ~ rcs(age, 3) + plab + maxtemp,

data=leukem, x=TRUE, y=TRUE, surv=TRUE, time.inc=12)
modC

Cox Proportional Hazards Model

cph(formula = Surv(months, alive == 0) ~ rcs(age, 3) + plab +
maxtemp, data = leukem, x = TRUE, y = TRUE, surv = TRUE,
time.inc = 12)

Model Tests Discrimination
Indexes

Obs 51 LR chi2 19.75 R2 0.322

848

Events 45 d.f. 4 R2(4,51) 0.266
Center 20.3856 Pr(> chi2) 0.0006 R2(4,45) 0.295

Score chi2 18.66 Dxy 0.438
Pr(> chi2) 0.0009

Coef S.E. Wald Z Pr(>|Z|)
age 0.0804 0.0283 2.84 0.0045
age' -0.0629 0.0332 -1.90 0.0580
plab -0.0736 0.0381 -1.93 0.0536
maxtemp 0.1788 0.1145 1.56 0.1184

31.7.2 ANOVA for Model C

anova(modC)

Wald Statistics Response: Surv(months, alive == 0)

Factor Chi-Square d.f. P
age 11.55 2 0.0031
Nonlinear 3.59 1 0.0580
plab 3.73 1 0.0536
maxtemp 2.44 1 0.1184
TOTAL 17.13 4 0.0018

31.7.3 Summarizing Model C Effect Sizes

summary(modC)

Effects Response : Surv(months, alive == 0)

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
age 35.0 61.0 26.0 1.06010 0.31559 0.44152 1.6786000
Hazard Ratio 35.0 61.0 26.0 2.88650 NA 1.55510 5.3580000
plab 6.5 13.5 7.0 -0.51511 0.26686 -1.03820 0.0079317
Hazard Ratio 6.5 13.5 7.0 0.59744 NA 0.35411 1.0080000
maxtemp 98.6 100.5 1.9 0.33979 0.21758 -0.08666 0.7662400
Hazard Ratio 98.6 100.5 1.9 1.40470 NA 0.91699 2.1517000

849

plot(summary(modC))

Hazard Ratio

0.50 1.50 2.50 3.50 4.50 5.50 6.50

age − 61 : 35

plab − 13.5 : 6.5

maxtemp − 100.5 : 98.6

31.7.4 Plotting the diagnosis age effect in Model C

Of course, we’re no longer assuming that the log relative hazard is linear in age, once we
include a restricted cubic spline for age in our Model C. So our hazard ratio and confidence
intervals for age are a bit trickier to understand.

exp(coef(modC))

age age' plab maxtemp
1.0837479 0.9390008 0.9290553 1.1958265

exp(confint(modC))

2.5 % 97.5 %
age 1.0252687 1.145563
age' 0.8798328 1.002148
plab 0.8621662 1.001134
maxtemp 0.9554141 1.496734

850

We can use ggplot and the Predict function to produce plots of the log Relative Hazard
associated with any of our predictors, while holding the others constant at their medians. The
effects of maxtemp and plab in our Model C are linear in the log Relative Hazard, but age,
thanks to our use of a restricted cubic spline with 3 knots, shows a single bend.

ggplot(Predict(modC, age))

−2

−1

0

1

30 40 50 60 70
age

lo
g

R
el

at
iv

e
H

az
ar

d

Adjusted to:plab=10 maxtemp=99

31.7.5 Survival Plot associated with Model C

Let’s look at a survival plot associated with Model C for a subject with median values of our
three predictors.

survplot(modC, age=median(leukem$age), conf.int=0.95, col="blue",
time.inc=12, n.risk=TRUE, conf='bands',
xlab="Study Time in Months")

851

Study Time in Months

0 12 24 36 48

S
ur

vi
va

l P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

51 21 11 4 0

Adjusted to: plab=10 maxtemp=99

As before, we could fit such a plot to compare results across multiple age values, if desired.

31.7.6 Checking the Proportional Hazards Assumption

cox.zph(modC, transform="km", global=TRUE)

chisq df p
rcs(age, 3) 2.39 2 0.303
plab 1.55 1 0.214
maxtemp 1.14 1 0.285
GLOBAL 8.27 4 0.082

ggcoxzph(cox.zph(modC))

852

−10
−5

0
5

10
15

1.1 1.6 2.3 4.1 8 12 15 32
Time

B
et

a(
t)

 fo
r

rc
s(

ag
e,

 3
)

Schoenfeld Individual Test p: 0.3028

−1
0
1

1.1 1.6 2.3 4.1 8 12 15 32
Time

B
et

a(
t)

 fo
r

pl
ab Schoenfeld Individual Test p: 0.2138

−5.0
−2.5

0.0
2.5
5.0

1.1 1.6 2.3 4.1 8 12 15 32
TimeB

et
a(

t)
 fo

r
m

ax
te

m
p

Schoenfeld Individual Test p: 0.285

Global Schoenfeld Test p: 0.08221

31.7.7 Model C Nomogram

sv <- Survival(modC)
surv12 <- function(x) sv(12, lp=x)
surv24 <- function(x) sv(24, lp=x)

plot(nomogram(modC, fun=list(surv12, surv24),
funlabel=c('12-month survival', '24-month survival')))

853

Points
0 10 20 30 40 50 60 70 80 90 100

age
20 25 30 35 40 45 50 60

80

plab
20 16 12 8 6 4 2

maxtemp
98 99.5 101 103

Total Points
0 20 40 60 80 120 160 200

Linear Predictor
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

12−month survival
0.10.20.30.40.50.60.70.8

24−month survival
0.10.20.30.40.50.60.7

31.7.8 Validating Model C’s Summary Statistics

We can validate the model for Somers’ 𝐷𝑥𝑦, which is the rank correlation between the predicted
log hazard and observed survival time, and for slope shrinkage.

set.seed(43234); validate(modC, B=100)

index.orig training test optimism index.corrected n

854

Dxy 0.4385 0.4749 0.4144 0.0605 0.3780 100
R2 0.3222 0.3716 0.2785 0.0931 0.2292 100
Slope 1.0000 1.0000 0.8101 0.1899 0.8101 100
D 0.0656 0.0814 0.0547 0.0266 0.0390 100
U -0.0070 -0.0070 0.0101 -0.0171 0.0101 100
Q 0.0726 0.0884 0.0446 0.0437 0.0288 100
g 0.9466 1.0751 0.8364 0.2387 0.7078 100

31.7.9 Calibration of Model C (12-month survival estimates)

Finally, we validate the model for calibration accuracy in predicting the probability of surviving
one year.

Quoting Harrell (page 529, RMS second edition):

The bootstrap is used to estimate the optimism in how well predicted [one]-year
survival from the final Cox model tracks flexible smooth estimates, without any
binning of predicted survival probabilities or assuming proportional hazards.

The u variable specifies the length of time at which we look at the calibration. I’ve specified
the units earlier to be months.

set.seed(43233); plot(rms::calibrate(modC, B = 10, u = 12))

Using Cox survival estimates at 12 months

855

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

Predicted 12 month Survival

F
ra

ct
io

n
S

ur
vi

vi
ng

 1
2

m
on

th

Black: observed Gray: ideal
Blue : optimism corrected

B=10 based on observed−predicted
Mean |error|=0.046 0.9 Quantile=0.101

The model seems neither especially well calibrated nor especially poorly so - looking at the
comparison of the blue curve to the gray, our predictions basically aren’t aggressive enough
- more people are surviving to a year in our low predicted probability of 12 month survival
group, and fewer people are surviving on the high end of the x-axis than should be the case.

856

32 NEW!! A Few LASSO Ideas

32.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(janitor)
library(broom)
library(car)
library(gt)
library(Hmisc)
library(MASS)
library(mosaic)
library(glmnet)
library(conflicted)
library(patchwork)
library(tidyverse)

conflicts_prefer(dplyr::select)

theme_set(theme_bw())

32.1.1 Data Load

pollution <- read_csv("data/pollution.csv", show_col_types = FALSE)

32.2 The pollution data

Consider again the pollution data set we developed in Chapter 13 which contains 15 indepen-
dent variables and a measure of mortality, describing 60 US metropolitan areas in 1959-1961.

pollution

857

A tibble: 60 x 16
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 13 49 68 7 3.36 12.2 90.7 2702 3 51.9 9.7 105 32
2 28 32 81 7 3.27 12.1 81 3665 7.5 51.6 13.2 4 2
3 10 55 70 7.3 3.11 12.1 88.9 3033 5.9 51 14 144 66
4 43 32 74 10.1 3.38 9.5 79.2 3214 2.9 43.7 12 11 7
5 25 12 73 9.2 3.28 12.1 83.1 2095 2 51.9 9.8 20 11
6 35 46 85 7.1 3.22 11.8 79.9 1441 14.8 51.2 16.1 1 1
7 60 67 82 10 2.98 11.5 88.6 4657 13.5 47.3 22.4 3 1
8 11 53 68 9.2 2.99 12.1 90.6 4700 7.8 48.9 12.3 648 319
9 31 24 72 9 3.37 10.9 82.8 3226 5.1 45.2 12.3 5 3
10 15 30 73 8.2 3.15 12.2 84.2 4824 4.7 53.1 12.7 17 8
i 50 more rows
i 3 more variables: x14 <dbl>, x15 <dbl>, y <dbl>

Here’s a codebook:

Variable Description
y Total Age Adjusted Mortality Rate
x1 Mean annual precipitation in inches
x2 Mean January temperature in degrees Fahrenheit
x3 Mean July temperature in degrees Fahrenheit
x4 Percent of 1960 SMSA population that is 65 years of age or over
x5 Population per household, 1960 SMSA
x6 Median school years completed for those over 25 in 1960 SMSA
x7 Percent of housing units that are found with facilities
x8 Population per square mile in urbanized area in 1960
x9 Percent of 1960 urbanized area population that is non-white

x10 Percent employment in white-collar occupations in 1960 urbanized area
x11 Percent of families with income under $30,000 in 1960 urbanized area
x12 Relative population potential of hydrocarbons, HC
x13 Relative pollution potential of oxides of nitrogen, NOx
x14 Relative pollution potential of sulfur dioxide, SO2
x15 Percent relative humidity, annual average at 1 p.m.

32.3 Should We Rescale any Predictors?

Let’s get some basic summary statistics for our candidate predictors. When we do, we see that
variable x8 is roughy 100 times larger than all of our other predictors.

858

df_stats(~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 +
x10 + x11 + x12 + x13 + x14 + x15, data = pollution)

response min Q1 median Q3 max mean sd
1 x1 10.00 32.750 38.000 43.250 60.00 37.366667 9.9846775
2 x2 12.00 27.000 31.500 40.000 67.00 33.983333 10.1688985
3 x3 63.00 72.000 74.000 77.250 85.00 74.583333 4.7631768
4 x4 5.60 7.675 9.000 9.700 11.80 8.798333 1.4645520
5 x5 2.92 3.210 3.265 3.360 3.53 3.263167 0.1352523
6 x6 9.00 10.400 11.050 11.500 12.30 10.973333 0.8452994
7 x7 66.80 78.375 81.150 83.600 90.70 80.913333 5.1413731
8 x8 1441.00 3104.250 3567.000 4519.750 9699.00 3876.050000 1454.1023607
9 x9 0.80 4.950 10.400 15.650 38.50 11.870000 8.9211480
10 x10 33.80 43.250 45.500 49.525 59.70 46.081667 4.6130431
11 x11 9.40 12.000 13.200 15.150 26.40 14.373333 4.1600956
12 x12 1.00 7.000 14.500 30.250 648.00 37.850000 91.9776732
13 x13 1.00 4.000 9.000 23.750 319.00 22.650000 46.3332896
14 x14 1.00 11.000 30.000 69.000 278.00 53.766667 63.3904678
15 x15 38.00 55.000 57.000 60.000 73.00 57.666667 5.3699309

n missing
1 60 0
2 60 0
3 60 0
4 60 0
5 60 0
6 60 0
7 60 0
8 60 0
9 60 0
10 60 0
11 60 0
12 60 0
13 60 0
14 60 0
15 60 0

Let’s dampen the size of that x8 variable down a little to make our coefficient comparisons
easier later, by dividing all of the x8 values by 100.

pollution <- pollution |>
mutate(x8 = x8/100)

859

32.4 A Kitchen Sink Model

We’ll begin by fitting the obviously underpowered model with all 15 main effects used to
predict our outcome.

mod_sink <- lm(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 +
x10 + x11 + x12 + x13 + x14 + x15,

data = pollution)

32.4.1 Considering an Outcome Transformation

boxcox(mod_sink)

−2 −1 0 1 2

83
.0

84
.0

λ

lo
g−

Li
ke

lih
oo

d

 95%

OK. In light of this Box-Cox plot, let’s consider taking the inverse of our outcome here. I’ll
take that inverse and then standardize the result using the scale() function to both subtract
the mean of the transformed outcome and divide by its standard deviation, so that our new
outcome, which I’ll call out_std has mean 0, standard deviation 1, and a shape similar to that
of the inverse of our 𝑦.

860

pollution <- pollution |>
mutate(y_inverse = 1/y,

out_std = scale(1/y, center = TRUE, scale = TRUE))

p1 <- ggplot(pollution, aes(x = y_inverse)) + geom_density()
p2 <- ggplot(pollution, aes(x = out_std)) + geom_density()

p1 / p2

0

2000

4000

0.0009 0.0010 0.0011 0.0012
y_inverse

de
ns

ity

0.0

0.1

0.2

0.3

0.4

−2 −1 0 1 2 3
out_std

de
ns

ity

OK. So now, I’ll build a revised kitchen sink model to use this new outcome.

mod_sink2 <- lm(out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 +
x10 + x11 + x12 + x13 + x14 + x15, data = pollution)

tidy(mod_sink2, conf.int = TRUE, conf.level = 0.9) |>
select(term, estimate, std.error, conf.low, conf.high, p.value) |>
gt() |> fmt_number(decimals = 3)

term estimate std.error conf.low conf.high p.value
(Intercept) −15.899 6.886 −27.469 −4.328 0.026

861

x1 −0.035 0.015 −0.059 −0.011 0.020
x2 0.036 0.017 0.007 0.066 0.044
x3 0.055 0.030 0.005 0.105 0.074
x4 0.176 0.134 −0.049 0.400 0.196
x5 2.184 1.099 0.338 4.031 0.053
x6 0.225 0.187 −0.089 0.539 0.234
x7 0.016 0.028 −0.031 0.063 0.573
x8 −0.006 0.006 −0.017 0.005 0.351
x9 −0.070 0.021 −0.105 −0.035 0.002
x10 0.012 0.026 −0.031 0.056 0.636
x11 0.002 0.051 −0.084 0.087 0.974
x12 0.011 0.008 −0.002 0.024 0.160
x13 −0.022 0.016 −0.049 0.004 0.169
x14 −0.001 0.002 −0.005 0.003 0.549
x15 0.001 0.018 −0.029 0.032 0.936

Does this new model show a strong fit to the data?

glance(mod_sink2) |> select(r.squared:p.value, df, df.residual, nobs) |>
gt() |> fmt_number(r.squared:p.value, decimals = 3)

r.squared adj.r.squared sigma statistic p.value df df.residual nobs
0.774 0.698 0.550 10.070 0.000 15 44 60

glance(mod_sink2) |> select(logLik, AIC, BIC, deviance) |> gt() |>
fmt_number(decimals = 2)

logLik AIC BIC deviance
−39.96 113.92 149.52 13.31

32.4.2 How much collinearity are we dealing with?

vif(mod_sink2)

x1 x2 x3 x4 x5 x6 x7
4.113888 6.143551 3.967774 7.470045 4.307618 4.860538 3.994781

x8 x9 x10 x11 x12 x13 x14
1.658281 6.779599 2.841582 8.717068 98.639935 104.982405 4.228929

x15

862

1.907092

Clearly, we have some enormous collinearity to deal with, given that we have many VIFs over
5, some even over 100.

So a reduction in the size of the model seems appealing for multiple reasons.

32.5 Using the LASSO to suggest a smaller model

To begin, we will create a data matrix for our predictors, as follows:

pred_x <- model.matrix(mod_sink2)

Next, we create a matrix of our outcome.

out_y <- pollution |> select(out_std) |> as.matrix()

The LASSO involves both a cross-validation step, and a fitting step. Here’s the code we’ll use
in this case:

set.seed(123456)

cv_poll1 <- cv.glmnet(pred_x, out_y, type.measure = "mse", nfolds = 10)

mod_las1 <- glmnet(pred_x, out_y, alpha = 1, lambda = cv_poll1$lambda.min)

Now, let’s look at what the LASSO does. As we can see from the tidied output below, some
predictors are dropped from the model, while others have their coefficients shrunk towards
zero as compared to what we saw in the “kitchen sink” model.

tidy(mod_las1) |> gt()

term step estimate lambda dev.ratio
(Intercept) 1 -2.345226117 0.03783146 0.7335261
x1 1 -0.026289494 0.03783146 0.7335261
x2 1 0.020872173 0.03783146 0.7335261
x3 1 0.017666053 0.03783146 0.7335261
x6 1 0.101973313 0.03783146 0.7335261
x7 1 0.012515424 0.03783146 0.7335261
x8 1 -0.006425945 0.03783146 0.7335261

863

x9 1 -0.060226425 0.03783146 0.7335261
x10 1 0.007342706 0.03783146 0.7335261
x14 1 -0.003819796 0.03783146 0.7335261

This new LASSO model includes only 9 of the original 15 predictors.

32.6 Would the 9-predictor model be a big improvement?

Suppose we fit a new model inspired by this LASSO. It’s still just a linear model, with no
shrinkage, here.

mod_3 <- lm(out_std ~ x1 + x2 + x3 + x6 + x7 + x8 + x9 + x10 + x14,
data = pollution)

vif(mod_3)

x1 x2 x3 x6 x7 x8 x9 x10
1.850485 1.548039 1.867603 3.899194 2.318288 1.479122 2.281879 2.333836

x14
1.609159

Well, the collinearity is certainly much improved.

tidy(mod_3, conf.int = TRUE, conf.level = 0.9) |>
select(term, estimate, std.error, conf.low, conf.high, p.value) |>
gt() |> fmt_number(decimals = 3)

term estimate std.error conf.low conf.high p.value
(Intercept) −4.122 2.254 −7.900 −0.344 0.073
x1 −0.031 0.010 −0.048 −0.015 0.002
x2 0.024 0.009 0.010 0.039 0.007
x3 0.040 0.020 0.005 0.074 0.058
x6 0.057 0.166 −0.222 0.335 0.734
x7 0.021 0.021 −0.014 0.056 0.328
x8 −0.009 0.006 −0.019 0.001 0.129
x9 −0.069 0.012 −0.090 −0.049 0.000
x10 0.013 0.024 −0.026 0.053 0.581
x14 −0.004 0.001 −0.006 −0.002 0.007

Does this new model show a strong fit to the data?

864

glance(mod_3) |> select(r.squared:p.value, df, df.residual, nobs) |>
gt() |> fmt_number(r.squared:p.value, decimals = 3)

r.squared adj.r.squared sigma statistic p.value df df.residual nobs
0.747 0.702 0.546 16.413 0.000 9 50 60

glance(mod_3) |> select(logLik, AIC, BIC, deviance) |> gt() |>
fmt_number(decimals = 2)

logLik AIC BIC deviance
−43.39 108.78 131.81 14.92

Finally, here’s a set of plots for regression diagnostics. How do things look?

par(mfrow = c(2,2))
plot(mod_3)

865

−2 −1 0 1 2

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

1.
5

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

60

4

50

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals

60

4

50

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
60 4

50

0.0 0.1 0.2 0.3 0.4

−
3

−
2

−
1

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance 1

0.5

0.5

1
Residuals vs Leverage

20
7

60

866

32.7 Using Stepwise Regression to suggest a smaller model

mod_4 <- step(mod_sink2)

Start: AIC=-58.35
out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +

x11 + x12 + x13 + x14 + x15

Df Sum of Sq RSS AIC
- x11 1 0.0003 13.310 -60.351
- x15 1 0.0020 13.311 -60.344
- x10 1 0.0689 13.378 -60.043
- x7 1 0.0976 13.407 -59.914
- x14 1 0.1102 13.420 -59.858
- x8 1 0.2693 13.579 -59.151
- x6 1 0.4401 13.749 -58.401
<none> 13.309 -58.353
- x4 1 0.5226 13.832 -58.042
- x13 1 0.5906 13.900 -57.747
- x12 1 0.6186 13.928 -57.627
- x3 1 1.0145 14.324 -55.945
- x5 1 1.1956 14.505 -55.191
- x2 1 1.3063 14.616 -54.735
- x1 1 1.7574 15.067 -52.911
- x9 1 3.4141 16.723 -46.652

Step: AIC=-60.35
out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +

x12 + x13 + x14 + x15

Df Sum of Sq RSS AIC
- x15 1 0.0017 13.311 -62.343
- x10 1 0.0696 13.379 -62.038
- x14 1 0.1119 13.422 -61.849
- x7 1 0.1411 13.451 -61.719
- x8 1 0.2752 13.585 -61.123
- x6 1 0.4398 13.749 -60.401
<none> 13.310 -60.351
- x13 1 0.5905 13.900 -59.747
- x4 1 0.6048 13.915 -59.685
- x12 1 0.6202 13.930 -59.618

867

- x3 1 1.0419 14.352 -57.829
- x5 1 1.2132 14.523 -57.117
- x1 1 1.8672 15.177 -54.474
- x2 1 2.3995 15.709 -52.406
- x9 1 4.5934 17.903 -44.562

Step: AIC=-62.34
out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +

x12 + x13 + x14

Df Sum of Sq RSS AIC
- x10 1 0.0680 13.380 -64.037
- x14 1 0.1102 13.422 -63.849
- x7 1 0.1398 13.451 -63.717
- x8 1 0.2800 13.591 -63.094
<none> 13.311 -62.343
- x6 1 0.4538 13.765 -62.332
- x4 1 0.6066 13.918 -61.669
- x13 1 0.6080 13.919 -61.664
- x12 1 0.6251 13.937 -61.590
- x5 1 1.2142 14.526 -59.106
- x3 1 1.5567 14.868 -57.707
- x1 1 1.8661 15.178 -56.472
- x2 1 2.7077 16.019 -53.234
- x9 1 4.6990 18.010 -46.204

Step: AIC=-64.04
out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x12 +

x13 + x14

Df Sum of Sq RSS AIC
- x14 1 0.0750 13.454 -65.702
- x7 1 0.1158 13.495 -65.520
- x8 1 0.2459 13.625 -64.945
<none> 13.380 -64.037
- x4 1 0.6708 14.050 -63.102
- x12 1 0.7497 14.129 -62.766
- x13 1 0.7575 14.137 -62.733
- x6 1 1.1206 14.500 -61.212
- x5 1 1.1650 14.544 -61.028
- x3 1 1.6471 15.027 -59.071
- x1 1 1.9708 15.350 -57.793
- x2 1 2.8845 16.264 -54.323

868

- x9 1 4.6459 18.025 -48.154

Step: AIC=-65.7
out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x12 +

x13

Df Sum of Sq RSS AIC
- x7 1 0.0736 13.528 -67.375
- x8 1 0.2931 13.748 -66.409
<none> 13.454 -65.702
- x4 1 0.7633 14.218 -64.391
- x5 1 1.3276 14.782 -62.056
- x6 1 1.5095 14.964 -61.322
- x3 1 1.6936 15.148 -60.588
- x1 1 1.9047 15.359 -59.758
- x12 1 2.2433 15.698 -58.450
- x13 1 2.5554 16.010 -57.269
- x2 1 3.2927 16.747 -54.567
- x9 1 4.9296 18.384 -48.972

Step: AIC=-67.37
out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x8 + x9 + x12 + x13

Df Sum of Sq RSS AIC
- x8 1 0.2268 13.755 -68.377
<none> 13.528 -67.375
- x4 1 0.6973 14.225 -66.359
- x5 1 1.2978 14.826 -63.878
- x3 1 1.6230 15.151 -62.576
- x1 1 1.8418 15.370 -61.716
- x6 1 2.1350 15.663 -60.582
- x12 1 2.2355 15.764 -60.199
- x13 1 2.5168 16.045 -59.137
- x2 1 3.3522 16.880 -56.092
- x9 1 6.1854 19.713 -46.783

Step: AIC=-68.38
out_std ~ x1 + x2 + x3 + x4 + x5 + x6 + x9 + x12 + x13

Df Sum of Sq RSS AIC
<none> 13.755 -68.377
- x4 1 0.8670 14.622 -66.710
- x3 1 1.6985 15.453 -63.391

869

- x1 1 1.8777 15.633 -62.700
- x5 1 1.9839 15.739 -62.293
- x12 1 2.4622 16.217 -60.497
- x13 1 2.8317 16.587 -59.145
- x6 1 3.0868 16.842 -58.229
- x2 1 4.0486 17.803 -54.897
- x9 1 6.3106 20.065 -47.721

Here’s a summary of the fitted model after stepwise regression, which suggests a different set
of 9 predictors.

tidy(mod_4, conf.int = TRUE, conf.level = 0.9) |>
select(term, estimate, std.error, conf.low, conf.high, p.value) |>
gt() |> fmt_number(decimals = 3)

term estimate std.error conf.low conf.high p.value
(Intercept) −17.332 5.257 −26.142 −8.522 0.002
x1 −0.034 0.013 −0.057 −0.012 0.012
x2 0.042 0.011 0.024 0.060 0.000
x3 0.055 0.022 0.018 0.092 0.016
x4 0.200 0.113 0.011 0.388 0.082
x5 2.530 0.942 0.951 4.109 0.010
x6 0.373 0.111 0.186 0.559 0.002
x9 −0.073 0.015 −0.099 −0.048 0.000
x12 0.015 0.005 0.007 0.023 0.004
x13 −0.031 0.010 −0.047 −0.015 0.002

glance(mod_4) |> select(r.squared:p.value, df, df.residual, nobs) |>
gt() |> fmt_number(r.squared:p.value, decimals = 3)

r.squared adj.r.squared sigma statistic p.value df df.residual nobs
0.767 0.725 0.524 18.274 0.000 9 50 60

glance(mod_4) |> select(logLik, AIC, BIC, deviance) |> gt() |>
fmt_number(decimals = 2)

logLik AIC BIC deviance
−40.95 103.90 126.93 13.75

How is the collinearity in this model?

870

vif(mod_4)

x1 x2 x3 x4 x5 x6 x9 x12
3.724589 2.666789 2.359891 5.826631 3.483085 1.898922 3.981753 45.943057

x13
42.500579

That looks more troubling to me, at least as compared to mod_3. How about the residual
plots? Do those for mod_4 below look meaningfully different from the ones we built for our
LASSO-inspired model mod_3?

par(mfrow = c(2,2))
plot(mod_4)

871

−2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

4

50
52

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals

4

50
60

−2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
4

50
60

0.0 0.2 0.4 0.6 0.8

−
2

−
1

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

1
0.5

0.5
1

Residuals vs Leverage

8

19

7

872

We now seem to have a point with a pretty substantial Cook’s distance, specifically the point
from row 8 of the data.

pollution |> slice(8) |> select(x1:x12)

A tibble: 1 x 12
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 11 53 68 9.2 2.99 12.1 90.6 47 7.8 48.9 12.3 648

pollution |> slice(8) |> select(x13:x15, y, y_inverse, out_std)

A tibble: 1 x 6
x13 x14 x15 y y_inverse out_std[,1]

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 319 130 47 862. 0.00116 1.30

So what is unusual about Row 8? Well, it has an especially large value of x12 compared to
the rest of the data.

describe(pollution$x12)

pollution$x12
n missing distinct Info Mean Gmd .05 .10
60 0 34 0.998 37.85 52.03 3.95 5.00
.25 .50 .75 .90 .95
7.00 14.50 30.25 56.90 106.95

lowest : 1 3 4 5 6, highest: 88 105 144 311 648

That might be part of the problem, especially since stepwise regression maintains variable x12
whereas our LASSO-inspired model (mod_3) does not.

873

33 NEW!! Bayes and a Linear Model

Almost all of this material is based on

• https://mc-stan.org/rstanarm/articles/continuous.html and
• https://easystats.github.io/bayestestR/articles/bayestestR.html and
• https://easystats.github.io/bayestestR/articles/example1.html

There’s not a lot that is truly original here. That’s a summer project.

33.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(broom.mixed)
library(gt)
library(janitor)
library(mosaic)
library(bayestestR)
library(insight)
library(rstanarm)
library(conflicted)
library(tidyverse)

conflicts_prefer(dplyr::select, dplyr::filter, base::mean, base::range)

theme_set(theme_bw())

33.2 Return to the smalldat Example

Consider the smalldat.csv data we discussed in Chapter 22. The data includes 150 observa-
tions on 6 variables, and one of our goals was to build a model to predict total cholesterol.

874

https://mc-stan.org/rstanarm/articles/continuous.html
https://easystats.github.io/bayestestR/articles/bayestestR.html
https://easystats.github.io/bayestestR/articles/example1.html

smalldat <- read_csv("data/smalldat.csv", show_col_types = FALSE)

Variable Description
subject Subject identification code
smoker 1 = current smoker, 0 = not current smoker
totchol total cholesterol, in mg/dl
age age in years
sex subject’s sex (M or F)
educ subject’s educational attainment (4 levels)

The educ levels are: 1_Low, 2_Middle, 3_High and 4_VHigh, which stands for Very High

33.3 The Distribution of Total Cholesterol

Across the 150 observations in the smalldat data, we have the following summaries of the
distribution of total cholesterol, our outcome.

favstats(~ totchol, data = smalldat)

min Q1 median Q3 max mean sd n missing
150 209.25 237 265.75 332 236.78 38.76809 150 0

33.4 Fitting a Linear Model with lm() for Total Cholesterol

m1 <- lm(totchol ~ age + sex + smoker + factor(educ), data = smalldat)

glance(m1) |> select(r.squared, adj.r.squared, sigma,
AIC, BIC, df, df.residual, nobs) |>

gt() |> fmt_number(r.squared:sigma, decimals = 3)

r.squared adj.r.squared sigma AIC BIC df df.residual nobs
0.078 0.039 37.998 1525.772 1549.857 6 143 150

tidy(m1, conf.int = TRUE, conf.level = 0.95) |>
gt() |> fmt_number(decimals = 3)

875

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 167.153 21.639 7.725 0.000 124.380 209.926
age 1.248 0.379 3.296 0.001 0.500 1.996
sexM 3.153 6.515 0.484 0.629 −9.725 16.030
smoker 3.462 6.526 0.531 0.597 −9.438 16.363
factor(educ)2_Middle 11.330 7.740 1.464 0.145 −3.970 26.631
factor(educ)3_High −2.202 9.426 −0.234 0.816 −20.834 16.431
factor(educ)4_VHigh 11.743 9.925 1.183 0.239 −7.875 31.361

33.5 Fitting a Bayesian Linear Model

Can we fit a model for the same data using a Bayesian approach?

Yes, we can, for instance using the stan_glm() function from the rstanarm package.

set.seed(43211234) # best to set a random seed first

m2 <- stan_glm(totchol ~ age + sex + smoker + factor(educ),
data = smalldat, refresh = 0)

Here the refresh = 0 parameter stops the machine from printing out each of the updates it
does while sampling, which is not generally something I need to look at. Here’s what’s placed
in the m2 object:

m2

stan_glm
family: gaussian [identity]
formula: totchol ~ age + sex + smoker + factor(educ)
observations: 150
predictors: 7

Median MAD_SD
(Intercept) 166.3 21.5
age 1.3 0.4
sexM 3.1 6.5
smoker 3.8 6.3
factor(educ)2_Middle 11.4 7.7
factor(educ)3_High -2.4 9.5
factor(educ)4_VHigh 11.7 9.9

876

Auxiliary parameter(s):
Median MAD_SD

sigma 38.1 2.4

* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

• The first few lines specify the fitting process.
• Next, for each coefficient, we find the median value from the posterior distribution,

and the MAD_SD value, which is an indicator of variation derived from the estimated
posterior distribution of the parameters, and is used as a standard error in what follows.

• Finally, we see the estimated root mean squared error (residual standard deviation)
sigma, again estimated with the median of the sigma values in the posterior distribution.

Using the summary() function provides some additional information about the parameter esti-
mates, but mostly some convergence diagnostics for the Markov Chain Monte Carlo procedure
that the rstanarm package used to build the estimates.

summary(m2)

Model Info:
function: stan_glm
family: gaussian [identity]
formula: totchol ~ age + sex + smoker + factor(educ)
algorithm: sampling
sample: 4000 (posterior sample size)
priors: see help('prior_summary')
observations: 150
predictors: 7

Estimates:
mean sd 10% 50% 90%

(Intercept) 167.0 21.8 139.6 166.3 195.3
age 1.2 0.4 0.8 1.3 1.7
sexM 3.1 6.7 -5.2 3.1 11.5
smoker 3.7 6.4 -4.5 3.8 12.0
factor(educ)2_Middle 11.3 7.9 1.2 11.4 21.3
factor(educ)3_High -2.2 9.6 -14.3 -2.4 10.2
factor(educ)4_VHigh 11.8 10.0 -1.1 11.7 24.8

877

sigma 38.2 2.3 35.4 38.1 41.3

Fit Diagnostics:
mean sd 10% 50% 90%

mean_PPD 236.8 4.4 231.0 236.7 242.4

The mean_ppd is the sample average posterior predictive distribution of the outcome variable (for details see help('summary.stanreg')).

MCMC diagnostics
mcse Rhat n_eff

(Intercept) 0.4 1.0 3208
age 0.0 1.0 3858
sexM 0.1 1.0 4725
smoker 0.1 1.0 3941
factor(educ)2_Middle 0.1 1.0 3535
factor(educ)3_High 0.2 1.0 3947
factor(educ)4_VHigh 0.2 1.0 3980
sigma 0.0 1.0 4159
mean_PPD 0.1 1.0 4324
log-posterior 0.0 1.0 1773

For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).

33.5.1 Extracting the Posterior

Let’s extract the coefficients of our model, using the get_parameters() function from the
insight package:

posteriors <- get_parameters(m2)

head(posteriors)

(Intercept) age sexM smoker factor(educ)2_Middle
1 147.0370 1.4540875 2.104415 15.0169219 19.5402757
2 190.0645 0.9457021 6.863091 -12.4867763 8.4980822
3 136.3315 1.6844863 7.994193 9.1766741 24.8636150
4 169.9511 1.1722918 3.785779 0.5804774 6.5798777
5 141.0931 1.5370710 7.006277 12.6397405 17.0076561
6 153.6542 1.3556864 22.009667 11.4591142 -0.9136777
factor(educ)3_High factor(educ)4_VHigh

1 5.941676 4.100910

878

2 -9.449067 20.836287
3 9.972711 12.456202
4 -7.890619 16.454040
5 7.221881 -9.123619
6 -4.333041 7.401950

In all, we have 4000 observations of this posterior distribution:

nrow(posteriors)

[1] 4000

Let’s visualize the posterior distribution of our parameter for age.

ggplot(posteriors, aes(x = age)) + geom_density(fill = "dodgerblue")

0.00

0.25

0.50

0.75

1.00

0 1 2
age

de
ns

ity

This distribution describes the probability (on the vertical axis) of various age effects (shown
on the horizontal axis). Most of the distribution is between 0.5 and 2, with the peak being
around 1.25.

879

Remember that our m1 fit with lm() had an estimated 𝛽 for age of 1.248, so, as is often the
case, there is not a lot of difference between the two models in terms of the estimates they
make.

Here’s the mean and median of the age effect, across our 4000 simulations from the posterior
distribution.

mean(posteriors$age)

[1] 1.249122

median(posteriors$age)

[1] 1.251402

Again, these are very close to what we obtained from least squares estimation.

Another option is to take the mode (peak) of the posterior distribution, and this is called the
maximum a posteriori (MAP) estimate:

map_estimate(posteriors$age)

MAP Estimate

Parameter | MAP_Estimate

x | 1.26

Adding these estimates to our plot, we can see that they are all on top of each other:

ggplot(posteriors, aes(x = age)) +
geom_density(fill = "dodgerblue") +
The mean in yellow
geom_vline(xintercept = mean(posteriors$age), color = "yellow", linewidth = 1) +
The median in red
geom_vline(xintercept = median(posteriors$age), color = "red", linewidth = 1) +
The MAP in purple
geom_vline(xintercept = as.numeric(map_estimate(posteriors$age)), color = "purple", linewidth = 1)

880

0.00

0.25

0.50

0.75

1.00

0 1 2
age

de
ns

ity

33.5.2 Describing Uncertainty

We might describe the range of estimates for the age effect.

range(posteriors$age)

[1] -0.03663079 2.63023158

Instead of showing the whole range, we usually compute the highest density interval at some
percentage level, for instance a 95% credible interval which shows the range containing the
95% most probable effect values.

hdi(posteriors$age, ci = 0.95)

95% HDI: [0.50, 1.98]

So we conclude that the age effect has a 95% chance of falling within the [0.50, 1.98] range.

881

33.5.3 Visualizing the Coefficients and Credible Intervals

Here is a plot of the coefficients and parameters estimated in m2, along with credible intervals
for their values. The inner interval (shaded region) here uses the default choice of 50%, and
the outer interval (lines) uses a non-default choice of 95% (90% is the default choice here, as it
turns out.) The point estimate shown here is the median of the posterior distribution, which
is the default.

plot(m2, prob = 0.5, prob_outer = 0.95)

sigma

factor(educ)4_VHigh

factor(educ)3_High

factor(educ)2_Middle

smoker

sexM

age

(Intercept)

0 50 100 150 200

33.6 Summarizing the Posterior Distribution

A more detailed set of summaries for the posterior distribution can be obtained from the
describe_posterior() function from the bayestestR package.

A brief tutorial on what is shown here is available at https://easystats.github.io/bayestestR/
articles/bayestestR.html and https://easystats.github.io/bayestestR/articles/example1.html
and this is the source for much of what I’ve built in this little chapter.

describe_posterior(m2) |> print_md(decimals = 3)

882

https://easystats.github.io/bayestestR/articles/bayestestR.html
https://easystats.github.io/bayestestR/articles/bayestestR.html
https://easystats.github.io/bayestestR/articles/example1.html

Table 33.2: Summary of Posterior Distribution

Parameter Median 95% CI pd ROPE
% in

ROPE Rhat ESS
(Intercept) 166.28 [124.14,

209.25]
100% [-3.88, 3.88] 0% 1.000 3208.00

age 1.25 [0.51, 1.99] 99.95% [-3.88, 3.88] 100% 1.000 3858.00
sexM 3.07 [-9.93, 16.46] 68.20% [-3.88, 3.88] 42.32% 1.000 4725.00
smoker 3.75 [-9.12, 16.17] 71.67% [-3.88, 3.88] 41.61% 1.000 3941.00
factor(educ)2_Middle11.39 [-4.42, 26.57] 92.38% [-3.88, 3.88] 14.45% 1.000 3535.00
factor(educ)3_High -2.42 [-20.30, 16.54] 59.70% [-3.88, 3.88] 31.45% 1.000 3947.00
factor(educ)4_VHigh11.70 [-7.24, 31.59] 88.00% [-3.88, 3.88] 16.58% 0.999 3980.00

Let’s walk through all of this output.

33.6.1 Summarizing the Parameter values

For each parameter, we have:

• its estimated median across the posterior distribution
• its 95% credible interval (highest density interval of values within the posterior distribu-

tion)

as we’ve previously discussed.

33.6.2 Probability of Direction (pd) estimates.

The pd estimate helps us understand whether each effect is positive or negative. For instance,
regarding age, we see the proportion of the posterior that is positive, no matter what the
“size” of the effect is, will be as follows.

n_positive <- posteriors |> filter(age > 0) |> nrow()
100 * n_positive / nrow(posteriors)

[1] 99.95

So we see that the effect of age is positive with a probability of 99.5%, and this is called the
probability of direction and abbreviated pd.

We can also calculate this with

883

p_direction(posteriors$age)

Probability of Direction

Parameter | pd

Posterior | 99.95%

As it turns out, this pd index is usually highly correlated with the p-value from our lm() fit for
age. We could almost roughly infer the corresponding p-value with a simple transformation:

pd <- 99.95
onesided_p <- 1 - pd / 100
twosided_p <- onesided_p * 2
twosided_p

[1] 0.001

This implies that the 𝑝-value for age in our lm() fit would be 0.001, and that is, in fact, what
we got when we fit model m1.

The probability that each effect is positive is summarized in the pd column of our
describe_posterior() results.

33.6.3 The ROPE estimates

Testing whether this distribution is different from 0 doesn’t make sense, as 0 is a single value
(and the probability that any distribution is different from a single value is infinite). However,
one way to assess significance could be to define an area around 0, which will consider as
practically equivalent to zero (i.e., absence of, or a negligible, effect). This is called the Region
of Practical Equivalence (ROPE).

The default (semi-objective) way of defining the ROPE is to use the tenth (1/10) of the
standard deviation (SD) of the outcome variable totchol. This is sometimes considered a
“negligible” effect size.

In our case, totchol has a standard deviation of 38.8, so the ROPE range is approximately
(-3.88, 3.88), or somewhat more precisely:

rope_range(m2)

884

[1] -3.876809 3.876809

So we then compute the percentage in ROPE as the percentage of the posterior distribution
that falls within this ROPE range. When most of the posterior distribution does not overlap
with ROPE, we might conclude that the effect is important enough to be noted.

In our case, 100% of the age effects are in the ROPE, so that’s not really evidence of an
important effect.

For smoker, though, only 42% of the effects are in the ROPE, so that’s indicative of a somewhat
more substantial effect, but we’d only get really excited if a much smaller fraction, say 1%,
5% or maybe 10% were in the ROPE.

33.6.4 Convergence Diagnostics

The value of Rhat should, ideally, be 1 for each element of the model, and indicate how well the
MCMC procedure converged. Generally, values of Rhat below 1.05 are good, values between
1.05 and 1.1 are OK, but values above 1.1 are too high. Here, as you can see, we don’t see
any serious problems.

As for ESS, we’d like to see values of 1000 or more to ensure sufficiently stable estimates. Here,
again, we’re OK.

broom.mixed::tidy(m2, conf.int = TRUE, conf.level = 0.95) |>
gt() |> fmt_number(decimals = 3)

term estimate std.error conf.low conf.high
(Intercept) 166.284 21.546 124.137 209.245
age 1.251 0.374 0.511 1.992
sexM 3.074 6.538 −9.929 16.461
smoker 3.753 6.328 −9.119 16.175
factor(educ)2_Middle 11.388 7.705 −4.423 26.572
factor(educ)3_High −2.421 9.495 −20.296 16.541
factor(educ)4_VHigh 11.702 9.889 −7.241 31.592

33.7 Summarizing the Priors Used

From the bayestestR package, we also have the describe_prior() and print_md() functions
to get the following summary of the priors we have assumed. Since we didn’t specify anything
about the priors in fitting model m2, we are looking at the default choices, which are weakly

885

informative priors following Normal distributions. Details on the default prior choices can be
found at https://mc-stan.org/rstanarm/articles/priors.html.

describe_prior(m2) |> print_md(decimals = 3)

Parameter Prior_Distribution Prior_Location Prior_Scale
(Intercept) normal 236.78 96.92
age normal 0.00 10.87
sexM normal 0.00 195.71
smoker normal 0.00 193.21
factor(educ)2_Middle normal 0.00 210.79
factor(educ)3_High normal 0.00 273.05
factor(educ)4_VHigh normal 0.00 284.16

33.8 Graphical Posterior Predictive Checks

For more on these checks, visit https://mc-stan.org/rstanarm/articles/continuous.html#the-
posterior-predictive-distribution-1, for example.

Here’s the first plot which compares the distribution of the observed outcome 𝑦 (totchol) to
several of the simulated data sets 𝑦𝑟𝑒𝑝 from the posterior predictive distribution using the same
predictor values as were used to fit the model.

pp_check(m2, plotfun = "hist", nreps = 5, bins = 25)

886

https://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/articles/continuous.html#the-posterior-predictive-distribution-1
https://mc-stan.org/rstanarm/articles/continuous.html#the-posterior-predictive-distribution-1

100 200 300 100 200 300 100 200 300

y

y rep

The idea is that if the model is a good fit to the data we should be able to generate data
𝑦𝑟𝑒𝑝 from the posterior predictive distribution that looks a lot like the observed data 𝑦. That
is, given 𝑦, the 𝑦𝑟𝑒𝑝 we generate should look plausible. We’d worry a bit if this plot showed
histograms that were wildly different from one another.

Another useful plot (shown below) made using pp_check shows the distribution of a test
quantity 𝑇 (𝑦𝑟𝑒𝑝) compared to 𝑇 (𝑦), the value of the quantity in the observed data. I like
this scatterplot version which allows us to look at where the simulations’ mean and standard
deviation fall compared to what the observed totchol values show us.

pp_check(m2, plotfun = "stat_2d", stat = c("mean", "sd"))

887

30

40

50

220 230 240 250
mean

sd

T = (mean, sd)
T(y)
T(y rep)

We can see that the cloud of simulated means and standard deviations has the observed
statistics near its center, although perhaps the standard deviations are a bit higher than we
might like to see, typically. Ideally, the dot would be right in the center of this cloud of
simulated results.

888

34 NEW!! Bayes and a Logistic Model

Almost all of this material is based on

• https://mc-stan.org/rstanarm/articles/binomial.html and
• https://easystats.github.io/bayestestR/articles/bayestestR.html and
• https://easystats.github.io/bayestestR/articles/example1.html and
• https://easystats.github.io/bayestestR/articles/example2.html#logistic-model

There’s not a lot that is truly original here. That’s a summer project.

34.1 R Setup Used Here

knitr::opts_chunk$set(comment = NA)

library(broom)
library(broom.mixed)
library(gt)
library(janitor)
library(mosaic)
library(bayestestR)
library(insight)
library(rstanarm)
library(conflicted)
library(tidyverse)

conflicts_prefer(dplyr::select, dplyr::filter, base::mean, base::range)

theme_set(theme_bw())

34.2 Return to the smalldat Example

Consider the smalldat.csv data we discussed initially Chapter 22. The data includes 150
observations on 6 variables, and our goal here is to predict smoker given four predictors

889

https://mc-stan.org/rstanarm/articles/binomial.html
https://easystats.github.io/bayestestR/articles/bayestestR.html
https://easystats.github.io/bayestestR/articles/example1.html
https://easystats.github.io/bayestestR/articles/example2.html#logistic-model

(totchol, age, sex and educ.)

smalldat <- read_csv("data/smalldat.csv", show_col_types = FALSE)

Variable Description
subject Subject identification code
smoker 1 = current smoker, 0 = not current smoker
totchol total cholesterol, in mg/dl
age age in years
sex subject’s sex (M or F)
educ subject’s educational attainment (4 levels)

The educ levels are: 1_Low, 2_Middle, 3_High and 4_VHigh, which stands for Very High

34.3 The Distribution of Smoking Status

Across the 150 observations in the smalldat data, we have 74 smokers.

smalldat |> tabyl(smoker) |> adorn_pct_formatting() |> adorn_totals()

smoker n percent
0 76 50.7%
1 74 49.3%

Total 150 -

34.4 Fitting a Logistic Regression Model with glm()

m1 <- glm((smoker == 1) ~ age + sex + totchol + factor(educ),
data = smalldat)

glance(m1) |> select(nobs, df.residual, AIC, BIC, logLik, deviance, null.deviance) |>
gt() |> fmt_number(AIC:null.deviance, decimals = 2)

nobs df.residual AIC BIC logLik deviance null.deviance
150 143 218.30 242.39 −101.15 33.83 37.49

890

raw coefficients

tidy(m1, conf.int = TRUE, conf.level = 0.95) |>
gt() |> fmt_number(decimals = 3)

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 1.071 0.317 3.374 0.001 0.449 1.693
age −0.014 0.005 −2.872 0.005 −0.024 −0.004
sexM 0.131 0.083 1.578 0.117 −0.032 0.293
totchol 0.001 0.001 0.531 0.597 −0.002 0.003
factor(educ)2_Middle −0.089 0.100 −0.894 0.373 −0.284 0.106
factor(educ)3_High −0.073 0.121 −0.604 0.547 −0.309 0.163
factor(educ)4_VHigh −0.242 0.126 −1.919 0.057 −0.489 0.005

with exponentiated coefficients

tidy(m1, exponentiate = TRUE, conf.int = TRUE, conf.level = 0.95) |>
gt() |> fmt_number(decimals = 3)

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 2.918 0.317 3.374 0.001 1.566 5.435
age 0.986 0.005 −2.872 0.005 0.977 0.996
sexM 1.140 0.083 1.578 0.117 0.969 1.340
totchol 1.001 0.001 0.531 0.597 0.998 1.003
factor(educ)2_Middle 0.915 0.100 −0.894 0.373 0.753 1.112
factor(educ)3_High 0.930 0.121 −0.604 0.547 0.734 1.177
factor(educ)4_VHigh 0.785 0.126 −1.919 0.057 0.613 1.005

34.5 Fitting a Bayesian Linear Model

Can we fit a model for the same data using a Bayesian approach?

Yes, we can, for instance using the stan_glm() function from the rstanarm package.

set.seed(43234231) # best to set a random seed first

m2 <- stan_glm((smoker == 1) ~ age + sex + totchol + factor(educ),
data = smalldat, refresh = 0)

891

Here the refresh = 0 parameter stops the machine from printing out each of the updates it
does while sampling, which is not generally something I need to look at. Here’s what’s placed
in the m2 object:

m2

stan_glm
family: gaussian [identity]
formula: (smoker == 1) ~ age + sex + totchol + factor(educ)
observations: 150
predictors: 7

Median MAD_SD
(Intercept) 1.1 0.3
age 0.0 0.0
sexM 0.1 0.1
totchol 0.0 0.0
factor(educ)2_Middle -0.1 0.1
factor(educ)3_High -0.1 0.1
factor(educ)4_VHigh -0.2 0.1

Auxiliary parameter(s):
Median MAD_SD

sigma 0.5 0.0

* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg

• The first few lines specify the fitting process.
• Next, for each coefficient, we find the median value from the posterior distribution,

and the MAD_SD value, which is an indicator of variation derived from the estimated
posterior distribution of the parameters, and is used as a standard error in what follows.

• Finally, we see the estimated root mean squared error (residual standard deviation)
sigma, again estimated with the median of the sigma values in the posterior distribution.

Using the summary() function provides some additional information about the parameter esti-
mates, but mostly some convergence diagnostics for the Markov Chain Monte Carlo procedure
that the rstanarm package used to build the estimates.

summary(m2)

892

Model Info:
function: stan_glm
family: gaussian [identity]
formula: (smoker == 1) ~ age + sex + totchol + factor(educ)
algorithm: sampling
sample: 4000 (posterior sample size)
priors: see help('prior_summary')
observations: 150
predictors: 7

Estimates:
mean sd 10% 50% 90%

(Intercept) 1.1 0.3 0.7 1.1 1.5
age 0.0 0.0 0.0 0.0 0.0
sexM 0.1 0.1 0.0 0.1 0.2
totchol 0.0 0.0 0.0 0.0 0.0
factor(educ)2_Middle -0.1 0.1 -0.2 -0.1 0.0
factor(educ)3_High -0.1 0.1 -0.2 -0.1 0.1
factor(educ)4_VHigh -0.2 0.1 -0.4 -0.2 -0.1
sigma 0.5 0.0 0.5 0.5 0.5

Fit Diagnostics:
mean sd 10% 50% 90%

mean_PPD 0.5 0.1 0.4 0.5 0.6

The mean_ppd is the sample average posterior predictive distribution of the outcome variable (for details see help('summary.stanreg')).

MCMC diagnostics
mcse Rhat n_eff

(Intercept) 0.0 1.0 4790
age 0.0 1.0 2700
sexM 0.0 1.0 3922
totchol 0.0 1.0 3983
factor(educ)2_Middle 0.0 1.0 2847
factor(educ)3_High 0.0 1.0 3724
factor(educ)4_VHigh 0.0 1.0 3550
sigma 0.0 1.0 4324
mean_PPD 0.0 1.0 4262
log-posterior 0.0 1.0 1996

For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).

893

34.5.1 Extracting the Posterior

Let’s extract the coefficients of our model, using the get_parameters() function from the
insight package:

posteriors <- get_parameters(m2)

head(posteriors)

(Intercept) age sexM totchol factor(educ)2_Middle
1 1.0395289 -0.004619993 0.25120820 -0.0012609246 -0.07421785
2 1.3897359 -0.015504179 0.05308297 -0.0005806271 -0.05711548
3 0.6960912 -0.012991489 0.12013110 0.0015857650 0.08652352
4 0.3501038 -0.011626531 0.23179922 0.0024659073 0.12610455
5 1.5843855 -0.009405856 0.05310819 -0.0025427990 -0.05049668
6 1.0403138 -0.006376498 0.04919309 -0.0013779428 0.08575331
factor(educ)3_High factor(educ)4_VHigh

1 -0.247278983 -0.34931693
2 -0.027945532 -0.04715445
3 0.098936630 -0.09453129
4 0.055186994 -0.08377399
5 0.003482159 -0.11669724
6 0.123287117 -0.06056735

In all, we have 4000 observations of this posterior distribution:

nrow(posteriors)

[1] 4000

Let’s visualize the posterior distribution of our parameter for age.

ggplot(posteriors, aes(x = age)) + geom_density(fill = "dodgerblue")

894

0

20

40

60

80

−0.03 −0.02 −0.01 0.00
age

de
ns

ity

This distribution describes the probability (on the vertical axis) of various age effects (shown
on the horizontal axis). Most of the distribution is between -0.025 and -0.005, with the peak
being around -0.15.

Remember that our m1 fit with glm() had an estimated 𝛽 for age of -0.014, so, as is often the
case, there is not a lot of difference between the two models in terms of the estimates they
make.

Here’s the mean and median of the age effect, across our 4000 simulations from the posterior
distribution.

mean(posteriors$age)

[1] -0.01389409

median(posteriors$age)

[1] -0.01391701

And here are the results after exponentiation, so that the estimates describe odds ratios:

895

mean(exp(posteriors$age))

[1] 0.9862135

median(exp(posteriors$age))

[1] 0.9861794

Again, these are very close to what we obtained from least squares estimation.

Another option is to take the mode (peak) of the posterior distribution, and this is called the
maximum a posteriori (MAP) estimate:

map_estimate(posteriors$age)

MAP Estimate

Parameter | MAP_Estimate

x | -0.01

map_estimate(exp(posteriors$age)) # on odds ratio scale

MAP Estimate

Parameter | MAP_Estimate

x | 0.99

Adding these estimates to our plot, we can see that they are quite close:

ggplot(posteriors, aes(x = age)) +
geom_density(fill = "dodgerblue") +
The mean in yellow
geom_vline(xintercept = mean(posteriors$age), color = "yellow", linewidth = 1) +
The median in red
geom_vline(xintercept = median(posteriors$age), color = "red", linewidth = 1) +

896

The MAP in purple
geom_vline(xintercept = as.numeric(map_estimate(posteriors$age)), color = "purple", linewidth = 1)

0

20

40

60

80

−0.03 −0.02 −0.01 0.00
age

de
ns

ity

34.5.2 Describing Uncertainty

We might describe the range of estimates for the age effect.

range(posteriors$age)

[1] -0.03166005 0.00409895

Instead of showing the whole range, we usually compute the highest density interval at some
percentage level, for instance a 95% credible interval which shows the range containing the
95% most probable effect values.

hdi(posteriors$age, ci = 0.95)

95% HDI: [-0.02, 0.00]

897

So we conclude that the age effect has a 95% chance of falling within the [-0.02, 0.00] range.
We can also exponentiate here, so as to provide the result in terms of an odds ratio.

hdi(exp(posteriors$age), ci = 0.95)

95% HDI: [0.98, 1.00]

34.5.3 Visualizing the Coefficients and Credible Intervals

Here is a plot of the coefficients and parameters estimated in m2, along with credible intervals
for their values. The inner interval (shaded region) here uses the default choice of 50%, and
the outer interval (lines) uses a non-default choice of 95% (90% is the default choice here, as it
turns out.) The point estimate shown here is the median of the posterior distribution, which
is the default.

plot(m2, prob = 0.5, prob_outer = 0.95)

sigma

factor(educ)4_VHigh

factor(educ)3_High

factor(educ)2_Middle

totchol

sexM

age

(Intercept)

0 1

898

34.6 Summarizing the Posterior Distribution

A more detailed set of summaries for the posterior distribution can be obtained from the
describe_posterior() function from the bayestestR package.

A brief tutorial on what is shown here is available at https://easystats.github.io/bayestestR/
articles/bayestestR.html and https://easystats.github.io/bayestestR/articles/example1.html
and this is the source for much of what I’ve built in this little chapter.

describe_posterior(posteriors, test = c("pd", "ROPE")) |> print_md(decimals = 3)

Table 34.2: Summary of Posterior Distribution

Parameter Median 95% CI pd ROPE
% in

ROPE
(Intercept) 1.07 [0.43, 1.70] 100% [-0.10, 0.10] 0%
age -0.01 [-0.02, 0.00] 99.85% [-0.10, 0.10] 100%
sexM 0.13 [-0.04, 0.30] 94.15% [-0.10, 0.10] 35.08%
totchol 5.36e-04 [0.00, 0.00] 69.92% [-0.10, 0.10] 100%
factor(educ)2_Middle -0.08 [-0.29, 0.11] 79.77% [-0.10, 0.10] 54.87%
factor(educ)3_High -0.07 [-0.30, 0.17] 72.32% [-0.10, 0.10] 53.47%
factor(educ)4_VHigh -0.24 [-0.49, 0.01] 96.88% [-0.10, 0.10] 11.82%

Let’s walk through all of this output.

34.6.1 Summarizing the Parameter values

For each parameter, we have:

• its estimated median across the posterior distribution
• its 95% credible interval (highest density interval of values within the posterior distribu-

tion)

as we’ve previously discussed.

34.6.2 Probability of Direction (pd) estimates.

The pd estimate helps us understand whether each effect is positive or negative. For instance,
regarding age, we see the proportion of the posterior that is in the direction of the median
effect (negative), no matter what the “size” of the effect is, will be as follows.

899

https://easystats.github.io/bayestestR/articles/bayestestR.html
https://easystats.github.io/bayestestR/articles/bayestestR.html
https://easystats.github.io/bayestestR/articles/example1.html

n_negative <- posteriors |> filter(age < 0) |> nrow()
100 * n_negative / nrow(posteriors)

[1] 99.85

So we see that the effect of age is negative with a probability of 99.85%, and this is called the
probability of direction and abbreviated pd.

We can also calculate this with

p_direction(posteriors$age)

Probability of Direction

Parameter | pd

Posterior | 99.85%

34.6.3 The ROPE estimates

Testing whether this distribution is different from 0 doesn’t make sense, as 0 is a single value
(and the probability that any distribution is different from a single value is infinite). However,
one way to assess significance could be to define an area around 0, which will consider as
practically equivalent to zero (i.e., absence of, or a negligible, effect). This is called the Region
of Practical Equivalence (ROPE).

The default (semi-objective) way of defining the ROPE is to use (-0.1, 0.1) in this context.
This is sometimes considered a “negligible” effect size.

rope_range(posteriors)

[1] -0.1 0.1

So we then compute the percentage in ROPE as the percentage of the posterior distribution
that falls within this ROPE range. When most of the posterior distribution does not overlap
with ROPE, we might conclude that the effect is important enough to be noted.

In our case, 100% of the age effects are in the ROPE, so that’s not really evidence of an
important effect.

900

For sex, though, only 35% of the effects are in the ROPE, so that’s indicative of a somewhat
more substantial effect, but we’d only get really excited if a much smaller fraction, say 1%,
5% or maybe 10% were in the ROPE.

34.6.4 Summarizing the Coefficients as Odds Ratios

broom.mixed::tidy(m2, exponentiate = TRUE,
conf.int = TRUE, conf.level = 0.95) |>

gt() |> fmt_number(decimals = 3)

term estimate std.error conf.low conf.high
(Intercept) 2.912 0.949 1.531 5.492
age 0.986 0.005 0.977 0.996
sexM 1.141 0.096 0.965 1.348
totchol 1.001 0.001 0.998 1.003
factor(educ)2_Middle 0.920 0.093 0.751 1.121
factor(educ)3_High 0.931 0.111 0.738 1.188
factor(educ)4_VHigh 0.790 0.101 0.616 1.013

34.7 Summarizing the Priors Used

From the bayestestR package, we also have the describe_prior() and print_md() functions
to get the following summary of the priors we have assumed. Since we didn’t specify anything
about the priors in fitting model m2, we are looking at the default choices, which are weakly
informative priors following Normal distributions. Details on the default prior choices can be
found at https://mc-stan.org/rstanarm/articles/priors.html.

describe_prior(m2) |> print_md(decimals = 3)

Parameter Prior_Distribution Prior_Location Prior_Scale
(Intercept) normal 0.49 1.25
age normal 0.00 0.14
sexM normal 0.00 2.53
totchol normal 0.00 0.03
factor(educ)2_Middle normal 0.00 2.73
factor(educ)3_High normal 0.00 3.53
factor(educ)4_VHigh normal 0.00 3.68

901

https://mc-stan.org/rstanarm/articles/priors.html

34.8 Graphical Posterior Predictive Checks

For more on these checks, visit https://mc-stan.org/rstanarm/articles/continuous.html#the-
posterior-predictive-distribution-1, for example.

Here’s the first plot which compares the density function of the observed outcome 𝑦 (totchol)
to several of the simulated data sets 𝑦𝑟𝑒𝑝 from the posterior predictive distribution using the
same predictor values as were used to fit the model.

pp_check(m2, nreps = 5)

−1 0 1 2

y

y rep

The idea is that if the model is a good fit to the data we should be able to generate data
𝑦𝑟𝑒𝑝 from the posterior predictive distribution that looks a lot like the observed data 𝑦. That
is, given 𝑦, the 𝑦𝑟𝑒𝑝 we generate should look plausible. We’d worry a bit if this plot showed
histograms that were wildly different from one another.

Another useful plot (shown below) made using pp_check shows the distribution of a test
quantity 𝑇 (𝑦𝑟𝑒𝑝) compared to 𝑇 (𝑦), the value of the quantity in the observed data. I like
this scatterplot version which allows us to look at where the simulations’ mean and standard
deviation fall compared to what the observed totchol values show us.

pp_check(m2, plotfun = "stat_2d", stat = c("mean", "sd"))

902

https://mc-stan.org/rstanarm/articles/continuous.html#the-posterior-predictive-distribution-1
https://mc-stan.org/rstanarm/articles/continuous.html#the-posterior-predictive-distribution-1

0.4

0.5

0.6

0.7

0.3 0.4 0.5 0.6 0.7
mean

sd

T = (mean, sd)
T(y)
T(y rep)

We can see that the cloud of simulated means and standard deviations has the observed
statistics near its center, although perhaps the standard deviations are a bit higher than we
might like to see, typically. Ideally, the dot would be right in the center of this cloud of
simulated results.

903

References

904

	Introduction
	This is work in progress
	R Setup
	General Theme for ggplot work

	Building the nh432 example
	R Setup
	Selecting NHANES Variables
	Demographics and Sample Weights
	Oral Health
	Hospital Utilization & Access to Care
	Body Measures
	Blood Pressure
	Complete Blood Count
	C-Reactive Protein
	Alcohol Use
	Dermatology
	Depression Screener
	Diet Behavior
	Food Security
	Health Insurance
	Medical Conditions
	Oral Health
	Physical Activity
	Reproductive Health
	Sleep Disorders
	Smoking Cigarettes
	Secondhand Smoke
	Weight History

	Filtering for Inclusion
	Merging the Data
	Merging Two Data Frames at a Time
	Merging Many Data Frames Together

	The ``Raw'' Data
	Cleaning Tasks
	Our identifying variable
	``Refused'' & ``Don't Know''
	Variables without Variation
	Quantitative Variables
	Renaming the Quantities
	Sampling Weights

	Binary Variables
	Sex (RIAGENDR)
	Yes/No variables
	Renaming Binary Variables

	Create PHQ-9 Scores
	Forming the PHQ-9 Score
	Distribution of PHQ-9 Score
	Fixing the DPQ100 variable

	Multi-Categorical Variables
	Creating RACEETH from RIDRETH3
	Creating EDUC from DMDEDUC2
	Creating DENTAL from OHAREC
	Creating SROH from HUQ010
	Creating SUNSCR from DEQ034D
	Creating DEPRDIFF from DPQ100
	Creating DIETQUAL from DBQ700
	Creating FOODSEC from FSDAD
	Creating SNORE from SLQ030
	Creating WTGOAL from WHQ040

	Dropping Variables
	Resorting Variables
	nh432 analytic tibble
	Saving the tibble as nh432.Rds

	Codebook for nh432
	R Setup
	Data Load

	Quantitative Variables in nh432
	Two-Category (1/0) Variables in nh432
	Factor Variables in nh432
	Detailed Numerical Description for nh432
	Missingness in nh432

	431 Review: Comparing Means
	R Setup
	Data Ingest
	Testing or Summarizing Normality?
	Comparing Two Means using Paired Samples
	Comparing PULSE1 to PULSE2
	Distribution of Paired Differences
	Using t.test to obtain a 90% CI for the mean pulse difference
	Using linear regression to obtain a 90% CI for the mean pulse difference
	Using the bootstrap to obtain a 90% CI for the mean pulse difference
	Wilcoxon signed rank approach to comparing pulse rates

	Comparing WEIGHT to ESTWT
	Plotting The Paired Difference in Weight
	t.test 90% CI for the mean weight difference
	Linear Regression: 90% CI for mean weight difference
	Bootstrap 90% CI for the mean weight difference
	Wilcoxon signed rank approach to comparing weight estimates

	Comparing Two Means using Independent Samples
	Comparing White Blood Cell Count by Hospitalization Status
	Exploring the Data
	Pooled t test (assumes equal variances) via linear model
	Pooled t test (assumes equal variances) via t.test
	Welch t test (doesn't assume equal variance) via t.test
	Bootstrap comparison of WBC by HOSPITAL
	Transforming the WBC Counts

	Comparing Waist Circumference by Sleep Trouble
	Summarizing the Data
	Pooled t test (assumes equal variances) via linear model
	Pooled t test (assumes equal variances) via t.test
	Welch t test (doesn't assume equal variance) via t.test
	Bootstrap comparison of WAIST by SLPTROUB
	Wilcoxon-Mann-Whitney Rank Sum Approach

	Comparing 3 Means using Independent Samples: Systolic BP by Weight Goal
	Summarizing SBP by WTGOAL
	Fitting an ANOVA Model
	Tukey HSD Pairwise Comparisons
	Holm pairwise comparisons of means

	Comparing 4 Means using Independent Samples: Weight by Food Security
	Summarizing the Data
	Fitting the ANOVA model
	Tukey HSD Pairwise Comparisons
	Kruskal-Wallis Test
	Dunn Test for Pairwise Comparisons after Kruskal-Wallis Test

	431 Review: Comparing Rates
	R Setup
	Data Load

	2x2 Contingency Table: DR_LOSE and NOWLOSE
	Standard Epidemiological Format
	Obtaining Key Summaries with twoby2()

	2x2 Table: SEDATE category and NOW_EXER
	Creating a Low and High Group on SEDATE
	Two-by-Two Table Summaries
	Flipping Levels

	A Larger (5x3) 2-Way Table: DIETQUAL and WTGOAL in Lighter Men
	What would independence look like?
	Back to the DIETQUAL and WTGOAL table

	PHQ9 Category and Race/Ethnicity
	The Cochran conditions
	Collapsing Categories
	Pearson \chi^2 Analysis
	Mosaic Plot
	Examining the Fit

	431 Review: Fitting Linear Models
	R Setup
	Data Load

	Modeling Weekend Sleep Hours
	Should we transform our outcome?
	Scatterplot Matrix
	Collinearity?
	Fitting and Displaying Model m1
	Using broom functions on Model m1
	Residual Plots for Model m1
	Fitting and Displaying Model m2
	Using broom functions on m2
	Residual Plots for Model m2
	Conclusions

	Modeling High-Sensitivity C-Reactive Protein
	Partitioning the Data
	Transforming the Outcome?
	Scatterplot Matrix and Collinearity
	Fit Model m3
	Residual Plots for m3
	Fit Model m4
	Residual Plots for m4
	In-Sample Fit Quality Comparison (m3 vs. m4)
	Testing the models in new data
	Conclusions

	BRFSS SMART Data
	R Setup Used Here
	Key resources
	Ingesting the Raw Data
	Ingesting from our CSV file
	What does the raw data look like?
	Cleaning the BRFSS Data
	Identifying Information
	Survey Method
	Health Status (1 item)
	Healthy Days - Health-Related Quality of Life (3 items)
	Health Care Access (4 items)
	Blood Pressure (2 measures)
	Cholesterol (3 items)
	Chronic Health Conditions (14 items)
	Arthritis Burden (4 items)
	Demographics (25 items)
	Tobacco Use (2 items)
	E-Cigarettes (2 items)
	Alcohol Consumption (6 items)
	Fruits and Vegetables (8 items)
	Exercise and Physical Activity (8 items)
	Seatbelt Use (1 item)
	Immunization (3 items)
	HIV/AIDS (2 items)

	Imputing Age and Income as Quantitative from Thin Air
	age_imp: Imputing Age Data
	inc_imp: Imputing Income Data

	Clean Data in the State of Ohio
	Clean Cleveland-Elyria Data
	Cleveland - Elyria Data

	Dealing with Missingness: Single Imputation
	R Setup Used Here
	Data Load

	Selecting Some Variables from the smart_cle data
	smart_cle1: Seeing our Missing Data
	Plotting Missingness

	Missing-data mechanisms
	Options for Dealing with Missingness
	Complete Case (and Available Case) analyses
	Single Imputation
	Multiple Imputation
	Approach 1: Building a Complete Case Analysis: smart_cle1_cc
	Approach 2: Single Imputation to create smart_cle1_sh
	What Type of Missingness Do We Have?
	Single imputation into smart_cle1_sh
	Imputing Binary Categorical Variables
	Imputing Quantitative Variables
	Imputation Results
	Imputing Multi-Categorical Variables
	Saving the new tibbles

	Summarizing smart_cle1
	R Setup Used Here
	Data Load

	What's in these data?
	General Approaches to Obtaining Numeric Summaries
	summary for a data frame
	The inspect function from the mosaic package
	The describe function in Hmisc

	Counting as exploratory data analysis
	Did genhealth vary by smoking status?
	What's the distribution of physhealth?
	What's the distribution of bmi?
	How many of the respondents have a BMI below 30?
	How many of the respondents with a BMI < 30 are highly active?
	Is obesity associated with smoking history?
	Comparing drinks_wk summaries by obesity status

	Can bmi predict physhealth?
	Fitting a Simple Regression Model
	Model Summary for a Simple (One-Predictor) Regression
	Using the broom package
	How does the model do? (Residuals vs. Fitted Values)

	Analysis of Variance with SMART
	R Setup Used Here
	Data Load

	A One-Factor Analysis of Variance
	Can activity be used to predict bmi?
	Should we transform bmi?
	Building the ANOVA model
	The ANOVA table
	The Model Coefficients
	Using tidy to explore the coefficients
	Using glance to summarize the model's fit
	Using augment to make predictions

	A Two-Factor ANOVA (without Interaction)
	Model Coefficients

	A Two-Factor ANOVA (with Interaction)
	Model Coefficients
	Is the interaction term necessary?

	Two-Way ANOVA and Interaction
	R Setup Used Here
	Data Load

	The bonding data: A Designed Dental Experiment
	A One-Factor Analysis of Variance
	Look at the Data!
	Table of Summary Statistics

	A Two-Way ANOVA: Looking at Two Factors
	A Means Plot (with standard deviations) to check for interaction
	Summarizing the data after grouping by resin and light

	Fitting the Two-Way ANOVA model with Interaction
	The ANOVA table for our model
	Is the interaction important?
	Interpreting the Interaction

	Comparing Individual Combinations of resin and light
	The bonding model without Interaction
	cortisol: A Hypothetical Clinical Trial
	Codebook and Raw Data for cortisol

	Creating a factor combining sex and waist
	A Means Plot for the cortisol trial (with standard errors)
	A Two-Way ANOVA model for cortisol with Interaction
	Notes on this Question

	A Two-Way ANOVA model for cortisol without Interaction
	The Graph
	The ANOVA Model
	The Regression Summary
	Tukey HSD Comparisons

	Analysis of Covariance
	R Setup Used Here
	Data Load

	An Emphysema Study
	Codebook

	Does sex affect the mean change in theophylline?
	Is there an association between age and sex in this study?
	Adding a quantitative covariate, age, to the model
	The ANCOVA model
	The ANCOVA Table

	Rerunning the ANCOVA model after simple imputation
	Looking at a factor-covariate interaction
	Centering the Covariate to Facilitate ANCOVA Interpretation

	Analysis of Covariance with the SMART data
	R Setup Used Here
	Data Load

	A New Small Study: Predicting BMI
	Does smoke100 predict bmi well?

	mod1: A simple t-test model
	mod2: Adding another predictor (two-way ANOVA without interaction)
	mod3: Adding the interaction term (Two-way ANOVA with interaction)
	mod4: Using smoke100 and physhealth in a model for bmi
	Making Predictions with a Linear Regression Model
	Fitting an Individual Prediction and 95% Prediction Interval
	Confidence Interval for an Average Prediction
	Fitting Multiple Individual Predictions to New Data

	Centering the model
	Plot of Model 4 on Centered physhealth: mod4_c

	Rescaling an input by subtracting the mean and dividing by 2 standard deviations
	Refitting model mod4 to the rescaled data
	Interpreting the model on rescaled data
	Plot of model on rescaled data

	mod5: What if we add more variables?
	mod6: Would adding self-reported health help?
	Key Regression Assumptions for Building Effective Prediction Models
	Checking Assumptions in model mod6

	Adding Non-linear Terms to a Linear Regression
	R Setup Used Here
	Data Load

	The pollution data
	Fitting a straight line model to predict y from x2
	Quadratic polynomial model to predict y using x2
	The raw quadratic model
	Raw quadratic fit after centering x2

	Orthogonal Polynomials
	Fit a cubic polynomial to predict y from x3
	Fitting a restricted cubic spline in a linear regression
	``Spending'' Degrees of Freedom
	Overfitting and Limits on the # of Predictors
	The Importance of Collinearity
	Collinearity in an Explanatory Model
	Collinearity in a Prediction Model

	Spending DF on Non-Linearity: The Spearman Plot
	Fitting a Big Model to the pollution data
	Limitations of lm for fitting complex linear regression models

	Using ols to fit linear models
	R Setup Used Here
	Data Load

	Fitting a model with ols
	The Model Likelihood Ratio Test
	The g statistic

	ANOVA for an ols model
	Effect Estimates
	Simultaneous Confidence Intervals

	The Predict function for an ols model
	Checking Influence via dfbeta
	Using the residuals command for dfbetas
	Using the residuals command for other summaries

	Model Validation and Correcting for Optimism
	Building a Nomogram for Our Model

	A Model for Prostate Cancer
	R Setup Used Here
	Data Load

	Data Load and Background
	Code Book
	Additions for Later Use
	Fitting and Evaluating a Two-Predictor Model
	Using tidy
	Interpretation

	Exploring Model prost_A
	summary for Model prost_A
	Adjusted R^2
	Coefficient Confidence Intervals
	ANOVA for Model prost_A
	Residuals, Fitted Values and Standard Errors with augment
	Making Predictions with prost_A

	Plotting Model prost_A
	Residual Plots of prost_A

	Validating our Prostate Cancer Model
	R Setup Used Here
	Data Load

	Data Cleaning
	Fitting the prostA model
	Split Validation of Model prost_A
	V-fold Cross-Validation Approach for model prostA

	Multiple Imputation and Linear Regression
	R Setup Used Here
	Data Load
	Developing a smart_16 data set
	Any missing values?

	Obtaining a Simple Imputation with mice
	Linear Regression: Considering a Transformation of the Outcome
	Linear Regression: Considering Non-Linearity in the Predictors
	``Main Effects'' Linear Regression with lm on the Complete Cases
	Quality of Fit Statistics
	Interpreting Effect Sizes
	Making Predictions with the Model

	``Augmented'' Linear Regression with lm on the Complete Cases
	Quality of Fit Statistics
	ANOVA assessing the impact of the non-linear terms
	Interpreting Effect Sizes
	Making Predictions with the Model

	Using mice to perform Multiple Imputation
	Running the Linear Regression in lm with Multiple Imputation
	Fit the Multiple Imputation Model with aregImpute
	Fit Linear Regression using ols and fit.mult.impute
	Summaries and Coefficients
	Effect Sizes
	Making Predictions with this Model
	Nomogram
	Validating Summary Statistics

	Building Table 1
	R Setup Used Here
	Data Load
	Two examples from the New England Journal of Medicine
	A simple Table 1
	A group comparison

	The MR CLEAN trial
	Simulated fakestroke data
	Building Table 1 for fakestroke: Attempt 1
	Some of this is very useful, and other parts need to be fixed.
	fakestroke Cleaning Up Categorical Variables

	fakestroke Table 1: Attempt 2
	What summaries should we show?

	Obtaining a more detailed Summary
	Exporting the Completed Table 1 from R to Excel or Word
	Approach A: Save and open in Excel
	Approach B: Produce the Table so you can cut and paste it

	A Controlled Biological Experiment - The Blood-Brain Barrier
	The bloodbrain.csv file
	A Table 1 for bloodbrain
	Generate final Table 1 for bloodbrain
	A More Finished Version (after Cleanup in Word)

	Logistic Regression: The Foundations
	R Setup Used Here
	A First Attempt: A Linear Probability Model
	Logistic Regression
	The Logistic Regression Model
	The Link Function
	The logit or log odds
	Interpreting the Coefficients of a Logistic Regression Model
	The Logistic Regression has non-constant variance
	Fitting a Logistic Regression Model to our Simulated Data
	Plotting the Logistic Regression Model

	Logistic Regression with glm
	R Setup Used Here
	Data Load

	The resect data
	Running A Simple Logistic Regression Model
	Logistic Regression Can Be Harder than Linear Regression

	Logistic Regression using glm
	Interpreting the Coefficients of a Logistic Regression Model
	Using predict to describe the model's fits
	Odds Ratio interpretation of Coefficients
	Interpreting the rest of the model output from glm
	Deviance and Comparing Our Model to the Null Model
	Using glance with a logistic regression model

	Interpreting the Model Summary
	Wald Z tests for Coefficients in a Logistic Regression
	Confidence Intervals for the Coefficients
	Deviance Residuals
	Dispersion Parameter
	Fisher Scoring iterations

	Plotting a Simple Logistic Regression Model
	Using augment to capture the fitted probabilities
	Plotting a Logistic Regression Model's Fitted Values
	Plotting a Simple Logistic Model using binomial_smooth

	How well does Model A classify subjects?
	The Confusion Matrix
	Using the confusionMatrix tool from the caret package
	Receiver Operating Characteristic Curve Analysis
	Interpreting the Area under the ROC curve

	The ROC Plot for res_modA
	Another way to plot the ROC Curve

	Assessing Residual Plots from Model A
	Model B: A ``Kitchen Sink'' Logistic Regression Model
	Comparing Model A to Model B
	Interpreting Model B

	Plotting Model B
	Using augment to capture the fitted probabilities
	Plotting Model B Fits by Observed Mortality
	Confusion Matrix for Model B
	The ROC curve for Model B
	Residuals, Leverage and Influence

	Logistic Regression with lrm
	R Setup Used Here
	Data Load

	Logistic Regression using lrm
	Interpreting Nagelkerke R^2
	Interpreting the C statistic and Plotting the ROC Curve
	The C statistic and Somers' D
	Validating the Logistic Regression Model Summary Statistics
	Plotting the Summary of the lrm approach
	Plot In-Sample Predictions for Model C
	ANOVA from the lrm approach
	Are any points particularly influential?
	A Nomogram for Model C

	Model D: An Augmented Kitchen Sink Model
	Spearman \rho^2 Plot
	Fitting Model D using lrm
	Assessing Model D using lrm's tools
	ANOVA and Wald Tests for Model D
	Effect Sizes in Model D
	Plot In-Sample Predictions for Model D
	Plotting the ROC curve for Model D
	Validation of Model D summaries

	Model E: Fitting a Reduced Model in light of Model D
	A Plot comparing the two intubation groups
	Nomogram for Model E
	Effect Sizes from Model E
	Plot In-Sample Predictions for Model E
	ANOVA for Model E
	Validation of Model E
	Do any points seem particularly influential?
	Fitting Model E using glm to get plots about influence

	Concordance: Comparing Model C, D and E's predictions
	Conclusions

	Estimating and Interpreting Effect Sizes
	R Setup Used Here
	Data Load

	Available Variables
	Effect Interpretation in A Linear Regression Model
	Making a prediction and building a prediction interval with an lm fit
	What if we include a Spline or an Interaction?
	Making a prediction and building a prediction interval with an ols fit
	Effect Estimates in A Logistic Regression fit with glm
	Estimates in The Same Logistic Regression fit with lrm
	Estimates in A New Logistic Regression fit with lrm

	Colorectal Cancer Screening and Some Special Cases
	R Setup Used Here
	Data Load
	Logistic Regression for Aggregated Data
	Colorectal Cancer Screening Data
	Fitting a Logistic Regression Model to Proportion Data
	Fitting a Logistic Regression Model to Counts of Successes and Failures
	How does one address this problem in rms?

	Probit Regression
	Colorectal Cancer Screening Data on Individuals
	A logistic regression model
	Predicting status for Harry and Sally
	A probit regression model
	Interpreting the Probit Model's Coefficients
	What about Harry and Sally?

	Modeling a Count Outcome
	R Setup Used Here
	Data Load
	Creating A Useful Analytic Subset, ohioA
	Is age group associated with physhealth?

	Exploratory Data Analysis (in the 18-49 group)
	Build a subset of those ages 18-49
	Centering bmi
	Distribution of the Outcome
	Scatterplot Matrix
	Summary of the final subset of data

	Modeling Strategies Explored Here
	What Will We Demonstrate?
	Extra Data File for Harry and Sally

	The OLS Approach
	Interpreting the Coefficients
	Store fitted values and residuals
	Specify the R^2 and log(likelihood) values
	Check model assumptions
	Predictions for Harry and Sally
	Notes

	OLS model on log(physhealth + 1) days
	Interpreting the Coefficients
	Store fitted values and residuals
	Specify the R^2 and log(likelihood) values
	Getting R^2 on the scale of physhealth
	Check model assumptions
	Predictions for Harry and Sally

	A Poisson Regression Model
	The Fitted Equation
	Interpreting the Coefficients
	Testing the Predictors
	Correcting for Overdispersion with coeftest/coefci
	Store fitted values and residuals
	Rootogram: see the fit of a count regression model
	Specify the R^2 and log(likelihood) values
	Check model assumptions
	Using glm.diag.plots from the boot package
	Predictions for Harry and Sally

	Overdispersion in a Poisson Model
	Testing for Overdispersion?

	Fitting the Quasi-Poisson Model
	The Fitted Equation
	Interpreting the Coefficients
	Testing the Predictors
	Store fitted values and residuals
	Specify the R^2 and log(likelihood) values
	Check model assumptions
	Predictions for Harry and Sally

	Poisson and Quasi-Poisson models using Glm from the rms package
	Refitting the original Poisson regression with Glm
	Refitting the overdispersed Poisson regression with Glm
	ANOVA on a Glm fit
	ggplots from Glm fit
	Summary of a Glm fit
	Plot of the Summary
	Nomogram of a Glm fit

	Negative Binomial Models for Count Data
	R Setup Used Here
	Data Load and Subset Creation
	Setup for this Chapter
	What Will We Demonstrate?
	Extra Data File for Harry and Sally
	Our Poisson Model (for comparison)

	Negative Binomial Model
	The Fitted Equation
	Comparison with the (raw) Poisson model
	Interpreting the Coefficients
	Interpretation of Coefficients in terms of IRRs
	Testing the Predictors
	Store fitted values and residuals
	Rootogram for Negative Binomial model
	Simulating what the Negative Binomial model predicts
	Specify the R^2 and log(likelihood) values
	Check model assumptions
	Predictions for Harry and Sally

	The Problem: Too Few Zeros

	Zero-Inflated Models for Count Data
	R Setup Used Here
	Data Load and Subset Creation
	Setup for this Chapter
	What Will We Demonstrate?
	Extra Data File for Harry and Sally
	Previous Models (for comparison)

	The Zero-Inflated Poisson Regression Model
	Comparison to a null model
	Comparison to a Poisson Model with the Vuong test
	The Fitted Equation
	Interpreting the Coefficients
	Testing the Predictors
	Store fitted values and residuals
	Modeled Number of Zero Counts
	Rootogram for ZIP model
	Specify the R^2 and log (likelihood) values
	Check model assumptions
	Predictions for Harry and Sally

	The Zero-Inflated Negative Binomial Regression Model
	Comparison to a null model
	Comparison to a Negative Binomial Model: Vuong test
	The Fitted Equation
	Interpreting the Coefficients
	Testing the Predictors
	Store fitted values and residuals
	Modeled Number of Zero Counts
	Rootogram for Zero-Inflated Negative Binomial model
	Specify the R^2 and log (likelihood) values
	Check model assumptions
	Predictions for Harry and Sally

	A ``hurdle'' model (with Poisson)
	Comparison to a null model
	Comparison to a Poisson Model: Vuong test
	Comparison to a Zero-Inflated Poisson Model: Vuong test
	The Fitted Equation
	Interpreting the Coefficients
	Testing the Predictors
	Store fitted values and residuals
	Modeled Number of Zero Counts
	Rootogram for Hurdle Model
	Understanding the Modeled Counts in Detail
	Specify the R^2 and log (likelihood) values
	Check model assumptions
	Predictions for Harry and Sally

	A ``hurdle'' model (with negative binomial for overdispersion)
	Comparison to a null model
	Comparison to a Negative Binomial Model: Vuong test
	Comparison to a Zero-Inflated NB Model: Vuong test
	Comparing the Hurdle Models with AIC and BIC
	The Fitted Equation
	Interpreting the Coefficients
	Testing the Predictors
	Store fitted values and residuals
	Rootogram for NB Hurdle Model
	Specify the R^2 and log (likelihood) values
	Check model assumptions
	Predictions for Harry and Sally
	Note: Fitting a Different Hurdle Model for Counts and Pr(zero)
	Hanging Rootogram for this new Hurdle Model

	A Tobit (Censored) Regression Model
	The Fitted Equation
	Interpreting the Coefficients
	Testing the Predictors
	Store fitted values and residuals
	Building Something Like a Rootogram
	Tables of the Observed and Fitted physhealth from Tobit
	Specify the R^2 and log (likelihood) values
	Check model assumptions
	Predictions for Harry and Sally

	Modeling an Ordinal Categorical Outcome
	R Setup Used Here
	Data Load

	A subset of the Ohio SMART data
	Several Ways of Storing Multi-Categorical data

	Building Cross-Tabulations
	Using base table functions
	Using xtabs
	Storing a table in a tibble
	Using CrossTable from the gmodels package

	Graphing Categorical Data
	A Bar Chart for a Single Variable
	A Counts Chart for a 2-Way Cross-Tabulation

	Building a Model for genh using veg_day
	A little EDA
	Describing the Proportional-Odds Cumulative Logit Model
	Fitting a Proportional Odds Logistic Regression with polr

	Interpreting Model m1
	Looking at Predictions
	Making Predictions for Harry (and Sally) with predict
	Predicting the actual classification of genh
	A Cross-Tabulation of Predictions?
	The Fitted Model Equations
	Interpreting the veg_day coefficient
	Exponentiating the Slope Coefficient to facilitate Interpretation
	Comparison to a Null Model

	The Assumption of Proportional Odds
	Testing the Proportional Odds Assumption

	Can model m1 be fit using rms tools?
	Building a Three-Predictor Model
	Scatterplot Matrix
	Our Three-Predictor Model, m2
	Does the three-predictor model outperform m1?
	Wald tests for individual predictors
	A Cross-Tabulation of Predictions?
	Interpreting the Effect Sizes
	Quality of the Model Fit
	Validating the Summary Statistics in m2_lrm
	Testing the Proportional Odds Assumption
	Plotting the Fitted Model

	A Larger Model, including income group
	Cross-Tabulation of Predicted/Observed Classifications
	Nomogram
	Using Predict and showing mean prediction on 1-5 scale
	Validating the Summary Statistics in m3_lrm

	References for this Chapter

	Multinomial Logistic Regression
	R Setup Used Here
	Data Load

	The Authorship Example
	Focus on 11 key words
	Side by Side Boxplots

	A Multinomial Logistic Regression Model
	Testing Model 1

	Model 2
	Comparing Model 2 to Model 1
	Testing Model 2
	A little history

	Classification Table
	Probability Curves based on a Single Predictor
	Produce the Plot of Estimated Probabilities based on ``been'' counts
	Boxplot of ``been'' counts
	Quote Sources

	Time To Event / Survival Data
	R Setup Used Here
	Data Load

	An Outline of Key Topics Discussed in these Notes
	Foundations of Survival Analysis
	The Survival Function, S(t)
	Kaplan-Meier Estimator of the Survival Function
	Creating a Survival Object in R

	A First Example: Recurrent Lobar Intracerebral Hemorrhage
	Building a Survival Object
	Kaplan-Meier Estimate of the Survival Function
	The Kaplan-Meier Plot, using Base R
	Using survminer to draw survival curves
	A ``Fancy'' K-M Plot with a number at risk table

	Comparing Survival Across the Two Genotypes
	Kaplan-Meier Survival Function Estimates, by Genotype

	Testing the difference between two survival curves
	Alternative log rank tests

	A ``Fancy'' K-M Plot with a number at risk table
	Customizing the Kaplan-Meier Plot Presentation Further

	The Hazard Function
	The Inverse Kaplan-Meier Estimator of H(t)
	Cumulative Hazard Function from Inverse K-M
	The Nelson-Aalen Estimator of H(t)
	Convert Wide Data to Long
	Plot Comparison of Hazard Estimates

	NEW!! Checking Assumptions Using a log (-log) plot

	Cox Regression Models, Part 1
	R Setup Used Here
	Data Load

	Sources used in building this material
	Fitting a Cox Model in R with coxph
	Summarizing the Fit
	Glancing at the model?
	Plot the baseline survival function
	Plot the genotype effect
	Testing the Key Assumption: Proportional Hazards
	Plotting the cox.zph results for the cfit model

	Fitting a Cox Model using cph from the rms package
	The Main cph results
	Using anova with cph
	Effect Sizes after cph fit
	Validating cph summaries
	Plotting Survival Functions for each Genotype
	Genotype's effect on log relative hazard
	Nomogram of our simple hem model
	Assessing the Proportional Hazards Assumption
	Plot to Check PH Assumption

	Cox Regression Models, Part 2
	R Setup Used Here
	Data Load

	A Second Example: The leukem data
	Creating our response: A survival time object
	Models We'll Fit

	Model A: coxph Model for Survival Time using age at diagnosis
	Plotting the Survival Curve implied by Model A
	Testing the Proportional Hazards Assumption

	Building Model A with cph for the leukem data
	Plotting the age effect implied by our model.
	Survival Plots (Kaplan-Meier) of the age effect
	ANOVA test for the cph-built model for leukem
	Summarizing the Effect Sizes from modA_cph
	Validating the Cox Model Summary Statistics
	Looking for Influential Points
	Checking the Proportional Hazards Assumption

	Model B: Fitting a 5-Predictor Model with coxph
	Plotting the Survival Curve implied by Model B
	Testing the Proportional Hazards Assumption
	Assessing Collinearity

	Model B2: A Stepwise Reduction of Model B
	The Survival Curve implied by Model B2
	Checking Proportional Hazards for Model B2

	Model C: Using a Spearman Plot to pick a model
	Fitting Model C
	ANOVA for Model C
	Summarizing Model C Effect Sizes
	Plotting the diagnosis age effect in Model C
	Survival Plot associated with Model C
	Checking the Proportional Hazards Assumption
	Model C Nomogram
	Validating Model C's Summary Statistics
	Calibration of Model C (12-month survival estimates)

	NEW!! A Few LASSO Ideas
	R Setup Used Here
	Data Load

	The pollution data
	Should We Rescale any Predictors?
	A Kitchen Sink Model
	Considering an Outcome Transformation
	How much collinearity are we dealing with?

	Using the LASSO to suggest a smaller model
	Would the 9-predictor model be a big improvement?
	Using Stepwise Regression to suggest a smaller model

	NEW!! Bayes and a Linear Model
	R Setup Used Here
	Return to the smalldat Example
	The Distribution of Total Cholesterol
	Fitting a Linear Model with lm() for Total Cholesterol
	Fitting a Bayesian Linear Model
	Extracting the Posterior
	Describing Uncertainty
	Visualizing the Coefficients and Credible Intervals

	Summarizing the Posterior Distribution
	Summarizing the Parameter values
	Probability of Direction (pd) estimates.
	The ROPE estimates
	Convergence Diagnostics

	Summarizing the Priors Used
	Graphical Posterior Predictive Checks

	NEW!! Bayes and a Logistic Model
	R Setup Used Here
	Return to the smalldat Example
	The Distribution of Smoking Status
	Fitting a Logistic Regression Model with glm()
	Fitting a Bayesian Linear Model
	Extracting the Posterior
	Describing Uncertainty
	Visualizing the Coefficients and Credible Intervals

	Summarizing the Posterior Distribution
	Summarizing the Parameter values
	Probability of Direction (pd) estimates.
	The ROPE estimates
	Summarizing the Coefficients as Odds Ratios

	Summarizing the Priors Used
	Graphical Posterior Predictive Checks

	References

